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ABSTRACT  

Low power and high computation speed with less memory storage are essential 

for a real-time scientific computational application. Applications such as image 

processing, power system, finite element system, circuit design, data from sensors utilize 

a large amount of data. An arithmetic operation on a general matrix can take more time 

and require more memory to store the data. Band matrices could be a key component in 

many scientific computing applications. A special sparse matrix, i.e., band matrix, has 

small bandwidth and minimizes storage, efficiently leading to less computation time. 

This paper presents a design and hardware implementation to convert a sparse matrix to a 

band matrix for a minimum matrix bandwidth using an existing Reverse Cuthill-Mckee 

algorithm (RCM). 

The Field Programmable Gate Array (FPGA) hardware design helps to solve 

larger data problems in terms of memory storage, speeding up many sparse matrix 

operations. Based on the FPGA hardware, the design and implementation, and synthesis 

are carried out by keeping in mind the architecture, area, and power requirements. In this 

research, the Vivado High-Level Synthesis (HLS) language is used. Intellectual Property 

(IP) generated from HLS will be linked to the ZYNQ processor, which can be 

implemented in a large system and have flexibility in FPGA based design. For the 

verification and reporting of this designed system, MATLAB is used.  
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I. INTRODUCTION  

Overview 

A matrix is generally stored as a two-dimensional array. It is possible to represent 

many systems with less non-zero elements in matrices form. If the non-zero elements are 

less than 10% of the matrix's total elements, it is called a sparse matrix. The sparsity of 

the matrix is calculated by dividing the total zero elements by a total number of matrix 

elements. When the number of zeroes is relatively large, a requirement for more efficient 

data structures arises. We are drifting away from serial computing towards parallel 

distributed computing over a large variety of architectural designs. The generic 

implementation of data structures allows one to reuse the most appealing one, which may 

not be the fastest. In a graph algorithm, to obtain information where there is a small 

number of nonzero entries but millions of rows and columns, a memory would be wasted 

by storing redundant zeros. For a matrix, the amount of memory required to store its 

elements in the same format is proportional to matrix size. Because the sparse matrix has 

few non-zero elements, memory management can be reduced by storing only non-zero 

entries [1]. There is a various application of sparse matrices such as circuit simulation, 

power network, structural analysis, signal processing and statistics, computer vision, 

tomography, finite-element methods [2][3][4], etc. and a huge amount of data is 

generated by these applications [5]. A sparse matrix is useful for computing large scale 

matrices. Figure 1 is a graph comparing the non-zero elements of an ordinary matrix and 

a sparse matrix. 
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Figure 1. Non-zero matrix elements comparison [5]  

The graph shows that the ordinary matrix contains more non-zero elements, 

making the matrix operation slow and needs more storage [5]. Sparse matrix computation 

can be accelerated by reducing matrix bandwidth [6]. Researchers believed and have 

been proved that rearranging sparse matrix vertices could reduce its bandwidth or profile. 

Band matrix is a special type of sparse matrix where nonzero elements are aligned to 

form a main diagonal and sub diagonal. In a band matrix operation, only diagonal, which 

contains non-zero elements, are stored. Because a band matrix has a smaller bandwidth 

than a sparse matrix and nonzero elements are clustered to diagonal, it is useful for 

scientific computing such as direct methods for solving sparse linear system and for 

iterative methods. In this paper, a hardware design is proposed which converts a sparse 

matrix to band matrix using the RCM algorithm to reduce the bandwidth of a matrix. 

Large data is received from different applications such as image processing, 

power system, finite element system, data from sensors and is often sparse and contains 

more zero elements. As the matrix dimension increases, it becomes difficult for the 

software to compute the data. By reordering sparse matrix elements, a sparse matrix can 
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be converted into a band matrix to reduce its bandwidth. There are few different 

algorithms to reduce the bandwidth of a matrix, such as the Cuthill-Mckee (CM), the 

Reverse Cuthill-Mckee (RCM)[4], Sloanôs algorithm, and the Gibbs- Poole algorithm [3] 

[7][8]. In this research, we used the Reverse Cuthill-Mckee algorithm to rearranges data 

of a sparse matrix because it is simple to execute, easy to parallelize relatively,  shows a 

low computational cost, and proved to be best for the band elimination method[4], [6], 

[9], [10]. 

In this research, FPGA based hardware design is proposed for an RCM algorithm 

which will rearrange nonzero elements of sparse matrix diagonally to form a band matrix 

with smaller bandwidth or profile. A sparse matrix's bandwidth is the maximum distance 

between two elements in any row of a matrix [11]. A banded matrix is a sparse matrix 

where the non-zero element is aligned to the diagonal band (main diagonal) and zero or 

more diagonals on either side. Only nonzero elements of the diagonal are stored in the 

banded representation of the sparse matrix. The band matrix's main concept is to reduce 

the sparse matrix's bandwidth so the new matrix will have bandwidth smaller than the 

maximum possible bandwidth. Bandwidth is directly proportional to the amount of 

memory required to store a matrix, so proper reordering of nodes is essential to reduce 

the memory cost [11][4]. An example of a band matrix is shown in Figure 2. 

 
Figure 2. Band Matrix  
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For an nxn matrix, A to be band matrix, all elements outside a diagonally 

bordered band having a range (column and row) as ñkò and ñpò should satisfy the given 

condition in Equation 1. 

 ai,j = 0 if j<i-p, or j>i+k 1 

    Where k and p are upper bandwidth and lower bandwidth, ai,j is matrix elements.  

A matrix having k = p = 0 and k = p = 1 is called diagonal and tridiagonal matrix. A 

matrix to be band should have a reasonably smaller bandwidth. The bandwidth of a 

matrix can be calculated using Equation 2. 

 Bandwidth (BW) = k+p+1 2 

Matrix with smaller bandwidth helps minimize hardware design, smaller memory 

allocation storing only the non-zero elements, and decreasing the overall computational 

time. Reducing matrix bandwidth by reordering a sparse matrix can accelerate many 

sparse matrix computations[12]. For example, a direct method that allows simple data 

structure for solving a linear system is useful in an iterative method as nonzero elements 

are grouped close to diagonal enhancing data locality. The non-zero elements number of 

a matrix depends on the matrix size and calculated using Equation 3 below[13].  

 NNZ = ὲ В ὲ Ὥ  В ὲ Ὦ 3 
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II. LITERATURE REVIEW  

Many applications generate a huge amount of data. When the number of data 

increases, calculation speed often decreases. It has been challenging to keep many 

features such as hardware size, memory storage, speed in an acceptable range, yet making 

data computation easy. Data generated from a different application are generally sparse. 

Sparse indicates data having less non-zero value and more zero values. The sparse matrix 

concept is usually used for larger applications as it is easy and reliable to store only non-

zero elements. The sparse matrix comparatively has larger bandwidth, which means large 

memory is required for storage. The bandwidth and matrix profile has always been an 

area of great concern because of their influence in the finite element method, circuit 

design, hypertext layout, chemical kinetics, linear equation solution, etc.[1]. It has been 

found that a reduction in bandwidth and profile of a matrix can be reduced memory 

storage requirement and processing time of such linear systems. There are many tools 

proposed for the hardware design of FPGA. The High-Level Synthesis (HLS) is 

considered an easy and simple tool to generate hardware from C/C++ (C to Verilog/ 

VHDL) [14]. This research uses the Vivado HLS to design a software model of the RCM 

algorithm and hardware implementation on FPGA. 

Band Matrix  

In matrix theory, a band matrix is a special type of sparse matrix whose nonzero 

elements lie above and below the main diagonal. The number of nonzero elements above 

the main diagonal gives upper bandwidth, and nonzero elements below the main diagonal 

give lower bandwidth of the matrix. The total bandwidth of a matrix is considered the 

sum of upper bandwidth, lower bandwidth, and main diagonal. The last diagonal (above 
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and below the main diagonal) containing non-zero elements determines the upper and 

lower bandwidth matrix. Matrix bandwidth plays an important role in memory 

requirements in a system. Let for a matrix  A of elements Ai,j  with upper and lower 

bandwidth ókô and ópô: 

Let for a matrix  A of elements Ai,j with upper and lower bandwidth ókô and ópô: 

¶ The upper bandwidth ókô is the smallest number where Ai,j = 0 whenever j-i>k 

¶ The lower bandwidth ópô is the smallest number were Ai,j = 0 whenever i-j>p 

There are special band matrices: (1) Diagonal matrix and (2) Tridiagonal matrix. 

The Diagonal matrix has all values zero except the diagonal elements. In a tridiagonal 

matrix, the main diagonal, the first upper diagonal, and the first below diagonal have 

nonzero elements, and the rest value is zero. The diagonal matrix has upper and lower 

bandwidth zero, and the tridiagonal matrix has upper and lower bandwidth of one. An 

example of a diagonal and tridiagonal matrix is shown in Figure 3 below.   

  
(a) Tridiagonal Matrix (b) Diagonal Matrix 

Figure 3. Special Band Matrix 
 

Application of Band Matrix  

In numerical analysis, for faster and efficient operation, a matrix with a smaller 

bandwidth/profile is preferred. Matrix operation becomes difficult and less efficient for 

larger matrix. A smaller bandwidth in a matrix is important to minimize the hardware 

https://en.wikipedia.org/wiki/Numerical_analysis


 

7 

design and memory store by storing only the non-zero matrix elements and simplifying 

complex matrix operations such as LU factorization and QR factorization for a faster and 

accurate solution. It can be implemented on a large-scale system in a linear equation.   

A banded matrix is a special type of sparse matrix, with non-zero elements 

aligned to a diagonal, forming the main diagonal with zero or more diagonals on either 

side. A matrix bandwidth has been the topic of research for a long time. The researcher is 

interested in finding ways to minimize the bandwidth of a matrix through a sparse matrix 

with efficient computation and less memory storage than a dense matrix. Therefore, here 

comes a concept of a band matrix with reduced bandwidth. Because a band matrix has 

small bandwidth, they are used in many real-life applications such image processing, 

linear system, circuit theory, finite element method for approximating solutions of a 

partial differential equation, chemical kinetics, numerical geophysics, hypertext layout, 

large scale power transmission system, etc. where collected data has many zero elements 

[5] [1] [15] [16] [17]. In a complex system such as a finite element system and problems 

in a higher dimension, matrices are often banded.  

Band Matrix Storage 

The real-life application produces a huge amount of data. There is always 

demanded to analyze and solve large and complex problems defined by a linear equation 

in the form Ax = b. The size of these data is very large, which needs much storage. In a 

band matrix, which is a special kind of sparse matrix, non-zero elements are aligned 

along the diagonal only (on the main diagonal and to sub diagonals) while all other 

elements are zero. The numbers of elements to be stored are only diagonal elements, 

therefore, minimizing memory storage. Many storage methods are proposed for storing 
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band matrix. The two commonly used storage techniques for a general band matrix are 

described below. 

BLAS ï General Band Storage Mode: The most popular one is a linear algebra 

package (LAPACK), also known as BLAS. This method is suitable for both a square 

matrix and a rectangular matrix. In this method, the non-zero elements of matrix A are 

stored in a rectangular, (kl+ku+1) by n, matrix Aband, such that the diagonals of A become 

rows of Aband while the columns of A remain as columns of Aband. For example, Figure 4 

shows that an mxn size matrix A having upper and lower bandwidth of q and p can be 

stored in a two-dimensional array as p+q+1 row and n column. For row storage, all row 

values are pushed to the left or right to align the column on an anti-diagonal forming a 

matrix Aband. For column storage, diagonals of the matrix are stored in a row array, and 

columns of a matrix are stored in the array's corresponding column. If p, q < n then, A is 

stored in either a (p+q+1)-by-n or a n-by-(p+q+1) matrix Aband with ai,j = aband
i,j-i+p+1    
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Figure 4. 8 x 8 Band Matrix and its Storage  

Let A is a matrix of size m x n and the number of nonzero nnz. The memory 

requirements in bytes are calculated as in Equation 4 [18]. 

 memory = 8 * nnz + 4 * (nnz + n + 1) 4 

 Below are the steps for BLAS general band matrix storage mode. 

For an mxn matrix A with upper bandwidth ñmlò and lower bandwidth ñmuò: 
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Step 1: Select j = 1: n, where n is the size of a matrix 

Step 2: k = mu+1-j 

Step 3: for i = max(1, j - mu) : min(m, j+ml) 

Step 4: When step 3 is true, Anew(k+i, j) = A(i, j), where Anew is storage form with 

dimension (ml+mu+1, n) 

Step 5: Continue until step 3 condition is true 

Step 4: Repeat process until the value of ñjò is equal to n 

General Band Storage Mode: This method is applied only for a square matrix. 

In this process, the band matrix elements are packed to a two-dimensional array column-

wise so that each diagonal of a matrix appeared like a row in the packed array. 

For a matrix A of size mxn and bandwidth ml and mu, the process is explained 

below. Let Anew be the new storage matrix. Its dimension should be greater than or equal 

to (2ml+mu+16,n).  

Step 1: md=ml+mu+1 

Step 2: Select j = 1: n, where n is the size of a matrix 

Step 3: for i = max(j ï mu, 1) : min(j + ml, n) 

Step 4: When step 3 is true, Anew (i - j + md, j) = A(i, j), where Anew is storage form  

Step 5: Continue until step 3 condition is true 

Step 6: Repeat process until the value of ñjò is equal to n 

Bandwidth Reduction Algorithm 

It is considered that the smaller the bandwidth of a matrix, the lesser is the 

computer storage requirement and lesser solution time. Therefore, for a larger data 

producing application, the matrix's profile and bandwidth play an important role. For a 
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given matrix A, its bandwidth is given by Equation 5. 

 A(i, j)  = 0 for |i - j| > K 5 

Where K is a non-negative integer 

For example, the bandwidth of the given matrices in Figure 5(a), (b), and (c) are 

3, 5, and 1, respectively.     

   

(a) (b) (c) 

Figure 5. A Bandwidth of 6x6 Matrices 
 

 Rows and columns reorder of a sparse matrix plays an important role in achieving 

certain properties that better perform the system performance. Among different 

properties, bandwidth is one of them [11]. There is a different algorithm proposed to 

reduce the bandwidth of a matrix by reordering its nodes. Figure 6 shows a matrix Ka 

before reordering and Kb matrix after rearranging its rows and columns. Figure 6 is a 

graph representation of both matrices 
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(a) (b) 

Figure 6. Matrix Before and After Reorder of Nodes [19] 
 

 

Figure 7. Graph representation of a matrix [19]  

 

The upper and lower bandwidth of Ka is five each, and the lower and upper 

bandwidth of Kb is three each. Figure 7 is a graphical representation of the matrix and 

how the reordering of their nodes helps reduce the matrix's profile. 

Different theories for reordering a sparse matrix have been proposed. Some of them are 

mentioned below.   

I. Cuthill-Mckee Algorithm 

II.  Reverse Cuthill-Mckee Algorithm 

III.  Gibbs-Poole-Stockmeyer Algorithm 

IV.  Gu Feng Algorithm 

V. Kingôs Algorithm 

VI.  Modified Minimum Degree 
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Above mentioned algorithms represent a sparse matrix as a graph. A graph is a 

model made up of vertex or nodes to represent pairwise relationships between objects. 

Graphs are connected by edges. A graph can be directed or undirected. A sparse matrix is 

generally represented as an undirected graph by connecting each row and columns of the 

matrix. Further detail for the RCM algorithm is described below. 

Cuthill -Mckee Algorithm: This algorithm is named after Elizabeth Cuthill and 

James Mckee [4], [20]. The purpose of this method is to permute a symmetric sparse 

matrix to a band matrix with smaller bandwidth. CM uses the concept of Breadth-First 

Search with a start peripheral node until all nodes are visited. The algorithmôs 

pseudocode is given below.  

Step 1: Choose vertex with the lowest degree (x) and assigned to R. R<-{x}and let Q is an 

empty queue. 

Then following steps is done till |R|<n for i=1,2,3é, n 

Step 2: Add adjacent nodes of element óxô (which are not in R) to Q {} in increasing order 

of their degree. Check if that number is in óRô or not? If not, add it to óR.ô  

Step 3: Repeat this process till Q {} is empty, and all nodes have been explored (i.e., the 

size of R should be equal to the number of nodes).  

Step 4: Rearrange nodes according to the new index in array R. 

Reverse Cuthill-Mckee  Algorithm: The origin of the RCM algorithm is from 

Cuthill-Mckee (CM) algorithm named after Elizabeth Cuthill and James McKee. This is 

also an algorithm to permute a symmetric sparse matrix to a band matrix with small 

bandwidth. The Reverse Cuthill-Mckee (RCM) algorithm is given by Alan George and is 

commonly used for bandwidth reduction [21] [12]. It is the same algorithm as RC, but 
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after getting results, the index number is reversed at the end. When Gaussian elimination 

is applied, practically, the RCM is considered superior to the CM as it reduces fill-in [11] 

when Gaussian elimination is applied. Fill -in process in a matrix are entries that change 

non-zero from initial zero during algorithm execution. To reduce arithmetic operation and 

memory storage for a algorithm, it is necessary to reduce fill-in by changing rows and 

columns of a matrix. The RCM algorithm is used in this design to reorder nonzero 

elements of a sparse matrix to diagonal. This algorithm works on an unlabeled graph of a 

matrix. 

Smaller bandwidth can be achieved by converting a sparse matrix into a band 

matrix by rearranging elements of the sparse matrix. Among several heuristics for profile 

and bandwidth reduction, the  RCM algorithm method is considered the most promising 

technique for profile reductions [10]. By an appropriate renumbering of the nodes, it is 

often possible to produce a matrix with much smaller bandwidth. The RCM algorithmôs 

goal is to reduce the bandwidth of a symmetric sparse matrix, which is used in linear 

solvers. An important decision in the RCM is choosing a start node. Various concepts are 

proposed to find a start node in the RCM, such as peripheral node, pseudo-peripheral 

node, small degree node. Furthermore, the RCM is generally used for matrices having a 

higher diameter [12]. 

In the RCM algorithm, the node with the smallest degree in the matrix (graph) is 

chosen and applies Breadth-First Search (BFS) algorithm on the graph, ordering the 

nodes in ascending order according to their degree in each level. If any nodes are not 

covered in the first BFS, the same process is done again, taking the uncovered smallest 

degree node as the starting point. After all the nodes are covered, the result array of the 
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list is reversed, and the matrix is reordered according to the list to get a new band matrix. 

BFS is a fundamental search algorithm to explore the nodes and edges of a graph. The 

BFS algorithm is generally useful in finding the shortest path on an unweighted graph.  

The BFS starts with some arbitrary node at first and explores its neighbor before moving 

to the next level neighbor. In the BFS algorithm, the order in which nodes are explored is 

shown below in Figure 8. 

 

Figure 8. Breadth-First Search [22]  

 The algorithm for Reverse Cuthill Mckee for an mxn matrix is given below. 

Step 1: At first, the vertex with the lowest degree is chosen (x) and is assigned to R. R<-

{x}and let Q is an empty queue. 

Then following steps is done till |R|<n for i=1,2,3é, n 

Step 2: Add adjacent nodes of element óxô (which are not in R) to Q {} in increasing 

order of their degree. Check if that number is in óRô or not? If not, add it to óR.ô  

Step 3: Repeat this process till Q {} is empty, and all nodes have been explored (i.e., the 

size of R should be equal to the number of nodes).  
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Step 4: Reverse elements order of R, i.e., new nodes arrangement will be R[n+1-i]  

The below examples show how reordering rows and columns of a matrix bring nonzero 

elements closer to the diagonal. A sparse matrix graph and its adjacency matrix are 

shown below in Figure 9. 

  

Figure 9. Graph Representation and Adjacent Matrix of a Sparse Matrix  

 

Non-zero elements are not exactly close to the diagonal, and the bandwidth of the 

matrix is 17 (upper and lower eight each and one for diagonal). The RCM algorithm, a 

rearranged graph, and its adjacency matrix are shown below in Figure 10.  

 
 

Figure 10. Graph Representation and Adjacent Matrix After RCM Order  

 

After using the RCM algorithm, the new matrix's bandwidth is 5 (upper and lower 

2 and 1 for diagonal), much lesser than the original matrix. The RCM re-arrange the node 

connectivity and minimizes fill-in, therefore, reducing bandwidth. 

Figure 11 and Figure 12 are more examples to show the importance of reordering the 

nodes of a matrix in reducing matrix bandwidth. 
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Figure 11. Sparse Matrix Representation of Harwell-Boeing [23]  

 

Figure 12. Band Matrix Representation of Harwell-Boeing [23]  

We can see, after applying the RCM algorithm, bandwidth has decreased almost 

by double reducing memory storage, small hardware design, and less computation time. 

Gibbs-Poole-Stockmeyer Algorithm: This is an important algorithm proposed 

by Gibbs-Poole-Stockmeyer [3] in reducing the bandwidth of a symmetric sparse matrix. 

This algorithm works with the concept of pseudo-peripheral node [3], [7], [8] to reduce 

both bandwidth and profile of a matrix. A matrix can be represented by a graph using 

graph theory. The basic concept of graph theory, peripheral node, and pseudo-peripheral 
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are explained below. 

Graph Theory: The study of a graph is called Graph theory, a mathematical 

structure which also shows a relation between objects. Directed and undirected graphs are 

two types of graphs. A graph has nodes/points and is connected by edges. A directed and 

undirected graph example is shown in Figure 13 and Figure 14. 

 
Figure 13. Undirected graph 

 

 

Figure 14. Directed graph  

A graph has different properties, namely: distance, eccentricity, and diameter of 

the graph. 

Distance d(x,y): it is the length of the shortest path between two nodes, x and y.  

Eccentricity l(x): maximum distance from a specific node to reach all other nodes.  

Diameter Ö (G): maximum eccentricity of a graph. 
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Figure 15. Undirected Graph to demonstrate Distance, Eccentricity, and Diameter  

A given graph in Figure 15, diameter, eccentricity, and distance is calculated, as 

shown below. 

d(X6,X3) = 2, smallest possible distance between X6 and X3 

l(X6) = 3, at maximum three distance, every node can be reached from node X6 

Ö (G) = 5, since X2, X5, and X7 have maximum eccentricity. 

Pseudo-peripheral Node: Gibbs-Poole-Stockmeyer came with a new concept of 

finding a start node which generally has high eccentricity called a pseudo-peripheral 

node. Their eccentricity can be as closer as the diameter of a graph. This pseudo-

peripheral node is considered a good start point for applying the RCM algorithm. 

Gibbs-Poole-Stockmeyer algorithm in finding pseudo-peripheral node has mainly 

three steps. They are [3], [8]. 

Step 1: Finding two pseudo-peripheral nodes of a graph 

Step 2: Minimizing level width 

Step 3: Renumbering nodes level by level 

The pseudocode of an algorithm given by Gibbs-Poole-Stockmeyer to find a 

pseudo-peripheral node of a graph is explained below[3]. 

Step 1: Choose a random node of minimal degree, say v. 
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Step 2: Construct a level structure L(v) of the given graph with ñvò as a start root. 

Step 3: Note the eccentricity of ñv,ò l(v), which is also equal to the number of levels. 

Step 4: Let M be a new set of last level nodes. 

Step 5: Arrange last level nodes in an increasing degree order and select a node, let ñwò    

from M with a minimum degree. 

Step 6: Find the eccentricity of the selected node. 

Step 7: If L(w) > L (v), new start node will be ñwò 

Step 8: Repeat step (ii) till the new node's depth or level is greater than the selected one.  

Step 9: If for all w ú M, the level of L(w) is not greater than L(v), v will be a pseudo-    

peripheral node. 

This idea given by Gibbs-Poole-Stockmeyer for bandwidth reduction highly 

depends on a selection of the start node. Finding a pseudo-peripheral node is further 

explained by the below example. Figure 16 as a reference image, the below steps are 

carried out to determine the pseudo-peripheral node. 

Step 1: Choose random node (let v = X6). 

Step 2: Construct a level structure of a given graph, taking X6 as a start node, as shown in 

Figure 16. 

 



 

20 

 

Figure 16. Level structure of node X6  

From the figure, eccentricity l(X6) = 3, which is also considered the number of 

levels. In level 3, the degree of X5 is 1( number of connections), and the degree of X7 is 

two.   

Step 3: Choosing the next node with a minimum degree from the last level, let u = X5. 

Step 4: Construct level structure for the node u. 

 

Figure 17. Level structure of node X5  
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Eccentricity l(X5) = 5, Since l(X5) > l(X6), v = X5. 

Step 5: Since X2 is on the last level, let u = X2. 

Step 6: Construct level structure for the node u. 

 

Figure 18. Level Structure of node X2  

Step 7: Eccentricity l(X2) = 5, Since l(X5) is not greater than l(X2), v = X2 . 

Step 8: X2  and X5  are two pseudo-peripheral nodes. 

Kingôs Algorithm: Kingôs algorithm is a modification of the RCM algorithm 

where nodes/vertices are ordered based on the number of edges they must already visit 

vertices. The concept of this algorithm is that ñif a vertex has many edges that connect it 

to vertices that have already been visited (ordered), then it may be a part of a local cluster 

and should be ordered closer to the other nodes in its clusterò[11]. 

Gu Feng Algorithm: This is an improvement of the Gibbs-Poole-Stockmeyer 

algorithm [3] given by Gu Feng to find a peripheral node [8]. A graph can have many 

pseudo-peripheral nodes whose eccentricity may be close enough to the graph's diameter 

Ö (G), and it may not be a peripheral node. If the eccentricity of a node is equal to the 
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diameter of a graph, then it is called a peripheral node [8]. In figure 10, there are three 

possible peripheral nodes, X2, X5, and X7. Since selecting a start node is crucial in 

reducing matrix bandwidth, according to Gu Feng, a peripheral node is considered a good 

starting node for the RCM algorithm because its eccentricity is equal to the diameter of a 

graph. However, since it is very expensive to compute a peripheral node, it is not used 

often. Here is an example in Figure 19 to show that a pseudo-peripheral node may not be 

a peripheral node, and its eccentric distance could be less than a graph diameter [8]. 

 

Figure 19. Undirected graph [8]   

According to the Gibbs-Poole-Stockmeyer pseudo-peripheral algorithm, in Figure 

19, if r is chosen as a minimum degree node as a start node, its eccentric distance will be 

l(r)= 6. Constructing level structure at node ór,ô ótô would be the last level node. 

Generating level structure at ótô, l(t)= 6, and órô is the last level node. Since l(r) = l(t) = 6, 

therefore, we can say r and t are two pseudo-peripheral nodes of the graph. However, 

their eccentric distance is not equal to the diameter of a graph, which is  Ö (G) = 8. From 

above figure, from definition of peripheral node, node x and y could be possible 

peripheral nodes as l(x) = l(y) = Ö (G) = 8. Thus, Gu Feng suggested that a pseudo-
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peripheral node is not effective in considering it as a start node. 

Gu Feng algorithm pseudocode for finding peripheral node is given below: 

Step 1: Choose an r ɴ A, the closer to the center of symmetry (or pseudo center of 

symmetry), and with the largest possible degree, as the initial node.  

Step 2: Generate Gôs level structure rooted at r: Let i = l(r); Let  el(r)+1 = 0. 

Step 3: Ordering nodes in Li (r) decreasingly following their degrees. Calculating nodesô 

eccentric distance one by one. If xɱ  ɴL i(r) that e(x) = 2i then x is a peripheral node, 

procedure stops; else go to Step 4.  

Step 4: Seeking If ei Ó 2(i ī 1), then the node whose eccentric distance is ei is a peripheral 

node, the procedure stops else i ī 1 Ÿ i and go to Step 3.  

For Figure 19, the peripheral node can be determined in the following ways, 

O, S, U, V, and W are five nodes with the highest degree, i.e., 4.  

Step 1: If O is a start point, two nodes, x, and y will be at the last level with an eccentric 

distance of O as  l4(0). The degree of x and y is 1. Eccentric distance of x and y , e(x) = 

e(y) = 2i = 2*4 = 8. x and y could be a peripheral node.  

Step 2: Taking start node at S, t will be in the last level with eccentricity e(t) =  6 Í 2*6= 

12. e(t) = 6 < 2*(6-1) = 8. Now will check l5(S), x,y,w is at the last level. e(x)=e(y)=8, 

e(w) = 5. The result will be the same if taking óWô as a start node. x and y could be a 

peripheral node.  

Step 3: If U is a start node, y is only in the last level L6(U). e(y) = 8 < 2*(6-1) = 10. 

Checking  x in L5(U), e(x) = 8 = 2*(5-1) = 8. x is a peripheral node. 

The above example shows that a peripheral node is a pseudo-peripheral node, but 

the reverse is not always true. Though the peripheral node algorithm is considered a good 
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start point to apply the Reverse Cuthill Mckee Algorithm (RCM), it is expensive to 

compute. Therefore, this algorithm is not used often.  

Modified Minimum Degree/ Multiple Minimum Degree: This original 

algorithm is proposed by Harry Max Markowitz [24] in 1957 for a non-symmetric linear 

system. Tinney and Walker [25] proposed a symmetric version of Markowitz to solve 

large sparse systems in analyzing a power system. A theoretical graph model of Tinney 

and Walkerôs method was developed by Ross [26] and was named the Minimum Degree 

Algorithm. This algorithm is used to permute rows and columns of a symmetric sparse 

matrix before applying Cholesky Decomposition to reduce the non-zero number in the 

Cholesky factor [11]. The algorithm reduces nonzero elements of a sparse matrix by 

ordering the edges based on their degree. For a linear system of an algebraic equation, Ax 

= b, where A is a symmetric sparse square of order nxn, matrix A usually suffers some 

fill -in [27], i.e., it will have more non-zero than the upper triangular when factorized by 

the Cholesky factor L.  Therefore, a permutation matrix ñPò is used so that the matrix 

(PTAP) is also symmetric and has less possible fill-in. A new reorder equation (PTAP) 

(PTx) = PT b is solved instead. 

 For a given undirected graph G = (V, E), where V =vertices and E is an edge of a 

graph, the pseudocode for Modified Minimum Degree (MMD) is as follows: 

Step 1: For i =1 to V 

Step 2: Choose: the vertex v in graph G that has a minimum degree 

Step 3: Remove vertex v from G 
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Serial Communication 

In serial communication, data is sent between a PC and an external device one bit 

at a time. There are two types of serial communication, such as synchronous and 

asynchronous serial communication. For synchronous serial communication, a transmitter 

and a receiver are synchronized by a clock signal and running at the same rate so that the 

receiver and transmitter can sample data at the same time interval. On the other hand, 

asynchronous serial communication is a process where a transmitter and receiver are 

continuously synchronized by a common clock signal.  

Because asynchronous serial communication has the advantage of long-distance 

communication and high reliability, it is generally used in data exchange between 

computers and peripherals [28]. A Universal Asynchronous Receiver- Transmitter 

(UART) is generally used for asynchronous serial communication. UART is an integrated 

circuit hardware device for serial communication used in computer or peripheral serial 

port. It mostly includes a clock generator, input, and output shift registers, read/write 

logic control, transmit/receive control, system data bus buffer, first-in/first-out (FIFO) 

buffer memory. Commonly, serial communication uses 8 data bits, no parity, and a one-

stop bit. The speed/time of data transmission in a system is represented by the baud rate. 

A higher baud rate indicates that higher bits are transferred per second. The standard 

baud rate in bits per second used in serial communication are: 110, 300, 600, 1200, 2400, 

4800, 9600, 14400, 19200, 38400, 57600, 115200, 128000 and 256000 [29]. 

Field Programmable Gate Array 

To perform a complex task, there are many hardware architectures. Field 

Programmable Gate Array (FPGA) is one of them. It is an integrated circuit that can be 
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designed and programmed by the user as needed. FPGA is considered to deliver high 

performance, maintaining high flexibility. FPGA has a lot of simple and complex 

components. It contains an array of programmable logic blocks that can be configured to 

perform simple to complex combinational functions. FPGA includes simple components 

such as four-input LUTs (Look Up Tables) to implement logic functions like AND, 

NAND, NOT, or any user-defined function, memory elements like simple flip-flops or 

complex memory block. Usually, FPGA comes with software that is provided by the 

vendor to design and program it. Two hardware description languages (HDL) languages, 

such as Verilog and VHDL (Very High-Speed Integrated Circuit Hardware Description 

Language), are used to program FPGA.  

Some FPGA has digital as well as analog features. Commonly available analog 

features are slew rate, quartz crystal oscillator, on-chip resistance-capacitance oscillator, 

phase-locked loop with embedded voltage control oscillator, etc.  Mixed-signal FPGA 

generally has integrated peripherals such as analog-digital converter (ADC), digital to 

analog converter (DAC), an analog signal conditioning block helping them to behave as a 

system on chip (SoC). Because an FPGA is significantly faster for some applications, it 

can be used to solve any computable problem. Alongside using FPGA as a hardware 

accelerator, it can also be used to implement soft microprocessors such as Xilinx 

MicroBlaze or Altera Nios.    

Digilent Zedboard: The proposed algorithm for the sparse matrix to band matrix 

conversion is implemented in the Xilinx Zynq series board, i.e., ZedBoard. It is a low-

cost development board of Zynq-7000 All Programmable SoC XC7Z020-CLG484-1 (AP 

SoC) consisting of two ARM Cortex A9 cores and Xilinx programmable logic in a single 
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device. The features of this board are mentioned below. An image for Zedboard FPGA is 

shown in Figure 20.  

Functional Description: A combination of a dual Corex-A9 with a speed of 667 

MHz Processing System (PS) with 85,000 Series-7 Programmable Logic (PL) cells, 

therefore, makes it a powerful device for many applications. ZedBoard Zynq -7000 

consists of a memory interface unit that includes a dynamic memory controller and static 

memory module. The ZedBoard has two Micron DDR3, 128 Megabit, each with 16 

memory components creating a 32- bit interface with a total 512 MB of memory. This 

board consists of a 4-bit SPI (quad-SPI) serial NOR flash. The Multi-I/O SPI Flash 

memory helps to provide non-volatile code and data storage. It is also used to initialize 

the PS subsystem as well as configure the PL subsystem (bitstream). The XC7Z020 SoC 

contains Atrix-7 PL, which has 85k logic cells, 53200 LUT, 106400 flip-flops, 560 kB of 

BRAM organized to 140 units, each consisting of 2048 by 18-bit storage, and 220 DSP 

slices with two 12 V on-chip analog-to-digital converter (XADC). This board is 

compatible with Xilinxôs high-performance Vivado Design Suite as well as the ISE 

Toolkit. ZedBoard offers more capacity, more resources, and higher performance than 

earlier designs. 
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Figure 20. ZedBoard- FPGA [30]  

 

 

Figure 21. Zedboard Block Diagram  
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Figure 22. Zynq Z7020 CLG484 Bank Assignments on ZedBoard  
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III. PROBLEM STATEMENT  

In the past years, multicore systems play an important role in high-performance 

computing. However, due to shortage of optimization techniques, some linear system is 

not able to utilize it in full. Lower power and high computation speed with less memory 

storage have always been essential criteria for a real-time scientific computational 

application. Data from the different applications are sparse and are generally larger in 

number. A sparse matrix has lesser non-zero elements, which is helpful for fast 

computation. Band matrix, on the other hand, is a special sparse matrix with reasonably 

small upper and lower bandwidth making them suitable for simpler algorithms than a 

sparse matrix. The difference in storage techniques of both matrices makes a band matrix 

preferable over a sparse matrix. Moreover, a banded matrix is compressed, which saves 

memory usage [31]. It is considered to have a great advantage for very large matrices. 

The software has certain advantages. However, some work process is dependent 

on memory, CPU, and storage allocation. It might slow down if when an application does 

not get enough memory or available allocated space is used. Hardware has different 

modules designed to do dedicated tasks increasing the efficiency and overall performance 

of the system. Software for the Reverse Cuthill Mckee algorithm (RCM) is available in 

MATLAB. However, there is a limitation of matrix size in MATLAB, which is defined 

by the amount of available RAM in a system. Nowadays, various application fields such 

as image processing, telecommunication, signal processing, circuit analysis, etc. consider 

FPGA technology demanding and advantageous considering the fine degree of 

customization available which is used to direct and orchestrate data movement on and 

off-chip resulting in a good performance and for high data throughput[32]. There is 
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always a challenge to develop fine-tuned FPGA implementation, which could take 

months to develop to incorporate all the state of art techniques to exceed its performance. 

The solid step for improving the performance no longer involves proposing new 

expensive optimization but applying the optimizations whenever they are useful. To 

avoid the extra computation and storage imposed by the large majority of zero elements 

in a band matrix, it is standard to store only the nonzero elements in memory. Since the 

hardware does not need to change for varying matrices, the time required for initialization 

can be minimized by which the system integration is simplified. Not much work is done 

related to the RCM algorithm at the hardware level. This research presents an idea of the 

implementation of the RCM algorithm for sparse to band matrix conversion using Field 

Programmable Gate Array (FPGA).  
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IV. METHODOLOGY  

Study Area Description 

The design and the methodology for this research are discussed in this section. 

Vivado HLS takes an input matrix, synthesis, and creates RTL. Packaged IP from HLS is 

used in Vivado IDE for the hardware implementation. A Zynq software project is created 

in Xilinx SDK (software development kit). The extracted hardware design and bitstream 

from Vivado IDE are implemented in Xilinx Zynq ï 7000 FPGA using SDK (Software 

Development Ksit). Random square sparse matrices are used as input data. Most of the 

input data are undirected symmetric matrices. In this research number of different sparse 

matrices were tested. Each matrix was of varying density and size. To test the system's 

accuracy, the same input data were given to MATLAB, and the result was compared. 

Details about the experimental work and results have been discussed in the next section 

given below. 

Expert Suggestion and Discussion 

 Guidelines and suggestions from the thesis advisor and mentor, Dr. Semih Aslan, 

and committee members Dr. William A Stapleton and Dr. Shuying Sun, helped carry out 

this research. Related research articles from the literature review were a great source to 

start the work.  

Design and Description of the Proposed System 

The overall procedure for this research is shown in the flowchart in Figure 23. 

The flowchart of the system design for the RCM algorithm is shown in Figure 24. This 

research contains two parts: software design and hardware implementation. For the 

software design, Xilinx Vivado High-Level Synthesis (HLS) 2016.4 software is used. 



 

33 

C++ programming language is used to write the main program and testbench. A sparse 

matrix is input data in HLS. After successful synthesis and implementation, the output 

from Vivado HLS can be used as an IP block for an IP catalog in either Vivado Design 

Suite, System Generator for DSP (Vivado, and ISE versions), or in Xilinx Platform 

Studio (XPS). For this research, we are using the Vivado Design Suite. A variety of 

design source, including (1) RTL design, (2) IP based design, and (3) Netlist designs, can 

be implemented in the Xilinx Vivado Design Suite, which is suitable for ultra-Scale 

FPGA and Xilinx 7 series FPGA design. 

  

Figure 23. Flowchart of Proposed Work  
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Figure 24. Flowchart of the RCM Algorithm in the System  

 

The operation of the flowchart shown in Figure 24 is discussed in Figure 25 for an 

8x8 matrix. 

     
(a) 8x8 input matrix     (b)  Graph representation 

Figure 25. Matrix and its Graph Representation  

Calculate the degree of connection for each node. 

1,4,7 has small degree node 

Step 1: r and q array empty array (let) 

Step 2: r = {1}, q = {5} 

Step 3: r = {1,5}, q = {3}  
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Step 4: r = {1,5,3}, q = {2} 

Step 5: r = {1,5,3,2}, q = {6,8} 

Step 6: r = {1,5,3,2,6}, q = {8} 

Step 7: r = {1,5,3,2,6,8}, q = {4} 

Step 8: r = {1,5,3,2,6,8,4}, q = {7} 

Step 9: r = {1,5,3,2,6,8,4,7}, q = {} 

Reverse r ={7,4,8,6,2,3,5,1} 

After reordering nodes, the below result is achieved. 

 

    
(a) 8x8 output matrix after reorder of nodes    (b) Graph representation 

Figure 26. Matrix and Graph after the RCM Reorder  

After implementing the RCM algorithm, Figure 25 will be reordered as Figure 26 

(a) and Figure 26 (b). 

 The general design flow for a High-level Vivado Design Suite is shown in Figure 

27. A block diagram is designed in Vivado Design Suite with custom IP packaged from 

Vivado HLS, including the Zynq processor and other necessary IPs. After successful 

synthesis and implementation of the block diagram, a bitstream is generated for FPGA. 

This bitstream is used to program FPGA using a Xilinx software development kit (SDK). 
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SDK is used to design a software version that works with hardware designs created with 

Vivado Design Suite. SDK is eclipse based on an open-source standard. The result from 

FPGA is compared with MATLAB for error analysis. 

 

Figure 27. Vivado Design Suite High-Level Design Flow  

There are three different ways to program Zedboard, i.e., JTAG, Quad SPI Flash, 

and SD Card. We have used a JTAG method to program the FPGA board. JTAG is 

generally used as programming, debugging port, and communicates through the ñPROGò 

micro USB port. Before connecting FPGA to PC via micro USB cord, the pin 

configuration for JTAG mode must be done, as shown in Figure 28 below.  
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Figure 28. Configuration for JTAG Mode  

Software Architecture 

 Software architecture is designed in Vivado HLS. High-Level Synthesis (HLS), 

also known as C synthesis, is a behavioral description of hardware that interprets an 

algorithm description of the desired behavior and creates digital hardware supporting 

complete bit-accurate validation of the C model. A framework for C-based IP 

(Intellectual Property) design is a highly preferred approach in electronic design 

automation for designing digital circuits. HLS is considered an easy and quick hardware 

programming language as one does not need to have RTL or Verilog/VHDL knowledge 

because HLS provides RTL IP co-simulation and implementation verification from the C 

level for hardware implementation. It helps to implement design based on user-defined 

directives or default property. High-level synthesis schedules and allocates the operations 

in the behavior as well as maps those operations into component libraries for hardware 

design. Scheduling and Binding are important properties of HLS. Scheduling helps to 

determine the clock cycle to perform a specific operation, and binding determines which 

directive/hardware unit to use for the operation. HLS supports languages such as C, C++, 










































