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ABSTRACT

Low powerand high computation speed with less memory storagesaemntial
for areattime scientific computational application. Applications such as image
processing, power system, finite element system, circuit design, data from seitigers
alargeamount of dataAn arithmetic operation on a general matrix can take more time
and requiranore memory to store the data. Band matramedd be &ey component in
many scientific computing applications.special sparse matrix, i.eafd matrix has
small bandwidth and minimizes storage, efficiently leading to less computation time.
This papepresentadesign and hardware implementatiorctmverta sparse matrix to a
band matrix for a minimum matrix bandwidth using an existing Reverse CMititke
algorithm (RCM).

The Field Programmable Gate Arrd5P(GA) hardware desighelpsto solve
largerdataproblemsin terms of memory storagspeeding up many sparse matrix
operationsBased on the FPGA hardware, the design and implementatidrsynthesis
arecarried ouby keeping in mind the architecture, area, and power requirements. In this
research, the Vivado Higbevel Synthesis (HLS) language is uskadellectual Property
(IP) generated from HLS will be linked to the ZYNQ procesggrich can be
implemented in a large system and have flexibility in FPGA based design. For the

verification and reporting of this designed system, MATLAB is used.

Xii



I. INTRODUCTION

Overview

A matrix isgenerallystored as a twdimensional array. It is possible to represent
many systems with less n@ero elements in matrices form. If the roaro elements are
less than 10% of thmatrix's total elementdt is called a sparse matrix. The sparsity of
the matrix § calculated by dividinthetotal zero elements by a total numbendtrix
elementsWhen the number of zeroes is relatively large, a requirement for more efficient
data structures arises. We are drifting away from serial computing towards parallel
distibuted computing over a large variety of architectural designs. The generic
implementation of data structures allows one to reuse the most appealing one, which may
not be the fastest. In a graph algorithm, to obtain information where there is a small
numbe of nonzero entries but millions of rows and columns, a memory would be wasted
by storing redundant zeros. For a matrix, the amount of memory required to store its
elements in the same format is proportional to matrix size. Because the sparse matrix has
fewnon-zero elements, memory management can be reduced by storing ogroon
entries[1]. There is a various application of sparse matrices such as circuit simulation,
power network, structural analysggnal processing and statistics, computer vision,
tomography, finiteelement method][3][4], etc. anda huge amount of data is
generated by these applicatidbk A sparse matrix is useful for computing large scale
matricesFigurelis a graph comparing the naero elements of an ordinary matrix and

asparse matrix.
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The graph shows #h the ordinary matrix contains more rogro elements,
making the matrix operation slow andeds more storad®]. Sparse matrix computation
can be accelerated by reducing matrix bandwjiglthResearchers believed and have
been proved that rearranging sparsérixaertices could reduce its bandwidth or profile.
Band matrix is a special type of sparse matrix where nonzero elements are aligned to
form a main diagonal and sub diagonal. In a band matrix operation, only diagbicl
contains nofzero elementsare stored. Because a band matrix has a smaller bandwidth
than a sparse matrix and nonzero elements are clustered to diagonal, it is useful for
scientific computing such as direct methods for solving sparse linear system and for
iterative methods. In this par, a hardware design is proposed which converts a sparse
matrix to band matrix usinthe RCM algorithm to reduce the bandwidth of a matrix.

Large data is received frodifferentapplications such as image processing,
power system, finite element systamata from sensors and is often sparse and contains
more zero elements. As the matrix dimension incre@descomes difficult for the

software to compute the daiy reordering sparse matrix elements, a sparse matrix can



be converted into a band matrixreduce its bandwidti here are few different

algorithms to reduce tHeandwidthof a matrix such aghe Cuthill-Mckee(CM), the

Reverse CuthitMckee (RCM)4], S| oan 6 s thdGglosrPoote ladporithmfBin d
[7][8]. In this research, we used the Revé&athill-Mckee algorithm to rearranges data

of asparse matrix because it is simple to execute, easy to parallelize relatively, shows a
low computational cost, and proved to be best for the band elimination ri#gtH61

[9], [10].

In this research, FPGA baskdrdwaredesignis proposed for an RCM algorithm
which will rearrange nonzero elements of sparse matrix diagonally to form a band matrix
with smaller bandwidth or profilé sparse matrix's bandwidil the maximum distance
between two elements in any row of a mattiX]. A bandedmatrix is a sparse matrix
wherethenonzero elemenis aligned to the diagonal band (main diagonal) and zero or
more diagonals on either side. Only nonzero elements of the diagonal are stored in the
banded representation of the sparse matrix.belnel matrix's main concef# to reduce
thesparse matrix's bandwiddio the new matrix will have bandwidth smaller than the
maximum possible bandwidth. Bandwidth is directly proportional to the amount of
memory required to store a matrix, so proper reandesf nodes igssentiato reduce

the memory codtL1][4]. An example of dandmatrix is shown in Figure 2.

K
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Figure2: Band Matrix



Foran nxnmatrix, A to be band matrix, all elements outside a diagonally
bordered band having a range (column and
condition in Equatior.

a,; = 0 if j<i-p, or j>i+k 1

Where k and p are upper bandwidth and lower bandwigltls, matrix elements.

A matrix having k = p =0 and k = p = 1 is called diagonal and tridiagonal matrix. A
matrix to bebandshould have a reasonably smaller bandwidltie bandwidthof a
matrix can be calculated using Equatin

Bandwidth(BW) = k+p+1 2

Matrix with smaller bandwidth helps minimize hardware design, smaller memory
allocation storing only the nerero elements, and decreasing the overall computational
time. Reducing matrix bandwidth lbgordering a sparse matrix can accelerate many
sparse matrix computatigid®]. For examplea direct method that allows simple data
structure for solvig a linear system igseful in an iterative method as nonzero elements
are grouped close to diagonal enhancing data localityndheero elementaumberof
a matrix depends on the matrix size and calculated using EqGdiedaw[13].

Nnz=€ B & QB & Q 3



Il. LITERATURE REVIEW

Many applications generatehage amount of data. When the number of data
increases, calculation speed often decreases. It has been challenging to keep many
features such as hardware size, memory storage, speed in an acceptapjetramgeng
data computation easy. Data generated from a different application are generally sparse.
Sparse indicates data having less-nero value and more zero values. The sparse matrix
concept iuswally used for larger applications as it is easy @atidble to store only nen
zero elements. The sparse matrix comparatively has larger bandwhith means large
memory is required for storage. The bandwidth and matrix profile has always been an
area of great concern because of their influence intite lement method, circuit
design, hypertext layout, chemical kinetilisear equation sotion, etc[1]. It has been
found thatareduction in bandwidth and profile of a matrix can be reduced memory
starage requirement and processing time of such linear systems. There are many tools
proposed for the hardware design of FPGA. The Higiel Synthesis (HLS) is
considered an easy and simple tool to generate hardware from C/C++ (C to Verilog/
VHDL) [14]. This research uséke Vivado HLS to design a software model of the RCM
algorithm and hardware implementation on FPGA.
Band Matrix

In matrix theory, a band matrix is a special type of sparse matrix whose nonzero
elements lie above and below the main diagonal. The number of nonzero elements above
the main diagonal gives upper bandwjagtnd nonzero elements below the main diagonal
give lower bandwidth of the matrix. The total bandwidth of a matrix is considered the

sum of upper bandwidth, lower bandwidth, and main diagdi.last diagonal (above



and below the main diagonal) contaiginorizero elements determines the upper and
lower bandwidth matrixMatrix bandwidth plays an important role in memory
requirements in a systeiet for a matrix A of elements;Awith upper and lower
bandwi dth o6ké and O0pod:
Let for a matrix AoklementsAwi t h upper and | ower band
1T The upper bandwi dt h 0k 0&ij30swhendver-j>ls mal | est
T The | ower bandwi dth 06p §;=0wherteveg>ps mal | est
There are special band matric€k):. Diagonal matrix and (2) Tridiagonal matrix.
The Diagonal matrix has all values zero except the diagonal elements. In a tridiagonal
matrix, the main diagonal, the first upper diagonal, and the first below diagonal have
nonzero elements, and the rest value is ZEne.diagonal matrix has upper and lower
bandwidth zerpand the tridiagonal matrix has upper and lower bandwidth ofAme.

example of a diagonal and tridiagonal matrix is showigure3 below.

T m
m™ mw T iy
mwom T m
Kﬂ == T Ka = i
m™ T m
T T T
T T T T
L ELL L ™
(a) Tridiagonal Matrix (b) Diagonal Matrix

Figure3. SpeciaBand Matrix
Application of Band Matrix

In numerical analysidor faster and efficient operation, a matrix with a smaller
bandwidth/profile is preferred. Matrix operation becomes difficult and less efficient for

larger matrix. A smaller bandwidth in a matrix is important to minimize the hardware


https://en.wikipedia.org/wiki/Numerical_analysis

designand memory store by storing only the reero matrix elements and simplifying
complex matrix operations such as LU factorization and QR factorization for adadter

accurate solution. It can be implemented on a faogde system in a linear equation.

A banded matrix is a special type of sparse matrix, withzesa elements
aligned to a diagonglorming the main diagonal with zero or more diagonals on either
side. A matrix bandwidth has been the topic of research for a long time. The researcher is
interested in finding ways to minimize the bandwidth of a matrix through a sparse matrix
with efficient computation and less memory storigma dense matrix. Thefare, here
comes a concept of a band matrix with reduced bandwidth. Because a band matrix has
small bandwidth, they are used in many4idalapplications such image processing,
linear system, circuit theory, finite element method for approximating spkutf a
partial differential equation, chemical kinetics, numerical geophysics, hypertext layout,
large scale power transmission system, etc. where collected data has many zero elements
[5] [1] [15] [16] [17]. In a complex system such as a finite element system and problems

in a higher dimension, matrices are often banded.
Band Matrix Storage

The reallife application produces a huge amount of data. There is always
demanded to analyze and solve large @rdplex problems defined by a linear equation
in the form Ax = b. The size of these data is very landech needsnuchstorageln a
band matrix which is aspecial kind of sparse matrimon-zero elements amigned
along the diagonal only (on timeain diagonal and tsub diagonalswhile all other
elements are zero. The numbers of elements to be stored are only diagonal elements,

therefore, minimizing memory storage. Many storage methods are proposed for storing



band matrix. The two commonly used storage techniques for a genedahladrix are
described below.

BLAS i General Band Storage ModeThe most popular one is a linear algebra
package (LAPACK), also known as BLAS. This method is suitable for both a square
matrix and a rectangular matrix. In this method, thezeno elementsf matrix A are
stored in a rectangular, (kl+ku+1) by matrixAP2" such that the diagonals Afbecome
rows of AP2"while the columns of remain as columns &4 For example, Figure 4
shows thatin mxnsize matrix A having upper and lower bandtki of g and p can be
stored in a twalimensional array as p+q+1 row and n column. For row storage, all row
values are pushed to the left or right to align the column on axiagtnal forming a
matrix A2 For column storage, diagonals of the matrixstored in a row array, and
columns of a matrix are stored in the array's corresponding column. If p, q < n then, Ais

stored in either a (p+qg+By-n ora nby-(p+qg+1) matrix R2with a; = &2, .irp+1

k m T T O O .
) <> _ o v v v L
ap a2 0 0 0 0 0 0 l IT[ T[ (.L) (L) (L) I,I
azy azz azz O 0 0 0 0 I IT[ ) ) ) ) I
DI agy azz asz azs O 0 0 0 5 I(;n:) W W ) ) 3
4| a2 s ass ass o 0 0 160 W W W D 7
0 as2 as3 ass ass asg O 0 1 » » » M N
0 0 as3 ass ags ass asy 0 145 ) ) ) IRy
0 0 0 arqa ays ars ary arg 0w ) ) P Ty
0 0 0 0 ags ass asy ass )

Figuré4. 8 x 8Band Matrix and it§torag-e
Let A is a matrix of size m x n and the number of nonzero nnz. The memory
requirements in bytes are calculated as in Equdt[as].
memory =8*nnz+4*(nnz+n+1) 4
Below are the steps for BLAS general band matrix storage mode.

For an mxn matrix A with upper bandwi

dt



Step 1: Select j = 1: n, where n is the size of aimat

Step 2: K = mu+j

Step 3: for i = max(1,4 mu) : min(m, j+ml)

Step 4: When step 3 is true?AKk+i, j) = A(i, j), where A'®Vis storage form with

dimension (ml+mu+1, n)

Step 5: Continue until step 3 condition is true

Step 4: Repeatprocegsnt i | t he value of Ajo I s equal
General Band Storage ModeThis method is applied only for a square matrix.

In this process, the band matrix elements are packed to-ditvemsional array column

wise so that each diagonal of a matrix appeared likevarr the packed array.

For a matrix A of size mxn and bandwidth ml and mu, the process is explained
below. Let A®"be the new storage matrix. Its dimension should be greater than or equal
to (2ml+mu+16,n).

Step 1: md=ml+mu+1

Step 2: Select j = 1: n, where ntie size of a matrix

Step 3: for i = max(j mu, 1) : min(j + ml, n)

Step 4: When step 3 is truetA(i - j + md, j) = A(i, j), where A®Vis storage form

Step 5: Continue until step 3 condition is true

Step6: Repeapr ocess until the value of #Ajo is
Bandwidth Reduction Algorithm

It is considered that the smaller the bandwidth of a matrix, the lesser is the
computer storage requirement and lesser solution time. Therefore, for a larger data

producing application, thematrix'sprofile and bandwidtiplay an important role. For a

t

€eq



givenmatrix A, its bandwidth is given by Equatién
A(, j) =0fori-j| >K 5
Where K is a nomegative integer
For example, the bandwidth of the given matriceBSigure5(a), (b), and (c) are

3, 5, andl, respectively.

1 1 0 e e 0 Bl 1 1 0 --- 0] i ]
S 1000 00

1 1 1 S .11 0400 0 0
0 1 1 1 : I 1 1 10 002000
. 1 1 1 1

1 1 1 0 000 8 00
R : 11 000 0 6 0
: . . 1 1 1 :
0o --- - 0 1 1 _0 0 1 1 1_ (0 00 0 0 2
() (b) (c)

Figure5. A Bandwidth of 6x6 Matrices

Rows and columneeorderof a sparse matrix plays an important role in achieving
certain properties théetter perform the system performangenong different
properties, bandwidth is one of th¢bi]. There is alifferentalgorithm proposed to
reduce the bandwidth of a matrix by reordering its noéigsire6 shows a matrix K
before reordering andgdnatrix after rearranging its rows and columifigiure6 is a

graph representation of both matrices

10
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Figure6. Matrix Before and After Reorder of NodE9]

5 6 7 8 2 4 6 8
Figure7. Graph representation of a matfi9]

The upper and lower bandwidth of is five each and the lower and upper
bandwidth of K is threeeach.Figure7 is a graphical representation of the matrix and
how the reordering of their nodes hetpduce the matrix's profile
Different theories for reordering a sparse matrix have been proposedoSthram are
mentioned below.

I.  Cuthill-Mckee Algorithm
II. Reverse CuthitMckee Algorithm
lll.  GibbsPooleStockmeyer Algorithm
IV.  Gu Feng Algorithm
V. Kingbés Al gorithm

VI.  Modified Minimum Degree

11



Above mentioned algorithms represent a sparse matrix as a graph. A graph is
model made up of vertex or nodes to represent pairwise relationships between objects.
Graphs are connected by edges. A graph can be directed or undirected. A sparse matrix is
generally represented as an undirected graph by connecting each row and oblilvens
matrix. Further detail for the RCM algorithm is described below.

Cuthill -Mckee Algorithm: This algorithm is named after Elizabeth Cuthill and
JamedVickee([4], [20]. The purpose of this method is to permute a symmetric sparse
matrix to a band matrix with smaller bandwidth. CM uses the concept of Bieasith
Search with a start peripheral node until allie® are visited. The algorittins
pseudocode is given below.

Step 1: Choose vertex with the lowest degree (x) and assigned to{RlaRd let Q is an

empty queue.

Then foll owing steps Jjns done til/l | R <n fo
Step2: Add adjacent nodes ofelemen 6 x 6 ( whi ch are not i n R)
of their degree. Check i f thatdnumber i s i

Step 3: Repeat this process till Q {} is empaynd all nodes have been explored (ilee
size of R should be equal to the number of nodes).
Step 4: Rearrange nodes according to the new index in array R.

Reverse CuthilkMckee Algorithm: The origin of the RCM algorithm is from
Cuthill-Mckee (CM) algorithm named after Elizabeth Cuthill dathes McKee. This is
also an algorithm to permute a symmetric sparse matrix to a band matrix with small
bandwidth. ThdReverse CuthilMckee (RCM) algorithm is given by Alan George and is

commonly used for bandwidth reductifii] [12]. It is the same algorithm as Riaut

12



after getting results, the index number is reversed at the end. When Gaussian elimination
is applied, practicalljthe RCM is considered superior the CM as it reduces filln [11]
when Gaussian elimination is appliédll-in process in a matrix aentries that change
nonzero from initial zero during algorithm executidro reduce arithmetic operation and
memory storagéor a algorithm it is necessary to reduce fifi by changing rows and
columnsof a matrix The RCM algorithm is used in this dgsi to reorder nonzero
elements of a sparse matrix to diagonal. This algorithm works on an unlabeled graph of a
matrix.

Smaller bandwidth can be achieved by converting a sparse matrix into a band
matrix by rearranging elements of the sparse matrix. Amorgyaleheuristics for profile
and bandwidth reduction, the RCM algorithm method is considered the most promising
technique for profile reductiorj0]. By an appropriate renumbering of the nodes, it is
often possible to produce a matrix with much smddendwidth. The RCMi | gor i t hmd s
goal is to reduce the bandwidth of a symmetric sparse matrigh is used in linear
solvers. An important decision theRCM is choosing a start node. Various concepts are
proposed to find a start node in the RGMch as peripheral node, pseymwipheral
node, small degree node. Furthermd¢ineRCM is generally used for matrices having a
higher diametef12].

In theRCM algorithm, the node with the smallest degree in the matrix (graph) is
chosen and applies Breasfirst Search (BFS) algorithm on the graph, ordering the
nodes in ascending order according to their degree in each lemey. iodes areot
covaed in the first BFS, the same process is done ag&iimg the uncovered smallest

degree node as the starting point. After all the nodes are covered, the result array of the
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list is reversed, and the matrix is reordered according to the list to gettzandvwnatrix.

BFS is a fundamental search algorithm to explore the nodes and edges of a graph. The

BFS algorithm is generally useful in finding the shortest path on an unweighted graph.

The BFS starts with some arbitrary node at first and explores gsbwibefore moving

to the next level neighboim the BFS algorithmtheorder in which nodes are explored is

shown belown Figure8.

.......

Figure8. BreadthFirst Search22]

The algorithm for Reverse Cuthill Mckee far @xn matrixis given below

—— > | Level 0

—— > | Level 1

——— > | Level 2

—— > | Level 3

—— > | Level 4

Stepl: At first, thevertex with the lowestlegree is chosen (x) and is assigned to R. R<

{x}and let Q is an empty queue.

Then foll owing steps .,ns
Step2: Add adjacent nodes
order of their degree. Check ifthatu mber i s

done ti

of

el ement

| R

Step 3: Repeat this process till Q {} is emmnd all nodes have been explored (tlee

size of R should be equal tike number of nodes).
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Step 4: Reverse elements order of.&®, new nodes arrangenteawnill be R[n+1i]

The below examples show how reordering rows and columns of a matrix bring nonzero
elements closer to the diagonalsparse matrix graph and its adjacency matrix are
shown below irFigure9.
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Figure9. Graph Representation andljacentMatrix of a Sparse Matrix

Non-zero elements are not exactly close to the diagandl the bandwidth of the
matrix is 17 (upper and loweight each andnefor diagonal).The RCM algorithm, a

rearranged graph, and its adjacency matrixshoavn below irFigurel0.

7 8 9 ®= 1 1 . . ..

1= . 11 ..

1 . * . 1 ..

N . S I

3 5 6 .11 . 0 11 . .
. .11 = 11

1 . = 1 .

- - |

1 2 4 - - - - -1 1=

Figure10. Graph Representation andljacentMatrix After RCM Order

After using the RCM algorithm, theew matrix's bandwidtts 5 (upper and lower
2 and 1 for diagonal), much lesser than the original math# RCM re-arrange the node
connectivity and minimizes fiin, therefore, reducing bandwidth.
FigurellandFigurel2 are nore exampleto showthe importance of reordering the

nodes of a maitx in reducing matrix bandwidth
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Figurel2 BandMatrix Representation of HarweBoeing[23]

We can see, after applying the RCM algorithm, bandwidth has decreased almost
by double reducing memory storage adinhardware design, and less computation time.
Gibbs-Poole Stockmeyer Algorithm: This is an important algorithm proposed
by GibbsPooleStockmeyef3] in reducingthe bandwidth of a symmetric sparse matrix.
This algorithmworkswith the concept of pseudeeripherdnode[3], [7], [8] to reduce
both bandwidth and profile of a mixt A matrix can be represented by a graph using

graph theory. The basic concept of graph theory, peripheral node, and-pseptieral
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are explained below.

Graph Theory The study of a graph is called Graph theory, a mathematical
structure which alsehows a relation between objecRirected and undirected gragphre
two types of graphsA graphhasnodes/points anid connected by edges. directed and

undirected graplbxampleis shown inFigurel3andFigurel4.
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Figurel3. Undirected graph

Figure14. Directed graph

A graph has different propertiggamely: distance, eccentricity, and diametier
thegraph.
Distanced(x,y): it is the length of the shortest path between two nodes, x and y.
Eccentricity I(x): maximum distance from a specific node to reach all other nodes.

Di a met e maxiung eBdentricity of a graph.
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Figurel5. Undirected Graphto demonstrate Distance, Eccentricity, and Diamet

A given graph in Figure 15, diameter, eccentricity, and distareaddalatedas
shown below.
d(Xe,X3) = 2, smallest possible distance betweegmadd X
I(Xe)=3, at maximunthreedistance, every node can be reached from nede X
O ( G) = 2%sandX have maxi¥ium eccentricity.
PseudeperipheralNode GibbsPooleStockmeyer came with a new concept of
finding a start node which generally has high eccentricity called a pgeugbheral
node. Their eccentricity can be as clossthe diameter of a graph. This pseudo
peripheral node is considered a gotattspoint for applying the RCM algorithm.
GibbsPooleStockmeyer algorithm in finding pseugeripheral node has mainly
three steps. They afg], [8].
Step 1:Finding two pseudgeripheral nodes of a graph
Step 2:Minimizing level width
Step 3:Renumbering nodes level by level
The pseudocode of an algorithm given by Giblo®le Stockmeger to find a
pseudeperipheral node of a graph is explained b¢Rjw

Step 1 Choose a random node of minimal degree, say v.

18



Step 2 Construct a level structure L(v) oftgei ven graph with fAvo as
Step3Not e the eccentricity of #dAv,o0 | (v), whi
Step4: Let M be a new set of last level nodes.
Step5:Arrange | ast | evel nodes in an increasi
from M with a minimum degree.
Step6: Find the eccentricity of the selected node.
Step7:1 f L(w) > L (v), new start node wil/ be
Step8: Repeat step (i) till the newode's depth or level is greater than the selected one.
Step9: 1 f for all w a4 M, the |l evel of -L(w) is
peripheral node.

This idea given by GibbRooleStockmeyer for bandwidth reduction highly
depends on a selection of the start node. Finding a pgeugiheral node is further
explained by the below exampkgurel6 as a reference image, the below steps are
carried out to determine the pseyuripheral node.
Step 1 Choose random node (let v %)X
Step 2 Construct a level structure of a given gragalking Xs as a start nodas shown in

Figurel6.
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Figurel6. Level structure of node &

From the figure, eccentricity IgX = 3, which is also considered the number of
levels. In level 3, the degree of ¥ 1( number of connectiongnd the degree of As

two.

Step 3 Choosing the next node with a minimum degree from the last level, leu = X

Step 4 Construct level structure fohe node u

° Levels

X3 L1

X7 X8

L3

L4

®
° -

Figurel?. Level structure of nodesX
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Eccentricity 1(%) = 5, Since (%) > 1(Xe), V = Xs.
Step 5 Since % is on the last level, let u Xo>.

Step 6 Construct level structure fohe node u

Levels

L1

L2

L3

0000

0 -

Figurel8. Level Structure of node X

Step 7 Eccentricity 1(%) = 5, Since 1(%) is not greater than I, v =X>.
Step 8 X2 andXs are twopseudeperipheral node
Ki ngbébs AKgaghD s h mlamgodificationroitthe RCM algorithm
where nodes/vertices are ordered based on the number of edges they must already visit
vertices. Theonceptot hi s al gorithm is that dif a ver:/
to vertices that have already been visitedi€éred), then it may be a part of a local cluster
and should be ordered cl oKfr to the other
Gu Feng Algorithm: This is an improvement of the GibB®ole Stockmeyer
algorithm|[3] given by Gu Feng to find a peripheral nqég A graph can have many
pseudeperipheral nodes whosecentricity may be close enough to tjneph's diameter

O (a@d it may not be a peripheral node. If the eccentricity of a node is equal to the
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diameter of a graph, then it is called a peripheral i®(deén figure 10, there are three
possible peripheral nodeX,, Xs, and X. Sinceselecting a start node is crucial in
reducing matrix bandwidth, according to Gu Feng, a peripheral node is considgred
starting node for the RCM algorithm because its eccentricity is equal to the diafreete
graph.However,since it is very expensive to compute a peripheral node, it is not used
often. Here is an example figure19to showthata pseudeeripheral node may not be

a peripheral nodand its eccentric distance could be less than a graph digdBleter

~®
-
-
o
a
o
~.

Ye

Figure19. Undirected grapiB8]
According tothe GibbsPooleStockmeyer pseudperipheral algorithm, ifrigure

19, if ris chosen as a minimum degree node as a start node, its eccentric distance will be
INn=6. Constructing | @&vél wetufdcberéehat!| aete
Generating |l eveb,sandcbdudei attbed|l abf{t) ev
therefore, we can say r and t are two psepelipheral nodes of the gragtiowever,
their eccentric distance is not eqt@athe diameter ofagrapwh i c h i s O (G)
above figure, from definition of peripheral node, node x and y could be possible

peripher al nodes as | (x) = I (y) =-0 (G) =
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peripheral node is not effective inrtsideringt as a start node.
Gu Feng algorithnpseudocodéor finding peripheral node is given below
Stepl: Choose an¥ A, the closer to the center of symmetry (or pseudo center of
symmetry),andwith the largest possible degree, as the initial node.
Step2Gener ate Gb6s | evel struetisd.e rooted at
Step3: Orderingnodesinil( r ) decreasingly following thei
eccentric distance one by oneM¥N Li(r) that e(x) = 2i then x is a peripheral node,
procedure stops; else go to Step 4.
Step 4 Seeking If @0 2 ( ,itheri the hgde whose eccentric diste is gis a peripheral
node, the procedurestopd se i 1T 1 Y i and go to Step 3.
ForFigurel9, the peripheral node can be determined irfaghewing ways,
O, S, U, V,andW are five nodes with the highest degries, 4.
Stepl: If O is a start point, two nodes, x, and y will be at the last level with an eccentric
distance of O as4(0). The degree of x and y is 1. Eccentric distancearfkky , e(x) =
e(y) =2i=2*4 =8. x and y could be a peripheral node.
Step22Taking start node at S, t wild/l be in th
12. e(t) = 6 < 2*(61) = 8. Now will checkd(S), x,y,w is at the last level. e(x)=e(y)=8,
e(w) = 5. The result will be the same if t
peripheral node.
Step3: If U is a start node, y is only in the last leve(W). e(y) = 8 < 2*(61) = 10.
Checking x inLs(U), e(x) = 8 = 2*(51) = 8. x is a peripheral node.
The above example showsat a peripheral node is a pseymipheral node, but

the reverse is not always true. Though the peripheral node algorithm is considered a good
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start point to apply the Resr Cuthill Mckee Algorithm (RCM), it is expensive to
compute. Therefore, this algorithm is not used often.

Modified Minimum Degree/ Multiple Minimum Degree: This original
algorithm is proposed by Harry Max Markow[@4] in 1957 for a norsymmetric linear
system. Tinney and Walk§25] proposed a symmetric version of Markowitz to solve
large sparse systems in analyzing a power system. A theoretical graph model of Tinney
and Wal ker 6s met h o d26paadsvaschemee theovjinendm DegreeR o s s
Algorithm. This algorithm is used to permute rows and columns of a symmetric sparse
matrix before applying Cholesky Decomposition to reduce thezeom number in the
Cholesky factof11]. The algorithm reducgnonzero elements of a sparse matrix by
ordering the edges based on their dedfeea linear system of an algelraiquation, Ax
= b, where A is a symmetric sparse square of order nxn, matrix A usually suffers some
fill -in [27], i.e., it will have more nomzero than the upper triangular when factorized by
the Cholesky factor L. T h edsethabtheematrixa p er mu
(P'AP) is also symmetric and has less possiblérfillA new reorder equation (RP)
(P'X) = P" b is solved instead.

For a given undirected graph=<3(V, E), where V =vertices and E is an edge of a
graph, thgpseudocode favodified Minimum DegregMMD) is as follows:
Stepl: Fori=1toV
Step 2 Choose: the vertexim graph Gthat hasa minimum degree

Step 3Remove vertex v from G

24



Serial Communication

In serial communicationdatais sentbetween a PC and an external device one bit
at a time.There are two types of serial communicatisuch as synchronous and
asynchronous serial communication. For synchronous serial communication, a transmitter
and a receiver are synchronized by a clogka and running at the same rate so that the
receiver and transmitter can sample data at the same time interval. On the other hand,
asynchronous serial communication is a process where a transmitter and receiver are
continuously synchronized by a commaack signal.

Because asynchronous serial communication has the advantage-diskamge
communication and high reliability, it is generally used in data exchange between
computes and peripheralf28]. A Universal Asynchronous Receivdiransmitter
(UART) is generally used for asynchronous serial communication. UART is an integrated
circuit hardware device for serial communication used in computer or peripheral serial
port. It mostly includes a clockegerator, input, and output shift registers, read/write
logic control, transmit/receive control, system data bus bufferififfitst-out (FIFO)
buffer memory. Commonly, serial communication uses 8 data bits, no parity, and a one
stop bit. The speed/timd data transmission in a system is represented by the baud rate.
A higher baud rate indicatéisathigher bits are transferred per second. The standard
baud raten bits per secondsed in serial communication afiel 0,300, 600, 1200, 2400,
4800, 960014400, 19200, 38400, 57600, 115200, 128000 and 252900
Field Programmable Gate Array

To perform a complex task, there are many hardware architeckiedd

Programmable Gat&rray (FPGA)is one of them. It is an integrated circuit that can be
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designed and programmed by the user as needed. FPGA is considered to deliver high
performancemaintaining high flexibility. FPGA has a lot of simple and comple
components. It contains an array of programmable logic blocks that can be configured to
perform simple to complex combinational functions. FPGA includes simple components
such adour-input LUTs (Look Up Tables) to implement logic functions like AND,

NAND, NOT, or any usedefined function, memory elements like simple-fligps or

complex memory block. Usually, FPGA comes with software that is provided by the
vendor to design and program it. Two hardware description languages (HDL) lasiguage
such as Vealog and VHDL (Very High-Speed Integrated Circuit Hardware Description
Language)are used to program FPGA.

Some FPGA has digital as well as analog features. Commonly available analog
features are slew rate, quartz crystal oscillatofghup resistanceapacitance oscillator,
phaselocked loop with embedded voltage control oscillator, etc. Msigdal FPGA
generally has integrated peripherals such as ardilgital converter (ADC), digital to
analog converter (DAC), an analog signal conditioning block helping them to behave as a
system on chip (SoC). Because an FPGA is significantly faster for some appdicetion
can be used to solve any computable problem. Alongside using FPGA as a hardware
accelerator, it can also be used to implement soft microprocessors such as Xilinx
MicroBlaze or Altera Nios.

Digilent Zedboard: The proposed algorithm for the sparsatnx to band matrix
conversion is implemented in the Xilinx Zynq series bpeed ZedBoard. It is a low
cost development board of ZWI§00 All Programmable SoC XC7Z0Z1L.G4841 (AP

SoC) consisting of two ARM Cortex A9 cores and Xilinx programmable limga single
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device. The features of this board are mentioned bélovimage for Zedboard FPGA is
shown inFigure20.

Functional Description: A combination of a dual CoreX9 with a speed of 667
MHz Processing System (PS) with 85,000 Seri€&ogrammable Logic (PL) cells,
therefore, makes it a powerful device for many applications. ZedBoard-Z906
consists of a memory interfaceit that includes a dynamic memory controller and static
memory module. The ZedBoard has two Micron DDR3, 128 Megsdth with 16
memory components creating a 82 interface with a total 512 MB of memory. This
board consists of alit SPI (quadSP)) serial NOR flash. The MuliyO SPI Flash
memoryhelpsto provide norvolatile code and data storageisllso used tmitialize
the PS subsystem as well as configure the PL subsystem (bitstream). The XC7Z020 SoC
contains Atrix7 PL, which has 85k loig cells, 53200 LUT, 106400 fliflops, 560 kB of
BRAM organized to 140 unitgach consisting of 2048 by -t storage, and 220 DSP
slices with two 12 V orchip analogto-digital converter (XADC). This board is
compati bl e wiperformatcelWado Ddésign Shiie gshwell as the ISE
Toolkit. ZedBoard offers more capacity, more resources, and higher performance than

earlier designs.
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Figure20. ZedBoard FPGA[30]
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. PROBLEM STATEMENT

In the past years, multicore systems play an important role irgeighrmance
computing. However, due to shortage of optimization techniques, some linear system is
not able to utilize it in fullLower power andhigh computation speed with less memory
storage hae alwaysbeen essential criteria for@aktime scientific computational
application. Data from the different applications are sparse and are generally larger in
number. A sparse matrix has lesser-aero elements, which is helpful for fast
computation. Band matrixon theother hangis a special sparse matrix with reasonably
small upper and lower bandwidth making them suitable for simpler algorithms than a
sparse matrix. The difference in storage techniques of both matrices makes a band matrix
preferable over a sparse matrix. Moreoeelbanded matrix is compressed, which saves
memory usagg31]. It is considered to have a great advantage for very large matrices.

The software has certain advantages. However, some work process is dependent
on memory, CPU, and storage allocation. It might slow down if when an application does
not get enough memory available allocated space is used. Hardware has different
modules designed to do dedicated tasks incredisagfficiency and overall performance
of the system. Software for the Reverse Cuthill Mckee algorithm (RCM) is available in
MATLAB. However, therds a limitation of matrix size in MATLABwhich is defined
by the amount of available RAM msystem. Nowadaysarious application fields such
as image processing, telecommunication, signal processing, circuit analysis, etc. consider
FPGA technology demanding and advantageous considering the fine degree of
customization available which is used to direct and otcdtesdata movement on and

off-chip resulting in a good performance and for high data throu@3juthere is
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always a challenge to develop finened FPGA implementatiowhich could take

months to develop to incorporate all the state of art techniques to exceed its performance.
The solid step for improving the performance no longer involves proposing new
expensive optimization but applying the optimizations whenever thaysafel To

avad the extra computation and storage imposed by the large majority of zero elements
in a band matrix, it is standard to store only the nonzero elements in memory. Since the
hardware does not need to change for varying matrices, the time required flizatidia

can be minimized by which the system integration is simplified. Not much work is done
related tahe RCM algorithm at the hardware leva@his research presents an idedhef
implementatiorof theRCM algorithm for sparse to band matrix convensising Field

Programmable Gate Array (FPGA).
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IV. METHODOLOGY

Study Area Description

The design and the methodology for this research are discussed in this section.
Vivado HLS takes an input matrix, synthesis, and creates RTL. Packaged IP from HLS is
used in Vivado IDE for the hardware implementatiorZyhq software project is created
in Xilinx SDK (software development kit). The extracted hardware design and bitstream
from Vivado IDE are implemented in Xilinx Zyrig7000 FPGA using SDKSftware
DevelopmenKsit). Random square sparse matrices are used as input data. Most of the
input daa are undirected symmetric matrices. In this research number of different sparse
matrices were tested. Each matrix wasaryingdensity and size. To test thgstem's
accuracythe same input data were given to MATLAGd the result was compared.
Details about the experimental work and results have been discussed in the next section

given below.

Expert Suggestion and Discussion
Guidelines and suggestions frahethesis advisor and meni@r. Semih Aslan
and committee members Dr. WilliafnStapleton ad Dr. Shuying Surhelped carryput
this research. Related research articles from the literature review were a great source to
startthework.
Design and Description of the Proposed System
Theoverallprocedure for this research is shown in the flowchafigare23.
The flowchart of the system design for the RCM algorithm is shov#gimre24. This
research contains two parts: software design and hardware implementation. For the

software design, Xilinx Vivado Highevel Synthesis (HLS) 2016.4 softve is used.
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C++ programming language is used to write the main program and testbench. A sparse
matrix is input data in HLS. After successful synthesis and implementation, the output
from Vivado HLS can be used as an IP block for an IP catalog in eithad®&'Design

Suite, System Generator for DSP (Vivado, and ISE versions), or in Xilinx Platform
Studio (XPS). For this research, we are using the Vivado Design Suite. A variety of
design sourgancluding (1) RTL design, (2) IP based design, and (3) Nellisignscan

be implemented in the Xilinx Vivado Design Suitéhich is suitable for ultr&cale

FPGA and Xilinx 7 series FPGA design.

Siart

I

Input (Sparse Matrix)

Vivado HLS
(Synsthesis and implementation)

J1

Design and Implementation using
Vivado Design Suite

Simulation
Synthesis and Impiementation
Bitstream Generation

Hardware Impiementation on Digilent
Zedboard FPGA using SDK

ol

| Cutput (Band Matrnx) |
JT

L Error Analysis !
Compare MATLAB and FPGA output)

oJ1

End

Figure23. Flowchart of Proposed Work
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Figure24. Flowchartof the RCM Algorithm in the System

The operation of the flowchart shownkigure24 is discussed ifrigure25 for an

8x8 matrix.
(1 000 1 0O 0\
01 1.0 0101
01101000
0001 0O0OT1TTPO
101 01 0 00O
01 00 0101
000 1O0O0T1TTO0
\0 1 00010 1/

(a) 8x8 input matrix

Figure25. Matrix and its Graph Representation

G o
VA‘
O,
o=0

(b) Graphrepresentation

Calculate the degree of connection for each node.

1,4,7 has small degree node
Step 1: r and q array empty ari@st)
Step 2: r ={1}, g = {5}

Step3: r = {1,5}, q ={3}
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Step 4:r={1,5,3}, q = {2}

Step 5:r={1,5,3,2}, g = {6,8}
Step 6:r={1,5,3,2,6}, q = {8}
Step 7:r={1,5,3,2,6,8}, q = {4}
Step 8:r={1,5,3,2,6,8,4}, q = {7}
Step 9:r={1,5,3,2,6,8,4,7}, q = {}
Reverse r ={7,4,8,6,2,3,5,1}

After reordering nodes, the below result is achieved.

o O O O O = =
o O O O O = o=
OO R = = OO
o N S S S T o B
e i == =

O OO === OO
== O O o O
= -0 O O O O O

00000O0O0 1 @

(a) 8x8 output matrixafter reorder of nodes (b) Graph representation
Figure26. Matrix and Graph after the RCM Reorder

After implementing the RCM algorithniigure25 will be reordered aBigure26
(a) andrigure26 (b).

The general design flovior aHigh-level Vivado Design Suite is shown iigure
27. A block diagram is designed in Vivado Design Suite with custom IP packaged from
Vivado HLS, includingthe Zynq processor and other necessary IPs. After successful
synthesis and implementation of the block diagram, a bitstream is generated for FPGA.

This bitstream is used to program FPGA using a Xilinx software development kit (SDK).
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SDK s used to design a $ofare version that workwith hardware designs created with
Vivado Design SuiteSDK is eclipse baseah anopensource standardhe result from

FPGA is compared with MATLAB for error analysis.
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Figure27. Vivado Design Suite HigLevel Design Flow

There are three different ways to program Zedhoa&gJTAG, Quad SPI Flash,
and SD Card. We have used a JTAG method to program the FPGA board. JTAG is
generally used as programming, debugging p
micro USB port. Before connecting FPGA to PC via micro USB cord, the pin

configuration for JTAG mode must be dore shown irFigure28 below.

36



Figure28. Configuration for JTAGMode

Software Architecture

Software architecture is designed in Vivado HH&jh-Level SynthesisHLS),
also known as C synthesis, is a behavioral description of hardware that interprets an
algorithm description of the desired behavior and creates digital hardware supporting
complete bHaccurate validation of the C modalframework for Cbased IP
(Intellectual Property) design isheghly preferred approach in electronic design
automation for designing digital circuits. HLS is considered an easy and quick hardware
programming language as one does not need to have RTL or Verilog/VHDL knowledge
because HL®rovides RTL IP cesimulation and implementation verification frahe C
level for hardware implementation. It helps to implement design based edaised
directives or default property. Highvel synthesis schedules and allocates the operations
in the behavior as well as maps those operations into component libraries for hardware
design. Scheduling and Binding are important properties of HLS. Scheduling helps to
determine the clock cycle to perform a specific operatad binding determines which

directive/hardware unit to use for the operation. HLS supports langeage as C, C++,
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