
REAL-TIME LOW-RESOLUTION FACE RECOGNITION USING LOCAL BINARY

PATTERN HISTOGRAMS, EIGENFACE, AND FISHERFACE ALGORITHMS

by

Kamal Chandra Paul, B.Sc.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Engineering
December 2018

Committee Members:

 Semih Aslan, Chair

 William Stapleton

 Bahram Asiabanpour

COPYRIGHT

by

Kamal Chandra Paul

2018

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgment. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Kamal Chandra Paul, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

This M.Sc. thesis is delightfully dedicated to my beloved parents (Khagendra Nath Paul &

Amala Rani Paul), my dear wife (Samonty Das), and my beloved sister (Rikta Paul) for

their endless support and without whom this achievement could never be accomplished.

Their continuous encouragement and love have always energized me to go through this

entire journey of my higher studies. May God bless you all.

vii

ACKNOWLEDGMENTS

I want to express my sincere gratitude to my committee chair and thesis advisor,

Dr. Semih Aslan, for his continuous guidance, moral support, wisdom, patience,

encouragement, consideration, and for advising me on each step of the journey that without

all his supports this research would never have been accomplished fruitfully. I am grateful

to my thesis committee member, Dr. William Stapleton, for his constructive criticism and

making valuable suggestions and comments on every step of this thesis. In addition, I

would like to convey my special thanks to my thesis committee member, Dr. Bahram

Asiabanpour and graduate advisor, Dr. Vishu Viswanathan for their attention, time,

guidance and excellent support throughout this research.

On top of all, I would like to express my utmost gratitude is to my beloved parents

and my wife Samonty Das for their endless mental support and encouragement. I am in

debt to you all and without you all, my advanced degree would not have been possible.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS .. vii

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

LIST OF ABBREVIATIONS .. xvi

ABSTRACT ... xviii

CHAPTER

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 5

2.1 Face Detection .. 7

2.2 Face Recognition Algorithms .. 11

2.2.1 Local Binary Pattern Histograms .. 11

2.2.2 Eigenface... 14

2.2.3 Fisherface .. 18

2.3 Image Enhancement Techniques .. 20

2.3.1 Histogram Equalization .. 20

2.3.2 Adaptive Histogram Equalization ... 22

ix

2.3.3 Contrast Limited Adaptive Histogram Equalization................................... 23

3. PROPOSED FACE RECOGNITION SYSTEM .. 25

3.1 Overall Proposed Face Recognition System .. 25

3.2 Specification of Devices and Cameras Used.. 26

3.3 Creating the Face Database and Starting the Training Process 27

3.4 Face Recognition using LBPH ... 34

3.5 Face recognition using Eigenface Algorithm ... 36

3.6 Face recognition Using Fisherface Algorithm ... 39

3.7 Combined LBPH and Fisherface Algorithm .. 40

4. EXPERIMENTAL RESULTS AND DISCUSSION ... 42

4.1 Effect of CLAHE on Poorly Illuminated Image .. 42

4.2 Recognition Results using LBPH Method ... 42

4.2.1 Face Recognition under Different Low-resolutions 43

4.2.2 Face Recognition with Different Angular Positions 46

4.3 Recognition Results Using Eigenface Algorithm .. 48

4.3.1 Face recognition Under Different Low-resolutions 48

4.3.2 Face recognition with Different Angular Positions 51

4.4 Recognition Result using Fisherface Method .. 54

x

4.4.1 Face Recognition Under Different Low-Resolution 54

4.4.2 Face Recognition with Different Angular Positions 59

4.5 Recognition Results Using the Combined LBPH and Fisherface Algorithm 62

4.5.1 Face recognition with Different Number of Images Per Person 62

4.5.2 Face recognition with Different Number of Subjects 66

5. CONCLUSION ... 70

APPENDIX SECTION ... 73

REFERENCES ... 89

xi

LIST OF TABLES

Table Page

1. Previous Works on Face Recognition ... 6

2. Specification of the camera of the Android phone ... 26

3. Specification of the webcam of the laptop .. 27

4. Description of the developed Android app ... 29

5. Recognition Rate using the LBPH Method on the LRD200 database 44

6. Recognition Rate Based on the LRD100 Database .. 44

7. Recognition rate using LBPH method on the LRD200 database with the

different angular positions of the face ... 46

8. Recognition rate using the Eigenface method at different resolution

of the input image on the LRD200 database ... 48

9. Recognition rate using the Eigenface method under different resolution

conditions on the LRD100 Database ... 49

10. Recognition rate using the Eigenface method for the different angular

positions of the face based on the LRD200 database .. 52

11. Face recognition using the Fisherface method under different resolutions

of the input image based on the LRD100 database. .. 54

12. Face recognition using the Fisherface with CLAHE method under different

resolutions of the input image based on the LRD100 database. 55

13. Face recognition using the Fisherface algorithm under different resolutions

of the input image based on the LRD200 database. .. 56

14. Face recognition using Fisherface with CLAHE method under different

resolutions of the input image based on the LRD200 database. 56

xii

15. Recognition rate, with the different deflection angles of the face,
using the Fisherface method based on the LRD100 database at 45 px of
the input image. ... 61

16. Recognition rate, with the different deflection angles of the face,

using the Fisherface with CLAHE method based on the LRD100 database
at 45 px of the input image. ... 62

17. Experimental results of face recognition using combined LBPH & Fisherface

algorithm .. 64

18. Recognition rates (at 45 px of the input image) using the combined LBPH and

Fisherface algorithm with CLAHE method based on the database
having 50 images per person and a varying number of subjects. 67

xiii

LIST OF FIGURES

Figure Page

1. Basic Face Recognition Framework ... 1

2. Formation of the integral image (ABCD) and Haar-like features (a-i) 7

3. Relevant Haar Feature for face detection.. 8

4. Formation of the integral image (b) from the image table (a) .. 8

5. A cascade classifier of 25 stages and the decision tree (T=Ture, F=False) [18] 9

6. The Flowchart of a Real-time Face Detection System ... 10

7. A 3x3 LBP operator .. 11

8. Circular neighborhoods of the center pixel with differ neighbor pixels 13

9. The formation of the final histogram using LBPH ... 13

10. Sample eigenfaces corresponding to a different number of eigenvalues [20] 16

11. Visualization of Eigenface Algorithm .. 17

12. Constructing a face by adding eigenvectors ... 18

13. Classes in PCA and LDA where LDA has well-segregated classes

than PCA [24]. ... 19

14. Histograms of an image before and after Histogram Equalization

is applied [28] .. 21

15. Histograms of an image before and after Histogram Equalization is applied. 21

16. Redistribution of the clipped part among all the histogram bins. 24

17. Block diagram of the overall proposed system ... 25

18. Sample face image of LRD200 database .. 28

xiv

19. A few snapshots of the My New Cam Android app showing various screens. 30

20. Pictures of the Android app showing the total number of images

in the gallery (left) and a few images in the gallery (right). 31

21. Block diagram of the overall process of database creation

and automatic training. .. 32

22. Flowchart of the process of creating a database and automatic training. 33

23. Flowchart for face recognition .. 35

24. Schematic Diagram of Eigenface method of Face Recognition. 37

25. Flowchart for a real-time face recognition using the Eigenface method. 39

26. Face recognition flowchart using combined LBPH & Fisherface method. 41

27. Real-time observation of the effect of CLAHE and

Filtered CLAHE from a video frame. .. 42

28. Face images of different resolutions for recognition. ... 45

29. Face recognition accuracy with image resolution (pixel). .. 46

30. Face recognition with different angular deflection (i) front facing,

(ii) right 300 facing, (iii) left 300 facing ... 47

31. Face recognition at 15 px and corresponding low-resolution image of 15 px. 50

32. Real-time face recognition: known and unknown .. 50

33. Graphical representation of recognition accuracy with

different image resolution (pixel). ... 51

34. Recognition in Eigenface algorithm with i) front facing ii) 300 right facing

& iii) 300 left facing ... 53

xv

35. Face recognition using the Fisherface algorithm (45px). The person on the
left side is not included in the database and is marked as unknown, whereas
the other person is recognized correctly. The red color text is for the
Fisherface only, and pink color text is for the Fisherface with CLAHE method. 57

36. A comparative representation of facial recognition rate using the

Fisherface algorithm with and without CLAHE. ... 58

37. An image frame taken from a real-time video feed is showing that the

(Fisherface + CLAHE) algorithm can recognize the face correctly (pink text)
whereas the Fisherface algorithm alone cannot (red text). .. 59

38. Recognition with a different angular position in Fisherface (red text)

and Fisherface with CLAHE (pink text) method at 15 px. .. 60

39. Graphical representation of various recognition rates using the

combined algorithm without CLAHE method. ... 65

40. Graphical representation of various recognition rates using the

combined algorithm and CLAHE. ... 66

41. Graphical representation of face recognition rates

with a different number of subjects. .. 67

42. Real-time face recognition using combined LBPH and Fisherface algorithm

with CLAHE where the unknowns are not included in the database. 68

xvi

LIST OF ABBREVIATIONS

Abbreviation Description

AHE Adaptive Histogram Equalization

CLAHE Contrast Limited Adaptive Histogram Equalization

FLDA Fisher Linear Discriminant Analysis

FN False Negative

FNR False Negative Rate

FP False Positive

FPGA Field Programmable Gate Array

FPR False Positive Rate

HE Histogram Equalization

HOG Histogram of Oriented Gradients

ID Identification or Identity

LBP Local Binary Pattern

LBPH Local Binary Pattern Histogram

LDA Linear Discriminant Analysis

LDR100 Low-Resolution Database 100

LDR200 Low-Resolution Database 200

MLBPH Modified Local Binary Pattern Histogram

xvii

PCA Principal Component Analysis

px Pixels

Th Threshold

TN True Negative

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

xviii

ABSTRACT

Nowadays, face recognition plays a vital role in various security, access control,

and surveillance systems. In computer vision, automatic face recognition is a challenging

job in the last couple of decades. Changes in illumination, image resolutions, the variation

of light and posture of the face are still significant problems in face recognition. This

research presents an improved real-time face recognition system at low-resolution of 15

pixels (px) with the pose, emotion, and resolution variations. We designed our datasets,

named LRD200 and LRD100, and used them for training and classification. The Viola-

Jones algorithm was used to detect the faces, and the face recognition part receives the face

image from the face detection part to process it using the Local Binary Pattern Histograms

(LBPH), Eigenface, and Fisherface algorithms with image preprocessing using Contrast

Limited Adaptive Histogram Equalization (CLAHE) technique. The face database in this

system can be updated through a standalone Android application (app) along with

automatic restarting of training and recognition process with the updated database. At 15

px, real-time face recognition accuracies using LBPH, Eigenface, and Fisherface

algorithms along with CLAHE were 78.40%, 72.25%, and 81.40% respectively. At 45 px

the accuracies were 98.05%, 90.11%, and 93.92% respectively.

Using the combination of the LBPH and the Fisherface algorithm along with

CLAHE method, an optimum of 96.55% face recognition accuracy was achieved with 50

images per person in the database. The face recognition accuracy decreased with the

increase in the number of subjects in the database. The accuracy was 97.24% at 45 px with

xix

5 persons in the database. With 15 persons in the database, the recognition rate was 91.19%

using the combined algorithm and CLAHE.

This face recognition system can be employed for law enforcement purposes where

the surveillance cameras capture low-resolution images because of the distance of the

person from the camera. It can also be used as a surveillance system in crowded places

such as airports or bus stations to reduce the risk of possible criminal threats.

CHAPTER

1

1. INTRODUCTION

The process of detecting and locating a face from a single or series of images and

identifying the face is known as face recognition. It is a biometric artificial intelligence-

based technology which can uniquely identify a person from digital images, real-time

videos as well as pre-recorded video clips by analyzing patterns of the person’s facial shape

and textures. As a human, we are very good at detecting and recognizing faces; however,

it’s a difficult job for computers to detect and recognize faces. Face recognition has

diversified applications including video surveillance systems, security, access control, law

enforcement, general identity verification [1], gender recognition [2] or missing person

identification.

Figure 1: Basic Face Recognition Framework

Regardless of the differences (algorithms, based-model, input form, feature

extraction processes, etc.), every face recognition system is based on the same basic

framework. The very basic outline of a typical face recognition system can be observed in

Database

Input Image

Extract Features

Compare with Database

Recognize Face

2

Figure 1. The facial features are extracted from an input image to be recognized. Afterward,

it is compared with a prebuilt database. If matching of the input image is found in the

database, then it is recognized as known. Otherwise, the input image is marked as

unknown. In extracting features of the faces, the procedure of the extraction needs to be

decided carefully. The accuracy of the face recognition system is dependent upon how

unique the features are for every different face. For example, many faces may have the

same size, and hence the size of the face cannot be a suitable feature to extract. The

extracted features should be tolerant of various environmental conditions, illumination,

pose and expression. The method of feature extraction should be such that it improves the

performance and efficiency of the recognition system with reduced complexity.

After deciding the method of feature extraction, a face database of different

persons, those who will be identified through the system, is created. For a system of larger

database size, feature extraction as well as training is time-consuming and requires a lot

more processing power.

Next step is to compute the features of the incoming face and compare it with every

face image of the database. Extracted features are represented by some values. Thus, while

comparing an incoming face with the database of face images, the calculated distances of

that face with all the database faces are utilized. The lowest distance, which is also known

as the best match, is taken into consideration for recognition.

The input and output of the recognition system also vary with the purpose of the

recognition system. The input image can be taken from continuous video frames, cameras

or can be imported from a more extensive database. The output can be a name, number,

picture or a signal depending upon the requirement.

3

 In implementing the face recognition applications, face detection comes before

recognition. Face recognition can be classified into two categories, namely, face

verification and face identification. Face verification refers to the process which can detect

whether a pair of pictures belongs to the same individual or not. On the other hand, face

identification refers to the labeling target face with respect to a training set or database.

Face recognition can be categorized into three types namely- i) holistic matching or

appearance-based method, ii) structural or feature-based method, and iii) hybrid method

[3]. In holistic matching approach (e.g., Eigenfaces, Principal Component Analysis (PCA)

[4], [5] or Linear Discriminant Analysis (LDA) [6]), the global information of the face is

considered for face recognition. On the other hand, in structural or feature-based methods

[7], salient features like nose, mouth, eyes and their locations as well as native statistics are

considered for recognition. Hybrid methods utilize a combination of holistic and structural

methods.

When using a face recognition system, an input face image is compared to those

face images that have been recorded previously and kept in the training database set of the

system. In appearance-based face recognition, if the input images, taken for training and

recognizing, are of higher dimensions then the computation becomes more complex and

time-consuming and requires higher computing power. Therefore, dimensionality

reduction is performed to obtain a small vector representation of the face(s). For low-

resolution images, the size of the images becomes smaller, and the vector representation of

the face also gets smaller. Moreover, in current applications of face recognition like video

surveillance systems where the subject images are sometimes away from the cameras and

4

are captured under a low light condition, the image quality degrades. A low-resolution

image is a notable impediment of effective face recognition.

Over the past few decades, face recognition has been an active research field in

computer vision. Nevertheless, there are some challenging problems such as variation of

illumination [8], different pose, the direction of light source, environment, and changes in

expression in face recognition system. There are different methods adopted by researchers

to eliminate the illumination variation problem and low-resolution image recognition.

This research has presented a real-time low-resolution face recognition system

using LBPH algorithm, PCA based Eigenface algorithm and Fisherface algorithm and has

demonstrated an improved face recognition accuracy, even with various attitude deflection,

with a reduced number of face images in the database. In this study, two sets of image

databases have been created for training and recognition. One database consists of 200

images per person and another consists of 100 images per person. The face database can

be updated with the help of an Android app. Using the app, the training and recognition

process can automatically be restarted with the updated database.

5

2. LITERATURE REVIEW

 Over the past few years, many researchers have developed various kinds of face

recognition algorithms including PCA, LDA, Local Binary Pattern Histograms (LBPH),

Histogram of Oriented Gradients (HOG) [9], and Sparse Coding [10] algorithm. The Viola-

Jones algorithm [11] is one of the most popular face detection algorithms, and it is the basis

of many other face detection techniques. In this algorithm, Haar-like rectangular features

are used for detecting a face. Chakrasali and Kuthale [12] used Haar features and AdaBoost

algorithm for face detection. They have used an image size of 320x240 pixels and achieved

comparatively inferior performances with respect to the software-based system executed

on Central Processing Units (CPU).

In the face recognition process, face detection plays a very important role. In some

recognition systems, holistic face recognition processes have been used. A Principle

Component Neural Network (PCNN) based face recognition system has been implemented

by Mohan et all. [13]. The system is capable of recognizing up to 1400 faces in an image

frame and is suitable for access control and video surveillance. However, the presented

system showed a real-time image of low-resolution of 32x32 pixels only. The face

recognition system proposed by Jammoussi et al. [14] supports a low-resolution image of

60x60 pixels, but a real-time application is not specified there. Endluri et al. [15] reported

a real-time embedded platform of face recognition system based on the PCA method,

which supports an image resolution of 320x340 pixels. However, the system cannot

recognize more than two faces at a time. Recently, Schaffer et al. presented [16] a face

recognition system which utilized a software-based (MATLAB) Viola-Jones face detection

algorithm and FPGA based PCA algorithm for the face recognition part. They have

6

reported a real-time face recognition at an accuracy of about 95%, which can process 13026

faces per second. In this system, 20 face images from each of 153 people have been

considered for the recognition database. Zhao and Wei [17] presented a Modified LBPH

(MLBPH) based real-time face recognition system with various facial deflections and

attitude. In the study (see Table 1), they achieved a recognition accuracy ranging from 48-

55% for 300 angular positions on either side of the face compared to the camera position.

Table 1: Previous Works on Face Recognition

 Conde et al.

(2003)

Zhao and Wei [17]

(2017)

Ahmed et al. [10]

(2018)

Method PCA+SVM MLBPH LBPH

Real-time No Yes Yes

Number of Image per

person

12 Not mentioned 500

Minimum image pixel 17x18 Not mentioned 35px

Recognition at

minimum pixel

99.52% (True

Positive)

Not mentioned 90%

Database Own FERRET & Own LR500

Number of Subjects 29 Not mentioned 5

Recognition with facial

deflection

- (48-55)% -

Ahmed et al. [10] used LBPH architecture for face recognition at a low-resolution of 35px.

Using 500 images per person in the database, they have stated a recognition efficiency of

7

94% at 45px and 90% at 35px of the input image. PCA vs. low-resolution recognition

system has been shown in [18] where the image resolution was 17x18 pixels, but a real-

time recognition was not presented.

2.1 Face Detection

This section presents an overview of a face detection technique which employs the

Viola-Jones [7] algorithm. This algorithm uses Haar-like rectangular features to construct

the classifiers as shown in Figure 2.

Figure 2: Formation of the integral image (ABCD) and Haar-like features (a-i)

For example, Haar-like rectangle c in Figure 2 is used to detect the eyes of a human

face (Figure 3) because the area covered by the eyes are darker than the area just above the

cheeks. Haar feature f in Figure 2 can be used to detect the nose feature because the junction

area of the nose is brighter with respect to its two chick sides (Figure 3).

8

Figure 3: Relevant Haar Feature for face detection

A crucial part of the Viola-Jones algorithm is to compute the rectangular features

very quickly to form an integral image. The integral image is constructed in such a way so

that at any location (x, y) of the integral image, it contains the sum of all the pixels to the

left side and above that point in the main image. The formation of the integral image from

the image table as shown in Figure 4.

(a) image table (b) Integral Image

Figure 4: Formation of the integral image (b) from the image table (a)

3 5 4 9

4 2 7 5

7 1 9 4

2 9 1 2

8 7 6 7

6 2 9 4

3 8 12 21

7 14 25 39

14 22 42 60

16 33 54 74

24 48 75 102

30 56 92 123

Yellow=0+0+0+3=3
 Red= 0+3+0+4=7

 Green= 0+0+3+5=8
Gray=3+5+4+2=14

9

A cascade classifier is used in this algorithm, which is constructed as a sequence of

stages. At each stage, a set of selected rectangular features are used to slide over a sub-

window (see Figure 5) to check whether there is a face or not. Using a threshold check, a

sub-window region is either rejected as a face candidate or is pushed to the next state for

further processing.

Figure 5: A cascade classifier of 25 stages and the decision tree (T=Ture, F=False) [18]

10

Figure 6: The Flowchart of a Real-time Face Detection System

A pyramid of scaled images is used to detect faces of different sizes. The image

pyramid consists of the same set of rectangular features but different sizes to slide over the

initial image until all faces are found. Finally, all the faces are marked with colored

rectangles in the original test image. The flowchart of a real-time face detection technique

is depicted in Figure 6. If the real-time face images are captured using a camera, the system

checks whether the camera is opened. Being confirmed that the camera is opened, an image

frame is read to scan facial features in it. In the image frame, if a face is detected, the region

is marked with a rectangle.

Start

Open Camera

Is Camera open?

Read a frame/image

Convert frame/image into gray image

Load Haar cascade classifier

Scan for facial feature to detect face

End

Face detected?

Draw a rectangle around the face

Return detected Face

No

Yes

No

Yes

11

2.2 Face Recognition Algorithms

2.2.1 Local Binary Pattern Histograms

Local Binary Pattern (LBP), a powerful feature for texture classification in

computer vision, is a simple yet very efficient operator to describe the contrast information

of a pixel with respect to its neighboring pixels. By thresholding the neighboring pixels,

LBP labels the pixels of an image and considers the result as a binary number. LBP, when

combined with Histograms of Oriented Gradients (HOG) descriptor, considerably

improves performance on some datasets. LBP combined with HOG descriptor can

represent a facial image as a simple data vector, and it can be used for face recognition

purpose.

Figure 7: A 3x3 LBP operator

12

In Local Binary Pattern Histograms (LBPH) algorithm, to recognize a face, the face

image is converted into a grayscale image. The grayscale image is then divided into 3x3

window cells to extract features. The center pixel of the cell is compared with each of the

surrounding 8 pixels either in a clockwise or a counter-clockwise direction. If any

surrounding pixel value is greater than the center pixel value, then it is replaced with a 1

otherwise it is replaced with a 0. Thus, in the resultant 3x3 window, if counted in a

clockwise manner, a binary number of 8 bits except the center value is obtained. The center

pixel in the original cell is then replaced with the decimal equivalent of the binary number.

This value is used to reflect the texture feature of that region. A 3x3 LBP operator and its

working procedure are shown in Figure 7.

Let gc and g0, g1, g2, …. gp-1 denote the values of the center pixel and neighbor

pixels respectively; then, the 8-bit LBP code with respect to the center pixel at position (x,

y) can be obtained using Equation (1).

 𝐿𝐵𝑃(𝑥 , 𝑦) = 𝑠 𝑔 − 𝑔 2 (1)

The threshold function s(z) can be given by Equation (2).

 𝑠(𝑧) =
1, 𝑧 ≥ 0
0, 𝑧 < 0

 (2)

 In the LBPH algorithm, the histogram which is used as a texture descriptor is a

collection of the LBP codes of all the pixels for an input image, i.e.,

 𝐿𝐵𝑃𝐻(𝑖) = 𝛿{𝑖, 𝐿𝐵𝑃(𝑥 , 𝑦)}, 𝑖 = 0, 1, … . , 2

,

 (3)

where 𝛿(.) Is known as Kroneck product function.

13

The LBPH method allows us to make the LBP operator of different radius and

neighborhoods, which are known as circular LBP operators. An example of an LBP

operator with various number neighbors and radii is given in Figure 8, where P denotes the

number of neighboring pixels and R denotes the radius of the circular LBP operator.

 P=4, R=0.5 P=8, R=1 P=16, R=2

Figure 8: Circular neighborhoods of the center pixel with differ neighbor pixels

The whole gray face image is subdivided into several sub-regions in the LBPH

algorithm, and then, the LBP feature vectors of each sub-region are extracted. After that, a

histogram of each sub-region is calculated from the LBP feature vectors. The formation of

the final histogram using the LBPH method is presented in Figure 9.

Figure 9: The formation of the final histogram using LBPH

Original Image LBP Result LBPH

14

All the histograms of the sub-regions are then concatenated to get the bigger size histogram

of the full image which represents the main characteristic of the image.

2.2.2 Eigenface

This section presents an overview of the Eigenface [19] approach of face

recognition. The Eigenface method is also known as the Principal Component Analysis

(PCA) approach. The PCA algorithm was first introduced by Turk and Pentland in 1991.

Less optimal separation in classes is the main weakness of this algorithm.

The PCA algorithm has three parts: i) Creating a Database image; ii) Calculating

Eigen Faces; and iii) Recognition of a new face. All the images in the database must be of

the same size because of the computational purpose. A face image I is of dimension Y*Y

contains grayscale 0-255 values. At first, a column vector is created from the face images

to calculate Eigenfaces, and then the mean face (Ψ) is calculated using Equation (4).

 𝛹 = ∑ 𝐼 (4)

The differences (𝛷) of the database images (Ii) from the mean image (𝛹) is calculated

using Equation (5).

 𝛷 = 𝐼 − 𝛹 (5)

N numbers of orthogonal vectors (vk) can be found using the differences. The kth

eigenvector can be found by using Equation (6).

 𝜆 = ∑ (𝑣 𝛷) (6)

Here, 𝑣 𝑣 = 1, 𝑖𝑓 𝑙 = 𝑘

 = 0 otherwise.

𝜆 is the kth eigenvalue of the covariance matrix C.

15

 𝐶 = ∑ 𝛷 𝛷 = 𝑄𝑄 (7)

where the matrix 𝑄 = [𝛷 𝛷 … . . 𝛷].

The dimension of the matrix C is 𝑌 ∗ 𝑌 which requires a lot of resources as well as

computation time. In the PCA method, to reduce computation, dimension reduction is

performed using a Z matrix where 𝑍 = 𝑄 𝑄 of dimension 𝑁 ∗ 𝑁. Taking the eigenvectors

vi, the ith corresponding eigenvalue, ui can be calculated using equation (8) and (9).

 𝑄 𝑄𝑣 = µ 𝑣 (8)

 𝑄𝑄 = µ 𝑄𝑣 (9)

In Equation (9) the eigenvector of the original covariance matrix is Qvi, and µ can be

defined by Equation (10).

 𝑢 = 𝑣 𝛷 , 𝑖 = 1,2, … . 𝑁 (10)

During the recognition process, the new face image (Inew) is transformed into eigenface

components by the operation given by Equation (11).

 𝑤 = 𝑢 (𝐼 − 𝛹), 𝑖 = 1,2, … … 𝑁 (11)

These components form a weighted vector Ω.

 Ω = [𝑤 𝑤 … … … 𝑤] (12)

The weighted vector (Ω) represents the contribution of each eigenface of the input face

image. It can also be considered as a point in the N-dimensional vector space. The distance

of the new input image is calculated with the database image using Equation (13).

 𝑑 = |Ω − Ω | , 𝑤ℎ𝑒𝑟𝑒, 𝑘 = 1,2, … … 𝑁 (13)

Representation of several eigenfaces corresponding to a different number of eigenvalues is

shown in Figure 10.

16

.

Figure 10: Sample eigenfaces corresponding to a different number of eigenvalues [20]

The input image is considered for recognition when the distance of that image

compared to the database images is shortest. It is recognized if the distance is below a

predefined threshold value. Otherwise, it is recognized as an unknown face.

17

Figure 11: Visualization of Eigenface Algorithm

 The Eigenface algorithm can be visualized in Figure 11, where there are N numbers

of input images. Each image in the database set is unfolded into a column matrix of

dimension Y2x1. Then, using all the database faces, the primary matrix is created having a

dimension of Y2xN. After computing the mean and the difference of each image from the

mean, using the PCA technique, the dimension of the matrix is reduced to Y2 x m where m

represents the number of eigenvectors. Those m eigenvectors are m number of prototypical

facial features. The image can be reconstructed by adding the mean face with those

eigenvectors with different proportions (called weighted vectors). The formation of the

main image from the eigenvectors is illustrated in Figure 12. The more numbers of

N Input face images Face: Y x Y bitmap of pixels Unfold each bitmap to
Y2- dimensional vector

Each face = column in
matrix arrangement

Y2 x N

Y2 x m

PCA

Set of m eigenvectors
each of Y2 dimension Fold into a Y x Y bitmap

m “aspects” of prototypical
facial features (Visualization of

Eigenvectors)

18

eigenvectors are added with required weighted vectors, the more the image gets closer to

the original image.

Figure 12: Constructing a face by adding eigenvectors

2.2.3 Fisherface

Fisherface [21]–[23] algorithm is another popular face recognition algorithm. It

was developed in 1997. It is built upon the Eigenface and based on the Fisher Linear

Discriminant Analysis (FLDA) derived from Ronald Fisher’s linear discriminant analysis

(LDA) technique. Although both the PCA and the LDA use linear projection for dimension

reduction, the results are highly dissimilar. During dimension reduction, the PCA looks for

the maximum total variation between individual sample points. On the other hand, the LDA

seeks for the maximum divergence between groups. It necessitates the minimization of the

variation amongst sample points within the same group.

19

Figure 13: Classes in PCA and LDA where LDA has well-segregated classes than PCA

[24].

 The LDA maximizes the ratio of the between-class scatter matrix and within-class

scatter matrix. For this reason, under different lighting conditions of the image, the

Fisherface algorithm has limited effect on the classification process compared to the PCA.

Projecting onto the first principle component in PCA and LDA can be well depicted in

Figure 13. The groups in LDA are more scattered than that of PCA.

Let Sb be the between-class scatter matrix. It can be defined as

 𝑆 = 𝑁 (µ − µ)(µ − µ) (14)

Let Sw be the within-class scatter matrix. It can be defined as

 𝑆 = 𝑿 − µ (𝑿 − µ)

∈

 (15)

where, µi denotes the mean image of class Xi, and Ni denotes the number of samples in

class Xi. If Sw is nonsingular, the optimal projection Wopt is chosen in the matrix with

orthonormal columns which maximizes the ratio of the determinant of the between-class

20

scatter matrix of the projected samples to the determinant of the within-class scatter matrix

of the projected samples [25], i.e.,

 𝑊 = arg 𝑚𝑎𝑥
|𝑊 𝑆 𝑊|

|𝑊 𝑆 𝑊|
 (16)

 = [𝑤 𝑤 𝑤 … 𝑤] (17)

Where {wi|i = 1, 2, 3, … , n} is the set of generalized eigenvectors of Sb and Sw

corresponding to the n largest generalized eigenvalues {λi|i = 1,2,3,….., n}, i.e.,

 Sbwi = λiSwwi, i= 1, 2, 3,.., n (18)

Note that, there are (m-1) nonzero generalized eigenvalues. The upper bound on n is (m-

1), where m denotes the number of classes.

2.3 Image Enhancement Techniques

Image enhancement, especially contrast enhancement, is an important area in

digital image processing. It is performed to increase the visual perception of humans and

computers (Computer Vision). In image processing applications, the contrast enhancement

technique plays a vital role [26]. It converts an image of poor contrast into an image which

is more enhanced in contrast. Out of many contrast enhancement techniques, Histogram

Equalization, Adaptive Histogram Equalization, and Contrast Limited Adaptive Histogram

Equalization are discussed below.

2.3.1 Histogram Equalization

 Histogram Equalization (HE) is a technique of contrast enhancement where the

histogram of an image is used to enhance the digital image, and it improves the contrast

globally. HE adjusts the intensity of the image which is done by spreading out the most

frequent intensity values over the entire image [27]. This method is efficient for image

21

enhancement where both the background and foreground of the image are either dark or

bright [28].

Figure 14: Histograms of an image before and after Histogram Equalization is applied

[28]

The basic concept of HE can be visualized in Figure 14 and Figure 15. The

intensities of the image can be adjusted by distributing them on the histogram. HE is done

by spreading out the most frequent intensity values of the image, and it results in the lower

contrast to gain a higher contrast.

Figure 15: Histograms of an image before and after Histogram Equalization is applied.

Transformation

Transformation

22

 Let I be an image of dimension mr x mc and L be the number of possible intensity

levels in an image. L ranges from 0 to 255 which gives a total of 256 intensity levels. If p

denotes the normalized histogram of the image I, then the probability assigned to each

intensity level can be given by,

 𝑝 (𝑟) = 0 ≤ 𝑛 ≤ 1, 𝑖 = 0, 1, 2, … . (𝐿 − 1) (19)

where 𝑟 is the normalized intensity value, 𝑛 is the number of pixels with the intensity

level 𝑟 . N denotes the total number of pixels in the image.

The Histogram Equalized image can be then defined by,

 ℎ , = 𝑓𝑙𝑜𝑜𝑟((𝐿 − 1) ∑ 𝑝),
 (20)

where 𝑓𝑙𝑜𝑜𝑟() operator rounds down the value to the nearest integer.

One disadvantage of this method is that it may increase the contrast of background

noise present in the image while decreasing the usable pixels. HE often results in an

unrealistic effect in the image.

2.3.2 Adaptive Histogram Equalization

Adaptive Histogram Equalization (AHE) is a modification of the HE technique. In

AHE, the whole image is segmented in some distinct sections, and Histogram Equalization

is applied to each of the regions. The contrast is adjusted according to their neighbor pixels.

This process results in local contrast enhancement of the image. One disadvantage of this

method is that it overamplifies the noise in relatively homogeneous regions of an image

[28].

23

2.3.3 Contrast Limited Adaptive Histogram Equalization

When AHE is performed on a region of an image where the range of intensity is

relatively smaller, the noise in that region gets more enhanced. The problem of noise

amplification associated with the AHE method can be prevented using Contrast Limited

Adaptive Histogram Equalization (CLAHE). The CLAHE is a modification of Adaptive

Histogram Equalization. At an intensity level, the contrast enhancement is directly

proportional to the slope of the Cumulative Distribution Function (CDF). So, the contrast

enhancement can be restricted by limiting the slope of the CDF [29]. At any bin location,

the slope of CDF can be determined by the height of the histogram at that location. Hence,

to limit the amount of contrast enhancement, the height of the histogram is clipped at a

predefined value before computing the CDF which, in turn, limits the slope of the CDF. In

the CLAHE method, the enhancement function is applied to all the neighborhood pixels

[30].

If any part of the histogram exceeds the clip limit, that part can be redistributed

equally among the histogram bins rather than discarding that part (see Figure 16). This

redistribution pushes some of the bins above the clip limit which results in an effective clip

limit that is greater than the prescribed limit. If this becomes undesirable, then the

redistribution process can be applied repeatedly until the clipped part becomes negligible.

This redistribution sometimes becomes advantageous.

24

Figure 16: Redistribution of the clipped part among all the histogram bins.

If, 𝑁 is the number of pixels in X direction of the sub-region and 𝑁 is the number

of pixels in the Y direction of the sub-region, then the average number of pixels can be

given by,

𝑁 =
𝑁 𝑁

𝑁

The actual clip limit 𝑁 can be given by,

𝑁 𝑁 𝑁

Where, 𝑁 is the clip limit.

The CLAHE can be applied to both grayscale and color images. Usually, for RGB

true color image, the LAB color space is used to apply this enhancement technique.

25

3. PROPOSED FACE RECOGNITION SYSTEM

3.1 Overall Proposed Face Recognition System

The overall proposed face recognition system is presented in Figure 17, where the

camera module attached to the laptop is used for capturing real-time video frames for

recognition, and the database images are captured using an Android app.

Figure 17: Block diagram of the overall proposed system

The image frames from the camera are passed through the face detection subsystem

to locate the face in the image frame. Then some image preprocessing is done on each

image frame before passing it through the face recognition subsystem. All the database

images are captured using an Android app and then trained using each algorithm. The

recognition is performed using three different algorithms: Local Binary Pattern

Histograms, Eigenface, and Fisherface.

Face Detection
Subsystem

Image
Downsampling

Face
Recognition
Subsystem

Show Name
on Face

Mark the Face
as Unknown

Face Database

Face

Recognized?

Yes

Android App
to Update
Database

Camera to Capture
Real-time Video

Display

No

Wi-Fi/ Bluetooth

26

3.2 Specification of Devices and Cameras Used

The images of the databases are captured during daytime with the presence of

daylight as well as fluorescent tube light. The front camera of the Android phone is of 8

MP with no flash enabled, and the back camera is of 13 MP with flash enabled. Both

cameras have an image aspect ratio of 4:3 and do not have night vision feature. The

specifications of the Android phone by which the database images were captured are given

in Table 2.

Table 2: Specification of the camera of the Android phone.

Particulars Specifications

Android Phone & Model Number Oppo R7kf

Android Version 5.1.1

Front Camera 8 MP

Image Aspect Ratio (Front Camera) 4:3

Flash Status of Front Camera No Flash Enabled

Back Camera 13 MP

Image Aspect Ratio (Front Camera) 4:3

Flash Status of Back Camera LED Flash Enabled

Flash Use Status No Flash Used During Capture

Night Vision Camera Not Present

Processor Qualcomm MSM8939 Octa Core

27

 For real-time face recognition, the input images are captured from the continuous

video frames from the webcam of a laptop. The webcam is 0.9 MP, and it does not have

any flash in it. The image aspect ratio is 16:9. The complete specifications of the webcam

of the laptop are given Table 3.

Table 3: Specification of the webcam of the laptop

Particulars Specifications

Laptop Model Number Lenovo ThinkPad Yoga 14

Webcam (Integrated) 0.9 MP

Flash Status No Flash Enabled

Image Aspect Ratio 16:9

Night Vision Camera Not Present

Processor Core i5

Operating System Windows 10

3.3 Creating the Face Database and Starting the Training Process

For this study, two sets of face databases consisting of 10 people are created. One

database named LRD200 consists of 200 face images per person, has a total of 2000 face

images, and the other database named LRD100 which consists of 100 face images per

person, totaling 1000 face images in this database. Face database LRD100 is a subset of

the LRD100 database. The images are captured in different illumination conditions and

with different facial expressions and poseur to improve the recognition efficiency. A few

sample images from the LRD200 database can be seen in Figure 18.

28

Figure 18: Sample face image of LRD200 database

An Android app named My New Cam is built to create the face database. The app

takes pictures of the subject image. While taking pictures of the subject face, the user must

put the name of the person. Entering the person’s name in the name field results in the

“CAPTURE IMAGE” button to be enabled. Later, this name is used as the subject name

for face recognition. The subject images from the Android app are then sent to a Temporary

Image Folder over Wi-Fi or Bluetooth communication system. The description of the

developed android app is given in Table 4. Minimum SDK version is 18, and targeted SDK

version is 28. The app has front and back camera option in it. It also has a single image

gallery and a complete image gallery with zooming features. The camera app is built using

the camera API 23. Java and XML are used to build the app.

29

Table 4: Description of the developed Android app

Particulars Description

Compile SDK Version 28

Camera API 23

 Minimum SDK Version 18

Target Sdk Version 28

Programming Language Java & xml

Development Platform Android Studio

Features Camera,

Total Image Gallery,

Single Image Gallery,

Zoom view

A few snapshots of the developed Android app are given in Figure 19 where the

first one is showing the login screen. The user must put authenticated login information to

use the app. By clicking the “CAPTURE IMAGE” button, the user can open the camera to

capture face images.

30

Figure 19: A few snapshots of the My New Cam Android app showing various screens.

(i) Login screen (ii) After login screen

(iii) Enabling “CAPTURE
IMAGE” button by entering name

31

Figure 20: Pictures of the Android app showing the total number of images in the gallery

(left) and a few images in the gallery (right).

The face image gallery showing the number of images and a few sample images in

the Android app are shown in Figure 20.

In the system computer, a directory watcher program continuously monitors and

detects any incoming face image in a temporary image folder. When it detects any

incoming face image from the authorized Android device, a face detector program detects

faces in the images. The faces, if found tilted, are then aligned in a vertical position so that

the eyes are always in a horizontal position. To get a better accuracy of face recognition,

the face images are then preprocessed using median filtering before cropping.

32

Figure 21: Block diagram of the overall process of database creation and automatic

training.

The overall block diagram of the process of creating a database along with

automatic training and restarting the recognition process is presented in Figure 21. A

median filtering process is applied to remove the noise present in the images. Afterward,

the cropped face images along with the subject names are automatically saved to the

“training-image” folder which contains all the database images. This process also includes

the automatic starting of the training process when new face images are added to the

training-image folder. After the completion of the training process, the training data are

Stops any ongoing recognition process

& restarts with new Database

Temporary Image
Folder

Database Image
Folder

Database
File (.xml)

Ongoing
Recognition

Process

Directory Watcher
Program

Automatically Starts Training Program
if New Images Found in The Database

Continuously checks for any

incoming image(s)

Aligns, crops and saves faces to
Database Image Folder

Video Camera

Android App

33

saved in a Recognizer_database.xml file which is used for recognition purpose. The

training is done using the LBPH, the Eigenface and the Fisherface algorithms.

Figure 22: Flowchart of the process of creating a database and automatic training.

Start

Open My New Cam App in Android

Is app open?

No

Yes
Enter login information

 Enter Person’s Name

Open Camera

Capture Image (s)

Tilted Face?

Yes

Apply CLAHE & Median Filtering

No

Send Images to the destination folder of PC

Detect face in the images of the folder

Save face image in the training image folder

Start the training process & extract features

Save database file (.xml)

End

Align the face

 Crop the face

34

New face images can always be added using the Android app, and the system

automatically trains the image database and restarts the face recognizer program. OpenCV

libraries and python are used for face detection and recognition. The flowchart of the entire

process of creating a database and automatic restarting of the recognition program is given

in Figure 22.

Besides the Android app, the system has the provision to capture database images

using the laptop webcam which also requires the user to put the name of the person before

capturing images so that the name is stored along with the file name of the subject image.

The captured face images then are passed through the Face Detection procedure. Then, the

images are aligned if found tilted. A median filtering process is applied after this step, and

then the face recognition step comes into account.

3.4 Face Recognition using LBPH

We set up a real-time face recognition system where the input images are captured

from the webcam video feed. Not every frame is used for recognition. Frames after every

300 milliseconds are considered for recognition. Before starting the webcam, the face

database file for LBPH and NameList.txt files are loaded. Each frame read is passed

through a Gaussian filtering process to reduce the noise present in the image during capture

from the camera. The frame is then converted into a gray image for detecting a face. If the

face image is found tilted, it is then aligned to keep both eyes in a horizontal position. The

detected face is cropped and resized. The LBP feature vectors are extracted, and a

histogram of the face image is obtained using the LBPH algorithm which represents the

characteristic of the image.

35

The histogram of an input image is compared with the database histograms to

recognize the image. The image is recognized as the subject image in the database having

the closest histogram. The detailed flowchart for face recognition is illustrated in Figure

23.

Figure 23: Flowchart for face recognition

Start

Open Webcam

Is Camera open?

No

Yes
Read image frame

 Apply Gaussian Filtering

Load cascade classifier

Tilted Face?

Yes

No

Compute LBPH & Compare with Database
file

Face Recognition

Read Next Frame

End

Load face database and NameList.txt file

 Detect Face

Align Face

Crop and Resize face

36

 A threshold value is set to identify an unknown person who is not included in the

image database. Euclidean distance method [31] as shown in Equation (21) is used to

compare histograms.

 𝐷 = ∑ (ℎ𝑖𝑠𝑡1 − ℎ𝑖𝑠𝑡2) (21)

where D denotes the Euclidean distance between histograms.

3.5 Face recognition using Eigenface Algorithm

The webcam of a Lenovo Thinkpad Laptop is used to recognize faces in real-time.

The input candidate images are captured from the real-time video feed of the webcam. The

frames are read after every 300 milliseconds for recognition. Figure 24 shows the overall

training and face recognition process using the Eigenface algorithm. The subject image

frame is passed through a Gaussian Filtering process to reduce image noise present in the

captured frame and to get improved recognition accuracy. Gaussian filtering [32] is done

using equation (22).

 𝐺(𝑥, 𝑦) =
1

2𝜋𝜎
𝑒 (22)

where x and y represent the distances from the origin in the horizontal axis and

vertical axis respectively, and σ denotes the standard deviation of the Gaussian distribution.

This filtering action preserves decent boundaries and edges in the images.

The frame is then passed through a face detection process where the detected face

is aligned if found tilted. Face alignment is done to get better recognition result. The

detected face is cropped and vectorized. Then the difference of the image with the mean

database image is calculated. Also, eigenvectors for the incoming candidate image is

obtained and projected to the Eigenface space.

37

Figure 24: Schematic Diagram of Eigenface method of Face Recognition.

Then the distance of the incoming face with respect to the database image is

calculated. The shortest distance found is then compared with a threshold value. If the

distance is found below the threshold limit, then it is recognized, and the subject name is

displayed on the computer screen. Otherwise, it is marked and displayed as an unknown

Candidate Input Image

Vectorize Each Image

N Training Set Images

Find Mean Face

Find Difference of the face image with mean

Determine Covariance Matrix and Find Eigenvectors

Projecting Images on Eigenface Space

Find the Distance

Eigenface Training Recognition

Vectorize Input Image

Threshold the Distance

38

face. Figure 24 shows the schematic diagram of training and recognition algorithm using

the Eigenface method.

During the training period, the name part from each image file is separated to get

subject names given during the image capturing time. A separate ID for each subject is

assigned which corresponds to the position of the subject names in the list. Those subject

names and IDs are stored in a text file to be used for recognition purpose. The overall

flowchart of face recognition using Eigenface Method is presented in Figure 25. During

the recognition time, the recognition system provides an ID after analyzing the input face

image. Using that ID number, the system finds the corresponding subject name from the

text file which was created during the training period. If it finds a subject name from the

text file, the system displays the name of the person beside the face image on the screen. If

the subject name corresponding ID number is not found, then the input face image is named

as unknown on display.

39

Figure 25: Flowchart for a real-time face recognition using the Eigenface method.

3.6 Face recognition Using Fisherface Algorithm

The Fisherface algorithm is another powerful algorithm which is comparatively less

sensitive to light than the Eigenface algorithm. In the proposed system of face recognition,

the input images are passed through the CLAHE process, and then a Gaussian filter is

applied to the image to remove noise. The input images are captured from the webcam of

Start

Open Webcam

Is Camera open?

No

Yes
Read image frame

 Apply CLAHE & Gaussian Filtering

Load cascade classifier

Face Tilted?

Yes

No

Feature Extraction using the Fisherface
Algorithm

Recognition using Eigenface Method

Read Next Frame

End

Load face database and NameList.txt file

 Detect Face

Align Face

Crop and Resize

40

the laptop. Frames after every 300 milliseconds are considered for recognition. If the input

image is found tilted, it is aligned, and then the face is cropped for feature extraction using

the Fisherface algorithm. Two sets of databases (LRD100 and LRD200) are used for

training. The databases are created using the android app named My New Cam. The face

recognition experiment is done with and without CLAHE. The overall flowchart of face

recognition is the same as shown in Figure 25 except the feature extraction process which

is done using the Fisherface algorithm.

3.7 Combined LBPH and Fisherface Algorithm

Finally, a face recognition system combining the LBPH and the Fisherface

algorithm is proposed. The input image frames are preprocessed using the CLAHE method

and filtered using a Gaussian filtering process. The faces are then aligned, cropped and

resized for feature extraction using the LBPH and the Fisherface algorithm. The face

recognition result using the LBPH method is compared to the result from the Fisherface

algorithm. The flowchart of the proposed system is given in Figure 26. The final

recognition result is the combined output of the two algorithms. If the outputs of both

algorithms demonstrate the same result, the face is marked with the resultant subject name.

Otherwise, the face is marked as unknown. To see the changes in the recognition accuracy,

the number of images per person is also varied gradually from 10 to 100 with an increment

of 10 images per person. This experiment is done based on the LRD100 database. At first,

the best 10 images of each of the 10 subjects are chosen for training. The recognition rates

are calculated using this training set. The images are chosen so that the database set

contains the most possible expression and pose variations. The same procedure is repeated

41

with 20, 30, 40, 50, 60 and 100 images of the subjects and the face recognition rates are

recorded.

Figure 26: Face recognition flowchart using combined LBPH & Fisherface method.

The average threshold value for the LBPH and the Fisherface algorithms change

with the increase in the number of images in the database. Therefore, every time images

are added to the database, the threshold values are adjusted manually.

Start

Open Webcam

Is Camera open?

No

Yes
Read image frame

 Apply CLAHE & Gaussian Filtering

Load cascade classifier

Face Tilted?

Yes

No

Feature Extraction using LBPH &Fisherface

Recognition using LBPH & Eigenface

Read Next Frame

End

Load face database and NameList.txt file

 Detect Face

Align Face

Crop and Resize

42

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Effect of CLAHE on Poorly Illuminated Image

Figure 27: Real-time observation of the effect of CLAHE and Filtered CLAHE from a

video frame.

Use of the CLAHE method can enhance a poorly illuminated image. The effect of

CLAHE is clearly shown in Figure 27. The leftmost image, taken from a real-time video

frame, is poorly illuminated on the left side and below the chin region. After applying the

CLAHE the illumination on the face part changes. The brightness of the darker side of the

face is increased (see Figure 27 (ii)). The image frame is further enhanced using Gaussian

Filtering process, which removes noise by smoothing, as shown in Figure 27 (iii).

4.2 Recognition Results using LBPH Method

It is required to have a subject name and corresponding ID of the subject to

recognize a face using OpenCV libraries and Python. In this experiment, each of the

(i) A frame from a video (ii) CLAHE of the frame (iii) Filtered CLAHE of the frame

43

database images has subject names with corresponding image file names, and a “_” is put

after subject name fields. Therefore, to create the subject IDs, all the images in the training-

image folder are read and the name part from the image files are extracted. The name from

the files, which are subject names, are stored in a list sorted by alphabetical order. After

that, an ID is given with each subject name corresponding to the position of the subject

name in the list. The subject names from the list along with the corresponding IDs of the

subjects are then saved in a text file named “NameList.txt”. During the recognition process,

when an ID of a subject name is obtained, the corresponding subject name is called from

this text file.

4.2.1 Face Recognition under Different Low-resolution

For face recognition, the input images are taken from the webcam of a laptop. The

recognition rates with different low-resolution image frames are recorded. During the

recognition process, image frames are taken from the webcam at an interval of 300

milliseconds. Each time 400 image frames are used for recognition, and the process is

repeated 5 times.

Then the recognition rate is calculated out of those 2000 image frames. The

recognition rates with our created database LRD200 and at a different resolution of the

input image are tabulated in Table 5. The rates are found 78.40% at 15 px, 92.10% at 20

px, 95.95% at 30 px, 96.60% at 35 px, and 98.05% at 45 px of the input image. During

recognition time the head is rotated around the camera with different expressions and

angular positions.

44

Table 5: Recognition Rate using the LBPH Method on the LRD200 database

Recognition
Using Database LRD200

True Positive Incorrect Times True Positive Rate

At 15 px 1568 432 78.40%

At 20 px 1842 158 92.10%

At 30 px 1919 81 95.95%

At 35 px 1932 68 96.60%

At 45 px 1961 39 98.05%

The recognition rates with LDR100 database are tabulated in Table 6 which are 60.60% at

15 px, 81.65% at 20 px, 84.55% at 30 px, 92.75% at 35 px, and 95.00% at 45 px of the

input image. With the increase in image resolution the recognition rate increases. Also, the

number of images in the database plays a vital role in determining the recognition accuracy.

Table 6: Recognition Rate Based on the LRD100 Database

Recognition
Using Database LRD100

True Positive Incorrect Times True Positive Rate

At 15 px 1212 642 60.60%

At 20 px 1633 367 81.65%

At 30 px 1691 309 84.55%

At 35 px 1855 145 92.75%

At 45 px 1900 100 95.00%

45

 Figure 28 shows the input face image under various resolution condition while

recognizing. The image at 15 px is very hard to recognize for a human.

15 px 35 px 45 px

Figure 28: Face images of different resolutions for recognition.

Figure 29 demonstrates a graphical representation of face recognition rate for

various low-resolution images. It also represents the trending of recognition accuracy with

respect to the number of images per person in the database. Recognition rate increases as

the input image pixel increases and the recognition rates are higher with the database of

LRD200 than LRD100. With the increase in the number of images per person in the

database, the recognition rate is increased.

46

Figure 29: Face recognition accuracy with image resolution (pixel).

4.2.2 Face Recognition with Different Angular Positions

The recognition accuracy varies with the various angular positions of the head with

respect to the camera. With higher deflection angle the recognition rate deteriorates.

Table 7: Recognition rate using LBPH method on the LRD200 database with the

different angular positions of the face

Recognition

at 45 px

Using Database LRD200

True Positive Incorrect Times True Positive Rate

Front Facing 1993 7 99.65%

Facing 300 Right 1637 383 81.85%

Facing 300 Left 1545 455 72.25%

The recognition rates are recorded with three angular position of the frontal head-

front face, about 300 right and about 300 left positions as shown in Figure 30. While

50

55

60

65

70

75

80

85

90

95

100

15 20 30 35 45

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

 (
%

)

IMAGE RESOLUTION IN PIXEL

LRD100

LRD200

47

capturing image frames in front face position, the head is moved in the up and downward

directions. Similarly, the head is moved in the up and downward directions while the facial

deflections are about 300 left and about 300 right positions. The recognition rate is highest

(99.65%) when the face is front faced. With 300 right facing, the recognition rate is 81.85%

and with about 300 left facing the achieved recognition rate is 72.25%. Each time 400

frames, one frame in every 300 milliseconds, are used for recognition and the process is

repeated 5 times to calculate the recognition accuracy out of 2000 frames.

(i) (ii)

(iii)

Figure 30: Face recognition with different angular deflection (i) front facing, (ii) right

300 facing, (iii) left 300 facing

48

4.3 Recognition Results Using Eigenface Algorithm

In the face recognition process, OpenCV libraries and python are used. The input

face images are taken directly from a Lenovo Thinkpad Laptop’s webcam video feed for

real-time face recognition. The frames after every 300 milliseconds are considered for

recognition.

4.3.1 Face recognition Under Different Low-resolutions

Face recognition rates under the different low resolution of the input image are

recorded. The input image resolution ranged from as high as 110 px to as low as 15 px.

The recognition rates are calculated for input images of 15 px, 20 px, 30 px, 35 px, 45 px,

and 110 px. Table 8 shows the recognition rates under various resolution conditions on the

LRD200 database. The achieved recognition rates are 72.25% at 15 px, 83.95% at 20 px,

86.60% at 30 px, 87.05% at 35 px and 90.11% at 45 px.

Table 8: Recognition rate using the Eigenface method at different resolutions of the input

image on the LRD200 database

Recognition
Using Database LRD200

True Positive Incorrect Times True Positive Rate

At 15 px 1445 555 72.25%

At 20 px 1679 321 83.95%

At 30 px 1720 280 86.00%

At 35 px 1741 259 87.05%

At 45 px 1805 198 90.11%

At 110 px 1821 179 91.05%

49

Each time 400 frames are considered for recognition, and the process is repeated 5

times to recognize in a total of 2000 frames for a specific resolution of input image frames.

While capturing input images frames the head was rotated around the camera with pose

variation to get more accurate recognition results.

The same procedure is repeated with the LRD100 database image for recognition

with different resolution conditions, and the results are tabulated Table 9. The recognition

rates are found 70.85% at 15 px, 74.50% at 20 px, 79.10% at 30 px, 86.05% at 35 px and

87.95% at 45 px on this database.

Table 9: Recognition rate using the Eigenface method under different resolution

conditions on the LRD100 Database

Recognition
Using Database LRD100

True Positive Incorrect Times True Positive Rate

At 15 px 1417 583 70.85%

At 20 px 1490 510 74.50%

At 30 px 1582 418 79.10%

At 35 px 1721 279 86.05%

At 45 px 1759 241 87.95%

At 110 px 1798 202 89.90%

50

Figure 31: Face recognition at 15 px and corresponding low-resolution image of 15 px.

A real-time face recognition at 15 px resolution of the input image frame is shown

in Figure 31. When a person is not included in the database image set is marked as

unknown.

Figure 32: Real-time face recognition: known and unknown

51

The person on the left side of Figure 32 is removed from the database and the face

recognition system marked him as unknown whereas the other person is correctly

recognized and marked with his name. A graphical representation of the recognition rates

with different image resolution and the different database is shown in Figure 33. The

recognition rate increased with the increase in the resolution of the input image and with

the increase in the number of images per person in the database.

Figure 33: Graphical representation of recognition accuracy with different image

resolution (pixel).

4.3.2 Face recognition with Different Angular Positions

The recognition accuracy changes with the deflection angle of the face with respect

to the position of the camera. The recognition rate with front-facing input image is higher

compared to the rate with left or right facing image. Face recognition rates with the various

50

55

60

65

70

75

80

85

90

95

100

15 20 30 35 45 110

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

IMAGE RESOLUTION IN PIXELS

LRD100 LRD200

52

deflection angles of the face are given in Table 10. The recognition rate deteriorates with

the increase in deflection angle.

Table 10: Recognition rate using the Eigenface method for the different angular positions

of the face based on the LRD200 database

Recognition

at 45 px

Using Database LRD200

True Positive Incorrect Times True Positive Rate

Front Facing 1852 147 92.65%

Facing 300 Right 1681 319 84.05%

Facing 300 Left 1798 202 89.90%

The recognition rates are recorded with 45 px resolution of the image and with three

angular positions of the face: face-front facing, about 300 right, and about 30o left position

as shown in Figure 34. While recognizing faces in various angular position the head is

moved in the up and downward directions. This experiment is done on the LRD200

database. The recognition rates are 92.65%, 84.05% and 89.90% front facing, 300 right

deflection and 300 left deflection respectively. Each time with 400 frames are considered

for recognition, and the process is repeated 5 times to calculate the recognition accuracy

out of 2000 frames.

53

Figure 34: Recognition in Eigenface algorithm with i) front facing ii) 300 right facing &

iii) 300 left facing

(i) Front Face

(ii) About 30
0
 right facing

(iii) About 30
0
 left facing

54

4.4 Recognition Result using Fisherface Method

4.4.1 Face Recognition Under Different Low-Resolution

The face recognition rates with two different database image sets and with the

different resolution of the input image are recorded. The recognition rates using the

Fisherface method based on the LRD100 database set are 55.44% at 15 px, 64.00% at 20

px, 69.48% at 30 px, 72.76% at 35 px, 76.84% at 45 px, and 84.00% at 110 px of the input

image. The result is tabulated in Table 11.

Table 11: Face recognition using the Fisherface method under different resolutions of the

input image based on the LRD100 database.

Recognition

(Fisherface)

Using Database LRD100

True Positive Incorrect Times True Positive Rate

At 15 px 1386 1114 55.44%

At 20 px 1600 900 64.00%

At 30 px 1737 763 69.48%

At 35 px 1819 681 72.76%

At 45 px 1921 579 76.84%

At 110 px 2100 400 84.00%

 Using the Fisherface algorithm along with CLAHE and Gaussian filtering, the face

recognition rate increased. On the same database, LRD100, but with CLAHE the

recognition rates are 80.96% at 15 px, 89.00% at 20 px, 90.64% at 30 px, 90.48% at 35 px,

55

93.92% at 45 px, and 94.92% at 110 px of the input image frames (see Table 12). The face

is rotated around the camera during the recognition time and each time about 500 image

frames are considered for recognition. The process is repeated 5 times to calculate the

recognition rate out of 2500 image frames. The image frames are taken from the real-time

video of the integrated webcam of the laptop.

Table 12: Face recognition using the Fisherface with CLAHE method under different

resolutions of the input image based on the LRD100 database.

Recognition

(Fisherface +

CLAHE)

Using Database LRD100

True Positive Incorrect Times True Positive Rate

At 15 px 1868 632 74.72%

At 20 px 2063 437 82.52%

At 30 px 2191 309 87.64%

At 35 px 2262 238 90.48%

At 45 px 2348 152 93.92%

At 110 px 2373 127 94.92%

 The same experiment is performed on the LRD200 database but this time using the

Fisherface algorithm only. The recognition rates are found 55.80% at 15 px, 76.32% at 20

px, 92.72% at 30 px, 92.44% at 35 px, 92.52% at 45 px, and 93.64% at 110 px of the input

image frames (see Table 13).

56

Table 13: Face recognition using the Fisherface algorithm under different resolutions of

the input image based on the LRD200 database.

Recognition

(Fisherface)

Using Database LRD200

True Positive Incorrect Times True Positive Rate

At 15 px 1395 1105 55.80%

At 20 px 1908 592 76.32%

At 30 px 2010 490 80.40%

At 35 px 2299 201 91.96%

At 45 px 2313 187 92.52%

At 110 px 2341 159 93.64%

Table 14: Face recognition using Fisherface with CLAHE method under different

resolutions of the input image based on the LRD200 database.

Recognition

(Fisherface +

CLAHE)

Using Database LRD200

True Positive Incorrect Times True Positive Rate

At 15 px 1929 571 77.16%

At 20 px 2269 231 90.76%

At 30 px 2344 156 93.76%

At 35 px 2364 136 94.56%

At 45 px 2397 103 95.88%

At 110 px 2447 53 97.88%

57

The same experiment is performed on the LRD200 database, but CLAHE is

introduced with the Fisherface method. This results in an increase of the recognition rate.

The achieved recognition rates are 81.44% at 15 px, 90.76% at 20 px, 93.76% at 30 px,

94.56% at 35 px, 95.88% at 45 px, and 97.88% at 110 px of the input image frames (see

Table 14).

Figure 35: Face recognition using the Fisherface algorithm (45px). The person on the left

side is not included in the database and is marked as unknown, whereas the other person

is recognized correctly. The red color text is for the Fisherface only, and pink color text is

for the Fisherface with CLAHE method.

A real-time face recognition using Fisherface and Fisherface with CLAHE method

is displayed in Figure 35. The red text indicates recognition result using the Fisherface

58

algorithm only, and the pink colored text indicates the recognition result using the

Fisherface along with CLAHE method. In the figure, the person on the left side is excluded

from the database and hence is marked as unknown in both methods. On the other hand,

the person on the right side of the figure is in the face database and is recognized with his

name displayed above the face.

Figure 36: A comparative representation of facial recognition rate using the Fisherface

algorithm with and without CLAHE.

 A comparative analysis of different face recognition rates with respect to various

database image under the various low-resolution conditions is illustrated graphically in

Figure 36. From the graphical representation, we can see that the highest recognition (green

line in Figure 36) is found with the LRD200 database and with the application of CLAHE

along with the Fisherface algorithm.

50.00%
55.00%
60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%

100.00%

15 20 30 35 45 110

T
ru

e
P

os
it

iv
e

R
at

e
(%

)

Image Pixel

Comparative Analysis of Face Recognition
(Fisherface)

LRD100 (Fisher) LRD200(Fisher)

LRD100(Fisher+CLAHE) LRD200(Fisher+CLAHE)

59

 It is evident from this experiment that introducing the CLAHE method with the

Fisherface algorithm gives better recognition accuracy. An example is given in Figure 37

where the Fisherface algorithm along with the CLAHE algorithm can recognize the face

from a real-time video frame, but the Fisherface algorithm alone fails to do it.

Figure 37: An image frame taken from a real-time video feed is showing that the

(Fisherface + CLAHE) algorithm can recognize the face correctly (pink text) whereas the

Fisherface algorithm alone cannot (red text).

4.4.2 Face Recognition with Different Angular Positions

The recognition rates are recorded for different angular positions of the face with

respect to the camera. The recognition rate decreases with the increase in the deflection

angle.

60

Figure 38: Recognition with a different angular position in Fisherface (red text) and

Fisherface with CLAHE (pink text) method at 15 px.

 Real-Time face recognition with a different deflection angle of the face is displayed

in Figure 38. In each position (front facing, about 300 right and about 300 left) of the face

the head is moved in the up and downward directions while recognizing the faces. The

recognition rate is highest when the face is directed straight towards the camera. Based on

(i) Front Face

(ii) About 300 right facing

(ii) About 30
0
 left facing

61

the LRD100 database and using Fisherface algorithm the recognition rate is found 88.76%

with front facing, 71.88% with 300 right facing, and 70.92% with about 300 left facing (see

Table 15).

Table 15: Recognition rate, with the different deflection angles of the face, using the

Fisherface method based on the LRD100 database at 45 px of the input image.

Recognition

at 45 px with

Fisherface

Using Database LRD100

True Positive Incorrect Times True Positive Rate

Front Facing 2219 281 88.76%

Facing 300 Right 1797 703 71.88%

Facing 300 Left 1773 727 70.92%

Using the same database (LRD100) and with Fisherface algorithm along with the

CLAHE method, the recognition rates are recorded (see Table 16). The face recognition

rates are comparatively higher while the Fisherface algorithm is combined with the

CLAHE method than using Fisherface only. The rates are 93.80% with front facing,

74.88% with about 300 right facing, and 90.12% with about 300 left facing. Application of

the CLAHE method resulted in an increased recognition rate. The highest recognition rate

is found with the front facing of the head.

62

Table 16: Recognition rate, with the different deflection angles of the face, using the

Fisherface with CLAHE method based on the LRD100 database at 45 px of the input

image.

Recognition

at 45 px (Fisherface

+ CLAHE)

Using Database LRD100

True Positive Incorrect Times True Positive Rate

Front Facing 2345 155 94.80%

Facing 300 Right 1872 628 74.88%

Facing 300 Left 2069 431 82.76%

4.5 Recognition Results Using the Combined LBPH and Fisherface Algorithm

This experiment is carried out with 3808 image frames taken from the input video

feed. One experiment is performed using a different number of images per person in the

database. For this experiment, 10 different subjects are considered in the database image

set. The other experiment is performed with a different number of subjects. The face

recognition results are calculated using 5, 10 and 15 subjects in the database. During the

entire experiment, input images of 45 px are considered for recognition.

4.5.1 Face recognition with Different Number of Images Per Person

Using the combined LBPH and Fisherface algorithm, the face recognition rates are

calculated. In this experiment, a total of 3808 frames are considered for recognition. The

input face images are recognized at 45px based on the LRD100 database. At first 10 good

63

quality faces are chosen of the 10 subjects, and recognition rates are calculated. Later, each

time 10 images of each subject are added, and the recognition rates are calculated. The

True Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate (TNR), False

Negative Rate, and the face recognition accuracy using the combined method are calculated

as shown in Table 18. Two different sets of experiments are performed. One experiment

is performed without the CLAHE method and the other without CLAHE method.

Using the combined algorithm and without CLAHE method, a maximum of

94.25% recognition accuracy is obtained with 50 images per person in the database. The

TPR, TNR, FPR and FNR at this point are 96.98%, 97.51%, 0.49%, and 3.02%

respectively. Introducing the CLAHE method along with the combined algorithm, a

maximum of 96.55% recognition accuracy is obtained with 50 images per person in the

database. The TPR, TNR, FPR and FNR at this point are 96.43%, 96.67%, 3.33%, and

3.57% respectively.

64

Table 17: Experimental results of face recognition using combined LBPH & Fisherface

algorithm

1 Th stands for Threshold.
2 Fisher stands for Fisherface algorithm.

Method IPP
TPR
(%)

FPR
(%)

TNR
(%)

FNR
(%)

Accuracy
(%)

LBPH
Th1

Fisher2
Th

LBPH
+

Fisherface

10 65.24 5.82 94.18 34.76 80.12 145 1400

20 66.10 8.03 91.97 33.90 79.35 145 1200

30 83.37 1.31 98.69 16.63 91.06 145 1000

40 82.38 2.13 97.87 17.62 90.15 145 800

50 96.98 0.49 97.51 3.02 94.24 145 600

60 96.87 17.54 82.46 3.13 89.66 145 600

100 90.62 12.81 87.19 9.38 89.11 145 600

LBPH
+

Fisherface
+

CLAHE

10 79.22 5.07 94.93 20.79 87.18 145 1400

20 76.34 7.83 92.17 23.66 84.40 145 1200

30 94.37 1.45 98.55 5.63 96.46 145 1000

40 93.89 3.02 96.98 6.11 95.44 145 800

50 96.43 3.33 96.67 3.57 96.55 145 600

60 97.22 14.69 85.31 2.78 91.26 145 600

100 98.63 11.62 88.38 1.37 93.65 145 600

65

Figure 39: Graphical representation of various recognition rates using the combined

algorithm without CLAHE method.

 The various recognition rates using the combined algorithm and without CLAHE

method are graphically represented in Figure 39. The TPR and TNR are very high as

expected and the FPR and FNR are very low. Using the combined algorithm and CLAHE

method the achieved recognition rates and face recognition accuracies are shown

graphically in Figure 40. The maximum recognition accuracy is obtained with 50 images

per person. The TPR and TNR are high whereas the FPR and FNR are low.

 In both cases, with and without CLAHE, the maximum recognition accuracy is

found where there are 50 images per person. The face recognition accuracy increased

gradually as the number of images per person is increased. After 50 images per person, the

recognition accuracy started to decrease. Therefore, using a minimum of 50 images per

person in the database, with different pose and expression, we can get optimum recognition

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 100

R
E

C
O

G
N

IT
IO

N
 R

A
T

E

NUMBER OF IMAGES PER PERSON

TPR FPR TNR FNR Accuracy

66

accuracy. At the optimum condition, the threshold values of LPBH and Fisherface

algorithm are 145 and 600 respectively.

Figure 40: Graphical representation of various recognition rates using the combined

algorithm and CLAHE.

4.5.2 Face recognition with Different Number of Subjects

This section represents the face recognition results using the combined LBPH and

Fisherface algorithm along with the CLAHE method. The number of subjects is varied,

and the recognition rates and accuracies are calculated. Initially, only 5 persons are

considered in the database. The number of images per person is 50 for each case. The

number of subjects is then changed to 10 and then to 15. For each case, the face recognition

accuracy is calculated. The results are tabulated in Table 18. The recognition accuracy is

maximum (97.16%) for 5 subjects in the database. It gradually decreases as the number of

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 100

R
E

C
O

G
N

IT
IO

N
 R

A
T

E

NUMBER OF IMAGES PER PERSON

TPR FPR TNR FNR Accuracy

67

subjects is increased. With 15 subjects in the database, the achieved recognition accuracy

is 91.91%.

Table 18: Recognition rates (at 45 px of the input image) using the combined LBPH and

Fisherface algorithm with CLAHE method based on the database having 50 images per

person and a varying number of subjects.

Subjects TP FP TN FN
TPR
(%)

FPR
(%)

TNR
(%)

FNR
(%)

Accuracy
(%)

LBPH
Th

Fisher
Th

5 1607 45 1607 49 97.04 2.72 97.28 2.959 97.16 145 600
10 1595 55 1599 59 96.43 3.33 96.67 3.567 96.55 145 600
15 1939 54 1260 255 88.38 4.11 95.89 11.623 91.19 145 600

 The recognition rates are illustrated graphically in Figure 41. The TPR and TNR

are closer to 100%. On the other hand, the FPR and FNR are closer to zero. With the

increase in the number of subjects, the False Positive Rate and the False Negative rate

increased but the True Positive Rate and the True Negative rate decreased.

Figure 41: Graphical representation of face recognition rates with a different number of

subjects.

0

20

40

60

80

100

TPR FPR TNR FNR Accuracy

R
ec

og
ni

ti
on

 R
at

es
 (

%
)

Recognition rates with different number of subjects

5 subjects 10 subjects 15 subjects

68

Figure 42: Real-time face recognition using combined LBPH and Fisherface algorithm

with CLAHE where the unknowns are not included in the database.

True Negative

True Positive

True Negative

True Positive

a) Three persons in a frame

b) Two persons in a frame

69

A few snapshots of real-time face recognition are given in Figure 42. The leftmost

person in Figure 42 (a) and the person in the right side in Figure 42 (b) are not included in

the database, and hence they are marked as unknown. Other persons in the figure are

included in the database, and their corresponding names are displayed on top of their faces.

70

5. CONCLUSION

The LBPH architecture of face recognition is a powerful algorithm to recognize faces

under varying illumination conditions and at low-resolutions. Median filtering was applied

for the database images, and the Gaussian filter was used for facial recognition. Our

experiment results in a novel face recognition accuracy ranging from 78.40% to 98.05%

with image resolution ranging from low-resolution of 15px to 45px with the LRD200

database. Also, with the LRD100 database, achieved face recognition accuracy ranged

from 60.60% to 95% with the same pixel range of the input images. The recognition

accuracy with facial deflection showed an improved result, and the accuracy ranges from

72.25% to 99.65% with facial deflection ranging from left 30 degrees to right 30 degrees

with respect to the camera.

The Eigenface algorithm is useful in real-time face recognition systems, but this

algorithm suffers from the problem of illumination variation. With the different

illuminations and resolutions of the input image, the recognition rate degrades. Using the

Eigenface algorithm the recognition accuracy was from 72.25% to 90.11% with the

respective range of image resolution with our created database where there were 200 face

images per person in the database. On the other hand, using 100 images per person in the

database, the recognition accuracy ranged from 70.85% to 89.90% for the input image

range of 15 px to 110 px. The accuracy ranged from 84.05% to 92.65% for various

deflection of the face with the input image of 45 px. It is evident from this experiment that

the number of images per person in the database image plays a vital role in face recognition

accuracy.

71

The Fisherface algorithm along with the CLAHE method improved the recognition

efficiency compared to the use of only the Fisherface algorithm. The True Positive rates

were 81.44% at 15px and 95.88% at 45px of the input image which is better than that of

the Eigenface algorithm. The recognition rates with different angular positions also showed

improved accuracy compared to the Eigenface algorithm and the accuracy ranged from

74.88% to 93.80%.

Using the combined LPBH and Fisherface algorithm, at 45 px of the input image,

the maximum face recognition accuracy (94.24% without CLAHE and 96.55% with

CLAHE) was obtained using 50 images per person in the database of 10 different subjects.

The recognition rate showed an improved result when CLAHE was used with the combined

algorithm.

When the combined LBPH and Fisherface algorithm and CLAHE were used with

a varying number of subjects, the recognition accuracy decreased with the increase in the

number of subjects in the database. At 45 px of the input image, the recognition accuracies

were 97.16%, 96.55% and 91.19% with 5, 10 and 15 subjects in the database respectively.

The use of an Android app in this research made the automatic training with new

database images and face recognition process easier. The capturing of the subject images

and sending the images from the Android app to the computer automate the retraining and

restarting of the recognition process.

In sum, we can say that, among the three methods, the LBPH algorithm is best

suitable for face recognition under illumination variation conditions as well as with the

change in image resolutions. The application of the CLAHE method improves the

recognition accuracy. The number of images per person in the training set database plays

72

a crucial role in recognition accuracy at low resolution. Recognition rate increases with the

increase of the number of images per person in the database. The face recognition accuracy

is dependent upon the environment where the database images were taken and where the

recognition system is implemented. Capturing the database images under different

illumination conditions and with a variety of expression can improve the recognition rate.

The proposed face recognition system can help law enforcement officials to find

and recognize criminals in various crowded places like bus and railway stations, airports

and other crowded places more efficiently.

The Android app developed for this research can be used only to add face images

to the database system and to restart the recognition system automatically, but it does not

have the provision to delete images from the database. Our future work will focus on the

Android app upgrade and integration with the recognition system so that the database can

be controlled entirely using the mobile app.

73

APPENDIX SECTION

A snippet of a few codes used in this research is given below.

APPENDIX A

Python code for directory watcher.

IMAGE FILE WATCHER PROGRAM BUILT FOR FACE RECOGNITION PROJECT.

DETECTS FILES WITH SOME INTERVAL TIME.

Here is the algorithm:

IF New arrives then run another while loop until no new files are

added

crop the faces and save it to new directory/ database files

directory.

import os, time

import psutil

import cv2

import datetime

import subprocess

Directory to watch for incoming files

path_to_watch = r"C:\Users\kamal\OneDrive\Desktop\Photo\R7kf\photo"

Move cropped face to training-images folder (Database Images)

move_to_path = r"C:\Users\kamal\OneDrive - Texas State

University\Research_Backup\FaceRecognition_New_3.6\training-images"

Cascade Classifier for face detection

cascade_classifier = cv2.CascadeClassifier('opencv-

files/haarcascade_frontalface_default.xml')

CLAHE OF IMAGE (Image Enhancement technique)

def clahe(img):

 # Converting to LAB format

 img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)

 # Splitting the image planes

74

 img_planes = cv2.split(img_lab)

 # creating CLAHE object (Arguments are optional).

 clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(4, 4))

 # apply clahe object on the first plane of the image.

 img_planes[0] = clahe.apply(img_planes[0])

 # Merge back the modified plane

 img_clahe_lab = cv2.merge(img_planes)

 img_clahe_rgb = cv2.cvtColor(img_clahe_lab, cv2.COLOR_LAB2BGR)

 return img_clahe_rgb # Return the CLAHE image

img_file_ext = {"jpg", "png", 'jpeg', 'bmp', 'pgm', "gif"}

Function To crop faces from the images of the watch directory and

move the face only files to new directory

def crop_face_n_move(watch_path):

 # List all the image files in the watch directory.

 img_file_names = os.listdir(watch_path)

 # Initialize a image counter

 counter = 0

 for files in img_file_names: # Loop over all the image file in the

old directory

 # Each file path of old directory

 old_file_path = os.path.join(watch_path, files) # Old file

paths

 ext = files.split(".")[-1].rstrip()

 if ext in img_file_ext: # Checking file type image

 # Read Image file

 image = cv2.imread(old_file_path)

 # image = clahe(image)

 # Convert to gray and detect face

 img_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 faces = cascade_classifier.detectMultiScale(img_gray, 1.3,

10, minSize=(150, 150))

75

 for (x, y, w, h) in faces: # Draw rectangle on face

 cv2.rectangle(image, (x, y), (x + w, y + h), (0, 25,

255), 2)

 # cv2.imshow('Face Detection', cv2.resize(image, (400,

500))) # Show the images in the list

 cropped_face = img_gray[y:y + h, x:x + w]

 cropped_face = cv2.resize(cropped_face, (110, 110))

 cv2.imshow("Cropped Face", cropped_face)

 counter += 1

 # Cropped faces are saved and moved to new directory

with original file names.

 cv2.imwrite(os.path.join(move_to_path, files),

cropped_face)

 else: # Continue and delete if the file is not an image file.

 os.remove(os.path.join(watch_path, files))

 continue

 # Remove image files from the old directory

 os.remove(os.path.join(watch_path, files))

 cv2.waitKey(1)

 print("Total %d faces found and moved." % counter)

crop_face_n_move(path_to_watch)

Create a dictionary with all previous files

previous_files = dict([(file, None) for file in

os.listdir(path_to_watch)])

While loop to continuously watch the directory.

while 1:

 start = datetime.datetime.now().time()

 print("New watch cycle started! Time: " + str(start))

 time.sleep(20) # Sleep time in seconds.

 # List all the current files in a dictionary after every wait time.

 current_files = dict([(file, None) for file in

os.listdir(path_to_watch)])

 added_files = [file for file in current_files if not file in

previous_files] # Files if added

76

 removed_files = [file for file in previous_files if not file in

current_files]

 if added_files:

 print("Receiving files. Please Wait a minute....")

 time.sleep(90)

 # print("90 second waited!")

 print("New files found in the watch directory!")

 print("Added: ", ", ".join(added_files))

 # print("Checking further for new files if arrives...")

 print("Detecting faces, cropping and moving to new

directory...")

 # Do Face Detection, cropping and moving to new directory here

 crop_face_n_move(path_to_watch)

 cv2.destroyAllWindows()

 # os.system("Python My_Trainer_L_F_comb_auto.py")

 subprocess.Popen("Python My_Trainer_L_F_comb_auto.py",

shell=True)

 if removed_files: print("Removed: ", ",".join(removed_files))

 # Do more stuffs here if needed.

 previous_files = current_files # Stabilize the system by

equalizing the previous and current state.

 cv2.destroyAllWindows()

77

APPENDIX B

Python code to read images from the face database directory and training using the

combined LBPH and Fisherface algorithm:

___________ THIS IS A FACE TRAINER PROGRAM ________________________

___________ TRAINING IS DONE COMBINING 2 METHODS: LBPH AND FISHER

FACE ALGORITHM ______________

_______ THIS TRAINER TAKES ONLY FACE IMAGES AS INPUT AND NOT ANY FULL

IMAGE OTHER THAN FACE ___________

________ CREATED. BY KCPAUL. UPDATED ON : 11.05.2018

import os, cv2

import psutil

import numpy as np

Training Image Directory

image_dir = "training-images_lrd10"

image_dir = "training-images"

Enlist the images in the directory (Used to find the names of the

persons)

image_list = os.listdir(image_dir)

Names = [] # List of persons : To store in the Names.txt file

IDs = [] # Corresponding ID of person : To store in the Names.txt file

Finding and enlisting the Names of the persons and stores them in a

list named Names.

for name in image_list:

 nam = name.split("_")[0].rstrip().lower() # Isolating the name

part from the image.

 if nam not in Names:

 Names.append(nam)

 IDs.append(Names.index(nam))

Names = sorted(Names) # Sort the Name list with alphabetical order

print("Total Persons: " + str(len(Names)))

78

print(Names)

print(IDs)

Store the names and corresponding IDs in a text file (Used to find

name and IDs during recognition).

name_list_file = open("Names.txt", "w+")

for n in Names:

 name_list_file.write(str(Names.index(n)) + "," + n + "\n")

name_list_file.close()

Preparing Training data

path = "training-images"

imagePaths = sorted([os.path.join(image_dir, fil) for fil in

os.listdir(path)]) # Sorted list of training image paths

print(imagePaths)

faces = [] # Array to hold all the faces

labels = [] # Array to hold all the IDs of the corresponding faces.

for image in imagePaths:

 face_image = cv2.cvtColor(cv2.imread(image), cv2.COLOR_BGR2GRAY)

 # face_image = Image.open(image).convert('L') # Open image

and convert to gray

 face_image = cv2.resize(face_image, (110, 110)) # resize the image

so the EIGEN recogniser can be trained

 face_array = np.array(face_image, 'uint8') # convert the image to

Numpy array

 # Image Nromalization

 # zeros = np.zeros((110, 110))

 # face_array = cv2.normalize(face_array, np.zeros((110, 110)), 0,

255, norm_type=cv2.NORM_MINMAX)

 # Here the image path is in this format: "training-

images\\kamal_1.jpg"

 # Isolating the name part from the image.

 nam = image.split("\\")[1].split("_")[0].rstrip().lower()

 ID = Names.index(nam) # Retrieve the ID of the array

79

 faces.append(face_array) # Append the Numpy Array to the list

 labels.append(ID) # Append the ID to the Face_IDs list

 cv2.imshow('Training Image', face_array) # Show the images in the

list

 cv2.waitKey(1)

cv2.destroyAllWindows()

print("Total number of Faces found = %d" % len(faces))

print("Total number of IDs found = %d" % len(labels))

print("Data Prepared.")

Train the recognizer

creating LBPH face recognizer

print("Training in LBPH method is running....")

LBPHface_recognizer = cv2.face.LBPHFaceRecognizer_create(4, 8, 8, 8,

145) # Create LBPH face recognizer

LBPHface_recognizer.train(faces, np.array(labels)) # Train LBPH face

recognizer

LBPHface_recognizer.save('Trainer_Data/LBPHrecognizer_data.xml') #

Save LBPH face recognizer data

print('Training in LBPH method is complete and data is saved.')

Fisher Face Recognizer

print("Training in Fisher Face method is running....")

Fisherface_recognizer = cv2.face.FisherFaceRecognizer_create(5, 600) #

Create Fisher face recognizer

Fisherface_recognizer.train(faces, np.array(labels)) # Train Fisher

face recognizer

Fisherface_recognizer.save('Trainer_Data/FisherFaceRecognizer.xml') #

Save Fisher face recognizer data

print('Training in Fisher Face method is complete and data is saved.')

print('Training is Complete!')

cv2.waitKey(1)

cv2.destroyAllWindows()

80

print("Any running recognition program will be stopped!\n")

Stop the running Recognizer program

cam_pid = ""

Read the txt file where the process ID is stored

file = open("Recognizer_PID.txt", "r+")

while True:

 line = file.readline()

 if line == "":

 break

 cam_pid = line

for proces in psutil.process_iter():

 pro_info = proces.as_dict(attrs=['pid', 'name'])

 procname = str(pro_info['name'])

 procpid = str(pro_info['pid'])

 if "python" in procname and procpid == str(cam_pid):

 print("Stopped Python Process ", proces)

 proces.kill()

 print("Stopping the Recognizer program having pid : " +

str(cam_pid))

print("Starting the Face recognizer program!")

os.system("Python My_Recognizer_L_F_comb.py")

81

APPENDIX C

Python code snippet of combined recognizer program.

___________ THIS IS A FACE RECOGNIZER PROGRAM, WHICH LOADS FACE

DATABASE FROM .XML FILE ___________________

___________ RECOGNITION IS DONE IN LBPH AND FISHER FACE ALGORITHM

(COMBINED) __________________

___________ CREATED. BY KCPAUL. UPDATED ON : 11.05.2018

____________ Texas State University, San Marcos, Texas

import OpenCV and other modules (As required)

import os

import cv2

import numpy as np

Store process IDs in a text file (Used to terminate this program

while running).

This is necessary to terminate this program when commanded by

My_Trainer_Auto program

file = open("Recognizer_PID.txt", "w+")

file.write(str(os.getpid()))

file.close()

print("PID for My_Recognizer_L_F_comb.py process is : " +

str(os.getpid()))

CLAHE OF IMAGE (Image Enhancement technique)

def clahe(img):

 # Converting to LAB format

 img_lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)

 # Splitting the image planes

 img_planes = cv2.split(img_lab)

82

 # creating CLAHE object (Arguments are optional).

 clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(4, 4))

 # apply clahe object on the first plane of the image.

 img_planes[0] = clahe.apply(img_planes[0])

 # Merge back the modified plane

 img_clahe_lab = cv2.merge(img_planes)

 img_clahe_rgb = cv2.cvtColor(img_clahe_lab, cv2.COLOR_LAB2BGR)

 return img_clahe_rgb # Return the CLAHE image

Subjects are the names of the persons in the database.

subjects = []

name_file = open("Names.txt", "r") # Subjects are loaded from the

previously saved Names.txt file.

while (True):

 line = name_file.readline()

 if line == "":

 break

 subjects.append(line.split(",")[1].rstrip())

subjects = sorted(subjects) # Sort the name list.

no_of_subjects = len(subjects) # Number of persons.

LBPHface_recognizer = cv2.face.LBPHFaceRecognizer_create(4, 8, 8, 8,

145) # creating LBPH face recognizer

LBPHface_recognizer.read('Trainer_Data/LBPHrecognizer_data.xml') #

Load/Read LBPH face recognizer data

Fisherface_recognizer = cv2.face.FisherFaceRecognizer_create(5, 600) #

creating Fisher face recognizer

Fisherface_recognizer.read('Trainer_Data/FisherFaceRecognizer.xml') #

Load/Read Fisher face recognizer data

function to draw rectangle around face on the image

def draw_rectangle(img, rect):

 (x, y, w, h) = rect

 cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 255), 3)

83

function to draw text (Name of the Recognized face)

def draw_text(img, text, x, y):

 cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 0,

255), 2)

Recognizing Face

print("Recognizing face(s).")

Initializing counter for efficiency calculation

true_positive = 0

false_positive = 0

true_negative = 0

false_negative = 0

face_cascade=cv2.CascadeClassifier("opencv-

files/haarcascade_frontalface_alt2.xml")

face_cascade = cv2.CascadeClassifier("opencv-

files/haarcascade_frontalface_default.xml")

vid_capture =

cv2.VideoCapture("test_video/WIN_20181112_14_01_53_Pro.mp4") # with

Glasses

vid_capture =

cv2.VideoCapture("test_video/WIN_20181112_14_01_06_Pro.mp4")

vid_capture =

cv2.VideoCapture("test_video/WIN_20181112_14_02_27_Pro.mp4")

vid_capture = cv2.VideoCapture(0)

Opening the camera object.

while vid_capture.isOpened():

 ret, frame = vid_capture.read()

 # avg = round(np.average(frame)) # Average Image pixel

 # print(avg)

 # if avg <= 200: # For low resolution image apply clahe (Under

TEST, not finalized).

84

 frame = clahe(frame)

 frame = cv2.GaussianBlur(frame, (3, 3), 0) # Applying image filter

to reduce noise effect.

 # Converting the frames into gray-scale image to recognize

 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 # Detect Faces

 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.3,

minNeighbors=15)

 for (x, y, w, h) in faces:

 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 10, 255), 2)

 # Trial for low resolution image of size 20, 30 and 40 pixel

etc. (if any)

 face_area = cv2.resize(gray[y:y + h, x:x + w], (45, 45))

 # cv2.imshow("Reduced Pixel", face_area)

 face_area = cv2.resize(face_area, (110, 110)) # Resize the

face image to 110x 110 pixel

 # cv2.imshow("converted to 110", face_area)

 # Normalization

 # face_area = cv2.normalize(face_area, np.zeros((110, 110)), 0,

255, norm_type=cv2.NORM_MINMAX)

 rect = (x, y, w, h)

 draw_rectangle(frame, rect)

 # predict the face image using our face recognizer(s)

 LabelL, ConfL = LBPHface_recognizer.predict(face_area)

 LabelF, ConfF = Fisherface_recognizer.predict(face_area)

 print("LBPH: " + str(LabelL) + " " + subjects[LabelL], "[",

round(ConfL), "]")

 print("Fisher: " + str(LabelF) + " " + subjects[LabelF], "[",

round(ConfF), "]")

85

 # Recovering the name(s) from the IDs (Labels) using LBPH &

Fisherface

 if (LabelL >= 0) & (LabelL < no_of_subjects) & (LabelF >= 0) &

(LabelF < no_of_subjects):

 # Print Name of algorithm, Labels and conf of each

algorithm

 # print("LBPH : " + str(LabelL) + " " + subjects[LabelL],

"[", round(ConfL), "]")

 # print("Fisher: " + str(LabelF) + " " + subjects[LabelF],

"[", round(ConfF), "]")

 # Conditioning for recognition if both gives same subject

name

 if subjects[LabelL] == subjects[LabelF]:

 label_text_comb = subjects[LabelL] + " (LF)"

 print("Name: " + label_text_comb)

 # Print the Names and corresponding confidences on the

console

 draw_text(frame, label_text_comb, x, y - 15)

 print("Confs: " + "[" + str(round(ConfL)) + ", " +

str(round(ConfF)) + "]")

 # print("Fisher: " + str(LabelF) + " " +

subjects[LabelF], "[", round(ConfF), "]")

 # Portion for efficiency calculation.

 if subjects[LabelL] == subjects[LabelF] == "kamal": #

for specific user.

 true_positive += 1

 else:

 false_positive += 1

 else:

 Label_text = "Unknown (LF)"

 print(Label_text)

 draw_text(frame, Label_text, x, y - 15)

 false_negative += 1

86

 else:

 Label_name = "Unknown (LF)"

 print(Label_name)

 draw_text(frame, Label_name, x, y - 15)

 false_negative += 1

 # true_negative += 1

 print("True Positive=" + str(true_positive))

 print("False Positive =" + str(false_positive))

 print("True Negarive =" + str(true_negative))

 print("False Negative =" + str(false_negative))

 # Accuracy Calculation

 TPR = (true_positive / (true_positive + false_positive +

true_negative + false_negative) * 100)

 FPR = (false_positive / (true_positive + false_positive +

true_negative + false_negative) * 100)

 FNR = false_negative / (true_positive + false_positive +

true_negative + false_negative) * 100

 TNR = true_negative / (true_positive + false_positive +

true_negative + false_negative) * 100

 Accuracy = (true_positive + true_negative) / (

 true_positive + true_negative + false_positive +

false_negative) * 100

 # print("With the 45 Px input image.")

 print("True Positive =" + str(round(TPR, 2)) + " %")

 print("True Negative = " + str(round(TNR, 2)) + " %")

 print("False Negative = " + str(round(FNR, 2)) + " %")

 print("Accuracy = " + str(round(Accuracy, 2)) + " %")

 cv2.putText(frame, "Created by: Kamal Paul", (5, 20),

cv2.FONT_HERSHEY_PLAIN, 1.5, (50, 0, 255), 2)

 cv2.putText(frame, "Supervised by: Dr. Aslan", (5, 40),

cv2.FONT_HERSHEY_PLAIN, 1.5, (50, 0, 255), 2)

 cv2.imshow("Recognized Face(s)", frame)

87

 # cv2.imshow("Normalized", cv2.normalize(frame, np.zeros(())))

 if cv2.waitKey(100) & 0xFF == ord('q'):

 break

cv2.waitKey(1)

vid_capture.release()

cv2.destroyAllWindows()

88

APPENDIX D

Formula to calculate face recognition rates and accuracy:

True positive (TP) is equivalent with hit. True negative (TN) is equivalent with correct

rejection. False positive (FP) is equivalent with false alarm which is type I error. False

negative (FN) is equivalent with miss which is type II error.

Thus sensitivity, hit rate, or True Positive Rate (TPR) can be calculated using the

following formula.

 TPR = TP/ (TP + FN) = 1-FNR

Specificity or True Negative Rate (TNR) can be given by

TNR = TN/ (TN + FP) = 1 – FPR.

Miss rate or False Negative Rate (FNR) is calculated by

FNR = FN/ (FN + TP) = 1 – TPR.

Fall-out or False Positive Rate (FPR) is calculated using the following formula:

FPR = FP/ (FP + TN) = 1 – TNR.

Face recognition accuracy is calculated using

Accuracy = (TP + TN) / (P + N) = (TP + TN)/ (TP+TN+FP+FN).

89

REFERENCES

[1] G. Kaur, H. Kaur, and M. Kaur, “A Survey on Face Recognition Techniques,” in Int.

J. Adv. Res. Comput. Sci., 2017, vol. 8, no. 4, pp. 33–35.

[2] R. Ferizal, S. Wibirama, and N. A. Setiawan, “Gender recognition using PCA and

LDA with improve preprocessing and classification technique,” in 2017 7th

International Annual Engineering Seminar (InAES), 2017, pp. 1–6.

[3] D. N. Parmar and B. B. Mehta, “Face Recognition Methods & Applications,”

arXiv:1403.0485 [cs], Mar. 2014.

[4] S. K. Shiji, “Biometric prediction on face images using eigenface approach,” in 2013

IEEE Conference on Information Communication Technologies, 2013, pp. 104–109.

[5] N. Morizet, F. Amiel, I. D. Hamed, and T. Ea, “A Comparative Implementation of

PCA Face Recognition Algorithm,” in 2007 14th IEEE International Conference on

Electronics, Circuits and Systems, 2007, pp. 865–868.

[6] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Face recognition using LDA-

based algorithms,” IEEE Transactions on Neural Networks, vol. 14, no. 1, pp. 195–

200, Jan. 2003.

[7] B. S. Manjunath, R. Chellappa, and C. von der Malsburg, “A feature based approach

to face recognition,” in Proceedings 1992 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 1992, pp. 373–378.

[8] G. Heusch, Y. Rodriguez, and S. Marcel, “Local binary patterns as an image

preprocessing for face authentication,” in 7th International Conference on Automatic

Face and Gesture Recognition (FGR06), 2006, pp. 6 pp. – 14.

90

[9] T. Do and E. Kijak, “Face recognition using Co-occurrence Histograms of Oriented

Gradients,” in 2012 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2012, pp. 1301–1304.

[10] A. Ahmed, J. Guo, F. Ali, F. Deeba, and A. Ahmed, “LBPH based improved face

recognition at low resolution,” in 2018 International Conference on Artificial

Intelligence and Big Data (ICAIBD), 2018, pp. 144–147.

[11] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple

features,” in Proceedings of the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. CVPR 2001, 2001, vol. 1, pp. I–I.

[12] S. V. Chakrasali and S. Kuthale, “Optimized face detection on FPGA,” in 2016

International Conference on Circuits, Controls, Communications and Computing

(I4C), 2016, pp. 1–6.

[13] A. R. Mohan, N. Sudha, and P. K. Meher, “An embedded face recognition system on

A VLSI array architecture and its FPGA implementation,” in 2008 34th Annual

Conference of IEEE Industrial Electronics, 2008, pp. 2432–2437.

[14] A. Y. Jammoussi, S. F. Ghribi, and D. S. Masmoudi, “Implementation of face

recognition system in virtex II Pro platform,” in 2009 3rd International Conference

on Signals, Circuits and Systems (SCS), 2009, pp. 1–6.

[15] R. Endluri, M. Kathait, and K. C. Ray, “Face recognition using PCA on FPGA based

embedded platform,” in 2013 International Conference on Control, Automation,

Robotics and Embedded Systems (CARE), 2013, pp. 1–4.

91

[16] L. Schaffer, Z. Kincses, and S. Pletl, “FPGA-based low-cost real-time face

recognition,” in 2017 IEEE 15th International Symposium on Intelligent Systems and

Informatics (SISY), 2017, pp. 000035–000038.

[17] X. Zhao and C. Wei, “A real-time face recognition system based on the improved

LBPH algorithm,” in 2017 IEEE 2nd International Conference on Signal and Image

Processing (ICSIP), 2017, pp. 72–76.

[18] C. Conde, A. Ruiz, and E. Cabello, “PCA vs low resolution images in face

verification,” in 12th International Conference on Image Analysis and Processing,

2003.Proceedings., 2003, pp. 63–67.

[19] M. Truk and A. Pentland, Eigenfaces for Face Detection/Recognition, vol. 3, no. 1.

Journal of Cognitive Neuroscience, 1991.

[20] S. Zhang and M. Turk, “Eigenfaces,” Scholarpedia, vol. 3, no. 9, p. 4244, Sep. 2008.

[21] H.-J. Lee, W.-S. Lee, and J.-H. Chung, “Face recognition using Fisherface algorithm

and elastic graph matching,” in Proceedings 2001 International Conference on

Image Processing (Cat. No.01CH37205), 2001, vol. 1, pp. 998–1001 vol.1.

[22] M. Sharkas and M. A. Elenien, “Eigenfaces vs. fisherfaces vs. ICA for face

recognition; a comparative study,” in 2008 9th International Conference on Signal

Processing, 2008, pp. 914–919.

[23] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. Fisherfaces:

Recognition Using Class Specific Linear Projection,” IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 19, no. 7, p. 10, 1997.

92

[24] M. X. He and H. Yang, “Microarray Dimension Reduction,” 2009. [Online].

Available:

http://compbio.pbworks.com/w/page/16252905/Microarray%20Dimension%20Redu

ction. [Accessed: 15-Oct-2018].

[25] I. Zafar, E. A. Edirisinghe, S. Acar, and H. E. Bez, “Two-dimensional statistical

linear discriminant analysis for real-time robust vehicle-type recognition,” presented

at the Electronic Imaging 2007, San Jose, CA, USA, 2007, p. 649602.

[26] S. Muniyappan, A. Allirani, and S. Saraswathi, “A novel approach for image

enhancement by using contrast limited adaptive histogram equalization method,” in

2013 Fourth International Conference on Computing, Communications and

Networking Technologies (ICCCNT), 2013, pp. 1–6.

[27] O. Patel, Y. P. S. Maravi, and S. Sharma, “A Comparative Study of Histogram

Equalization Based Image Enhancement Techniques for Brightness Preservation and

Contrast Enhancement,” Signal & Image Processing : An International Journal, vol.

4, no. 5, pp. 11–25, Nov. 2013.

[28] “Histogram equalization,” Wikipedia. 18-May-2018.

[29] “CS6640 - Project 2: Contrast Limited AHE.” [Online]. Available:

http://www.cs.utah.edu/~sujin/courses/reports/cs6640/project2/clahe.html.

[Accessed: 12-Oct-2018].

[30] G. Yadav, S. Maheshwari, and A. Agarwal, “Contrast limited adaptive histogram

equalization based enhancement for real time video system,” in 2014

International Conference on Advances in Computing, Communications and

Informatics (ICACCI), 2014, pp. 2392–2397.

93

[31] K. S. do Prado, “Face Recognition: Understanding LBPH Algorithm,” Towards

Data Science, 10-Nov-2017. [Online]. Available:

https://towardsdatascience.com/face-recognition-how-lbph-works-90ec258c3d6b.

[Accessed: 11-Oct-2018].

[32] M. S. Nixon and A. S. Aguado, Feature extraction and image processing, 1st ed.

Oxford ; Boston: Newnes, 2002.

