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Abstract 
 

The purpose of this study was to explore the utility of remotely sensed data 

acquired for agricultural applications to assist urban planners in land use and land cover 

(LULC) classifications.  The National Agriculture Imagery Program (NAIP) offers local 

planners a high resolution (i.e. one-meter), multispectral (4 bands: red, blue, green and 

near infrared) dataset at little (or no) cost.   NAIP imagery was selected because of its low 

cost and potential for small scale land use and land cover classifications similar to the 

success Landsat (30 meter, multispectral: 4 band) imagery has achieved with large scale 

classifications.  The study was conducted using a subdivision in South-central Texas (i.e. 

El Camino Real) and the surrounding (rural) property.  Supervised (parametric and non-

parametric) classification procedures were conducted on the El Camino Real subset using 

ERDAS Imagine 9.3®.  Stratified random sample points were generated for accuracy 

assessment via a ground based visual assessment of each point‟s LULC class.  By using a 

7 class LULC schema, a supervised classification of the NAIP imagery resulted in 

classification accuracy of 86%.  When the schema was reduced to two broad classes (i.e. 

impervious and pervious cover), the classification accuracy climbed to 95%.  These 

results suggest the need for a continued exploration of NAIP data utility for local 

planning purposes. 
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Chapter 1. Introduction 

 
Scenario

1
 

After many years as a quiet river town, the heartbeat of Anytown, Texas is racing 

like that of a thoroughbred on the last leg of the Kentucky Derby.  City planner Norman 

Ware, an aging public servant whose years of military service are hidden well by his 

expanding beltline and thinning grey hair, is overrun with applications for new 

developments within his city limits.  Norm‟s office is bombarded with requests for new 

subdivisions, shopping centers, and numerous other commercial development ventures.  

The request sitting on top of Norm‟s inbox, as the sun rises on what threatens to be an 

unusually hot Hill Country morning, is for the approval of construction on the third phase 

of a local subdivision, Deerfield Estates.  Deerfield Estates, before it became the bustling 

home of over 250 Anytown families, was much like its surrounding area today: a 

patchwork of various agricultural enterprises.   

The subdivision was once home to many heads of cattle and acre upon acre of 

corn, cotton, and hay fields.  The soft earth and grass of the area that once soak up the 

rain water like a dry sponge in a tea cup has since been replaced by houses, sidewalks, 

streets, and patios that are as accepting of rainwater as Norm‟s elderly father is of loud 

music and mohawk haircuts.  As a steward of his beloved Anytown, Norm must consider 

all consequences of the new construction before he can allow the developers to break 

ground on Deerfield Estates: Phase Three.  His main concern with the application at hand 

is that each new phase of construction has brought the subdivision closer to a nearby 

floodplain as identified by the Flood Rate Insurance Map (FIRM) spread across his desk.   

                                                 
1
 For examples of illustrative scenarios in academic papers see Este (2007) and O‟Neill (2008). 
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The Federal Emergency management Agency (FEMA) created this specific FIRM 

in 2004 making the information contained within to be more than slightly outdated for his 

current needs.  The FIRM was an excellent source of information when construction 

began on Deerfield Estates: Phase One in 2004.  Norm‟s years of experience in the 

planning field had taught him that a little change can go a long way when new 

developments are situated near floodplains.  Feeling somewhat helpless, Norm wondered 

how in the heck he was going to identify the new boundaries of the floodplain perched at 

the southwest corner of the already constructed Deerfield Estates: Phases One and Two.  

It sure wasn‟t with the five year old FIRM that he had already relegated to a coaster for 

the overfull mug of Folgers® that was, until now, sloshing on his desk.  As he carefully 

sipped his morning brew, Norm thought “Now what?” 

Research Problem 

Issues regarding floodplains are especially pertinent to those in charge of the 

cities and communities in which we live.  Floodplain utilization and management issues 

affect the majority of the United States population.  Therefore, today‟s city planners need 

an accurate and efficient means to update existing floodplain maps/models for planning 

and development purposes.  Numerous factors (e.g. natural disasters, infill and 

urbanization) can alter the land use and land cover
2
 (LULC) and, therefore, hydrologic 

characteristics of a floodplain (Burby and French 1985; Johnston 1992; Maidment 2002). 

Such change will alter the flood risk in affected areas.  In rapidly developing 

                                                 
2
 Land use relates to human activities conducted on a parcel or property that are directly related to the land 

itself [e.g. cropland (agriculture), forest land (forestry), urban areas (densely populated), or transportation 

(roadways)] (Anderson 1976; Clawson and Stewart 1965). The category of land cover actually describes 

the constituents (natural and manmade) on the surface of a parcel or property (e.g. trees, shrubs, grass, 

crops, roads, or buildings) (Anderson 1976; Burley, 1961).   In many cases the land use and land cover for 

an area is closely related (e.g. forestry uses are covered with trees and urban areas are covered with 

buildings and roads) (Anderson 1976). 
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communities, the current floodplain is unlikely to be the same floodplain mapped two 

years ago.  Today‟s city planners lack the information necessary to better understand their 

flood risks based on current land use and land cover conditions.  The intent of this study 

is to explore the utility of readily available, high resolution, multi-spectral, remotely 

sensed data (i.e. NAIP
3
 data) to identify current land use and land cover conditions.  

Water and Our Attraction 

Water, because of its immense intrinsic value, is a population and industrial 

magnet.  Due to the value presented by water‟s numerous uses (e.g. manufacturing, 

transportation, agriculture and recreation), over half of our national population lives near 

a large body of water (U.S. Commission on Ocean Policy 2004).  By selecting locations 

in the vicinity of vast amounts of water, residents and businesses place themselves in (or 

near) floodplains (i.e. land of relatively low elevation, usually adjacent to a body of 

water, which is “shaped by and continually subject to inundation”) (Johnston 1992, 4).  

The proximity of citizens to floodplains has made flooding the most prevalent natural 

disaster in the United States and the world (Shim et al. 2002; Lins and Slack 1999). 

Fortunately, by understanding the inherent risks and developing strategies for proper 

mitigation, flooding is also the most preventable natural disaster (Romano and Vaccaro 

2005).  

  

                                                 
3
 The National Agriculture Imagery Program (NAIP) was created by the U.S. Department of Agriculture to 

provide agricultural producers throughout the nation with free (or low cost), high resolution, natural color 

and color infrared imagery acquired during the growing season (USDA 2007). 
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Floodplain Management 

The authority for floodplain management resides at the state and local level. Local 

authorities rely on three distinct approaches to mitigate flood hazards:  (1) guiding 

development away from flood hazards; (2) implementation of specialized floodplain 

construction standards and; (3) construction of flood control structures (Burby and 

French 1985).  Flood control structures (e.g. levees, channels and detention basins) often 

only postpone inevitable inundation and ensure catastrophic damages when their 

engineering limitations are exceeded.  Because of their physical limitations, “there will 

never be enough funds available to solve flood problems by structural means” (Burby and 

French 1985, 153).  Implementing land use regulations to guide new developments away 

from flood hazard areas is the most certain way to ensure decreased flood damage 

because it eliminates (or greatly reduces) the potential for loss (Peterson, Helfrich and 

Smith 1999).   

The adoption of strict building codes for new or significantly improved structures 

in floodplains has also helped to lessen the consequences of flooding (Wetmore 2006).  

While not developing areas in or around floodplains will virtually eliminate all losses 

from flooding, it may also significantly inhibit economic growth and income for a city.  

The loss of tax revenue and economic input from excessively stringent land development 

regulations can severely decrease the monetary funds for a community.  Unrestricted 

floodplain development, however, threatens the lives and property of individuals and 

businesses located in flood hazard areas.  Reducing mitigation strategies to the lowest 

level (that still provides significant hazard reduction) protects community resources while 

promoting safe development and economic growth.   

4 



Flood Hazard Mapping 

Communities rely on flood hazard maps to effectively manage flood plain 

development and mitigate the inherent hazards.  Such maps may be created by modeling 

surface water conveyance and catchment regions for a watershed (Hoggan 1997).  

Property use and ground cover (i.e. LULC) data and digital elevation models are the two 

types of data sets required to model surface water conveyance for a watershed (Maidment 

2002).  Unfortunately for city managers, watershed (and floodplain) conditions can 

change rapidly and drastically.  Dynamic natural events (e.g. floods and hurricanes) have 

the ability to drastically alter the use and topographic characteristics of a floodplain in a 

matter of days, if not hours (Mannion 2002).  Widespread destruction of homes and 

businesses, coupled with topographic changes caused by the immense forces of nature, 

(e.g. flood sediment and coastal erosion) will drastically alter the characteristics of a 

floodplain warranting immediate assessment to understand newfound risks.  Subsequent 

recovery efforts will also alter the floodplain.  Often post-disaster reconstruction proceeds 

unregulated and undocumented for many months after the initial disaster.  Such 

unimpeded and often haphazard development has an increased potential of negatively 

altering/utilizing a floodplain and exposing citizens to unnecessary risk.      

For many communities, especially smaller cities and the suburban fringe of larger 

cities, the resources are not available to conduct watershed modeling procedures in-

house; therefore, local governments have traditionally relied on external agencies to 

develop land use and land cover data for management purposes (Johnston 1992).  This 

outsourcing has been required due to the complexity of land use and land cover analysis. 

Traditional methods required extensive fieldwork and the labor intensive process of 

5 



ground-truthing the classification (Singh, et al. 2001).  Unfortunately, relying on external 

agencies to deliver the data is a costly (if outsourced to private corporations) and slow 

(especially with federal assets) method for acquiring land use and land cover data. The 

obstacles of traditional land use and land cover classification methods have created a 

chasm between the land use and land cover information available to a city for a particular 

watershed and the actual land use and land cover conditions for that watershed (USGS 

2007; USGS 2006).  Planners need a quick, low cost and accurate method for assessing 

land use and land cover conditions in our rapidly developing communities. 

National Flood Insurance Program 

Currently, the National Flood Insurance Program (NFIP) is attempting to meet 

community flood hazard mapping needs (Wetmore 2006).  The NFIP has developed 

flood hazard maps [i.e. Flood Insurance Rate Maps (FIRMs)] for the entire nation.  

Unfortunately, the development and approval process for a FIRM is lengthy and, 

therefore, makes maintaining current flood hazard maps in our rapidly urbanizing society 

difficult.  Even with the Map Modernization Program that began in 2003, most available 

FIRMs are created outside of the two year relevance window that is required for accurate 

floodplain assessment (FEMA 2007; Group 1999; Lovell, et al. 1999).   

Using current procedures, flood hazard maps and FIRMs cannot be updated at the 

same rate as the changes caused by population growth and the accompanying watershed 

urbanization.  These changes in population size and density result in altered watershed 

characteristics (Mannion 2002).  The U.S. population has grown from 226 million in 

1980 to 296 million in 2003 (Crossett et al. 2004).  Projections place the 2015 national 

population around 322 million (Crossett et al. 2004).   

6 



Research Purpose 

The Issues 

These two issues, slow generation of FIRMs and widespread floodplain/watershed 

alterations, necessitate the development of a new method for generating flood hazard 

maps for city planning purposes.  The new method must utilize timely data that is readily 

available at a low cost and a high resolution (less than 2 meters).  It must also facilitate 

the production of flood hazard maps by city or county agents with minimal analysis 

resources and expertise.  The purpose of this study is to explore the utility of readily 

available, high resolution, multi-spectral, remotely sensed data (i.e. NAIP data) to 

identify current LULC conditions.   

The Solution 

While the National Agriculture Imagery Program was implemented to serve the 

agriculture industry, the information it provides has potential for aiding urban and 

suburban areas at little or no cost to the community.     National Agriculture Imagery 

Program data has potential for fulfilling current land use and land cover classification 

needs for community flood mapping purposes.  It provides information similar to the 

time-tested remote sensing platforms (i.e. Landsat Thematic Mapper and Enhanced 

Thematic Mapper) currently used for land use and land cover classification.  Where the 

National Agriculture Imagery Program data displays the greatest promise is in its ability 

to provide the required information at a small scale
4
 that allows much greater detail and it 

does so at no (or a minute) cost to the end user (e.g. city, town, community).   

 

                                                 
4
 NAIP Imagery is captured at a resolution that is 225 to 900 times greater than Landsat 

imagery (Lillesand and Kiefer 1994; USDA 2008). 
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The Application 

Once generated, the critical information (i.e. land use and land cover data derived 

from NAIP imagery) can be applied to hydrologic models (along with topographic data) 

to enable communities to manage their flood risk based on actual conditions.  National 

Agriculture Imagery program data possess great potential to satisfy the present need for 

an accurate and efficient means to identify local land use and land cover conditions.  

Such knowledge will assist planners when updating existing floodplain/flood hazard 

maps, as well as, allow communities to understand their actual flood risk based on current 

conditions. By implementing straight forward analysis techniques on modest data sets, 

communities may generate new maps to better understand their current flood hazard 

risks. The newfound ability to model current situations and not rely on outdated, 

inaccurate (i.e. low resolution), and/or costly information will provide planners and 

managers the ability to develop precise strategies to mitigate flood risks in their current 

state.  

Scenario – Deerfield Estates, Anytown, TX 

 Deerfield Estates is your classic middle-class, tract housing development.  Small 

lot sizes (less than .5 acres) allow for a great deal of development to occur in a small area.  

Norm knows dense developments (even those that are not dense by Bigcity, Texas 

standards) result in significant increases in impervious cover.  By cramming a house, 

driveway, sidewalk, and a patio into a third of an acre and then repeating the process on 

the adjoin lots creates enormous potential to drastically affect the characteristics of the 

neighboring floodplain(s).    
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Study Area  

The study utilizes a local (i.e. within San Marcos) subdivision (and its 

surrounding area) as a case study to explore the utility of National Agriculture Imagery 

Program data to identify land use land cover conditions on a small scale (i.e. 1 meter 

resolution).  The El Camino Real subdivision (Figures 1.1 and 1.2) is a medium density 

residential community that offers numerous types of land use and land cover within a 

small area.  The area immediately surrounding the community, currently consists of 

active and abandoned agricultural land, several small wooded areas and a few small areas 

that permanently contain water.  The varied land use and land cover conditions in and 

around El Camino Real and the distinct transition from one class to the next (e.g. rooftop 

to lawn to concrete sidewalk to asphalt road to corn field) will facilitate a comprehensive 

analysis of the utility of NAIP data to accurately identify each land use and land cover 

type. 

 

Figure 1.1 2005 NAIP True Color Image of the Southwest Portion of San Marcos, 

Texas (Image courtesy of TNRIS: http://www.tnris.state.tx.us/)  
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 El Camino Real  



 

 
 

Figure 1.2 2005 NAIP True Color Image of the El Camino Real Subdivision in San 

Marcos, Texas (Image courtesy of TNRIS: http://www.tnris.state.tx.us)  

 

Predicted Outcomes  

 

1) Communities will possess a playbook (i.e. this ARP) detailing how to extract 

critical information (i.e. current LULC conditions form NAIP data) for planning 

purposes. 

 

2) By applying current LULC data
5
 generated from NAIP data  (through procedures 

identified in this paper) to hydrologic models, community planners/managers will 

have the ability to develop flood hazard maps to fill in between federally issued 

maps allowing them to make zoning and development decisions based on real 

time flood hazards. 

 

3) During the initial recovery phase of a natural disaster, communities can assess 

normally undocumented LULC conditions of a recovering area (using NAIP 

technology and supplemental, post-disaster data collections) in order to make 

informed decisions regarding recovery and redevelopment. 

 

4) The development of a means (through use of NAIP data) for expediting, 

supplementing, and eventually substituting the FEMA Map Modernization 

Program by improving the ability for flood plain management at the local level.  
                                                 
5
 For more information on other uses of land use and land cover data see Gillfillan (2008), Schacheri 

(2008), and Ellis (2006). 
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Chapter Summaries 

 

Chapter 2 reviews literature concerning the problems with contemporary 

floodplain management and land use land cover classification procedures and the 

inadequacies of the technologies currently applied to the processes.  It also identifies 

National Agriculture Imager Program data as a potential solution to the current problems.  

One working hypothesis (two sub-hypotheses) is developed to explore the utility of the 

NAIP data for land use and land cover classification.  Chapter 3 provides a description of 

the study area (i.e. El Camino Real Subdivision in San Marcos, TX) and the dataset with 

which the land use land cover classification was attempted.  Chapter 4 details, in a step 

by step “playbook”, the supervised image classification process.  The results of the land 

use land cover classification attempt are presented and analyzed in Chapter 5.  Chapter 6 

highlights of the findings of the research and provides recommendations for future 

research. 
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Chapter 2. Literature Review 
 

Chapter Purpose  

The notion of sustainability and community resilience is increasing in popularity 

as the most prevalent trend in contemporary urban planning (Manyena 2006).  

Sustainable, resilient communities have the ability to withstand and recover quickly from 

natural disasters.  The need for resilient communities is undeniable.  The planning and 

practices necessary for achieving resilient communities, however, are still in need of 

greater refinement, further development, and increased implementation.  One of the most 

prolific contemporary hazards facing communities is the increasing potential for 

inundation (i.e. flooding).  In order to prevent, or significantly reduce, the impacts of 

floods and other disasters, communities must understand their current risk based on an 

assessment of their existing community conditions.  The understanding of current 

conditions (land use/land cover and terrain relief) is essential for identifying at risk areas.  

To maintain resiliency (i.e. achieve sustainability), communities must be able to monitor 

changes caused by continued development/urbanization.  They must also understand the 

effects of those changes on potentially flood prone areas.  The ability to monitor and 

understand change will allow communities to regulate new development and reduce flood 

risks.   

Realizing the currently unmet need for an affordable and efficient means of 

assessing current conditions, the purpose of this chapter is to review and examine the 

scholarly literature on the effects of land use and land cover change and the need to 

assess and quantify those changes.  This chapter shows that with accurate and timely 
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information identifying local land use and land cover changes, community planners can 

increase resiliency to flood hazards.   

The chapter begins with a discussion of the increasing trend towards development 

of sustainable, resilient communities.  It then discusses the importance sustainable 

floodplain management.  Following a discussion of floodplains, the impact of land use 

and land cover on hydrologic systems
6
 and the importance of quantifying land use and 

land cover change (in order to model the behavior of such systems) is addressed.  For 

proper assessment of hydrologic systems, terrain relief must be represented by digital 

elevation models (DEMs).  With this in mind, a brief literary assessment of available 

sources of DEMs is included.  Then, the shortcomings of current floodplain management 

and LULC assessment techniques are identified along with a call for further research in 

this area.  Finally, a working hypothesis is developed and conceptualized as the 

foundation of this research.  The working hypothesis was created to explore the 

applicability of NAIP data for land use and land cover classification using a subdivision 

(and the surrounding area) in San Marcos, TX. 

Community Resiliency 

An International Issue 

Ideally, all community planners desire sustainable and resilient communities.  

They seek to foster development that can survive and recover rapidly from extreme 

geophysical events (Tobin 1999).  Since the introduction of the paradigm of sustainability 

in 1987, there is an undeniable international trend promoting sustainable development.  

                                                 
6
 Hydrologic systems encompass surface runoff and ground-water flow, as well as, their interactions with 

atmospheric water (i.e. precipitation and evapotranspiration) (Winter 2001). 
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The 1990s were designated by the United Nations as the International Decade for Natural 

Disaster Reduction
7
 (IDNDR) with the intent to incorporate science and technology to 

prevent disaster losses (United Nations 2000).  As the decade ended, a new body was 

created to continue the promotion of sustainable development.  The International Strategy 

for Disaster Reduction (ISDR) was created in 1999 with the goal of “building disaster 

resilient communities by promoting increased awareness of the importance of disaster 

reduction as an integral component of sustainable development, with the goal of reducing 

human, social,  economic and environmental losses due to natural hazards” (Stanganelli 

2008, 95; United Nations 2002).  In 2005, the ISDR adopted the Hyogo (Japan) 

Framework for Action to integrate risk assessment and sustainability strategies into 

international development policies, planning and programming (United Nations 2007).   

Figure 2.1 illustrates the comprehensive framework created by all of the various 

activities required for effective risk management.    The importance of this framework is 

that it connects all phases (i.e. assessment, prevention, mitigation, monitoring, early 

warning and preparedness) and demonstrates that maintaining community resiliency (i.e. 

achieving sustainability) is a dynamic process that requires feedback between all phases. 

In the United States, the Federal Emergency Management Agency (FEMA) has adopted a 

strategy promoting the enhancement of state and local mitigation based on natural hazard 

risk assessment and knowledgeable spatial planning (Stanganelli 2008).  The 

functionality of this strategy relies heavily on risk assessment, mitigation and monitoring 

at the local level (Stanganelli 2008).    

                                                 
7
 The International Decade for Disaster Reduction also became the title for the UN task force chartered to 

reduce “the loss of life, property damage, and social and economic disruption caused by natural disasters” 

(Munasinghe and Clarke 1994, ii). 
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Figure 2.1:  The Hyogo Framework for Action Risk Management Process 

         (Stanganelli 2008, 93) 

 

Hazards, Disasters, and Risk 

An extreme event, such as flooding, only poses a hazard when it exposes humans 

(directly or indirectly) to danger (Cross 2001).  Disasters occur when the danger is 

realized by an actual event that causes widespread and intense damage in proportion to 

the total population (Cross 2001).  If a community is unable to “anticipate, cope with, 

resist and recover from the impact of a natural hazard” it is considered vulnerable (Cross 

2001).  Three strategies (i.e. options) are available for communities to reduce the risks 

that accompany natural hazards: 1) choosing change, 2) reducing losses and 3) accepting 

losses (Klein et al. 2003).   Traditionally, communities have chosen to decrease losses by 

reducing the existence of a hazard through the implementation of warning systems, 

defense works and resistant infrastructures (Klein et al. 2003).  In the US it is also 

common to accept losses by sharing the cost of the loss over a large portion of the 
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population through mechanisms such as federally funded flood insurance.  The most 

promising strategy for reducing losses and promoting resiliency is choosing change (i.e. 

accepting the hazard and adapting land uses to prevent exposure to the hazard) (Klein et 

al. 2003). 

Regardless of which strategy is chosen, comprehensive knowledge (by 

community planners/managers) of the current community conditions is necessary to 

follow the risk reduction phases set forth by the Hyogo Framework of Action (i.e. risk 

assessment, risk management and emergency preparedness) (Stanganelli 2008).  It is 

impossible to foster resiliency and prepare for a potential disaster without comprehensive 

knowledge of a community‟s current conditions as they apply to that hazard (e.g. current 

land use/land cover and its effects on flooding).  The need of local planners and 

emergency managers for accurate and detailed information of current community 

conditions (e.g. land use and land cover) is especially important for the prevention of 

flooding and attaining sustainable floodplain management. 

Water: Our Attraction and Its Perils  

Attraction 

Water, because of its immense intrinsic value, is a population and industrial 

magnet.  Due to the value presented by water‟s numerous uses (e.g. manufacturing, 

transportation, agriculture and recreation), the global population is drawn to locations 

near bodies of water.  By 2015, 33 cities in the world will have more than eight million 

inhabitants each (Klein et al. 2003).  Of the 33 predicted megacities, 17 are located in 

coastal areas with the potential for flooding. As the world‟s population increases (9.3 

billion people by 2050) so will the number of people dwelling in floodplains (Klein et al. 
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2003).   In the United States, currently over half of our national population lives near a 

large body of water (U.S. Commission on Ocean Policy 2004).   

Perils 

By selecting locations in the vicinity of vast amounts of water, residents and 

businesses place themselves in (or near) floodplains (i.e. land of relatively low elevation, 

usually adjacent to a body of water, which is “shaped by and continually subject to 

inundation”) (Johnston 1992, 1-4).  The proximity of citizens to floodplains has made 

flooding the world‟s most prevalent natural disaster and the leading cause of economic 

loss and death (Ramlal and Baban 2008).  The European Union considers flooding the 

most important natural disaster facing all of Europe (Stanganelli 2008).  Of the twenty 

greatest natural disasters in history, twelve are related to some type of inundation 

(Stanganelli 2008).  When the top twenty disasters are selected based on total financial 

losses, the number rises to seventeen disasters that were in some way affected by 

inundation (Stanganelli 2008).  The greatest of the disasters is also the most recent.  

Hurricane Katrina and the accompanying storm surge struck the United States in 2005 

leaving a wake of destruction and economic losses in excess of $142 billion (Burton and 

Hicks 2005
8
).   

Moths to a Flame 

Our attraction to locations near water seems to outweigh our perception of the 

inherent risks of floodplains.  In 1993 flooding of the Upper Mississippi River Basin 

                                                 
8
 Burton and Hicks (2005) estimated that Hurricane Katrina and the accompanying storm surge caused 

damages exceeding: $21 billion to commercial structures, $36 billion to commercial equipment, $75 billion 

to residential homes and their contents, $231 million to electric utilities, $3 billion to highways, $1.2 billion 

to sewer systems, and $4.6 in lost commercial revenues.  Damages not estimated included those to the 

water system and environment, as well as, costs of lost lives. 
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resulted in damages exceeding $12 billion.  Despite federal recommendations to curb 

development in the affected areas, new development has poured into the flood-affected 

zones (Hipple et al. 2005).  Based on comparison of 1990 and 2000 US Census data for 

the Upper Mississippi River Basin, a 17% population growth has occurred in the 500 year 

floodplain (Hipple et al. 2005).  Over the same 10 year period, an 18% growth in 

population has occurred in the flood-affected zones accounting for a 28% increase in 

developed land area (Hipple et al. 2005).    

Sustainable Floodplain Management 

With our global population‟s seemingly unquenchable thirst to inhabit land areas 

prone to inundation, floodplain utilization and management issues have gained 

unprecedented attention by the majority of the world population. Although flooding is the 

world‟s most prevalent natural disaster, by understanding the risks associated with 

floodplains and developing strategies for proper risk mitigation, it is also the most 

preventable (Romano and Vaccaro 2005).  The ability to prevent flood losses through 

proper application of relevant mitigation strategies make issues regarding sustainable 

floodplain management especially pertinent to those in charge of the cities and 

communities in which we live.  

The Goal 

 At its best, sustainable floodplain management maintains the ability of the 

floodplain to adapt, adjust and absorb a disturbance in order to preserve its original 

functions and structure (Colding 2007).  Because of the changing internal and external 

processes, the goal of all community managers must be preservation of a floodplain‟s 

ability to continue providing valuable social and ecological functions (e.g. flood control, 
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sediment and nutrient retention, recreation opportunities and wildlife habitat).  According 

to Pickett et al. (2004, 373) the emphasis of sustainable floodplain management should 

not be “on reaching or maintaining a certain endpoint or terminal condition, but on 

staying in the game”. 

The Authority 

The authority for floodplain management resides at the state and local level. Local 

authorities rely on three distinct approaches to mitigate flood hazards:  (1) guiding 

development away from flood hazards, (2) implementing specialized floodplain 

construction standards and (3) constructing flood control structures (Burby and French 

1985).  Since Mother Nature possess the ability to build storms that surpass our 

engineering and financial resources, flood control structures (e.g. levees, channels and 

detention basins) often only postpone inevitable inundation and ensure catastrophic 

damages when their engineering limitations are exceeded.  Because of their physical 

limitations, “there will never be enough funds available to solve flood problems by 

structural means” (Burby and French 1985, 153).  Implementing land use regulations to 

guide new developments away from flood hazard areas is the most certain way to ensure 

decreased flood damage because it eliminates (or greatly reduces) the potential for loss 

(Peterson et al. 1999).  The adoption of strict building codes for new or significantly 

improved structures in floodplains also helps to lessen the consequences of flooding 

(Wetmore 2006). 

The Compromise 

While not developing areas in or around floodplains will virtually eliminate all 

losses from flooding, it may also significantly inhibit economic growth and income for a 
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city.  The loss of tax revenue and economic input from excessively stringent land 

development regulations can severely decrease the money available to a community.  

Unrestricted floodplain development, however, threatens the lives and property of 

individuals and businesses located in flood hazard areas.  Reducing mitigation measures 

to the lowest level (that still provides significant hazard reduction) protects community 

resources while promoting safe development and economic growth.  

Hydrologic Modeling for Floodplain Management 

More than a Floodplain 

Since watersheds incorporate the diverse processes of subterranean and overland 

hydrologic transport
9
 into floodplains, the practice of sustainable floodplain management 

must be expanded to include the corresponding watershed(s) (Hipple et al. 2005).  In a 

flood hazard mitigation context, the goal of watershed management should be a 

comprehensive knowledge of the results of the hydrologic processes (as they affect 

floodplains) and identification of at risk areas.  Therefore, proper watershed management 

requires a thorough knowledge of current watershed conditions and the ability to perform 

real-time assessments of those conditions after dynamic events. 

Monitoring a Dynamic Hazard 

Communities rely on flood hazard maps (National Flood Insurance Program 

Flood Insurance Rate Maps) to manage floodplain development and mitigate the inherent 

hazards.  Such maps are created by modeling surface water conveyance and catchment 

regions for a watershed (FEMA 2007; Hoggan 1997).  Property use and ground cover 

                                                 
9
 Overland hydrologic transport consists of the movement of water and any substances it carries across the 

land surface.  Overland hydrologic transport does not include sub-surface water or movement within stream 

and river banks (Zhang and Cundy 1989).  
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(i.e. land use and land cover) data and digital elevation models are the two types of data 

sets (besides actual water inputs) required to model surface water conveyance for a 

watershed (Maidment 2002).  There is a need for data sets to be current and up-to-date 

because, watershed (and floodplain) conditions can change rapidly and drastically.  

Dynamic natural events (e.g. floods and hurricanes) have the ability to drastically alter 

the use and topographic characteristics of a floodplain in a matter of days, if not hours 

(Mannion 2002).  Topographic changes and widespread destruction of homes and 

businesses caused by the immense forces of nature, (e.g. flood sediment and coastal 

erosion) can drastically alter the characteristics of a floodplain.  Such drastic topographic 

changes warrant immediate assessment to understand and determine the presence of 

newfound risks.  Subsequent recovery efforts can also alter the floodplain.  Often post-

disaster reconstructions proceed unregulated and undocumented for many months after 

the initial disaster.  Such unimpeded and often haphazard development has an increased 

potential of negatively altering/utilizing a floodplain and exposing citizens to unnecessary 

risk.      

Limited Resources 

For many communities, especially smaller cities and the suburban fringe of larger 

cities, the resources are not available to conduct accurate in-house watershed modeling 

procedures.  As a result, local governments have traditionally relied on external agencies 

to develop land use and land cover data for their management purposes (Johnston 1992).  

This outsourcing has been required due to the complexity of LULC analysis.  Traditional 

methods required extensive fieldwork and the labor intensive process of ground-
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truthing
10

 the classification (Singh et al. 2001).  Unfortunately, relying on external 

agencies to deliver the data is a costly (if outsourced to private corporations) and slow 

(especially with federal assets) method for acquiring land use and land cover data. The 

obstacles of traditional land use and land cover classification methods have created a 

chasm between the land use and land cover information available to a city for a particular 

watershed and the actual land use and land cover conditions for that watershed (USGS 

2007; USGS 2006).  Planners need a quick, low cost, and accurate method for assessing 

land use and land cover conditions in rapidly developing communities. 

Scenario – Norm’s Dilemma 

 Like the majority of planners for small to medium sized cities, Norm does not 

have a plethora of resources at his disposal.  The only resource for which he does not 

have to grovel and plead is his time, but after years of hard work, his time is the resource 

Norm values most.  Perplexed by his current dilemma, Norm allows himself an 

uncharacteristic moment of mental repose, kicks back in his threadbare office chair and 

lets his mind wander.  His thoughts careen haphazardly until they transport him to 1999, 

where a much younger Norman Ware was attending a national planning conference at the 

Gaylord Opryland Resort Hotel and Convention Center.  It was here, in the heartland of 

country music and the former home of many great Texans, that Norm had endured (half 

awake/half asleep) a lifeless presentation discussing the success of satellite images to 

assess changes in land use and land cover.  Norm‟s brain began firing a little faster.  

Another portion of the presentation came to mind, although no more clear than the first.  

                                                 
10

 Ground-truthing is a term commonly used in the remote sensing field to refer to the process of collecting 

reference data in an attempt to approximate actual ground conditions and verify interpretations of remotely 

sensed data.  Ground-truthing may be conducted by visiting the area of interest (remotely sensed area) or 

by analyzing other images or photographs of the area (Lillesand and Kiefer 1994). 
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If he remembered correctly, the land use and land cover data had been used to model 

runoff and… BINGO, FLOODPLAINS!    Suddenly, Norm jerked to total consciousness 

and allowed the elation of his recent recollection to overshadow the painful memory of 

the monotone lecture.  Norm‟s celebration quickly subsided as he tried to remember the 

specifics provided by the sedated speaker a decade ago.   

He immediately turned to his computer and hit up his old pal GOOGLE™ for the 

answer.  As his screen filled with the first of 298,000 results for “satellite imagery land 

use land cover classification,” Norm wondered how he ever accomplished anything in the 

days before the internet.  A cursory survey of the search results revealed imagery from 

the Landsat satellites as the foremost data set for land use and land cover classification.  

It wasn‟t until a more in depth study that Norm determined the Landsat data was just not 

right for his situation.  With single pixels that cover 900 square meters, assessing the area 

proposed for Deerfield Estates: Phase Three with Landsat data would be about as 

effective as trying to recreate the Mona Lisa with a paint roller.   

Norm didn‟t want to make broad classification strokes; he needed something that 

could handle the intricate details of a masterpiece.  His thoughts were interpreted by a not 

so distant growl.  Norm looked at the clock… 11:30.  It was the second Friday of the 

month.  That made it his cousin‟s (an agent with the local USDA office) turn to buy 

lunch. Norm‟s settling physique implied that he never missed a meal, much less a free 

one.  “Deerfield Estates would have to wait,” Norm thought as he strolled down the hall 

and across the street to the USDA office.  It was lunch time.   
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Remote Sensing  

The most promising means of assessing land use and land cover conditions is 

through the use of remote sensing technologies.  In its purest sense, remote sensing is the 

science (or art) of gathering information about an object or area without coming into 

contact with the object or area under investigation (Lillesand and Kiefer 1994).  By 

gazing at a distant object, one is employing remote sensing techniques using one‟s eyes 

as the sensors to gather information without contact.  Modern technology has elevated the 

art of remote sensing to a science through development of numerous sensors that 

incorporate a wide variety of techniques.  Modern sensors are commonly designed 

(especially for LULC assessment) to measure the reflectance properties of a target.  The 

characteristics of a target may be derived from the incident energy reflected by the object.  

When this energy is measured as a function of wavelength, it is termed spectral 

reflectance.  The combination of spectral reflectance of the wavelengths captured by a 

sensor is the spectral reflectance curve, or spectral signature for that specific target 

(Lillesand and Kiefer 1994).   

In theory, by sensing the proper combination of wavelengths two, or more, targets 

may be differentiated by differences in their spectral signatures.  The process may be 

likened to the use of social security numbers to identify all United States citizens.  By 

viewing the unique 9-digit combination, it is possible to differentiate one citizen from 

another.  In the same manner, a spectral signature (utilizing the appropriate wavelengths) 

may be used to identify a target for all other types of targets within an area of interest.   
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For land use and land cover assessment purposes, the goal is to identify a sensor 

(device for electronic/digital data capture) that focuses on the specific wavelengths 

necessary to accurately differentiate various land use and land cover classes and is 

contained in a readily available and affordable platform.  Many attempts have been made 

and small successes achieved in the search for the ideal land use and land cover remote 

sensing system.  Yet, the need still exists for a remote sensing system that incorporates all 

of the desired attributes: a high level of accuracy (less than two meter resolution) capable 

of assessing land use and land cover at the sub-watershed level, a high level of flexibility 

facilitating repeated acquisitions as necessary to assess change, and a total cost that is not 

prohibitive to mid- and small-sized cities and municipalities.   

Landsat MSS, TM and ETM+ 

Perhaps the most common platform for remotely acquiring land use and land 

cover data is the moderate-resolution, multi-spectral Landsat system (for examples of 

Landsat satellites see Figure 2.2).  The Landsat program was initiated by the National 

Aeronautical and Space Administration (NASA) in 1967 and the first satellite for this 

purpose was launched in 1972 (Lillesand and Kiefer 1994).  Since 1972 six Landsat 

systems have reached orbit and remain in an operational state.  The most commonly used 

Landsat sensors for land use and land cover assessment are the Thematic Mapper (TM) 

systems (found on Landsat 4 and 5) and the Enhanced Thematic Mapper + (ETM+) 

system (found on Landsat-7).  The Landsat 5 TM and Landsat 7 ETM+ have become the 

most commonly used remote sensing systems for land use and land cover classification.  

Table 2.1 illustrates some of the principal applications for each band of the TM and 

ETM+ systems.  The table also identifies the wavelengths that define each band.  For the 
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more visual learner, Figure 2.3 illustrates the seven Landsat spectral bands and their 

corresponding wavelengths.  Bands 1 through 4
11

 (i.e. blue, green, red and near infrared) 

are of utmost interest for land use and land cover classification (see Table 2.1 “Principal 

Applications”).   

   
 

Figure 2.2 Landsat 1 (MSS)
a
, Landsat 5 (TM)

b
, and Landsat 7 (ETM+)

c
   

 a
http://www.csc.noaa.gov/crs/rs_apps/sensors/images/landsat_sensor.gif 

 
b
http://landsat.gsfc.nasa.gov/about/ 

c
http://www.satimagingcorp.com/media/images/landsat_orbiting_earth.jpg 

 

 

 

Figure 2.3 Landsat TM and ETM+ Spectral bands (Figure courtesy of NASA: 

http://landsat.gsfc.nasa.gov/education/compositor/) 

                                                 
11

 As discussed later in this chapter, bands 1 through 4 are the Landsat bands that most closely resemble the 

four bands (i.e. blue, green, red, and near infrared) available in National Agriculture Imagery Program data. 

 

1 7 5 
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Landsat TM is a highly advanced sensor that incorporates several improvements 

over the original Multispectral Scanner Systems (MSS) of the earlier Landsat sensors 

systems (Lillesand and Kiefer 1994).   Beginning with Landsat 4, the TM and ETM+ 

systems were placed in a lower orbit allowing for an improved resolution of 30 m and 

reduced repeat coverage cycle of 16 days.  (MSS had a 57 m resolution and an 18 day 

repeat cycle.)  TM also incorporated three additional spectral bands for a total of seven 

(see Table 2.1).  Having learned a great deal from the earlier Landsat missions, NASA 

selected the TM bands to maximize differentiation of features on the Earth‟s surface (see 

Table 2.1).   

Landsat 7 ETM+ incorporates increased spectral sampling by adding a 

panchromatic band and a higher resolution (60 m) thermal infrared band (see Table 2.1).  

With the unprecedented spectral range and earth observation capabilities, it is easy to 

understand why the TM and ETM+ have had such success in land use and land cover 

assessment.  The following section contains a brief review of a sample of the more recent 

accomplishments in LULC classification utilizing the various Landsat systems.  
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Table 2.1 Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper
a
 (ETM+) 

Spectral Bands 
 

Band Wavelength (µm) Nominal Spectral Location Principal Applications 

 
1 

 
0.45-0.52 

 
Blue 

 
Designed for water body penetration, making it useful for costal 

mapping.  Also useful for soil/vegetation discrimination, forest 

type mapping, and cultural feature identification. 
 

2 0.52-0.60 Green Designed to measure green reflectance peak of vegetation for 

vegetation discrimination and vigor assessment.  Also useful for 
cultural/feature identification. 

 
3 0.63-0.69 Red Designed to sense in a chlorophyll absorption region aiding in 

plant species differentiation.  Also useful for cultural feature 

identification. 
 

4 0.76-0.90 Near infrared Useful for determining vegetation types, vigor, and biomass 

content, for delineating water bodies, and for soil moisture 

discrimination. 

 

5 1.55-1.75 Mid-infrared Indicative of vegetation moisture content and soil moisture.  
Also useful for differentiation of snow from clouds. 

6b 10.4-12.5 Thermal infrared Useful in vegetation stress analysis, soil moisture discrimination, 

and thermal mapping applications. 
 

7b 2.08-2.35  Mid-infrared Useful for discrimination of mineral and rock types.  Also 

sensitive to vegetation moisture content. 
aETM+ contains and additional panchromatic band not available on the TM. 
bBands 6 and 7 are out of wavelength sequence because band 7 was added to the TM late in the system design process. 
                                                                                                                                        (Lillesand and Kiefer 1994, 468 and 484) 

 

Landsat and LULC Classification  

 

 The numerous successes with land use and land cover classifications utilizing 

Landsat data warrant continued research with the spectral bands sensed by Landsat TM 

and Landsat ETM+.  While multi-spectral remote sensing is promising for continued 

progress regarding economical sensor data and efficient classification techniques, the 

medium-resolution (30 m) data captured by Landsat sensors inhibits detailed assessments 

of land use and land cover.  The following reviewed sources suggest that land use and 

land cover classifications are limited to a maximum of 9 categories (i.e. classes).  As far 

back as 1976, Anderson et al. (14-15) identified ninety-two potential classes of land use 

and land cover.  With current classification attempts only utilizing ten percent of the 

possible land use and land cover classes, there is a multitude of LULC information that is 

not being incorporated into urban planning.  This lack of information contributes to one 

28 



of the greatest obstacles to accurate hydrologic modeling of surface water conveyance 

(and therefore floodplain behavior):  the inability to accurately quantify the surface 

characteristics (LULC) necessary for developing model inputs (e.g. hydraulic roughness) 

over a large spatial extent (Vieux 2001).  The ability to accurately identify a greater 

number of land use and land cover classes should provide decision makers valuable 

information for understanding and managing their communities.   

The proven spectral bands of Landsat TM and ETM+ and the unmet need to 

precisely classify a greater number of land use and land cover categories, warrants the 

identification of a high-resolution sensor that incorporates Landsat‟s comprehensive 

spectral capture.  The next subsections provide a review of a mere sample of the immense 

literature available discussing the strengths (i.e. comprehensive spectral capture, 

especially bands 1-4) of  land use and land cover classification with Landsat data.  

Following the literature Landsat research review, this chapter offers a promising 

solution
12

 for the Achilles heel of the almighty Landsat data (i.e. low resolution).    

California 

 Rogan et al. (2008) utilized Landsat-5 TM (Landsat MSS and ETM+ Images of 

San Jose, CA are show in Figures 2.4 and 2.5) to map land cover modifications over large 

areas in northern and southern California.  Four Landsat-5 TM images from 1990 to 1996 

were classified.  Rogan et al. (2008) chose a supervised classification method 

incorporating machine learning algorithms (MLA), fuzzy neural network algorithms, and 

                                                 
12

 High resolution (1 m) data acquired for the United States Department of Agriculture (USDA) National 

Agriculture Imagery Program (NAIP) has the potential replace Landsat data as the premier LULC dataset.    
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classification trees (CT) in ERDAS Imagine®
13

 to classify the TM data into 9 land cover 

classes (i.e. shrub, hardwood, conifer, mixed, urban, herbaceous, barren, water and 

agriculture).  The resulting classifications averaged an overall accuracy of approximately 

84% and can be considered indicative of the potential for TM data in land cover 

assessment over a diverse area. 

 

Figure 2.4 1973 Landsat MSS Image of San Jose, CA (Image courtesy of 

www.fas.org/irp/imint/docs/rst/Sect4/Sect4_1.html) 

 

                                                 
13

 ERDAS Imagine® is an image processing software created by Leica Geosystems GIS & Mapping, LLC 

(Leica Geosystems GIS and Mapping, LLC 2008) 
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Figure 2.5 1999 Landsat ETM+ Image of San Jose, CA (Image courtesy of 

www.fas.org/irp/imint/docs/rst/Sect4/Sect4_1.html) 

 

Twin Cities 

 In the Twin Cities (Minnesota) Metropolitan Area, Yuan et al. (2005) was able to 

achieve high overall land cover classification accuracies (94%) by analyzing TM and 

ETM+ data (classification outputs would have been similar to the land use map in Figure 

2.6).  Yuan et al. chose 7 land cover classes based on an Anderson et al. (1976) 

classification schema.  The 7 classes (i.e. agriculture, grass, extraction, forest, urban, 

water and wetland), when identified from Landsat data through hybrid 

(supervised/unsupervised) image analysis (ERDAS Imagine 8.5 ®) proved to be an 

accurate and economical means for identifying land cover change. 
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Figure 2.6 Land Use Classification of Landsat Image for the Twin Cities Minnesota 

Area (Map courtesy of the University Of Minnesota: http://land.umn.edu/ 

quickview_data/index.html)  

 

Kenya 

Landsat data has also been used successfully in identifying forestland cover 

change in Kenya (Ouma et al. 2008).  TM and ETM+ bands 3, 4 and 5 were chosen for 

unsupervised classification attempts in PCI Geomatica 9.1®
14.  The 1986 (TM) and 2001 

(ETM+) images were classified into 4 classes [i.e. non-forest, deforested, forest-

unchanged (broadleaf) and afforestation (pine)] with an 88.4% overall classification 

accuracy.  The high classification accuracies derived from unsupervised classification 

techniques are an indication of the potential for Landsat data in land cover classifications 

without a priori knowledge of land cover classes.  

Brazil 

                                                 
14

 PCI Geomatica 9.1 is an imagery analysis software package created by PCI Geomatics (PCI Geomatics 

2009) 
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 Land use change in the Brazilian Savanna was assessed via TM (1986) and ETM+ 

(2002) imagery similar to that shown in Figure 2.7 (Brannstrom et al. 2003).  

Unsupervised classifications were performed on the imagery (including the ETM+ 

panchromatic 0.52-0.90 µm band).  Five initial land use and land cover classes were later 

grouped into 3 classes [i.e. savanna, cropland/pasture and dark objects (water bodies and 

burned areas)] and identified with classification accuracies ranging from 72-84%.  Low 

classification accuracies were attributed to misinterpretation of panchromatic data rather 

than misclassification of the other spectral bands.   

 

Figure 2.7 Landsat 5 TM Images Depicting Urbanization of Amazon Rainforest in 

Brazil Occurring Between August 1995 and May 1997 (Imagery courtesy of NASA 

Goodard Space Flight Center, http://www.nasa.gov/centers/goddard/news/topstory/ 

2004/0301landsat5.html) 
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Northern China 

 In north China, Xiao et al. (2006) evaluated urban expansion and land use change 

with 1987 TM and 2001 ETM+ data.  A 9-class supervised classification of the data 

resulted in successful identification of urban, residential, crop-field, vegetable-field, 

forest/trees, orchard, grass, water body and barren/sandy land cover classes with an 87% 

overall accuracy (results would have been similar to the land cover classification in 

Figure 2.8).  Successful land use and land cover classification allowed Xiao et al. to 

identify a relationship between land use and land cover change and urban expansion.  

 

Figure 2.8 Land Cover Classification of Landsat ETM+ Image for North East China 

(Map courtesy of the University of Maryland: lcluc.umd.edu/products/pdfs/ 

2003AnPrgRp/AnPrgRp_SunG_2003_images.ppt) 

 

In 2006, Ji et al. conducted a study to determine trend and patterns of urban land 

changes.  To identify the progression of land use and land cover change over time 

Landsat data from 1972 (MSS), 1979 (MSS), 1985 (TM), 1992 (TM), 1999 (ETM+) and 
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2001 (ETM+) were analyzed.  Supervised classification attempts were conducted in 

ERDAS Imagine to identify 4 land cover classes (built up areas, forestland, non-forest 

vegetation, and water bodies).  Resulting classification accuracies ranged from 85.5% to 

89.5% with the lowest accuracies corresponding to MSS and highest accuracies to ETM+ 

data.  Increased classification accuracies for the more recent data may be attributed to the 

improvements made during the development of the newer Landsat systems.   

Egypt 

 In the northwestern coastal zone of Egypt, 7 land use and land cover classes (i.e. 

salt marshes, salt-flats, cropland, grassland, bare land urban and areas with exposed soil 

surface layers) were identified for classification by remote sensing and GIS techniques 

(Shalaby and Tateishi 2007).  Supervised classification techniques were applied to all TM 

(1987) and ETM+ (2001) bands and the results were manipulated for improved accuracy 

based on visual interpretation of images created with bands 2, 3 and 4.  Visual 

interpretation and manipulation of the supervised classifications increased overall 

classification accuracy by 10% to approximately 91%.  The ability to achieve significant 

improvement of land use and land cover classification accuracies through visual 

interpretation and manipulation indicates the potential for continued progress in 

classification of remotely sensed data and the need for data that facilitates more detailed, 

precise land use and land cover classes. 

 In an attempt to predict locations sensitive to flash flooding in an arid 

environment (Egypt‟s Eastern Desert), Foody et al. (2004) performed a supervised 

classification on TM bands 3, 5 and 7.   Five land cover classes were identified for the 

study: basement rocks, desert pavement, unconsolidated wadi bed deposits, consolidated 
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wadi bed deposits and sedimentary rocks.  The resulting 89.5% overall classification 

accuracy demonstrated the applicability of TM data for land cover classification.   

Scenario – An Agricultural Solution for an Urban Problem? 

 The lunch break had had yielded more than a free meal.  Norm, never one to let 

his troubles collect dust, had voiced his dilemma to his dining associates.  The response 

from one of the USDA extension agents left Norm so excited that he nearly offered to 

pick up the tab in his zealous state.  “Luckily,” he thought, “I didn‟t let the good news go 

to my head.”  The “good news” was that the local Anytown USDA field office had access 

to imagery that was modeled after Landsat data.  Actually, the “good news” was that the 

USDA imagery (“nape imagery” they called it) was collected at a 1 meter resolution.  

Norm did the arithmetic, “That‟s 900 times more detailed than Landsat data.”   “That‟s 

certainly not a paint roller,” Norm thought, “but is it good enough for da Vinci?” 

National Agriculture Imagery Program (NAIP)
15

 

Apples to Apples 

The numerous successes of land use and land cover classifications with Landsat 

data prove that a few select spectral bands can provide the information necessary for the 

LULC classification process.   These successes suggest that the bands utilized by 

National Agriculture Imagery Program data will result in similar classification successes.   

Current NAIP acquisition contracts specify sensing of color and color infrared bands 

resulting in the acquisition of four spectral bands (blue, green, red, and near infrared) 

similar to Landsat bands 1-4 (see Table 2.2) (Lillesand and Kiefer 1994; USDA 2008).  

By sensing similar wavelengths (i.e. bands), the NAIP data produces an image very 

                                                 
15

 National Agriculture Imagery Program imagery is captured with a Leica Geosystems ADS40 airborne 

digital sensor (USDA 2007). 
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similar to Landsat data.  A visual comparison of Landsat and NAIP images of Salt Lake 

City Utah (see Figure 2.9), demonstrates the parallels in colors and textures for the two 

types of images.  

Table 2.2 Similarity of Spectral Bands for National Agriculture Imagery Program 

Data and Landsat ETM+ Data_____________________________________________ 

Band    NAIP             Landsat          
 

1  Blue    Yes   Yes 

2  Green   Yes   Yes   

3  Red     Yes   Yes 

4  Near Infrared  Yes   Yes   

5  Mid-Infrared  No   Yes 

6  Thermal Infrared  No   Yes 

7  Mid-Infrared  No   Yes   

________________________________________________________________________ 

      (Lillesand and Kiefer 1994; USDA 2008) 

 
 

 

 

 
 

 

 

 
 

 

 

 

 

 
Figure 2.9 A NAIP Color Infrared (Green, Red, and Near Infrared Bands 2, 3, and 

4) Image of a Portion of Salt Lake City, Utah Shown as a Subset of A Landsat TM 

Color Infrared (Green, Red, and Near Infrared Bands) Image of Salt Lake City, 

Utah and a Portion of the Great Salt Lake (Images courtesy of NASA: history.nasa. 

gov/SP-4312/ch5.htm and the USDA APFO: http://gis.utah.gov/naip2006)   
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NAIP v. Landsat: a Scalpel v. a Chainsaw 

What the Landsat platforms lack is the ability to capture data at a high enough 

resolution to facilitate the small scale land use and land cover classifications required for 

local community planning.  NAIP data is acquired at a scale that provides information at 

a detail of 225 (2 m resolution) to 900 (1 m resolution) times greater than the 30 m 

resolution Landsat data.  Similar to the manner in which a digital camera takes a 

“picture,” when a remote sensor captures data, it complies (i.e. averages) all of the 

information within each “pixel” (1 m for NAIP data and 30 m for Landsat data).  The 

compiled (averaged) data is used to generate one value (or set of values) for the 

individual “pixel” area sensed.   Similar to the “mega pixel” ratings for digital cameras, 

the greater the number of “pixels” within an image, the better the “picture”.  Figure 2.10 

illustrates the superiority of NAIP sensors over Landsat sensors for data collection.  As 

seen in Figure 2.10, one “pixel” of NAIP data will represent 1 square meter on the 

ground.  One square meter is generally a high enough resolution to capture only part of 

most targets (e.g. roads, cars, trees, sidewalks, buildings, etc.) on the ground.  In contrast, 

the 30 m “pixel” size of Landsat images has the potential to capture several targets within 

one “pixel” (see Figure 2.10).  By capturing data in such superior detail, NAIP data 

presents a great deal of potential to provide local planners with an accurate data set for 

small scale land use and land cover classification. 
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    Landsat         30 m by 30 m “Pixel”             49 NAIP           1 m by 1 m “Pixels”  

 
Figure 2.10 Amount of Data Captured within a Single 30 Meter by 30 Meter 

Landsat “Pixel” Compared to the Amount of Data Captured within a 1 Meter by 1 

Meter NAIP Image “Pixel” (Each square within the 30 m Landsat “pixel” represents 

one NAIP “pixel”) 

 

NAIP:  It‟s Not all About the Resolution 

An increased imaging resolution is not the only catalyst behind the assessment of 

National Agriculture Imagery Program data‟s potential for land use and land cover 

classification.  Three other factors: its acquisition methods, availability, and low cost; 

make NAIP data an even more promising solution the LULC classification problems that 

plague local planners.   

Although NAIP contracting criteria will allow data from spaced-based sensors 

(i.e. satellites), all NAIP data, thus far, has been acquired from aerial platforms (i.e. 

airplane mounted sensors).  The use of airplanes over satellites as sensor platforms 

significantly reduces the cost of image acquisition
16

.   Use of aerial sensor platforms also 

allows for increased flexibility when capturing data.  In our modern society, small aircraft 

                                                 
16 

Satellite launches can cost between $90 million and $120 million (Hassan et al. 2005).  The cost of a 

small airplane is approximately $300,000 (Lyons 2007).
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flights are coordinated and launched with relative ease.  The spaced-based Landsat 

platforms have a 16 to 18 day repeat cycle requiring a lapse of more than two weeks 

before they can collect data from the same location (Lillesand and Kiefer 1994).   

Because NAIP imagery is designed to assist agricultural producers, contract 

specifications mandate annual to triennial
17

 data acquisition during the peak agricultural 

growing season (USAD 2007).   Although intended for crop assessment, the resulting 

“leaf on” imagery will facilitate delineation of vegetative from impervious cover for land 

use and land cover purposes (Lillesand and Kiefer 1994).  NAIP data collection criteria 

also requires that images are acquired by commercial providers at a high resolution (1-2 

m), resulting in the use of imaging platforms are representative of the most current 

commercial and public remote sensing trends (USDA 2007).  Therefore, successes with 

NAIP data classification will suggest potential in similar, modern-day platforms.  

Finally, one of NAIP data‟s most appealing characteristics to local planners is its 

low (often free) cost.  County mosaics of NAIP imagery are available for free download 

through the data gateway on the Natural Resource Conservation Service (NRCS) website: 

(http://datagateway.nrcs.usda.gov/gatewayhome.html).  Compressed County Mosaics 

(CCM) and Quarter Quad (QQ) digital imagery is available at a relatively low cost 

(approximately $20 per CCM and $2 per QQ) through the USDA Aerial Photography 

Field Office (APFO).   

Image Classification 

With National Agriculture Imagery Program data displaying such promise for 

accurate, high definition LULC classification, the next step is to determine the best 

                                                 
17

 Since the inception of the NAIP, Texas has benefited from three comprehensive image acquisitions 

(2004, 2005, 2008). 
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method(s) for image classification.  A review of several sources
18

 suggests the use of two 

broad LULC classification techniques based on remotely sensed images.  They are 

supervised and unsupervised classification.  Neither method appeared superior to the 

other.  Regardless of the method used, the objective of image classification is to enable 

the user to iteratively create and refine signatures and classify remotely sensed data to 

arrive at a desired final classification (Smith and Brown 1997).  To do this, statistics are 

derived from the spectral characteristics of all pixels in an image.  The pixels are then 

sorted based on mathematical criteria.  Classification is divided into two portions:  

training and classifying.  Training is the process of defining the criteria by which the 

spectral patterns are recognized for the image being assessed (Hord 1982).  Classification 

takes place when the pixels of the image are assigned to discrete categories based on 

statistical analysis of each pixel‟s spectral signature.   

Opening the Lock 

Figure 2.11 illustrates the differences in spectral signatures for three different 

targets: an actively growing corn plant, corn residue (i.e. dead plant material left after 

harvest), and a common Mississippi soil (i.e. Dundee sandy loam).  The figure allows one 

to visualize the specific wavelengths at which the reflectance values were recorded.  For 

classification purposes, the reflectance values are used to create a unique number 

combination that could only identify each specific target.  The number combination 

works in a similar manner to a combination used to open a padlock.  For demonstration 

purposes, a “padlock combination” has been created from the spectral signatures for each 

                                                 
18

 See Rogan et al. 2008, Yuan et al. 2005, Ouma et al. 2oo8, Brannstrom et al. 2003, Xiao et al. 2006, Ji et 

al. 2006, and Shalaby and Tateishi 2007.   
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of the three targets.  For a three number “padlock combination,” reflectance values at 

wavelengths of 800 nm, 1300 nm, and 1750 nm are utilized.  The combination for the 

living corn plant is .47 - .45 - .31.  The combinations for the corn residue and soil are .34 

- .60 - .62 and .30 - .39 - .46 respectively.  The creation of these “padlock combinations” 

represents the training process of image classification.  During the actual classification 

process, the “padlock combinations” (i.e. spectral signatures) of other unknown targets 

are compared to the “padlock combinations” of the known targets (i.e. training data) and 

labeled as the type of target with the most similar combination.  Where the combination 

is created within the classification process determines if the classification is a supervised 

or unsupervised process.   

 

 

Figure 2.11 Spectral Signatures of Corn, Corn Residue, and Dundee Sandy Loam 

Soil (Powell 2003, 17). 

 

Supervised Classification 

For supervised classification, the “padlock combinations” are defined for specific 

target categories before unknown targets are assessed.  Supervised classification requires 
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more control and attention from the analyst.  For supervised training, the user selects 

pixels or groups of pixels that represent land cover features, or other areas of interest, that 

they recognize.  For example, prior to image classification, the user may already know (a 

priori knowledge) the location of several forests (area of interest) within an image and 

draw a boundary around the pixels within one forest (training area) to provide a 

representative sample for classification of other forests within the image.  Areas of 

interest can be determined from many different sources of ancillary information (e.g. 

aerial photos, ground truthing, a priori knowledge, etc.).  Using these areas of interest, 

the user can train the computer system to identify pixels with similar spectral 

characteristics.  Providing that the training is accurate, the resulting classes should 

represent all of the data that falls within the categories already identified.   Supervised 

classification is best when the user wants to identify relatively few classes, when the 

training sites can be verified with ground-truthed data, and/or when the user can identify 

distinct, homogeneous regions that represent each desired class (Lillesand and Kiefer 

1994).   

Unsupervised Classification 

For unsupervised classification, the “padlock combinations” are not associated 

with a specific type of target.  Instead all targets remain undefined and are simply 

grouped with those that possess similar combinations.  Unsupervised classification is a 

more computer-automated process.  With unsupervised classification the user sets 

parameters that the computer uses to uncover statistical patterns that are inherent in the 

data.    The determined patterns do not necessarily correspond to readily recognizable 

categories such as in supervised classification.  They are simply clusters of pixels with 

43 



similar spectral characteristics.  For this type of classification, the data itself provides the 

definition for the classes.  Unsupervised training is best when there is little or no a priori 

knowledge of the data set being evaluated and if the resulting classes can be appropriately 

interpreted (Lillesand and Kiefer 1994).  Regardless of what type of classification 

strategy is used, the training sets result in a series of signatures that define the training 

sample.  Each signature corresponds to a different class and is used with a decision rule 

(e.g. statistical limits or spectral signature definitions) to assign the pixels in the image to 

a class, or category. 

Comparison of Classification Techniques 

 Continuing with the previous example in Figure 2.11, Figures 2.12, 2.13, and 2.14 

provide a visual depiction of simulated supervised and unsupervised classifications
19

 of a 

corn field that has been partially harvested.  The field contains actively growing corn 

plants, bare soil, and corn residue (i.e. dead plant material left on the ground after 

harvest).  The two classification techniques delivered nearly identical outputs.  The only 

difference is that the output for the supervised classification (Figure 2.13) identifies the 

areas classified by the target names (e.g. bare soil) identified in the training process.   

Since the process of unsupervised classification does not include the identification of 

training areas prior to image classification, the output in Figure 2.14 has only grouped 

similar spectral signatures into one of three categories
20

.  After classification, the 

resulting categories in Figure 2.14 must be linked to specific targets in order to complete 

the unsupervised classification process.  Therefore, when the user possesses a priori 

                                                 
19

 Classification outputs in Figures 2.13 and 2.14 were manufactured by the author for illustration purposes. 
20

 The number of classification categories is a user defined input for the unsupervised classification process. 
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knowledge of the classification area, supervised classification is generally the more 

efficient (and preferred) method for image classification. 

 

Figure 2.12 Aerial Photo of Unharvested Corn Field (with bare soil between rows) 

and Harvested Corn Field (Photo courtesy of www.procorbis.com) 

 

 

 

Figure 2.13 Simulated Supervised Image Classification of Corn Fields in Figure 2.12 

Using Three Defined Training Areas (Classification output manufactured by author) 
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Figure 2.14 Simulated Unsupervised Classification of Corn Fields in Figure 2.12 

Using Three Classification Categories (Classification output manufactured by author) 

 

Digital Elevation Models 

Digital elevation models (DEMs) are the predominant means of quantifying 

geographical elevation variations in a watershed (Maidment 2002).  A national DEM data 

set is currently available at a resolution of 30 meters (USGS 2007).  DEMs of higher 

resolution are beginning to be generated for some areas.  With construction codes 

requiring that homes are built only 1 foot above 100 year flood elevations, coarse 

resolution DEMs (e.g. 30 m) do not possess the detail necessary to manage a floodplain 

at the local level (Guoan et al. 2001).  Small changes in floodplain characteristics can 

easily encroach on such a small (i.e. 1 foot) margin of safety.  Several methods have 

already been proven for developing high resolution (1-2 m) DEMS using remotely sensed 

data (e.g. photogrammetry, LIDAR and IFSAR) (Allen and Birk 2000).  These high 

resolution DEMs are becoming increasingly available to city managers through 
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commercial and public channels and are highly beneficial for use in floodplain 

management.  The incorporation of DEMs and land use and land cover classifications 

derived from high resolution data sets should facilitate accurate hydrologic modeling for 

floodplain management. 

Working Hypothesis 

As demonstrated by the previous review of literature, National Agriculture 

Imagery Program data displays great potential for small scale land use and land cover 

classifications.  The aforementioned potential has led to the development of a working 

hypothesis:   

WH1:  Current land use and land cover conditions can be measured
21

 by 

temporally and financially efficient methods derived from low-cost, high 

resolution, multi-spectral, remotely sensed imagery (i.e. NAIP data).   

 

To facilitate a comprehensive exploration of the working hypothesis, it is divided into 

two sub-hypotheses.  Table 2.3 illustrates the conceptualization of the working 

hypothesis
22

, its division into two sub-hypotheses, and the scholarly support that led to 

their development.  

  

                                                 
21

 A classification accuracy greater than or equal to 95% is the acceptable accuracy level for mapping 

purposes as suggested by the National Standard for Spatial Data Accuracy (Allen and Birk 2000).   
22

 For more information on formulation of working hypotheses see Shields (1998) and Shields and Tajalli 

(2006).  For examples of working hypotheses and sub-hypotheses see Johnson (2008) and Prentice (2006). 

47 



Table 2.3 Summary of Conceptual Framework Linked to the Literature   

Research Purpose:  To explore the utility of readily available, high resolution, 

multi-spectral, remotely sensed data (i.e. NAIP data) to accurately identify land use 

and land cover (LULC) conditions.   

 

Working Hypotheses  Scholarly Support  

WH:  Current LULC conditions can be 

measured by temporally and financially 

efficient methods derived from low-cost, 

high resolution, multi spectral, remotely 

sensed imagery (i.e. NAIP data).  

 

WHa:  The application of supervised image 

classification procedures to NAIP imagery 

will result in LULC classification accuracies 

at, or above, the 95% accuracy threshold.   

 

WHb:  The application of supervised image 

classification procedures to NAIP imagery 

will result in the discrimination of 

impervious from pervious cover with 

classification accuracies at, or above, the 

95% accuracy threshold.   

 

 

 

Allen and Birk 2000, Anderson et al. 

1976, Burby and French 1985, Colding 

2007, Cross 2001, Crossett et al. 2004 , 

FEMA 2007, Foody et al. 2004, Group 

1999, Guoan et al. 2001, Hipple et al. 

2005, Hoggan 1997, Hord 1982 , 

Johnston 1992, Klein et al. 2003, 

Lillesand and Kiefer 1994, Lovell et al. 

1999, Maidment 2002, Mannion 2002, 

Oumaet al.  2008, Peterson et al. 1999, 

Pickett et al. 2004, Ramlal and Baban 

2008, Rogan et al. 2008,  Romano and 

Vaccaro 2005 , Singh et al.  2001, Smith 

and  Brown 1997, Stanganelli 2008, 

Tobin 1999, U.S. Commission on Ocean 

Policy 2004, US Department of 

Agriculture 2007, US Department of 

Agriculture 2006, USGS 2007, USGS 

2006, Vieux 2001, Wetmore 2006, Yuan 

et al. 2005 

 

 

Scenario – Landsat in HD 

 After a spending little time with the USDA gentlemen, Norm was convinced the 

NAIP imagery (pronounced “nape”, but not spelled that way Norm learned) was just 

what he needed to assess the current land use and land cover conditions in and around 

Deerfield Estates: Phases One, Two, and Three.  Since the information captured was so 

similar to that from the Landsat data (but at a much higher resolution), it only made sense 

that the tried and true classification techniques used for Landsat images would also work 

for his NAIP imagery.  Armed with some “light” reading on Landsat image classification 

procedures, Norm read the energy conservation sticker on the cover plate for the ten-
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thousandth time, flipped the light switch in his office to the “off” position, and headed 

home for the weekend.  He needed the break; Monday would bring the challenge of 

classifying the NAIP imagery and applying the resulting land use and land cover data to 

the creation of an accurate floodplain map.  “If this works,” Norm said aloud, “my job 

just got a lot easier.” 

Conclusion 

Today‟s local planners are at a loss when attempting to determine the current land 

use and land cover conditions within their communities.  Although proven for large scale 

land use and land cover classification purposes, Landsat data does not provide planners 

the detail necessary to assess their situation (i.e. LULC conditions) on a level applicable 

for community decision making.  The detailed LULC information is critical for planners 

when assessing alterations to local watersheds and determining the corresponding 

changes to their flood risks.  To date, a source of highly detailed information that 

possesses the ability to address the LULC classification needs of local planners has not 

been identified.  The following chapters demonstrate how a low cost, relatively current 

dataset (i.e. NAIP imagery) can fulfill those needs. 
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Chapter 3. Setting 

Introduction 

 This paper explores the potential of multi-spectral, high resolution remotely data 

to identify land use and land cover conditions at the local (e.g. city, town, or 

neighborhood) level.  This chapter first discusses the characteristics of the El Camino 

Real Subdivision located in San Marcos, TX.  El Camino Real served as the area of 

interest utilized for testing the working hypothesis described in the previous chapter 

(Chapter 2).  Then this chapter discusses the experimental unit for this study.  Aerial 

imagery acquired for the National Agriculture Imagery Program was the experimental 

unit for this study to which the treatment was applied.  The treatment (image 

classification via pattern recognition algorithms) and the software utilized for its 

application (i.e. ERDAS Imagine 9.3®) are discussed as part of the methodology in 

Chapter 4. 

Study Area  

 The El Camino Real subdivision in San Marcos, Texas (Figures 3.1 and 3.2) is a 

medium density residential community in South-central Texas that offers numerous types 

of land use and land cover within a small area.  Construction began in 2004, with the 

most intense construction occurring in 2008 as the subdivision reached 100% occupancy.  

The community is built on agricultural land that once consisted of pastures for grazing 

livestock and hay production.  The area immediately surrounding the 200+ home 

community currently consists of active and abandoned agricultural land, several small 

wooded areas and a few small areas that permanently contain water.  Directly to the south 
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of the subdivision (as defined by a 2005 Flood Insurance Rate Map
23

) lies a 100-year 

floodplain.  Continued construction since 2005 has certainly increased the amount of 

impervious cover for the area and has likely affected the characteristics of the floodplain. 

The varied land use and land cover conditions in and around El Camino Real and the 

distinct transition from one class to the next (e.g. rooftop to lawn to concrete sidewalk to 

asphalt road to corn field) should facilitate a comprehensive analysis of the utility of 

NAIP data to accurately identify each land use and land cover type.  The land use and 

land cover data can then be input into a hydrologic model (along with elevation/terrain 

information) to determine if the floodplain at the subdivision‟s southern border has 

encroached upon the subdivision due to land cover changes since 2005 (the most recent 

FIRM). 

Figure 3.1 2005 NAIP True Color Image of the Southwest Portion of San Marcos, 

Texas (Image courtesy of TNRIS: http://www.tnris.state.tx.us/; Texas inset from 

Gillfillan 2008)  

                                                 
23

 The Flood Insurance Rate Map for the El Camino Real subdivision may be found at 

http://msc.fema.gov/webapp/wcs/stores/servlet/MapSearchResult?storeId=10001&catalogId=10001&langI

d=-1&userType=G&panelIDs=48209C0388F&Type=pbp&nonprinted=&unmapped=  

 El Camino Real  
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Figure 3.2 2005 NAIP True Color Image of the El Camino Real Subdivision in San 

Marcos, Texas (Image courtesy of TNRIS: http://www.tnris.state.tx.us)  

 

Dataset  

 NAIP imagery, captured with a Leica Geosystems ADS40 airborne digital sensor, 

was used for all land use and land cover classifications.  NAIP imagery is a relatively 

current (2008) and readily available, high resolution, multispectral dataset.  NAIP 

imagery is acquired during the peak growing season (i.e. “leaf on” imagery) at a 1 meter 

ground sample distance (GSD) with a horizontal accuracy that matches within 5 meters 

of referenced ortho imagery.  The “leaf on” acquisition period of NAIP imagery will 

facilitate delineation of vegetative from impervious cover for land use and land cover 

purposes.  One meter compressed county mosaic, 4-band images files
24

 of NAIP imagery 

are available for free download through the data gateway on the Natural Resource 

Conservation Service (NRCS) website (http://datagateway.nrcs.usda.gov/ 

                                                 
24

 Current NAIP data capture red, blue, green, and near infrared bands (i.e. wavelengths) and are available 

in JPEG2000 format (USDA 2008). 
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gatewayhome.html).  The available resolution (1 m) is representative of present 

commercial and public remote sensing trends and should facilitate future duplication of 

study procedures using other, similar datasets.   
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Chapter 4. Methodology 

Scenario – The Land Use and Land Cover Classification Process 

 Mondays are not Norm‟s favorite day of the week. They‟re not even in his top 

five.  Yet, this Monday he finds himself in an extraordinary hurry to start the work week.  

Armed with a bucket of his choice brew and two massive ERDAS Imagine® Field 

Guides, Norm fidgets impatiently outside the office for the City of Anytown‟s GIS 

department.  Finally, someone arrives and Norm enters the office, heads to a nearby 

computer, and finds a home for his liquid life support (and the 900+ pages of manuals he 

is toting).  Quickly the computer is humming and Norm is off on a high tech quest to 

solve a classic planning problem: will the future residents of Deerfield Estates: Phase 

Three be safe from the long arm of Mother Nature, well at least, the arm of Old Man 

Flood?  After several hours of nightstand research, Norm knows the first step towards 

finding the answer is to determine the current land use and land cover conditions for the 

area.  

Introduction 

 This chapter explains the methods utilized to explore the utility of National 

Agriculture Imagery Program data to assess land use and land cover conditions for the El 

Camino Real subdivision in San Marcos, TX.  The data analyzed was captured during the 

summer months of 2008 and compared to actual ground conditions in late March 2009.  

All imagery analysis and initial accuracy assessment procedures were performed in 

ERDAS Imagine 9.3®.  Statistical computations for accuracy assessment were conducted 

in Microsoft Excel 2007©.  This chapter is intended to provide an overview of the basic 

steps necessary for land use land cover assessment in ERDAS Imagine 9.3®.  For a more 
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in depth discussion of additional software capabilities visit the “Knowledge Database” at 

the ERDAS website (http://gi.leica-geosystems.com/LGISub2x443x0.aspx) or reference 

the ERDAS Field Guides that accompany every Imagine® license.  Before the stepwise 

image analysis overview, this chapter discusses how the working hypothesis (and sub 

hypotheses) was operationalized. 

Operationalization of the Working Hypothesis 

 The exploration of the utility of National Imagery Program data to measure land 

use and land cover conditions was approached at the neighborhood scale.  All data and 

research procedures listed in Table 4.1 were utilized in the operationalization of both sub 

hypotheses.  The sub-hypotheses (see Table 4.1) rely on supervised classification 

techniques of a subset of 2008 NAIP data for Hays County.    Classification was 

conducted by further dividing the El Camino Real subset into two representative subsets 

(i.e. one training subset and one classification subset).  A modified Anderson land 

use/land cover classification schema was further modified to address the LULC 

classification needs of the subset (i.e. the El Camino Real subdivision).  Due to 

preprocessing required by the Texas Natural Resource Information System (TNRIS) 

NAIP imagery acquisition contracts, the imagery contained coordinates that allowed 

pixels within imagery to be correlated to specific (within 1 meter) locations on the 

ground.  This prior georeferencing aided accuracy assessment by ensuring classified 

pixels were compared to the actual, ground-based targets.  Chapter 5 presents the results 

of the image classification; and Chapter 6 provides recommendations and conclusions 

based upon the data presented in Chapter 5.  
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Table 4.1 Operationalization of the Conceptual Framework: Linking the Research 

Methods to the Working Hypothesis 

Research Purpose:  To explore the utility of readily available, high resolution, multi-

spectral, remotely sensed data (i.e. NAIP data) to accurately identify land use and 

land cover (LULC) conditions.   

Working Hypothesis Data Research Procedures 

WH:   

Current LULC conditions 

can be measured by 

temporally and financially 

efficient methods derived 

from low-cost, high 

resolution, multi spectral, 

remotely sensed imagery 

(i.e. NAIP data).  

 

WHa:  The application of 

supervised image 

classification procedures to 

NAIP imagery will result in 

LULC classification 

accuracies at, or above, the 

95% accuracy threshold.   

 

WHb:  The application of 

supervised image 

classification procedures to 

NAIP imagery will result in 

the discrimination of 

impervious from pervious 

cover with classification 

accuracies at, or above, the 

95% accuracy threshold.   

WH: 

-2008 NAIP imagery 

(Leica Geosystems 

ADS40 airborne digital 

sensor)  

 

-Latitude and longitude 

for study area, LULC 

class boundaries, 

training areas and 

sample points 

 

-Modified Anderson 

LULC classification 

schema 

 

-Output of supervised 

image classification 

 

WH: 

-Identify El Camino Real 

subdivision and 

surrounding area on 2008 

NAIP image  

 

-Divide study area (½ 

training, ½ testing) 

 

-Supervised classification in 

ERDAS Imagine 9.3®  

 

-Accuracy assessment 

(stratified random sample 

points)  

 

-Ground-based visual 

accuracy assessment 

(related to conditions 

during image acquisition) 

 

-Develop “playbook” 

outlining methodology for 

image classification 

 

Step 1: Import the Imagery into ERDAS Imagine 9.3® 

 

 To begin any imagery analysis the user must first open the software and import 

the necessary imagery.  For this study, the Classic Viewer (see Figure 4.1) in ERDAS 

Imagine 9.3® was selected because of the similarity of the interface with that of previous 

versions of ERDAS Imagine®.  The Classic Viewer allows access to all necessary 

software functions for this study and (based upon the author‟s personal experience) is the 
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most commonly used ERDAS Imagine® user interface.  The Hays County NAIP data
25

 

was added to the Viewer as a raster
26

 layer (see Figure 4.2).  The imported raster data 

contained four bands, but software limitations only allow the viewing of three bands at 

once (see Figure 4.3).  The Hays County NAIP data was defaulted to open as a color 

infrared image where Bands 4 (near infrared), 3 (red), and 2 (green) were represented by 

the colors red, green, and blue respectively (see Viewer ID in Figure 4.4).  Once the 

image was opened, the classification process could begin. 

 

 
Figure 4.1 Opening a Viewer in ERDAS Imagine 9.3® 

                                                 
25

 The 2008 Hays County imagery was delivered as a county mosaic 4-band image file in JPEG2000 

format. 
26

 “Raster image data are laid out in a grid similar to the squares on a checkerboard. Each cell of the grid is 

represented by a pixel, also known as a grid cell” (Leica Geosystems GIS & Mapping 2008, I-1) 
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Figure 4.2 Opening Hays County NAIP Imagery in ERDAS Imagine 9.3® 

 

 
Figure 4.3: Bands Viewable within a Raster Image (Leica Geosystems GIS & 

Mapping 2008, I-2) 
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Figure 4.4 Selection of the Main Area of Interest in ERDAS Imagine 9.3® 

 

Step 2: Sub Setting the Image: Definition of the Main Area of Interest 

 Since county sized data sets of 1 meter resolution are quite large
27

, the processing 

time for image analysis can be reduced by selecting only the particular area of interest for 

a specific project.  The area of interest (AOI) for this study was the El Camino Real 

subdivision and the adjacent properties; therefore, a subset of the Hays County image was 

                                                 
27

 The Hays County mosaic file was 1.03 GB.   
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created to remove all data extraneous to this study (see Figures 4.4, 4.5, 4.6, and 4.7).  

The initial AOI selection process began by opening the “AOI > Tools” menu and drawing 

a polygon around the land selected for the study (see Figures 4.4 and 4.5).     

 
Figure 4.5 Area of Interest – Polygon Defining the El Camino Real Subdivision and 

Surrounding Lands 

  

El Camino Real AOI 
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 Next, the “Data Prep” menu was accessed in order to subset the Hays County 

image based on the previously created AOI (see Figure 4.6).  The resulting, reduced 

size
28

 image file (see Figure 4.7) became the primary dataset for the remaining image 

classification procedures.  Before the actual classification procedures could begin, two 

more subsets had to be created (i.e. one training subset and one classification subset.)  In 

order to facilitate division of the El Camino Real subdivision into two additional subsets, 

a site specific land use and land cover classification schema was developed (Step 3) for 

the study area. 

 
Figure 4.6 Creation of the El Camino Real Subset in ERDAS Imagine 9.3® 

 

                                                 
28

 The resulting El Camino Real subset file was only 7.24 MB compared to the 1.03 GB Hays County file. 
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Figure 4.7 The El Camino Real Subset of the Hays County NAIP Image 
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Step 3: Adaptation of a Modified Anderson Classification Schema to the El Camino 

Real Subset  

  

To ensure the study area was divided into two equally representative samples, an 

Anderson LULC classification schema
29

 modified by the Texas Commission on 

Environmental Quality (2001) was further adapted to fit the specific needs of this study.  

The initial modification to Anderson et al.‟s (1976) schema was conducted for a land use 

and land cover assessment of the Arroyo Colorado and the Brazos Colorado Coastal 

watersheds located in southwest Texas (Texas Commission on Environmental Quality 

2001).  Since the Arroyo/Brazos schema (see Appendix B) was intended for LULC 

classification of a different area of Texas using data with a 30 meter resolution, it was 

further modified to accommodate the higher resolution of the NAIP imagery and the 

LULC present in the El Camino Real subdivision.  Identification of distinct land use and 

land cover subclasses is important because each subclass functions as a unique “hydro 

response unit” (Maidment 2002, 119).  Each subclass possesses distinct characteristics 

that affect surface water conveyance (i.e. runoff) (see Table 4.3).  By identifying (and 

measuring the area of) each LULC class planners will have more accurate and detailed 

information for hydrologic modeling of their communities.   

The resulting El Camino Real schema contained 15 specific LULC subclasses.  

The 15 subclasses were grouped into 4 main LULC cover classes (i.e. water, developed 

areas, bare areas, and vegetated areas).  A detail description of the each class and its 

subclasses is presented in Appendix A.  Of the 15 subclasses, 11 represented LULC 

conditions that were promising for interpretation through spectral image classification 

techniques.  Those 11 subclasses would be used for training signature generation (see 

                                                 
29

 In 1976, James Anderson et al. developed a comprehensive outline for land use/ land cover 

classifications that are adapted for remotely sensed data.  
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Table 4.2).  The remaining 5 subclasses (e.g. transitional bare) represented LULC 

conditions that would require post-classification interpretation for accurate classification 

results.   

Table 4.2 The 11 Land Use and Land Cover Classification Definitions Used for 

Training Signature Generation in the El Camino Real Subdivision: A Twice 

Modified Anderson Classification Schema (Texas Commission on Environmental 

Quality 2001) 

LULC Subclass Abbreviated Subclass Definition 

Open water  open water with less than 25% vegetative or developed 

cover 

 

Asphalt shingles   residential housing units roofed with asphalt shingles 

 

Metal roof commercial buildings roofed with metal  

 

Asphalt roads and surfaces  asphalt surfaces utilized for transportation or vehicle 

storage 

 

Concrete/gravel roads and surfaces  concrete and gravel surfaces utilized for transportation or 

vehicle storage 

 

Bare soil  areas in a relatively static state that contain less than 25%  

vegetative cover 

 

Forested  

 

land where trees form at least 25% of the canopy cover 

 

Shrub land  areas where trees have less than 25% canopy cover and the 

existing vegetation is dominated by plants that have 

persistent woody stems, a relatively low growth habit, and 

which generally produce several basal shoots instead of a 

single shoot  

 

Natural herbaceous  areas dominated by native or naturalized grasses, forbs, 

ferns and weeds 

 

Pasture/hay  areas of cultivated perennial grasses and/or legumes (e.g., 

alfalfa) used for grazing livestock and seed or hay 

production 

 

Lawn/turf areas of cultivated perennial grasses maintained at a height 

of less than 8 centimeters for lawn use or turf grass 

production 
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Table 4.3 Examples of Land Use and Land Cover Class Effects on Surface Water 

Conveyance for Floodplain Modeling (Renard et al. 1996) 

LULC Subclass Effect(s) on Surface Water Conveyance 

Open water  -collection point for surface water 

-occurs near areas of potential flooding 

 

Asphalt shingles   -impervious cover with generally steep slope 

- rapidly conveys surface water to adjacent areas   

 

Metal roof -impervious cover with generally steep slope 

- rapidly conveys surface water to adjacent areas   

 

Asphalt roads and surfaces  - impervious cover of varying slope 

- generally (depending on topography) conveys surface 

water to adjacent areas 

 

Concrete/gravel roads and surfaces  -impervious or nearly-impervious cover of varying slope 

- generally (depending on topography) conveys surface 

water to adjacent areas 

 

Bare soil  -pervious or semi-pervious cover of varying slope 

-generally possesses minimal surface roughness to slow 

surface water movement, but may allow groundwater 

recharge/evaporation for areas with minimal slopes 

 

Forested  

 

-pervious cover 

-generally possesses high surface roughness and facilitates 

groundwater recharge (i.e. reduces runoff) 

 

Shrub land  -pervious cover 

-generally possesses high surface roughness and facilitates 

groundwater recharge  

 

Natural herbaceous  -pervious cover 

-generally possesses high surface roughness and facilitates 

groundwater recharge 

 

Pasture/hay  -pervious cover 

-generally possesses moderate to high surface roughness 

and facilitates groundwater recharge (i.e. except in areas 

with steep slopes) 

 

Lawn/turf -pervious cover 

-generally possesses moderate surface roughness and 

facilitates groundwater recharge (except in areas with 

steep slopes) 
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Step 4: Creation of the Training and Classification Areas of Interest 

 

 Since a supervised classification method
30

 was chosen for this study, the study 

area was divided into two portions: a training area of interest and a classification area of 

interest.  The two AOIs were created in the same manner as the El Camino Real subset 

AOI without the actual subset generation executed from the “Data Prep” menu.  The El 

Camino real subset was divided into two similar areas of interest along a Southwest to 

Northeast axis created by the main entrance to the subdivision.  Division of the study area 

along this axis created a slightly smaller training area of interest (see Figure 4.8) that 

contained all sample of every land use and land cover class found in the classification 

area of interest.  With a training area created, the next step was to define the spectral 

signatures for each land use and land cover class within the training area. 

  
Figure 4.8 El Camino Real Supervised Classification Training Area of Interest 

                                                 
30

 For more information on supervised classification procedures, see Step 5: Creation of Land Use and 

Land Cover Class Spectral Signatures. 

Classification AOI 

Training AOI 
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Step 5: Creation of Land Use Land Cover Class Spectral Signatures  

The science of computer based image classification is simply a process of pattern 

recognition.  The ERDAS Imagine® software package allows for the use of spectral 

and/or spatial pattern recognition techniques (Leica Geosystems GIS & Mapping 2005).  

Since the intent of this study is to assess the potential of the NAIP imagery for land use 

and land cover classification, all classification attempts focused on spectral pattern 

recognition.  Our brains perform spectral pattern recognitions all the time.  Our 

assessment of the color(s) of objects around us is a continuous exercise in spectral pattern 

recognition.  By determining that the grass is green or the sky is blue, we have 

subconsciously identified spectral patterns within the visible wavelengths of the targets 

(i.e. grass and sky).  

In a computer system, spectral pattern recognition can be more scientific. 

Statistics are derived from the spectral characteristics of all pixels in an 

image. Then, the pixels are sorted based on mathematical criteria. The 

classification process breaks down into two parts: training and classifying 

(using a decision rule). (Leica Geosystems GIS & Mapping 2005, 243) 

 

Of the two parts, the training process is conducted first.  The supervised classification 

training process allows the software to recognize each land use and land cover class 

based upon user defined training signatures (Hord 1982).  Supervised classification 

techniques were selected because they incorporate the use of a priori knowledge that 

local planners should possess for their communities.  It is the capitalization on local 

planners‟ knowledge of their communities (i.e. a priori) that makes supervised
31

 

                                                 
31

 The process of creating training signatures for supervised classifications is conducted by the analyst.  For 

supervised classifications, the analyst selects groups of pixels that represent patterns (i.e. land use and/or 

land cover classes) identified from personal knowledge of the area or use of additional sources (e.g. aerial 

photos) (Leica Geosystems GIS & Mapping 2005). 
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classification a more efficient method than unsupervised classification
32

 for local land use 

and land cover determinations. 

 Training signatures are identified through the creation of specific AOIs 

representative of each land use and/or land cover class.  Training signature AOIs are 

created in the same manner as the El Camino Real AOI (without the “Data Prep” subset 

procedures) in Step 2 (see Figure 4.9).  Once each training signature AOI was created, it 

was input to the Signature Editor via the “Classifier > Signature Editor” menu (see Figure 

4.9).  Once an AOI and signature was created for each of the subset‟s 11 applicable land 

use and land cover classes the collection of signatures was saved as signature file (see 

Figure 4.10) to be used in the supervised classification attempt. 

 
Figure 4.9 Creation of Target Signatures within Training AOI in ERDAS Imagine 

9.3® 

                                                 
32

 Unsupervised training relies on the information contained within the imagery to allow the software to 

identify and define the classes.  It then becomes the analyst‟s responsibility to correlate the computer 

generated classes with the actual land use and land cover classes; therefore, unsupervised classification 

attempts are usually reserved for situations where little is known about the data prior to classification 

(Jensen 1996). 
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Figure 4.10 Creation of a Signature File in ERDAS Imagine 9.3® 

 

Step 6: Supervised Classification 

Supervised classification was conducted via the “Classifier > Supervised 

Classification” menu.  The previously created (see Step 4) classification AOI was input 

from a viewer (see Figure 4.11).  Two types of decision rules (i.e. non-parametric and 

parametric
33

) were set for the classification process (see Figure 4.11).   

                                                 
33

 Non-parametric decision rules are not based on statistical parameters, but on user defined polygons (i.e. 

AOIs) in a feature space image.  Parametric decision rules are based on statistical parameters set by the 

analyst (Leica Geosystems GIS & Mapping 2005). 
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 Figure 4.11 Supervised Classification in ERDAS Imagine 9.3®  

 

Non-parametric Decision Rule 

The “Feature Space” option with a secondary parametric classification for 

unclassified cells and for overlapping regions was selected as the non-parametric decision 

rule (see Figure 4.11).   The feature space decision rule compares pixels to the training 

signatures (i.e. signature file created in Step 5) created from the training AOIs.  This non-

parametric decision rule was selected because it works well when classifying an area that 

contains both urban and rural land use and land cover classes (Leica Geosystems GIS & 

Mapping 2005).  The main disadvantages to the feature space decision rule can be 

overcome by incorporating a parametric decision rule into the classification process 

(Leica Geosystems GIS & Mapping 2005).  Table 4.4 illustrates the major advantages 

and disadvantages of the feature space decision rule.  The incorporation of a parametric 

Unclassified 

 

Feature Space 

Parametric Rule 

70 



decision rule will ensure overlapping and unclassified pixels will be placed into a single 

class.   

Table 4.4 Feature Space Decision Rule Advantages and Disadvantages (Leica 

Geosystems GIS & Mapping 2005, 275)  

Advantages Disadvantages 

Often useful for a first-pass, broad 

classification. 

 

Allows overlap and unclassified pixels. 

Provides an accurate way to classify a class 

with a nonnormal distribution (e.g. 

residential and urban). 

 

Classified image may be difficult to 

interpret. 

Certain features may be more visually 

identifiable, which can help discriminate 

between classes that are spectrally similar 

and hard to differentiate with parametric 

information. 

 

 

Fast processing. 

 
 

 

Parametric Decision Rule 

A parametric, maximum likelihood decision rule using probabilities was selected 

for the classification process to overcome the shortfalls of the non-parametric (i.e. feature 

space) rule (see Figure 4.11).  As one would infer, the maximum likelihood decision 

rule
34

 assesses the probability (i.e. likelihood) of a pixel falling within a particular land 

use or land cover class.  The maximum likelihood decision rule was chosen because it is 

the most accurate of the decision rules available within the ERDAS Imagine® software 

package (for more advantages and disadvantages see Table 4.5) (Leica Geosystems GIS 

& Mapping 2005).  Preceding the maximum likelihood decision rule with the feature 

space decision rule (designating training signatures for each LULC class) should greatly 

reduce the impact of the shortcomings of the maximum likelihood parametric rule (i.e. 

                                                 
34

 For a mathematical explanation of the maximum likelihood decision rule, see Appendix B. 
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dependence on normal distribution of within spectral bands and the tendency to over 

classify pixels) and provide the greatest possible classification success (Kloer 1994).   

Table 4.5 Maximum Likelihood Decision Rule Advantages and Disadvantages 

(Leica Geosystems GIS & Mapping 2005, 275)  

Advantages Disadvantages 

The most accurate of the classifiers in the 

ERDAS IMAGINE® system (if the input 

samples/clusters have a normal 

distribution), because it takes the most 

variables into consideration. 

 

An extensive equation that takes a long 

time to compute. The computation time 

increases with the number of input bands. 

 

Takes the variability of classes into account 

by using the covariance matrix. 

 

Maximum likelihood is parametric, 

meaning that it relies heavily on a normal 

distribution of the data in each input band. 

 Tends to over classify signatures with 

relatively large values in the covariance 

matrix. If there is a large dispersion of the 

pixels in a cluster or training sample, then 

the covariance matrix of that signature 

contains large values. 

 

 

Classification Workflow 

Figure 4.12 illustrates the classification process as determined by the decision 

rules selected for this study.  Pixels were first assessed by the non-parametric feature 

space rule.  Pixels that did not fit into any of the AOI generated training signatures or 

pixels that might have fit into more than one signature were then assessed by the 

maximum likelihood decision rule.  All pixels were forced into one of the 11 land use and 

land cover classes selected for the classification process.  Once the classification process 

was complete (see Figure 4.13 for an example of a supervised classification output), it 

was necessary to assess the accuracy of the resulting classified image. 
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Figure 4.12 ERDAS Imagine® Classification Flow Diagram (Leica Geosystems GIS 

& Mapping 2005, 271) 

 

 

Classified Pixels 

 

 

Unclassified Pixels 
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Figure 4.13 Supervised Classification Results (Maximum Likelihood) 

 

Step 7: Accuracy Assessment 

 

 Accuracy for the supervised classification was assessed using 101 stratified 

random sample points.  Each sample point corresponded to an individual pixel within the 

image and the ground based location represented by that pixel.  Sample point generation 

was accomplished through the “Classifier > Accuracy Assessment” menu (see Figure 

4.14).  Attempts were made to generate more than 101 sample points with at least 10 

points in each class as identified by the supervised classification output.  Due to the small 

size of the classification AOI, the software was only able to generate a total of 101 

sample points.  The sample point saved and opened in a Viewer containing the 

unclassified El Camino Real subset image (see Figure 4.15).  The sample points were 

then “ground truthed” by a visual assessment of the original El Camino Real (NAIP) 
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subset.  If the land use and land cover class for a sample point could not be determined 

from the image, the point‟s actual location on the ground was assessed.  Actual ground 

assessments were conducted via the embedded coordinates within the NAIP data and a 

Trimble GeoXT™ hand held GPS unit.  The Trimble GeoXT™ is capable of sub meter 

accuracy ensuring the determination of sample points with a level of accuracy that places 

them within the pixel being assessed (Trimble Navigation Limited 2008).  Once all 101 

sample points were correlated to land use and land cover conditions (via visual image 

assessment or actual ground truthing), the land use and land cover class was determined 

for each sample point on the classified image (see Figures 4.16 and 4.17 for a visual 

comparison of sample point 39 on each image).  Percent accuracy assessments were 

calculated in Microsoft Excel 2007©.   Each correctly classified sample point was 

assigned a value of 0.9909.  The values for all correctly classified points were summed to 

determine the percent classification accuracy.   Chapter 5 presents the results of the 

image classification as determined by the accuracy assessment. 
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Figure 4.14 Accuracy Assessment – Stratified Random Sample Point Generation in 

ERDAS Imagine 9.3® 

  

 
Figure 4.15 Accuracy Assessment Points on El Camino Real Subset (NAIP) Image 
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Figure 4.16 Accuracy Assessment of Point 39 on the El Camino Real (NAIP) Subset 

 

 
 

Figure 4.17 Accuracy Assessment of Point 39 on the Classification Output 
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Scenario – Classification Complete!? 

 “Wow,” thought Norm.  Despite the slight shaking of his extremities due to over-

caffeination, he felt pretty good about what he had accomplished today.  Norm collected 

the massive manuals, his thrice emptied coffee bucket, and the fruits of his labor now 

neatly arranged in orderly rows of ones and zeros on his thumb drive.  “Tomorrow, we‟ll 

find out just how good I really am,” Norm exclaimed as he fidgeted his way to his car. 
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Chapter 5. Results 
 

Scenario - Victory 

 

 After spending several minutes entering the data from yesterday‟s image 

classification into a spreadsheet, Norm‟s mental drum roll was abruptly interrupted by the 

subpar percent classification accuracy that filled the cell before him.  “I see now why 

everything I read called them classification „attempts‟,” sighed Norm under his breath.  

After a few seconds of self-pity, the quintessential phrase of every great infomercial 

popped into Norm‟s head… “But wait, there‟s more!”  “There must be more,” Norm 

thought.  Then the brainstorming began.  “What if I used fewer classes, or I could even 

just look at current levels of impervious and pervious cover.  After all, that‟s the big 

question when it comes to development planning and floodplain management.”  When 

the numbers were crunched for that final question and the result was in black and white 

before him, Norm knew he had won a victory for planners everywhere. 

Introduction 

 

 The purpose of this study was to explore the utility of National Agriculture 

Imagery Program data to identify land use and land cover conditions using an imagery 

subset of the El Camino Real subdivision in San Marcos, Texas.  Previous chapters 

detailed the thought process (i.e. literature review and development of a working 

hypothesis) behind the study and the steps taken to test the hypothesis (i.e. methodology).  

In this chapter the results of the study
35

 are revealed along with possible explanations for 

the successes and failures.  The results and accompanying discussions are divided into 

two sections based on the relevant sub-hypothesis.  The ability of NAIP data to identify 

                                                 
35

 For a detailed list of all 101 sample points and classification accuracy assessments see Appendix D. 
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local land use and land cover conditions is discussed first, followed by a discussion of the 

same data‟s ability to differentiate impervious from previous cover.   

WH1a: The application of supervised image classification procedures to NAIP 

imagery will result in LULC classification accuracies at, or above, the 95% 

threshold.  

 

 The basis of working sub-hypothesis A was to determine the potential for NAIP 

imagery to identify LULC conditions at the local level.  Table 5.1 provides an overview 

of the data and basic procedures utilized to explore NAIP imagery‟s potential for precise 

LULC classification. Classification accuracy for sub-hypothesis A was calculated by 

conducting an individual assessment of 101 random pixels within the image based on 

four different classification methods (see Table 5.2).  The evidence failed to support 

WH1a.  The poor classification accuracies (42% to 86%) would not facilitate precise area 

calculations for each cover class and, therefore, would inhibit accurate hydrologic 

modeling.    

Table 5.1 Operationalization of the Conceptual Framework: WH1a 
Research Purpose:  To explore the utility of readily available, high resolution, multi-spectral, 

remotely sensed data (i.e. NAIP data) to accurately identify land use and land cover (LULC) 

conditions.   

Working Hypothesis Data Research Procedures 

WHa:  The application of 

supervised image classification 

procedures to NAIP imagery will 

result in LULC classification 

accuracies at, or above, the 95% 

accuracy threshold.   

 

 

WHa: 

-2008 NAIP imagery (Leica 

Geosystems ADS40 airborne 

digital sensor)  

 

-Latitude and longitude for 

study area, LULC class 

boundaries, training areas 

and sample points 

 

-Modified Anderson LULC 

classification schema 

 

-Output of supervised image 

classification 

 

WHa: 

-Identify El Camino Real 

subdivision and surrounding 

area on 2008 NAIP image  

 

-Divide study area (½ training, 

½ testing) 

 

-Supervised classification in 

ERDAS Imagine 9.3®  

 

-Accuracy assessment (stratified 

random sample points)  

 

-Ground-based visual accuracy 

assessment (related to 

conditions during image 

acquisition) 
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Table 5.2 Classification Accuracies for 101 Sample Points 

Accuracy Assessment Procedure Classification Accuracy (%) 

Strict LULC Interpretation 

 

42% 

Pixel-Based Assessment (PBA) 

 

50% 

PBA with a Combined Class for Asphalt Shingles 

and Asphalt Roads  

53% 

PBA with Asphalt Class + a Combined Class for 

Pasture, Lawn, Natural Herbaceous, and Shrubland 

86% 

 

Strict LULC Interpretation 

The first method used to assess the classified image (see Figure 5.1) was a strict 

interpretation of land use and land cover classes based upon the area in which the sample 

pixel assessed was located.  Basing the land use land cover class of a sample pixel used 

for accuracy assessment is not a “fair” assessment of the capabilities of the NAIP data.  

Since the NAIP imagery is captured at a one-meter resolution, the variability of LULC 

from one pixel to the next can be quite high.  For example, a forest, as defined by the 

Modified Anderson classification schema (see Appendix A) must have more than 25% 

canopy cover.  When sampling at intervals smaller than the canopy area of one tree (e.g. 

one meter), it is possible to have a pixel fall completely within a forest, but on an area 

that has no canopy cover.  That leaves the possibility for 74% of the pixels within a forest 

to be void of trees.  Due to such limitations, less than half of the sample pixels were 

correctly classified when assessed using a strict LULC interpretation (see Table 5.2).  
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Figure 5.1 Supervised Classification of El Camino Real Subset using 11 LULC 

Classes 

 

Pixel-Based LULC Classification Assessment 

 

 A slightly more “fair” method of assessment than the strict interpretation was the 

pixel-based accuracy assessment.  For the pixel-based assessment, only the actual LULC 
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class for the individual sample pixel being assessed was utilized for comparison to the 

classified image.  This method improved the classification accuracy as compared to the 

strict interpretation because it addressed the issue of pixel variability that accompanies 

high resolution (e.g. one-meter) imagery.  Continuing with the example from the previous 

section, with the pixel-based assessment method, if a sample pixel fell within the forest 

area, but not on a tree, it was assessed as the target within the actual sample pixel and not 

as the LULC class of the surrounding area.  Unfortunately, the pixel-based accuracy 

assessment only resulted in exactly half of the sample pixels being accurately classified.   

A probable cause for the poor classification accuracy is this study‟s ambitious 

division of LULC classes.  Previous attempts at classifying Landsat data have done no 

better than 87% classification accuracy when using two fewer (9) LULC classes than this 

study (see Table 5.3).  Also, the Landsat based classification attempts covered diverse 

areas at large scales (e.g. state, national, and global).  By conducting classification 

attempts over large areas with coarse imagery (e.g. 30 meter resolution), researchers 

using Landsat data were more readily capable of identifying broad LULC classes with 

distinct characteristics separating each class.  Attempting LULC classifications within a 

small area using NAIP data (i.e. high resolution imagery) forced the classification 

software to differentiate patterns that were much more similar than those created by the 

Landsat (i.e. low resolution) generated signatures.  With these limitations in mind, it is 

understandable that, though improved, the pixel-based assessment using 11 LULC classes 

only resulted in 50% classification accuracy.  
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Table 5.3 Classification Accuracies for Landsat based LULC Classification 

Attempts 

Number of 

Classes 

Classification 

Accuracy 

Classification Method Source 

9 87% Supervised Xiao et al. 2006 

9 84% Supervised Rogan et al. 2008 

7 94% Supervised/Unsupervised Yuan et al. 2005 

7 10-91% Supervised Shalaby and Tateishi 

5 89.5% Supervised Foody et al. 

4 85.5-89.5% Supervised Ji et al. 2006 

4 88.4% Unsupervised Ouma et al. 2008 

3 72-84% Unsupervised Brannstrom et al. 2003 

 

Combined LULC Classes Accuracy Assessment 

 

 After performing a visual assessment of the NAIP image (see Figure 5.2) and the 

ground based conditions of the study area, similarities were discovered among several 

LULC classes.  Based upon this discovery it was determined that the 11 LULC classes 

could be further reduced to 7 classes by combining the asphalt road and asphalt shingle 

classes and by grouping the pasture/hay, lawn, natural herbaceous, and shrubland classes.  

With the new LULC class combinations (see Figure 5.3), classification accuracy soared 

to a level (86%) on par with the reviewed Landsat classifications (see Table 5.3).  Even 

with such substantial improvement, classification accuracy was still below the threshold 

(95%) suggested as the National Standard for Spatial Data Accuracy (Allen and Birk 

2000).  Despite the relative success of the 7-class assessment, the accuracies were still 

below the suggested 95% threshold and did not support WH1a.  Following the near miss 

by WH1a, an accuracy assessment (see working sub-hypothesis B) was conducted at the 

most elementary level necessary to still supply the vital information required for 

floodplain management.   
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Figure 5.2 El Camino Real Subset (Unclassified) of NAIP Image 
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Figure 5.3 Supervised Classification of El Camino Real Subset with Combined 

(Pasture/Hay + Lawn + Natural Herbaceous + Shrubland and Asphalt Shingles + 

Asphalt Road) LULC Classes 
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WH1b:  The application of supervised image classification procedures to NAIP 

imagery will result in the discrimination of impervious from pervious cover with 

classification accuracies at, or above, the 95% accuracy threshold.   

 

 WH1b incorporated the same data and procedures as the first sub-hypothesis (see 

Table 5.4), however, it sought to answer one basic question:  can NAIP imagery be used 

to differentiate pervious from impervious cover in a combined urban and rural 

environment?  While classification of specific LULC classes would provide local 

planners with much useful information about their communities, the basic determination 

of impervious and pervious cover is essential for proper floodplain management.
36

  To 

assess the NAIP imagery‟s ability to differentiate the two cover types, the signatures for 

the 11 LULC classes were relabeled as either pervious or impervious cover.  Table 5.5 

illustrates the LULC class combinations that led to the two cover classes.  By combining 

the classes into two distinct classes, a much greater degree of separation was created 

between the definitions (i.e. spectral signatures) of the two new cover classes (i.e. 

impervious and pervious).  Figure 5.4 displays the supervised classification output for 

impervious and pervious cover discrimination.  When differentiating impervious from 

pervious cover, classification accuracy (95%) equivalent to the National Standard for 

Spatial Data Accuracy was achieved (see Table 5.6).  The 95% accuracy achieved 

supported WH1b.  With the accuracy of the pervious v. impervious cover classification 

(see Figure 5.4) was above 95%, local planners may then confidently calculate the total 

area for each LULC class and input that information to a hydrological model to facilitate 

mapping of the current flood hazards for the area. 

                                                 
36

 For more information on the uses of impervious and pervious cover data for land use planning purposes 

see Gillfillan (2008). 
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Table 5.4 Operationalization of the Conceptual Framework: WH1b 
Research Purpose:  To explore the utility of readily available, high resolution, multi-spectral, 

remotely sensed data (i.e. NAIP data) to accurately identify land use and land cover (LULC) 

conditions.   

Working Hypothesis Data Research Procedures 

WHb:  The application of 

supervised image classification 

procedures to NAIP imagery will 

result in the discrimination of 

impervious from pervious cover 

with classification accuracies at, 

or above, the 95% accuracy 

threshold.   

WHb: 

-2008 NAIP imagery (Leica 

Geosystems ADS40 airborne 

digital sensor)  

 

-Latitude and longitude for 

study area, LULC class 

boundaries, training areas 

and sample points 

 

-Modified Anderson LULC 

classification schema 

 

-Output of supervised image 

classification 

 

WHb: 

-Identify El Camino Real 

subdivision and surrounding 

area on 2008 NAIP image  

 

-Divide study area (½ training, 

½ testing) 

 

-Supervised classification in 

ERDAS Imagine 9.3®  

 

-Accuracy assessment (stratified 

random sample points)  

 

-Ground-based visual accuracy 

assessment (related to 

conditions during image 

acquisition) 

 

 

Table 5.5 LULC Class Combinations for Differentiation of Impervious and Pervious 

Cover 

Impervious Cover Pervious Cover 

 

Asphalt Shingles + Asphalt Roads/Surfaces 

+ Concrete Roads/Surfaces + Metal Roofs 

 

 

Pasture/Hay + Lawn + Natural 

Herbaceous + Shrubland + Forest + 

Bare Soil + Open Water 

 

 

Table 5.6 Classification Accuracy for Differentiation of Impervious and Pervious 

Cover 

Accuracy Assessment Procedure Classification Accuracy (%) 

 

Impervious v. Pervious Cover 

 

 

95% 
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Figure 5.4 Supervised Classification Output for Differentiation of Impervious and 

Pervious Cover 
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Chapter 6. Conclusions and Recommendations 
 

Scenario – The Next Step 

 

 Norms‟ success at classifying impervious and pervious cover within Deerfield 

Estates promised to take much of the guesswork out of land use and land cover 

classifications for planners throughout the nation.  Once the two types of cover (i.e. 

pervious and impervious) were accurately classified, the area they covered could be 

quantified.  Through simple calculations available for most GIS and imagery analysis 

software, the square footage (or acreage, square meters, or square kilometers) of each 

cover class could be determined and input into a hydrologic model (e.g. ArcHydro 

created by David Maidment at the University of Texas at Austin).  The cover data 

coupled with terrain information (i.e. digital elevation models) would allow planners to 

create maps of their community‟s flood risks that were as current as the input data.  Since 

NAIP imagery was issued 2 to 5 times as often as FEMA‟s maps, Norm (and planners 

throughout the United States) would have a better grasp of the conditions affecting their 

communities.   Norm‟s thoughts led him to realize his work was not complete.  At the 

moment, knowledge of the utility of NAIP data for local planners was his and his alone.  

For him to truly help “planners everywhere,” he would have to let them know about his 

success.  Unfortunately, Norm did not fancy himself as a writer or a public speaker, 

finding pleasure in neither task.  After a quick search of the web, he discovered that the 

American Planning association was accepting papers for their next convention in Palm 

Beach.  “A spoon full of sugar,” Norm said aloud.  “A little dose of sun and sand will 

certainly ease the pain of public speaking,” Norm thought as he began composing his 

thoughts for the first draft of his presentation.   
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Conclusions 

 

 National Agriculture Imagery Program data possesses immense potential for 

accurately classifying land use and land cover classes through the use of pattern 

recognition software such as ERDAS Imagine 9.3®.  For this study, classification 

accuracies ranged from 42-95% (see Table 6.1).  By a rudimentary application of 

supervised image classification procedures to the NAIP image of the El Camino Real 

subdivision, impervious cover was discriminated from pervious cover with a high degree 

of certainty (95%) (see Table 6.1).  Even when assessing 7 land use and land cover 

classes, the level of accuracy was comparable to classification accuracies achieved with 

Landsat data using similar techniques (see table 6.2).  Based on the research findings, the 

first working sub-hypothesis (A) was not supported because the level of accuracy 

achieved was below the 95% threshold (see Table 6.3).  Still, the findings suggest a great 

deal of potential for reaching the 95% accuracy threshold when classifying NAIP data.  

Working sub-hypothesis B was completely supported by the research findings (see table 

6.3) and offers a valuable new tool to community planners. 

Table 6.1 Classification Accuracies for 101 Sample Points 

Accuracy Assessment Procedure Classification Accuracy (%) 

Strict LULC Interpretation 

 

42% 

Pixel-Based Assessment (PBA) 

 

50% 

PBA with a Combined Class for Asphalt Shingles 

and Asphalt Roads  

53% 

PBA with Asphalt Class + a Combined Class for 

Pasture, Lawn, Natural Herbaceous, and Shrubland 

86% 

Impervious v. Pervious Cover 95% 
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Table 6.2 Classification Accuracies for Landsat based LULC Classification 

Attempts 

Number of 

Classes 

Classification 

Accuracy 

Classification Method Source 

9 87% Supervised Xiao et al. 2006 

9 84% Supervised Rogan et al. 2008 

7 94% Supervised/Unsupervised Yuan et al. 2005 

7 10-91% Supervised Shalaby and Tateishi 

5 89.5% Supervised Foody et al. 

4 85.5-89.5% Supervised Ji et al. 2006 

4 88.4% Unsupervised Ouma et al. 2008 

3 72-84% Unsupervised Brannstrom et al. 2003 

 

Table 6.3 Summary of Results for the Working Hypothesis 

Working Sub-Hypothesis Accuracy Supported 

WHa: The application of supervised image classification 

procedures to NAIP imagery will result in LULC 

classification accuracies at, or above, the 95% accuracy 

threshold.   

 

42-86% No 

WHb: The application of supervised image classification 

procedures to NAIP imagery will result in the 

discrimination of impervious from pervious cover with 

classification accuracies at, or above, the 95% accuracy 

threshold.   

95% Yes 

 

Recommendations for Future Research and Implementation 

 

 Because of the near success with a multi class LULC classification, future 

research efforts should focus on increasing the level of accuracy for classifications with 

multiple classes (see Table 6.4).  Manipulation of the image classification (pattern 

recognition) procedures used in ERDAS Imagine® should be attempted in order to 

achieve the highest possible accuracy.  Yuan et al. (2005) achieved an acceptable level of 

accuracy (94%) by applying supervised and unsupervised classification procedures to 

Landsat data.  Application of Yuan et al.‟s (2005) methodology to NAIP data should be 

the next step in LULC classification attempts using NAIP data. 
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 Once communities possess the ability to achieve accurate land use and land cover 

classifications, two final hurdles will remain.  First, future research will need to identify a 

means to allow local planners to conduct the procedures without prior training or 

experience.  One possible solution is the development of a graphical user interface (GUI) 

that allows planners to outline the local area of interest and then conduct the classification 

using previously set parameters and training data.  Second, no matter how easily LULC 

data (or the resulting floodplain maps) are generated, their effectiveness will be limited 

unless they are afforded some degree of legal standing.  With the vast amounts of money 

involved in new developments, planners will need backing by their local, state, and 

federal governments to enforce decisions based upon LULC data derived from remotely 

sensed data. 

 

Table 6.4 Recommendations for Future Research and Implementation 

Recommendation Operationalization 

Continue exploring supervised 

classification techniques 

- Apply other parametric decision rules 

- Attempt fuzzy classification techniques
37

 

Combine supervised and unsupervised 

classification techniques 

- See Yuan et al. 2005 

Make the technology and procedures more 

readily available/understood at the local 

level  

- Create a graphical user interface (GUI) to 

aid local planners in applying classification 

techniques 

Implement classification results (i.e. LULC 

maps) as part of local regulatory policy 

- Develop rules and regulations to provide 

legal standing for classification results (e.g. 

levy environmental impact fees based on 

information derived from LULC 

classifications) 

 

   

                                                 
37

 Fuzzy classification methods help to account for pixels with mixed targets (i.e. pixels that contain 

different LULC classes) (Leica Geosystems GIS & Mapping 2005). 
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Appendix A 

Land Use and Land Cover Classification Definitions for the El Camino Real 

Subdivision: A Modified Anderson Classification Schema (Texas Commission on 

Environmental Quality 2001, 3-6) 

 

1.0 WATER - area covered by water, snow, or ice with less than 25% vegetated or 

developed cover, unless specifically included in another category 

 

1.1 Open water - all areas of open water with less than 25% vegetative or developed 

cover  

 

1.11 Stream/river/canal/ditch - a natural body of flowing water or a man-made 

open waterway constructed to transport water, to irrigate or drain land, to connect 

two or more bodies of water, or to serve as a waterway for water craft. Includes 

streams and rivers that have been channelized in order to control flooding or 

erosion or to maintain flow for navigation.  No software classification of this use 

class will occur.  Class assignment will be made by operator interpretation. 

 

1.12 Lake/pond - a non-flowing, naturally-existing, body of water. Includes water 

impounded by natural occurrences and artificially regulated natural lakes. The 

delineation of a lake is based on the areal extent of water at the time the imagery 

was acquired. No software classification of this use class will occur.  Class 

assignment will be made by operator interpretation. 

 

2.0 DEVELOPED - areas of the earth which have been improved by man. Includes all 

"built up" and urban areas of the landscape. Does NOT include mining lands, crop lands, 

or waste-disposal areas (dumps). This land use category takes precedence over a land 

cover category when the criteria for more than one category are met. 

 

     2.1 Residential - lands containing structures used for human habitation  

 

2.11 Single-family residential - lands used for housing residents in single-family 

dwelling units. Only pertains to land directly under housing unit.  Includes mobile 

homes. 

  

2.111 Asphalt shingles – residential housing units roofed with asphalt 

shingles. 

   

  2.112 Driveway – concrete and asphalt vehicle entrances adjacent to  

residential units.  Will be classified as 2.261 or 2.262 by classification 

software and interpreted by operator. 

 

2.113 Patio/stone landscaping – stone, gravel, or concrete surfaces 

adjacent to residential housing units.  Will be classified as 2.262 by 

classification software and interpreted by operator. 
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2.2 Non-residential Developed - any "developed" area or feature which is used for a 

purpose other than habitation.  

 

2.21 Metal roof – commercial buildings roofed with metal. 

 

2.22 Transportation - roads, railroads, and airports. Roads and railroads do not 

include the right-of-way, interchanges, and median strips. Category includes 

railroad stations, railroad yards, bus stations, highway maintenance yards, school 

bus parking and service yards, and park-and-ride lots. 

  

2.221 Asphalt roads and surfaces – all asphalt surfaces utilized for 

transportation or vehicle storage.  Includes roads, streets, highways, paved 

pedestrian and bike paths, and parking areas. 

 

2.222 Concrete/gravel roads and surfaces – all concrete and gravel 

surfaces utilized for transportation or vehicle storage. Includes roads, 

streets, highways, pedestrian and bike paths, and parking areas. 

 

2.3 Mixed urban - developed areas which have such a mixture of residential and non-  

residential features where no single feature meets the minimum mapping unit 

specification. This category is used when more than one-third of the features in an area 

do not fit into a single category. Often applicable in the central, urban-core area of 

cities.  No software classification of this use class will occur.  Class assignment will be 

made by operator interpretation. 

 

3.0 BARE - undeveloped areas of the earth not covered by water which exhibit less than 

25% vegetative cover or less than 5% vegetative cover if in an arid area. The earth's 

surface may be composed of bare soil, rock, sand, gravel, salt deposits, or mud. 

      

     3.1 Transitional bare - areas dynamically changing from one land cover/land use to  

     another, often because of land use activities. Includes all construction areas, areas  

     transitioning between forest and agricultural land, and urban renewal areas which are  

 in a state of transition.  No software classification of this use class will occur.  Class    

 assignment will be made by operator interpretation. 

 

     3.2 Bare soil – areas in a relatively static state that contain less than 25%  vegetative  

     cover 

 

 4.0 VEGETATED - areas having generally 25% or more of the land or water with 

vegetation. Arid or semi-arid areas may have as little as 5% vegetation cover. 

 

     4.1 Woody Vegetation - land with at least 25% tree and (or) shrub canopy cover  

 

4.11 Forested - land where trees form at least 25% of the canopy cover  
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4.12 Shrub land - areas where trees have less than 25% canopy cover and the 

existing vegetation is dominated by plants that have persistent woody stems, a 

relatively low growth habit, and which generally produce several basal shoots 

instead of a single shoot. Includes true shrubs, trees that are small or stunted 

because of environmental conditions, desert scrub, and chaparral. In the eastern 

US, include former cropland or pasture lands which are now covered by brush to 

the extent that they are no longer identifiable or usable as cropland or pasture. 

Clear-cut areas will exhibit a stage of shrub cover during the regrowth cycle. 

Some common species which would be classified as shrub land are mountain 

mahogany, sagebrush, and scrub oaks.  

 

     4.2 Herbaceous Vegetation - areas dominated by non-woody plants such as grasses, 

forbs, ferns and weeds, either native, naturalized, or planted. Trees must account for 

less than 25% canopy cover while herbaceous plants dominate all existing vegetation.  

 

4.21 Natural Herbaceous - areas dominated by native or naturalized grasses, forbs, 

ferns and weeds. It can be managed, maintained, or improved for ecological 

purposes such as weed/brush control or soil erosion. Includes vegetated vacant 

lots and areas where it cannot be determined whether the vegetation was planted 

or cultivated such as in areas of dispersed grazing by feral or domesticated 

animals. Includes landscapes dominated by grass-like plants such as bunch 

grasses, palouse grass, palmetto prairie areas, and tundra vegetation, as well as 

true prairie grasses.  

 

4.22 Planted/Cultivated Herbaceous - areas of herbaceous vegetation planted 

and/or cultivated by humans for agronomic purposes in developed settings. The 

majority of vegetation in these areas is planted and/or maintained for the 

production of food, feed, fiber, pasture, or seed. Temporarily flooded are included 

in this category. Do not include harvested areas of naturally occurring plants such 

as wild rice and cattails.  

 

4.221 Cultivated grasses - areas of herbaceous vegetation, including 

perennial grasses, legumes, or grass-legume mixtures that are planted by 

humans and used for erosion control, for seed or hay crops, for grazing 

animals, or for landscaping purposes  

 

4.2211 Pasture/Hay - areas of cultivated perennial grasses and/or 

legumes (e.g., alfalfa) used for grazing livestock or for seed or hay 

crops. Pasture lands can have a wide range of cultivation levels. It 

can be managed by seeding, fertilizing, application of herbicides, 

plowing, mowing, or baling. Pasture land has often been cleared of 

trees and shrubs, is generally on steeper slopes than cropland, is 

intended to graze animals at a higher density than open rangeland, 

and is often fenced and divided into smaller parcels than rangeland 

or cropland. Hay fields may be more mottled than small grain 

fields as they are not plowed annually and may be harvested and 
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baled two or three times a year in some locations. This category 

also contains turf farms and maintained lawn grasses.  

 
4.2212 Lawn/turf - areas of cultivated perennial grasses maintained 

at a height of less than 8 centimeters for lawn use or turf grass 

production 
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Appendix B 
Land Use and Land Cover Classification Definitions for the Arroyo Colorado 

Watershed Project and the Brazos Colorado Coastal Watershed Project: A 

Modified Anderson Classification Schema (Texas Commission on Environmental 

Quality 2001, 3-6) 

 

1.0 WATER - area covered by water, snow, or ice with less than 25% vegetated or 

developed cover, unless specifically included in another category 

 

     1.1 Open Water - all areas of open water with less than 25% vegetative or developed  

     cover  

 

1.11 Stream/river - a natural body of flowing water. Includes streams and rivers 

that have been channelized in order to control flooding or erosion or to maintain 

flow for navigation. 

 

1.12 Canal/ditch - a man-made open waterway constructed to transport water, to 

irrigate or drain land, to connect two or more bodies of water, or to serve as a 

waterway for water craft 

 

1.13 Lake/pond - a non-flowing, naturally-existing, body of water. Includes water 

impounded by natural occurrences and artificially regulated natural lakes. The 

delineation of a lake is based on the areal extent of water at the time the imagery 

was acquired. 

 

1.14 Reservoir - any artificial body of water, unless specifically included in 

another category. It can lie in a natural basin or a man-constructed basin. The 

delineation of a reservoir is based on the areal extent of water at the time the 

imagery was acquired. (The water control structures are classified as 

Communications/Utilities) 

 

1.15 Bay/estuary - the inlets or arms of the sea that extend inland 

 

1.16 Sea/ocean - an area of the great body of salt water that covers much of the 

earth  

 

     1.2 Perennial Ice/Snow - areas covered year-round with snow and ice  

 

1.21 Snowfield - permanent snow not underlain by a glacier 

 

1.22 Glacier - a body of ice and snow, showing evidence of past or present flow  

 

2.0 DEVELOPED - Areas of the earth which have been improved by man. Includes all 

"built up" and urban areas of the landscape. Does NOT include mining lands, crop lands, 

or waste-disposal areas (dumps). This land use category takes precedence over a land 

cover category when the criteria for more than one category are met. 
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     2.1 Residential - lands containing structures used for human habitation  

 

2.11 Single-family Residential - Lands used for housing residents in single-family 

dwelling units. Includes trailer parks, mobile home parks, and entire "farmsteads" 

when where is a home in the complex. (If no home is in the complex, it should be 

classified as Agricultural Business.) Single-family residential buildings located 

within another category, such as military family housing, should be identified in 

this category. 

 

2.12 Multi-family Residential - All lands devoted to housing more than one 

family on a permanent or semi-permanent basis, group living situations, and their 

associated grounds. Includes apartments, apartment complexes, duplexes, 

triplexes, attached row houses, condominiums, retirement homes, nursing homes, 

and residential hotels. Residential building located within another category such 

as barracks and dormitories, should be identified in this category when possible.  

 

     2.2 Non-residential Developed - Any "developed" area or feature which is used for a  

     purpose other than habitation.  

 

2.21 Commercial/Light Industry - structures and associated grounds used for the 

sale of products and services, for business, or for light industrial activities. 

Includes all retail and wholesale operations. Include "industrial parks" and other 

features which cannot be clearly classified as either a retail service or light 

industry, such as heavy equipment yards, machinery repair, and junkyards. 

 

2.22 Heavy Industry - structures and their associated grounds used for heavy 

fabrication, manufacturing and assembling parts which are, in themselves, large 

and heavy; or for processing raw materials such as iron ore, timber, and animal 

products. Accumulated raw materials are subject to treatment by mechanical, 

chemical, or heat processing to render them suitable for further processing, or to 

produce materials from which finished products are created. Heavy industries 

generally require large amounts of energy and raw materials and produce a 

significant amount of waste products. Indicators of heavy industry may be stock 

piles of raw materials, energy producing sources and fuels, waste disposal areas 

and ponds, transportation facilities capable of handling heavy materials, 

smokestacks, furnaces, tanks, and extremely large buildings which are complex in 

outline and roof structure. Include associated waste piles and waste ponds. Heavy 

industry is usually located away from residential areas. Includes steel mills, paper 

mills, lumber mills, chemical plants, cement and brick plants, smelters, rock 

crushing machinery, and ore-processing facilities associated with mining. 

 

2.23 Communications and Utilities - structures or facilities and associated 

grounds used for the generation and transfer of power and communications, the 

treatment or storage of drinking water, waste management, flood control, or the 

distribution and storage of gas and oil not associated with a unique feature. 

Includes pumping stations (oil, gas, or water), tank farms, power plants, electric 
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substations, sewage treatment facilities and ponds, garbage collection facilities 

(not the final dumping ground - these are included in Bare), dams, levees, and 

spillways of appropriate dimensions, filtration plants, and heavy concentrations of 

antennas or satellite dishes; along with the related operational buildings. 

 

2.24 Institutional - specialized government or private features which meet the 

educational, religious, medical, governmental, protective, and correctional needs 

of the public. Parking lots and associated grounds are included with these 

features. Includes public and private schools (not day care), cemeteries, state 

capitols, city halls, courthouses, libraries, churches, convents, monasteries, 

hospitals and training hospitals, post offices, police and fire departments, prisons, 

and military bases. Only the military-business areas of a military base are 

classified here; residential, airport, athletic fields, and vegetated areas are 

classified in the appropriate category. 2.25 Agricultural Business - structures and 

all associated grounds used for raising plants or animals for food or fiber. Includes 

fish farms and hatcheries, feedlots, poultry farms, dairy farms, temporary shipping 

and holding pens, animal breeding or training facilities, and greenhouses. 

(Farmsteads including a dwelling are classified as Residential, not Agricultural 

Business.) 

 

2.26 Transportation - Roads, railroads, airports, port facilities, and their associated 

lands. Roads and railroads include the right-of-way, interchanges, and median 

strips. Category includes railroad stations, railroad yards, bus stations, highway 

maintenance yards, school bus parking and service yards, and park-and-ride lots. 

Port facilities include loading and unloading facilities, docks, locks and, 

temporary storage areas. Associated warehousing and transfer stations for truck or 

rail are included only if they appear to be an integral part of the airport or port 

facility. Nearby but separate warehouses will be classified as light industry. 

 

2.27 Entertainment and Recreational - areas and structures used predominantly for 

athletic or artistic events, or for leisure activities, and all associated lands and 

developed parking areas. Includes outdoor amphitheaters, drive-in theaters, 

campgrounds, zoos, sports arenas (including indoor arenas), developed parks and 

playgrounds, community recreation centers, museums, amusement parks, public 

swimming pools, fairgrounds, and ski complexes (not the ski slopes). Marinas 

with over 25% of water surface covered by docks and boats are included here.  

 

     2.3 Mixed Urban - developed areas which have such a mixture of residential and non- 

     residential features where no single feature meets the minimum mapping unit  

     specification. This category is used when more than one-third of the features in an  

     area do not fit into a single category. Often applicable in the central, urban-core area  

     of cities.  

 

3.0 BARE - undeveloped areas of the earth not covered by water which exhibit less than 

25% vegetative cover or less than 5% vegetative cover if in an arid area. The earth's 

surface may be composed of bare soil, rock, sand, gravel, salt deposits, or mud. 
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     3.1 Transitional Bare - areas dynamically changing from one land cover/land use to  

     another, often because of land use activities. Includes all construction areas, areas  

     transitioning between forest and agricultural land, and urban renewal areas which are  

     in a state of transition.  

 

     3.2 Quarries/Strip Mines/Gravel Pits - areas of extractive mining activities with  

     significant surface disturbance. Vegetative cover and overburden are removed for the  

     extraction of deposits such as coal, iron ore, limestone, copper, sand and gravel, or  

     building and decorative stone. Current mining activity does not need to be identifiable.  

     Inactive or unreclaimed mines and pits are included in this category until another land  

     cover or land use has been established. Includes strip mines, open-pit mines, quarries,  

     borrow pits, oil and gas drilling sites, and gravel pits with their associated structures,  

     waste dumps, and stockpiles.  

 

3.3 Bare Rock/Sand - includes bare bedrock, natural sand beaches, sand bars, deserts, 

desert pavement, scarps, talus, slides, lava, and glacial debris.  

 

3.4 Flats - A level landform composed of unconsolidated sediments of mud, sand, 

gravel, or salt deposits. Includes coastal tidal flats and interior desert basin flats and 

playas.  

 

3.5 Disposal - designated areas where refuse is dumped or exists, such as landfills, 

trash dumps, or hazardous-waste disposal sites. Reclaimed disposal areas or those 

covered with vegetation do not qualify.  

 

4.0 VEGETATED - areas having generally 25% or more of the land or water with 

vegetation. Arid or semi-arid areas may have as little as 5% vegetation cover. 

 

     4.1 Woody Vegetation - land with at least 25% tree and (or) shrub canopy cover  

 

4.11 Forested - land where trees form at least 25% of the canopy cover  

 

4.12 Shrub land - areas where trees have less than 25% canopy cover and the 

existing vegetation is dominated by plants that have persistent woody stems, a 

relatively low growth habit, and which generally produce several basal shoots 

instead of a single shoot. Includes true shrubs, trees that are small or stunted 

because of environmental conditions, desert scrub, and chaparral. In the eastern 

US, include former cropland or pasture lands which are now covered by brush to 

the extent that they are no longer identifiable or usable as cropland or pasture. 

Clear-cut areas will exhibit a stage of shrub cover during the regrowth cycle. 

Some common species which would be classified as shrub land are mountain 

mahogany, sagebrush, and scrub oaks.  

 

4.13 Planted/Cultivated Woody (Orchards/Vineyards/Groves) - areas containing 

plantings of evenly spaced trees, shrubs, bushes, or other cultivated climbing 

plants usually supported and arranged evenly in rows. Includes orchards, groves, 
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vineyards, cranberry bogs, berry vines, and hops. Includes tree plantations planted 

for the production of fruit, nuts, Christmas tree farms, and commercial tree 

nurseries. Exclude pine plantations and other lumber or pulp wood plantings 

which will be classified as Forest.  

 

4.132 Citrus - trees or shrubs cultivated in orchards or groves that bear 

edible fruit such as orange, lemon, lime, grapefruit, and pineapple.  

 

4.133 Non-managed Citrus - orchards or groves containing fruit bearing 

trees or shrubs which are no longer maintained or harvested by humans. 

Evidence of non-managed citrus includes the growth of non citrus shrubs, 

trees, and grasses within a orchard or grove.  

 

     4.2 Herbaceous Vegetation - areas dominated by non-woody plants such as grasses, 

forbs, ferns and weeds, either native, naturalized, or planted. Trees must account for 

less than 25% canopy cover while herbaceous plants dominate all existing vegetation.  

 

4.21 Natural Herbaceous - areas dominated by native or naturalized grasses, forbs, 

ferns and weeds. It can be managed, maintained, or improved for ecological 

purposes such as weed/brush control or soil erosion. Includes vegetated vacant 

lots and areas where it cannot be determined whether the vegetation was planted 

or cultivated such as in areas of dispersed grazing by deral or domesticated 

animals. Includes landscapes dominated by grass-like plants such as bunch 

grasses, palouse grass, palmetto prairie areas, and tundra vegetation, as well as 

true prairie grasses.  

 

4.22 Planted/Cultivated Herbaceous - areas of herbaceous vegetation planted 

and/or cultivated by humans for agronomic purposes in developed settings. The 

majority of vegetation in these areas is planted and/or maintained for the 

production of food, feed, fiber, pasture, or seed. Temporarily flooded are included 

in this category. Do not include harvested areas of naturally occurring plants such 

as wild rice and cattails.  

 

4.223 Row Crops - areas used for the production of crops or plants such as 

corn, soybeans, vegetables, tobacco, flowers and cotton. Fields which 

exhibit characteristics similar to row crops, but that do not have any other 

distinguishing features for a more specific category may be included.  

 

4.2232 Sugar Cane - a very tall tropical grass up to 15 feet high 

with thick tough stems that is cultivated as the main source of 

sugar. It can be found in tropical and sub-tropical areas of the 

United States such as Louisiana, Florida, Hawaii, and Texas.  

 

4.224 Cultivated grasses - areas of herbaceous vegetation, including 

perennial grasses, legumes, or grass-legume mixtures that are planted by 
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humans and used for erosion control, for seed or hay crops, for grazing 

animals, or for landscaping purposes  

 

4.2241 Pasture/Hay - areas of cultivated perennial grasses and/or 

legumes (e.g., alfalfa) used for grazing livestock or for seed or hay 

crops. Pasture lands can have a wide range of cultivation levels. It 

can be managed by seeding, fertilizing, application of herbicides, 

plowing, mowing, or baling. Pasture land has often been cleared of 

trees and shrubs, is generally on steeper slopes than cropland, is 

intended to graze animals at a higher density than open rangeland, 

and is often fenced and divided into smaller parcels than rangeland 

or cropland. Hay fields may be more mottled than small grain 

fields as they are not plowed annually and may be harvested and 

baled two or three times a year in some locations. On the Arroyo 

Colorado Project, this category also contains turf farms and 

maintained lawn grasses.  

 

4.3 Vegetated Wetland - areas where the water table is at, near, or above the land 

surface for a significant part of most years and vegetation indicative of this covers 

more than 25% of the land surface. Wetlands can include marshes, swamps situated 

on the shallow margins of bays, lakes, ponds, streams, or reservoirs; wet meadows or 

perched bogs in high mountain valleys, or seasonally wet or flooded low spots or 

basins. Do not include agricultural land which is flooded for cultivation purposes.  

 

4.31 Woody Wetland - areas dominated by woody vegetation. Includes seasonally 

flooded bottom land, mangrove swamps, shrub swamps, and wooded swamps 

including those around bogs. Wooded swamps and southern flood plains contain 

primarily cypress, tupelo, oaks, and red maple. Central and northern flood plains 

are dominated by cottonwoods, ash, alder, and willow. Flood plains of the 

Southwest may be dominated by mesquite, saltcedar, seepwillow, and arrowweed. 

Northern bogs typically contain tamarack or larch, black spruce, and heath shrubs. 

Shrub swamp vegetation includes alder, willow, and buttonbush.  

 

4.32 Emergent Herbaceous Wetlands - areas dominated by wetland herbaceous 

vegetation which is present for most of the growing season. Includes fresh-water, 

brackish-water, and salt-water marshes, tidal marshes, mountain meadows, wet 

prairies, and open bogs.  
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Appendix C 
Equation for the ERDAS Imagine® Maximum Likelihood Classifier (Decision Rule) 

 

The equation for the maximum likelihood classifier is as follows: 

D = ln(ac) - [0.5 ln(|Covc|)] - [0.5 (X-Mc)T (Covc-1) (X-Mc)] 

Where: 

D = weighted distance (likelihood) 

c = a particular class 

X = the measurement vector of the candidate pixel 

Mc = the mean vector of the sample of class c 

ac = percent probability that any candidate pixel is a member of class c (defaults to 1.0, or 

is entered from a priori knowledge) 

Covc = the covariance matrix of the pixels in the sample of class c 

|Covc| = determinant of Covc (matrix algebra) 

Covc-1 = inverse of Covc (matrix algebra) 

ln = natural logarithm function 

T = transposition function (matrix algebra) 

The inverse and determinant of a matrix, along with the difference and transposition of 

vectors, would be explained in a textbook of matrix algebra. The pixel is assigned to the 

class, c, for which D is the lowest (Leica 2005, 279). 
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Appendix D 
Accuracy Assessment of Classified Image by 101 “Ground Truthed” Sample Points (Correct Classification = .9909, Incorrect 

Classification = 0) 

Sample Point Actual LULC 

Classified 

LULC 

Strict LULC 

Interpretation 

Based on Actual 

Pixel Not  LULC 

Class of Surrounding 

Area 

+ Grouping of 

Asphalt 

Shingles and 

Asphalt Road 

+ Grouping of 

Pasture, Lawn, 

Natural 

Herbaceous, and 

Shrubland 

Impervious 

v. Pervious 

1 Forest Forest .9909 .9909 .9909 .9909 .9909 

2 Forest Forest .9909 .9909 .9909 .9909 .9909 

3 Shrubland Shrubland .9909 .9909 .9909 .9909 .9909 

4 

Forest (Pixel 

contains partial 

shadow) Shrubland 0 0 0 0 .9909 

5 Shrubland Shrubland .9909 .9909 .9909 .9909 .9909 

6 Pasture/Hay Shrubland 0 0 0 .9909 .9909 

7 Natural Herbaceous Shrubland 0 0 0 .9909 .9909 

8 Pasture/Hay Shrubland 0 0 0 .9909 .9909 

9 

Pasture/Hay (Bare 

ground/depression 

below dam) 

Natural 

Herbaceous 0 0 0 .9909 .9909 

10 Pasture/Hay 

Natural 

Herbaceous 0 0 0 .9909 .9909 

11 Natural Herbaceous Shrubland 0 0 0 .9909 .9909 

12 Pasture/Hay Shrubland 0 0 0 .9909 .9909 

13 Concrete Sidewalk Concrete .9909 .9909 .9909 .9909 .9909 

14 Pasture/Hay Pasture/Hay .9909 .9909 .9909 .9909 .9909 
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Accuracy Assessment of Classified Image by 101 “Ground Truthed” Sample Points (Correct Classification = .9909, Incorrect 

Classification = 0) 

15 

Natural Herbaceous 

(Mowed portion of 

state road right of 

way less than 8 cm 

tall) Lawn 0 .9909 .9909 .9909 .9909 

16 Shrubland Shrubland .9909 .9909 .9909 .9909 .9909 

17 Pasture/hay Shrubland 0 0 0 .9909 .9909 

18 Lawn Shrubland 0 0 0 .9909 .9909 

19 Pasture/Hay 

Natural 

Herbaceous 0 0 0 .9909 .9909 

20 

Shrubland (Natural 

herbaceous pixel) 

Natural 

Herbaceous 0 .9909 .9909 .9909 .9909 

21 

Natural Herbaceous 

Natural 

Herbaceous .9909 .9909 .9909 .9909 .9909 

22 Lake/pond 

Asphalt 

Shingles 0 0 0 0 0 

23 Asphalt Shingles 

Asphalt 

Road 0 0 .9909 .9909 .9909 

24 

Shrubland 

(Tree/forest pixel) Forest 0 .9909 .9909 .9909 .9909 

25 Asphalt Road 

Asphalt 

Road .9909 .9909 .9909 .9909 .9909 

26 

Lawn (Very rough 

lawn looks like 

pasture but less than 

8 cm tall) Pasture/Hay 0 0 0 .9909 .9909 

27 Shrubland Lawn 0 0 0 .9909 .9909 

28 Forest Forest .9909 .9909 .9909 .9909 .9909 

29 Asphalt Road 

Asphalt 

Road .9909 .9909 .9909 .9909 .9909 
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Accuracy Assessment of Classified Image by 101 “Ground Truthed” Sample Points (Correct Classification = .9909, Incorrect 

Classification = 0) 

30 Forest Forest .9909 .9909 .9909 .9909 .9909 

31 Asphalt Road Asphalt Road .9909 .9909 .9909 .9909 .9909 

32 

Shrubland (Borders 

forest and contains 

partial shadow) Forest 0 0 0 0 .9909 

33 Forest Forest .9909 .9909 .9909 .9909 .9909 

34 Pasture/Hay Shrubland 0 0 0 .9909 .9909 

35 Pasture/Hay Lawn 0 0 0 .9909 .9909 

36 Natural Herbaceous Pasture/Hay 0 0 0 .9909 .9909 

37 

Asphalt Shingles 

(Shadow in pixel) 

Asphalt 

Shingles .9909 .9909 .9909 .9909 .9909 

38 Lawn Lawn .9909 .9909 .9909 .9909 .9909 

39 Forest Forest .9909 .9909 .9909 .9909 .9909 

40 Shrubland Forest 0 0 0 0 .9909 

41 Shrubland 

Natural 

Herbaceous 0 0 0 .9909 .9909 

42 

Asphalt Road 

(Mixed pixel with 

concrete curb) 

Asphalt 

Shingles 0 0 .9909 .9909 .9909 

43 

Forest (Pixel borders 

natural herbaceous) Shrubland 0 0 0 0 .9909 

44 Pond/Lake 

Asphalt 

Shingles 0 0 0 0 0 

45 Shrubland 

Natural 

Herbaceous 0 0 0 .9909 .9909 
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Accuracy Assessment of Classified Image by 101 “Ground Truthed” Sample Points (Correct Classification = .9909,  Incorrect 

Classification = 0) 

46 

Forest (Shadow in 

pixel) Forest .9909 .9909 .9909 .9909 .9909 

47 Asphalt Road Asphalt Road .9909 .9909 .9909 .9909 .9909 

48 Pasture/Hay Lawn 0 0 0 .9909 .9909 

49 Shrubland Lawn 0 0 0 .9909 .9909 

50 

Forest (Natural 

herbaceous pixel) Lawn 0 0 0 0 .9909 

51 Asphalt Road 

Asphalt 

Shingles 0 0 .9909 .9909 .9909 

52 Asphalt Road Asphalt Road .9909 .9909 .9909 .9909 .9909 

53 Natural Herbaceous 

Natural 

Herbaceous .9909 .9909 .9909 .9909 .9909 

54 Asphalt Road 

(Mixed pixel with 

bare road shoulder) Bare Soil 0 0 0 0 0 

55 Shrubland 

Natural 

Herbaceous 0 0 0 .9909 .9909 

56 Natural Herbaceous Lawn 0 0 0 .9909 .9909 

57 

Natural Herbaceous 

(Bare portion of 

Redwood Road right 

of way) 

Natural 

Herbaceous .9909 .9909 .9909 .9909 .9909 

58 Asphalt Shingles Asphalt Road 0 0 .9909 .9909 .9909 

59 Shrubland Shrubland .9909 .9909 .9909 .9909 .9909 
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Accuracy Assessment of Classified Image by 101 “Ground Truthed” Sample Points (Correct Classification = .9909,  Incorrect 

Classification = 0) 

60 

Forest (Mixed pixel 

with natural 

herbaceous) Lawn 0 0 0 0 .9909 

61 Shrubland Pasture/Hay 0 0 0 .9909 .9909 

62 Pasture/Hay Lawn 0 0 0 .9909 .9909 

63 Natural Herbaceous Shrubland 0 0 0 .9909 .9909 

64 Natural Herbaceous Pasture/Hay 0 0 0 .9909 .9909 

65 Natural Herbaceous Pasture/Hay 0 0 0 .9909 .9909 

66 Natural Herbaceous Pasture/Hay 0 0 0 .9909 .9909 

67 Natural Herbaceous Pasture/Hay 0 0 0 .9909 .9909 

68 

Lawn (Full shadow 

in pixel) Shrubland 0 0 0 .9909 .9909 

69 Concrete Sidewalk Concrete .9909 .9909 .9909 .9909 .9909 

70 Natural Herbaceous 

Natural 

Herbaceous .9909 .9909 .9909 .9909 .9909 

71 

Lawn (Borders 

natural herbaceous) 

Natural 

Herbaceous 0 0 0 .9909 .9909 

72 Natural Herbaceous 

Natural 

Herbaceous .9909 .9909 .9909 .9909 .9909 

73 Pasture/Hay Lawn .9909 .9909 .9909 .9909 .9909 

74 Shrubland Shrubland    .9909 .9909 

75 

Shrubland (Natural 

herbaceous pixel) 

Natural 

Herbaceous 0 .9909 .9909 .9909 .9909 

76 

Shrubland (Natural 

herbaceous pixel) 

Natural 

Herbaceous 0 .9909 .9909 .9909 .9909 
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Accuracy Assessment of Classified Image by 101 “Ground Truthed” Sample Points (Correct Classification = .9909,  Incorrect 

Classification = 0) 

77 Pasture/Hay Pasture/Hay .9909 .9909 .9909 .9909 .9909 

78 Asphalt Shingles 

Asphalt 

Shingles .9909 .9909 .9909 .9909 .9909 

79 

Lawn (Mixed pixel 

with concrete patio) Shrubland 0 0 0 .9909 .9909 

80 Natural Herbaceous 

Natural 

Herbaceous .9909 .9909 .9909 .9909 .9909 

81 

Shrubland (Natural 

Herbaceous pixel) 

Natural 

Herbaceous 0 .9909 .9909 .9909 .9909 

82 

Shrubland (Natural 

Herbaceous pixel) 

Natural 

Herbaceous 0 .9909 .9909 .9909 .9909 

83 Concrete Sidewalk Concrete .9909 .9909 .9909 .9909 .9909 

84 Natural Herbaceous 

Natural 

Herbaceous .9909 .9909 .9909 .9909 .9909 

85 Concrete Driveway Concrete .9909 .9909 .9909 .9909 .9909 

86 

Natural Herbaceous 

(Located in 

depression) 

Natural 

Herbaceous .9909 .9909 .9909 .9909 .9909 

87 Asphalt Road Asphalt Road .9909 .9909 .9909 .9909 .9909 

88 

Shrubland (Natural 

herbaceous pixel) 

Natural 

Herbaceous 0 .9909 .9909 .9909 .9909 

89 Pond/Lake 

Asphalt 

Shingles 0 0 0 0 0 

90 

Lawn(Mixed Pixel 

with lawn, concrete, 

and shadow) Shrubland 0 0 0 .9909 .9909 
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Accuracy Assessment of Classified Image by 101 “Ground Truthed” Sample Points (Correct Classification = .9909,  Incorrect 

Classification = 0) 

91 Asphalt Shingles 

Asphalt 

Shingles .9909 .9909 .9909 .9909 .9909 

92 

Concrete Sidewalk 

(Mixed pixel with 

asphalt road) 

Asphalt 

Shingles 0 0 0 0 .9909 

93 

Lawn (Full shadow 

in pixel) 

Asphalt 

Shingles 0 0 0 0 0 

94 Concrete Driveway Concrete .9909 .9909 .9909 .9909 .9909 

95 Shrubland Shrubland .9909 .9909 .9909 .9909 .9909 

96 Concrete Sidewalk Concrete .9909 .9909 .9909 .9909 .9909 

97 Natural Herbaceous 

Natural 

Herbaceous .9909 .9909 .9909 .9909 .9909 

98 Concrete Sidewalk Concrete .9909 .9909 .9909 .9909 .9909 

99 Concrete Driveway Concrete .9909 .9909 .9909 .9909 .9909 

100 Concrete Driveway Asphalt Road 0 0 0 0 .9909 

101 Natural Herbaceous Bare Soil 0 0 0 0 .9909 

Sample Point Actual LULC 

Classified 

LULC 

 Strict LULC  

 Interpretation 

Based on 

Actual Pixel 

Not  LULC 

Class of 

Surrounding 

Area 

+ Grouping of 

Asphalt Shingles 

and Asphalt 

Road 

+ Grouping of Pasture, 

Lawn, Natural 

Herbaceous, and 

Shrubland 

Impervious v. 

Pervious 

Overall Classification Accuracies (%) 41.5842 49.5050 53.4654 86.1386 95.0495 
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