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ABSTRACT 

Parallelizing data compression algorithms is difficult because algorithms like 

LZ77 have iterative dependencies that cannot easily be circumvented. Previous 

computation steps directly impact later steps in the algorithm, and parallelizing those 

dependent steps can prove difficult. My solution is to express both the encoding and 

decoding portions of LZ77 in terms of prefix sums, union-find operations, and other 

parallelizable computations. The results show that this methodology is effective in 

improving throughput. Compared to codes from the literature, my CUDA implementation 

is an order of magnitude faster but tends to have a lower compression ratio.
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I. INTRODUCTION 

LZ77 is a data compression and decompression algorithm created by Abraham 

Lempel and Jacob Ziv in 1977 [1]. Along with its variations, this powerful algorithm is 

one of the most widely used lossless compression algorithms. For example, LZ77 is used 

in LZSS, LZ4, DEFLATE/INFLATE and countless other compression algorithm 

variations [2][3][4]. One of the most notable types resulting from LZ algorithms today is 

PNG, and one of the most notable compressors is gzip [5]. 

LZ77 works by identifying common subsequences in input data and replacing 

later occurrences of those common subsequences by a reference to a prior occurrence. 

This is sometimes referred to as a dictionary-based reduction. LZ77 is relatively easy to 

implement serially. However, decoding and especially encoding are challenging to 

parallelize due to dependence chains that run from the beginning to the end of the 

computation. In fact, no particularly efficient GPU versions of LZ77 exist. My work 

endeavors to improve upon this. Firstly, I created versions of the serial LZ77 

compression and decompression algorithms that focus on improving the compression 

ratio. This was done using existing byte-saving techniques in the field of compression 

and by combining those changes with the standard LZ77 implementation [14]. Secondly, 

I made intermediate changes to the serial implementation in order to parallelize the 

algorithm and then created efficient GPU implementations of my more parallelizable 

codes. 
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II. BACKGROUND INFORMATION 

This section outlines the definitions and background information pertinent to 

understanding LZ77 as an algorithm and research area. An example input is used 

throughout this document to explain precisely what LZ77 does and illustrate how each 

algorithm I discuss differs from one another. 

In the standard LZ77 algorithm, the example input is iterated through serially by 

using a search window of previous input values. This iteration and search is used to find 

subsequence matches of previous input occurrences. A look-ahead buffer is used to 

compare input values that have yet to be processed with values in the search window. The 

search window consists of input values that have already been processed by the algorithm 

and may now be used to find matching subsequences. Each round’s iteration produces a 

triple in the format: (distance to match, length of matched bytes, value saved). Table 1 

contains definitions for the LZ77 algorithm described in this section. 

Table 1: LZ77 Definitions 

Terms Definitions 

Match Input data that match previously processed subsequences within the input data.  

Sliding Window  

(or window) 

The range of previously processed input data that the algorithm searches through 

for a match. 

Look-ahead 

Buffer 

The range of input data actively being processed when seeking matches in the 

sliding window. 

Rule 1 Copy the farthest match in the sliding window. 

Rule 2 Copy the longest match in the sliding window. 

NOTE: Rule 2 takes precedence over Rule 1 

Triple The encoded format of (distance, length, value) for the compression scheme. 

Distance The distance to where a match was found in the sliding window when counting 

back from the byte being processed to the start of the match (i.e., right to left). 

Length The length of the match that was found in the sliding window. 

Value The value stored in the last element of the triple for that iteration of encoding. 

LZ77 Example 

The LZ77 example explained in this section uses a character string of forty bytes. 

This same character string will be used throughout the document to exemplify the 
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differences in the algorithms I discuss. 

Table 2: LZ77 Encoder – Example 

Input: ABCABCABCDABCDEFABCDEFGABCDEFGHABCDEFGHI = 40 bytes 

Step Sliding Window 

Size = 10 

Look Ahead 

Size = 10 

Encoding  Matches 

1 [A] BCABCABCDA (0, 0, A)  

2 A[B] CABCABCDAB (0, 0, B)  

3 AB[C] ABCABCDABC (0, 0, C)  

4 ABC[A] BCABCDABCD (3, 6, D) ABCABC 

5 ABCABCABCD[A] BCDEFABCDE (4, 4, E) ABCD 

6 ABCABCABCDABCDE[F] ABCDEFGABC (0, 0, F)  

7 ABCABCABCDABCDEF[A] BCDEFGABCD (6, 6, G) ABCDEF 

8 ABCABCABCDABCDEFABCDEFG[A] BCDEFGHABC (7, 7, H) ABCDEFG 

9 ABCABCABCDABCDEFABCDEFGAB

CDEFGH[A] 

BCDEFGHI (8, 8, I) ABCDEFGH 

TOTAL = 9 X 3 Bytes = 27 bytes < original 40 bytes. 

 Table 2 shows a step-by-step example of a classically implemented LZ77 

algorithm. Each step in the table represents a single iteration of the serial algorithm, and 

all greyed out text in the sliding window column is out of bounds for the sliding window 

size, which is set to ten. The look ahead buffer is also set to ten in this example. These are 

set to ten to simplify and demonstrate how the sliding window works, but in practice, 

LZ77 algorithms may use different sized sliding windows to process the data. 

In step 1, the algorithm starts with an empty search window and nothing to match 

[A] to. Step 2’s search window is not empty, but nothing matches [B]. So, the same 

encoding scheme for a matchless state occurs. This matchless triple is stored as: (0, 0, 

value). Both zeros indicate that no match exists for this iteration by saying the distance to 

the match is 0, the length for number of matched bytes is 0, and the value to be stored in 

the triple is the one currently being processed. Step 3 also stores a matchless triple for 

[C]. The first match is found in step 4, where it can match all three stored values within 

the sliding window and store this iteration’s triple as (3, 6, D). The length is 6 because 

the match continues past the index holding [A] and matches the next two bytes. The 
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number 3 in the distance slot of the triple represents the location in the sliding window 

that is three positions away from [A], counting right to left. Lastly, the value slot in the 

triple stores the subsequent byte in the look ahead buffer. So, with a match of 

“ABCABC”, it stores the byte that is after the second “C” in the look ahead buffer, and 

that value happens to be “D”. 

This example uses Rule 2, which is described in Table 1. Rule 2 can be seen in 

step 5. In step 5, “ABC” can be matched at a distance of 10, but seeing as Rule 2 takes 

precedence over Rule 1, the largest match (i.e., “ABCD”) is stored for that triple. If both 

possible matches were the same size, Rule 1 would have been used as a tie breaker, and 

the triple would have stored the farthest possible match in the search window. 

The compression ratio for this example is: 40 bytes / 27 bytes = ~1.48. Given 

different input sizes and byte sequences, the compression ratio can change, but this 

example shows a reduction of 13 bytes in storage cost for the given input.  

This example shows why my research is focused on parallelization and why LZ77 

is difficult to parallelize. I focus on LZ77 because of its ability to reduce the size of files 

by limiting byte redundancy, but LZ77 is difficult to parallelize due to the iterative data 

dependency required to match patterns in the search window. 

 
Figure 1: Serial LZ77 – Iterative Data Dependency of Step 4 

 Figure 1 shows how the serial version of LZ77 has an iterative data 

dependency in step 4 of the example. This dependency occurs for all matched cases, but 

for the purpose of this figure, I focus on step 4. This fourth iteration of the input 
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“ABC[A]BCABCD…” would match the letters “[A]BC” with the first, second, and third 

iteration values. It also continues the match past the first three to include the value being 

searched for and the two values following in the match triple. This makes up the length 

of 6 as stated previously. Serially, this happens by simply looking back at previous values 

in the search window and matching them in the look-ahead buffer, but if each letter were 

to be handled by separate threads at the same time, the dependency becomes problematic. 

One thread cannot see what another thread is doing in parallel without communicating to 

that other thread. However, cross-thread communication for every iteration would slow 

down the parallel process to be worse than serial and eliminate the usefulness of 

parallelizing the algorithm in the first place. 

Table 3: Parallel LZ77 Data Dependency of Step 4 & 5 

 Table 3 shows that during the encoding process, thread 4 will grab the 

“ABCABC” match from the search window and store (3, 6, D). If thread 5 operates 

independently from thread 4, then there is no way for thread 5 to know that thread 4 

found and handled a match condition. Therefore, thread five would attempt to match the 

B that was handled already by thread 4. Had threads 1 – 3 been triples with matches, 

thread 4 would have the same issue as 5. 

 During the decoding process, thread 4 needs to read from other threads to fully 

decode the triple. For thread 4, it will require A from thread 1, B from thread 2, and C 

Step Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 

Encoding 

Input 

A B C A B 

Encoded 

Output 

(0, 0, A) (0, 0, B) (0, 0, C) Dependent on 

threads 1, 2, & 3  

ERROR 

Decoding 

Input 

(0, 0, A) (0, 0, B) (0, 0, C) (3, 6, D) ERROR 

Decoded 

Output 

A B C ERROR ERROR 
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from thread 3. However, there is no way of guaranteeing that threads 1 – 3 will have 

those values ready for thread 4 when it tries to read those values. Furthermore, given the 

error during the encoding process, thread 5 will have nothing to decode. 
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III. PREVIOUS WORK 

LZ77 is a lossless data compression algorithm from which many LZ variants have 

been derived [1]. The approaches of these variants vary, but the core principle of a 

dictionary-based reduction to compress bytes is common among all of them. When 

looking for parallelized versions of LZ77, only a few results turn up. This section of my 

report covers LZ77 and general lossless compression parallelization in the literature. 

The main paper found when searching for parallelized LZ77 work is “Massively-

Parallel Lossless Data Decompression” [6]. In this work, the authors used a combination 

of prefix sums, warp-based removal of dependencies, and a high-water mark flag with 

ballot voting and a bitmap to hold all thread states in the warp. Their approach yields a 

two-fold speedup when compared with some CPU codes. I corresponded with the authors 

of this parallel decompression algorithm in the hopes of including their research in my 

benchmark suite. Unfortunately, they explained that the research is proprietary and 

cannot be made available for a comparative study. 

The paper titled “CUDA Lossless Data Compression Algorithms: A Comparative 

Study” shows an analysis of parallelized Huffman, LZSS, and Block-Sorting 

Compression algorithms [7]. This paper is important because LZSS is one of the closest 

variants of LZ77 in use and only differs in that it makes sure that “the dictionary 

reference should be shorter than the string it replaces” [8]. The study is directly relevant 

to my work in that it has a comparison of current GPU implementations and because the 

parallel LZSS algorithm of the study outperforms the others in compression and 

decompression time. The other algorithms outperform the parallel LZSS code when the 

compression ratio is the metric of comparison [7]. This parallelized LZSS algorithm is 
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called CULZSS and was first published in 2011 [14].  

This introduces the first benchmark I used to analyze my work, CULZSS. 

CULZSS was published with a CPU version and two GPU versions. However, I only 

tested the GPU version provided by the author’s GitHub page [17]. This implementation 

passes a buffer pointer to the GPU, compresses the data into a provided memory region, 

and returns a pointer to the data and length [14]. This is done by splitting the data into 

blocks and threads, outputting the compressed data into buckets, and then finishing up the 

process on the CPU by merging the compressed chunks of data in the buckets together. 

The next algorithm used in the benchmark suite goes by the name PLZ, and 

covers Lempel-Ziv Factorization, which is functionally equivalent to LZ77 [9]. They use 

prefix sums and list ranking in their proof. The outcome of their work boasts an O(log2 n) 

runtime under certain conditions. This algorithm covers three different modes to encode, 

and I selected the fasted of the modes to use as a benchmark in the Analysis & Results 

section. The PLZ code includes no decoder. So, my decoders could not be compared to 

this benchmark. 

LZ4 is the last of the benchmark suite and is referenced in the first paper 

discussed in this section [6]. That paper used it and other contemporary algorithms to test 

how well their work compared. Unlike with LZSS, LZ4 is a much more recent 

descendant of LZ77 and is actively maintained. Its lossless method of compression 

incorporates far more optimizations than its distant predecessors. It uses the same kind of 

byte-oriented approach as LZ77, has a minimum match length of four, and changes the 

storage format from a triple to a two byte system with “block” and “frame” optimizations 

[3]. The block and frame optimizations are far more complex in how they are managed 
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when compared to LZ77 or even my encoding scheme, but it is a contemporary algorithm 

that is perfect for determining how well my work performs. It is for this reason that I 

chose LZ4’s serial implementation as the third benchmark. There is an adapted CUDA 

version of LZ4 that I did not test, but I wanted to test how well my code works against 

one of the best serial and lossless compression algorithms available on the CPU. This 

allows me to see how the parallelization of an older algorithm measures against an 

optimized, contemporary CPU version. 
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IV. APPROACH 

This section describes my parallel and serial approaches to LZ77 compression and 

how they relate to previous work. As a start, the serial LZ77 implementation described in 

the Background section is modified. Those modifications are: adding a storage condition 

to the triple and including a match limitation similar to LZSS. Modifications such as 

these are not new, but they suit my initial goals for improved parallelization and 

compression.  

To improve the compression ratio, the matchless triples store an additional value 

in the length slot of the triple instead of a zero. This added storage condition reduces the 

wasted space of one of the two zeros stored in matchless cases. For those cases, the 

empty zeros hold little information, but they do take up space. So, the distance slot is 

kept as zero, but the zero in the length slot for the triple is replaced with the byte 

immediately following the input value being saved for that iteration. An example of this 

would be an input data of “ABC”, where “A” is being searched for in the window, but no 

match is found for “A”. So, the storage condition saves: (0, B, A) instead of (0, 0, A). 

This makes use of one of the zero bytes and reduces the wasted space saved in the triple. 

In this example, the next byte to be searched for would be “C” and not “B”, because “B” 

was saved in the (0, B, A) triple already. 

Next, a match limitation was added. This match limitation guarantees at least a 

two-byte minimum for both the matched and unmatched cases. This reduces the worst-

case match condition for LZ77, where the triple saves a match case with a length of only 

one byte. For unmatched cases, the added storage condition ensures that at least two of 

the input’s bytes are saved in the triple. For matched cases, the algorithm only considers 
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matches greater than or equal to 2 bytes. Matches with only one byte are not considered 

and are instead saved as unmatched. With this scheme, the worst-case is only one byte 

extra possible for each triple. 

All search window and look-ahead buffer sizes are set to 256 for both serial and 

parallel implementations. This change is displayed in the example tables for each of the 

four algorithms described in the Approach section. 

Implementation Definitions 

Table 4: Definitions of LZ77 Implementation Modifications 

Term Definition 

Added Storage 

Condition 

To save space in the encoding scheme, the unmatched triples save an extra 

byte of the input data in the length position of the triple. 

Match Limitation All matched and unmatched triples save at least two of the input bytes in the 

triple. 

Serial Encoder 

The serial application uses the longest match and furthest match rules given by 

LZ77 and is illustrated by Table 5’s walkthrough of the example input. In addition to 

those classic rules, the serial approach also includes the modifications outlined at the start 

of the Approach section. 

Table 5: Serial Encoder – Example 

Input: ABCABCABCDABCDEFABCDEFGABCDEFGHABCDEFGHI = 40 bytes 

 Search Window Look Ahead Encoding  Matches 

1 [A] BCABCABCDA (0, B, A)  

2 AB[C] ABCABCDABC (0, A, C)  

3 ABCA[B] CABCDABCDE (3, 5, D) BCABC 

4 ABCABCABCD[A] BCDEFABCDE (4, 4, E) ABCD 

5 ABCABCABCDABCDE[F] ABCDEFGABC (0, A, F)  

6 ABCABCABCDABCDEFA[B] CDEFGABCDE (6, 5, G) BCDEF 

7 ABCABCABCDABCDEFABCDEFG[A] BCDEFGHABC (7, 7, H) ABCDEFG 

8 ABCABCABCDABCDEFABCDEFGABC

DEFGH[A] 

BCDEFGHI (8, 8, I) ABCDEFGH 

TOTAL = 8 X 3 Bytes = 24 bytes < original 40 bytes. 

Table 5 shows the step-by-step walkthrough of my serial encoder. Step one shows 
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that none of the input has been processed yet, and the search window is empty of values 

to match with [A]. The only difference between this step one and the step one listed in the 

Background section is the storage saving mechanism used in the length slot. In this 

algorithm, the length slot of the triple is used as an added storage condition and provides 

the first iteration with the encoding scheme of (0, B, A) instead of (0, 0, A). 

The rest of the walkthrough operates in the same manner as the original example 

listed in the Background section. For this input, the compression ratio is improved due to 

the added storage condition. Instead of the compression resulting in the original 

example’s output of 27 bytes, it is 24 bytes. That means 3 additional bytes are saved by 

using the modifications for this input. 

It is from this serial encoder that I began work on the parallelized version of the 

encoder. The modifications and classic LZ77 rules are used in the parallel version, but 

due to the data dependency restrains of the serial application, the way bytes and matches 

are handled in the parallel version is quite different. I first coded some of the changes in 

serial to make the algorithm more parallelizable, and then translated the parallelizable 

code to callable CUDA kernels. These changes are discussed in the Parallel Encoder 

section of this document. 

Serial Decoder 

 The serial decoder takes the encoded input and serially iterates through each input 

triple to restore the original, uncompressed input. In Table 6, the Output column shows 

the decoded bytes in red and the match references highlighted in blue. The Matched 

Output column shows the populated bytes that are derived by decoding matches. 
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Table 6: Serial Decoder – Example 

INPUT: (0,B,A) (0,A,C) (3,5,D) (4, 4, E) (0, A, F) (6,5,G) (7,7,H) (8,8,I) 

 Input Output Matched Output 

1 (0, B, A) AB  

2 (0, A, C) ABCA  

3 (3, 5, D) ABCA_ _ _ _ _D ABCABCABCD 

4 (4, 4, E) ABCABCABCD_ _ _ _E ABCABCABCDABCDE 

5 (0, A, F) ABCABCABCDABCDEFA  

6 (6, 5, G) ABCABCABCDABCDEFA_ _ _ _ _G ABCABCABCDABCDEFABCD

EFG 

7 (7, 7, H) ABCABCABCDABCDEFABCDEFG_ _ _ _ _ 

_ _H 

ABCABCABCDABCDEFABCD

EFGABCDEFGH 

8 (8, 8, I) ABCABCABCDABCDEFABCDEFGABCDEF

GH_ _ _ _ _ _ _ _I 

ABCABCABCDABCDEFABCD

EFGABCDEFGHABCDEFGHI 

OUTPUT: ABCABCABCDABCDEFABCDEFGABCDEFGHABCDEFGHI 

 Most of Table 6 is straightforward. Each triple is read sequentially, and the 

matched output is populated accordingly. In step 3, the bytes “BCA” are available due to 

the second iteration (i.e., step 2). By iterating through the matched bytes, the first three 

compressed spaces are filled prior to the final two spaces. This means that those final two 

spaces are filled by “BC” when continuing the byte restoration sequentially. 

 To parallelize this algorithm, there is still the issue of iterative dependency. As 

seen in step three, the data required to process and restore the compressed bytes are given 

in step two. If I were to parallelize this process directly, the same issues as described in 

the Background section would occur. This is why parallelization is nontrivial for both the 

encoder and decoder. 

Parallel Encoder 

 The encoder algorithm processes the data in seven steps, as seen in Figure 2. It 

starts by having each byte of the input data processed in parallel. Each byte is compared 

to the previous bytes within the search window. The search window consists of the 

previous 256 bytes that exist within the input data. These independent find operations are 

done in parallel and will naturally have overlapping matches, but it allows the encoder to 



 

14 

massively parallelize this step in LZ77 compression. From there, the encoder performs a 

parallel set of iterations to determine and mark the locations of each non-overlapping 

match and populates the locations array with both that data and the data of bytes without 

matches. The locations array is the same size as the input array, and therefore each 

element in the array can also be split across all threads. The process of marking the 

locations correctly will be described in greater detail later in this section. However, I will 

refer to the non-overlapping matches and unmatched instances marked in the locations 

array as triples, because that is what each location marked represents. The locations are 

marked by “1” if a triple exists and “0” if no triple is marked for that position/thread. 

 After each triple location is marked, the prefix array is populated with precisely 

the same binary numbers as the locations array. The populated prefix array is then used to 

perform a parallelized and inclusive prefix sum on the match locations. For each location 

marked in the prefix array, the sum increases by one, and the resulting total equals the 

number of triples up to the current location. This allows the encoder to determine the 

output size of the compressed data and where to output the triple of each marked thread. 

The output size is used to create an output array that is populated by the finalized 

triples of compressed data. The output array of triples is copied from the GPU and saved 

to a binary file. At the start of the binary file, the original size of the input data is saved 

for the decoder to use.  

These phases cover a high-level flow of the encoder algorithm and are depicted in 

Figure 2. All definitions used in this section are listed in Table 7, and Table 8 shows an 

example of this algorithm to better illustrate how the input is compressed. 
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Table 7: Parallel Encoder & Decoder Definitions 

Term Definition 

Maxlen Maxlen = 256. This is the maximum size of the search window. 

ThreadsPerBlock ThreadsPerBlock = 512. This is the number of threads per block used. 

Input array The file input stored as bytes. 

Prefix array or Prefix 

Sum array 

Prefix array is the array that is populated with the values that the prefix sum 

operation will use. 

Match length array The match length for each processed byte in the file is stored in the match 

length array. 

Match distance array The match distance for each processed byte in the file is stored in the match 

distance array. 

Locations array The array of locations saved during phase 2 of encoding (i.e., triple 

locations). 

Inclusive Prefix Sum Inclusive prefix sum is the cumulative addition of each element in a list. 

Example: 1, 2, 3, 4, 5, 6  1, 3, 6, 10, 15, 21 

Parent Array The array that is populated with the values that the union find operation will 

use. 

Offset Offset is the 256 indices of padding added to the front of the parent array. 

Each index in this padding represents the 256 possible bytes any match could 

have. 

Union Find (e.g., 

disjoint-set) 

Navigates a chain of parent array pointers to the offset in order to discover 

the encoded match characters. All chains of parent array pointers end by 

pointing to an index in the offset. That offset index represents the byte 

equivalent of the match. 

Output Array Output array is the array that is populated with the fully decoded or encoded 

data. 

Pre-encoded Data 

Size 

Pre-encoded data is the first few bytes of the encoded file that is provided as 

input to the decoder. This value is set by the encoder during the encoded 

file’s creation and is then used by the decoder to account for the size 

correctly. 
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Figure 2: Parallel Phases of the Encoder. 

 Phase 1 consists of each byte of data being independently processed. As stated 

previously, this phase finds possible matches irrespective of overlap. In fact, overlap is to 

be expected due to how this is parallelized. Rules 1 and 2 are both accounted for as my 

algorithm gives precedence to largest matches over furthest matches. Additionally, all 

modifications discussed at the beginning of the Approach section are included in this 

algorithm. Each byte searches the 256 bytes preceding it to find the best match possible. 

The find procedure of Phase 1 returns both an array of match distances and match lengths 

corresponding with each byte processed. These arrays are used during Phase 2 to mark 



 

17 

each match location and are used to create the triples in Phase 6. 

 Phase 2 has several functions that work to determine the correct location of each 

match, and if no match exists, it marks the correct location for the unmatched byte. The 

locations array is the same size as the input array, match distance array, and match length 

array. Therefore, each thread can be given an element within the array to process in 

parallel. The location marking process uses these arrays in a series of parallel functions to 

determine which of the overlapping matches should be marked. Firstly, it initializes 

supporting variables, determines the reachability of the matches via an atomic add on the 

matches’ length, and builds chains by joining sections with just a single match. Each of 

these steps is done in parallel by kernel calls, but the next steps require a do-while loop to 

remove dangling (unreachable) match chains and to merge the remaining chains. The 

undangling and merge functions are kernel calls within the do-while loop, which iterates 

until the Boolean flag says that only one chain is left. With the triple positions marked, 

the encoder will be able to process each position in parallel. 

 During Phase 3, each thread stores the marked locations of triples to the prefix 

array. It is a one-to-one transfer of the locations array data to the prefix array. This allows 

Phase 4 to perform the prefix sum in parallel and on the prefix array without any need to 

modify the locations array. Phase 4 performs the inclusive prefix sum by using an 

NVlab’s prefix-sum function from the CUB library [16]. The last value of the result of 

this prefix sum call is the overall size of the compressed output. For each location marked 

with a “1” and not a “0”, the sum increases by one. Therefore, the inclusive prefix sum’s 

total shows precisely the number of triples my compression algorithm is going to 

produce. Each intermediate sum of the locations provide the position data for Phase 6 to 
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write the compressed triples in parallel without fear of overlap between threads. 

 The output array created in Phase 5 is used to store the compression triples and to 

store the original size of the input. Phase 6 creates the triples and stores them in the 

output array. These triples are based on the non-overlapping sequences derived from 

Phase 2. When combined, these non-overlapping sequences cover the entire input and 

therefore can act as the finalized triples for the algorithm. This is done by looking at the 

locations array in parallel, one array element per thread, and letting the threads with a 

marked location for a triple process the data relating to that position. What I mean by this 

is that if and only if a thread has a triple location marked will it proceed in creating the 

triple for that position. On the threads that are marked, the match length array holds the 

corresponding length for the triple at the same index position as in the locations array. 

This is also true for the match distance array being used to acquire the triple’s distance. 

The value for each triple is easily read from the input array because the triples’ position 

and match length have been accounted for. This parallelized procedure results in the 

output array being populated by the correct, compressed triples.  

 Phase 7 is the final stage of the algorithm. It copies the output array back to the 

host and saves both the compressed data and the original file size to a binary file. This 

file is compatible with my decoder algorithm and has the necessary information to allow 

the decoder to restore the original data losslessly. 

Parallel Encoder Example 

 In this section, I will be going through each phase of the parallel encoder and 

show how they work on the example input used throughout this document. Each column 

heading with “T” and a number represents a thread on the GPU, and each row represents 



 

19 

a parallelized step on the GPU. 

Table 8: Parallel Encoder – Example 

Input: ABCABCABCDABCDEFABCDEFGABCDEFGHABCDEFGHI 

 T1 T2 T3 T4  T5 T6 T7 

1 [A] A[B] AB[C] ABC[A] ABCA[B] ABCAB[C] ABCABC[A] 

2 - 

Dis = 0 

Len = 0 

- 

Dis = 0 

Len = 0 

- 

Dis = 0 

Len = 0 

[ABCABC] 

Dis = 3 

Len = 6 

[BCABC] 

Dis = 3 

Len = 5 

[CABC] 

Dis = 3 

Len = 4 

[ABC] 

Dis = 6 

Len = 3 

3 Loc = 1 Loc = 0 Loc = 1 Loc = 0 Loc = 1 Loc = 0 Loc = 0 

4 Pfx = 1 Pfx = 0 Pfx = 1 Pfx = 0 Pfx = 1 Pfx = 0 Pfx = 0 

5 Sum = 1 Sum = 1 Sum = 2 Sum = 2 Sum = 3 Sum = 3 Sum = 3 

6 (0,B,A) (0,A,C) (3,5,D) 

Output: (0,B,A)(0,A,C)(3,5,D)(4,4,E)(0,A,F)(6,5,G)(7,7,H)(8,8,I) 

  Table 8 shows the input as it is transformed in phases 1 through 6, but for 

simplicity, the table only shows the first seven threads. It starts with the match finding 

stage. Each thread (i.e., T1 through T7) represents a single byte in the input. These bytes 

are managed independently in parallel, and therefore, during the match phase, they are 

not aware of what the other threads’ findings are. T1 through T3 show no matches. T4 

shows the first match of ABCABC for the given byte [A]. This match starts at a distance 

of three from the starting position and finds a match of six bytes in total. Both T4 and T5 

can traverse back three positions to find the start of their match (i.e., Dis). Iterating from 

that match point to the last matching byte in the input gives the length value (i.e., Len). In 

T7, the furthest match is used because no greater length matches are found. 

Row three shows how the locations are marked. For this input, the algorithm 

performed two parallel iterations to determine which of the matched and unmatched triple 

locations to use. As expected, T1 holds the first triple and accounts for T2’s byte. T2’s 

byte is stored in the length portion of the triple, the distance remains zero, and the letter 

“A” is stored in the value position of the triple. This procedure of storing the subsequent 

byte (i.e., T2’s B) in the length position is used for all unmatched triples. 
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T5 shows the first instance of a matched triple being used. Although T4 

technically had a match found, that byte is already accounted for by T3’s unmatched 

triple. So, the first match triple saved is T5’s. T5’s triple accounts for T6 and T7’s byte. 

All of this is shown in rows three through six. Row three shows the locations marked for 

the triples. Row four shows the location array’s values being stored in the prefix array to 

prepare for the prefix sum, and row five shows how each location marked iterates the 

sum value stored during the prefix sum. Row six shows the triples created as a result of 

the previous phases. 

The first two triples shown in Table 8 are for unmatched cases, where the 

subsequent byte is stored in the length position of the triple. The third triple in the 

example shows a match case that covers T5 through T9 for the match and includes the 

subsequent byte (i.e., T10’s) in the value position of the triple.  

The final row of the table shows the fully compressed output after the algorithm 

finishes. This shows a reduction in bytes from the original 40 bytes to the compressed 24 

bytes. Each triple represents three bytes, and there are eight triples. This is how the 

compressed size is calculated, and the resulting compression ratio is rounded to 1.67. 

Parallel Decoder 

The decoder employs two important techniques to allow for parallelization: prefix 

sum and union find. It is not uncommon for prefix sum or union find (i.e., disjoint-set 

data structure) to be used for parallelizing serial algorithms [6][10]. From what my 

research has indicated thus far, no previous works use these techniques together on LZ77. 

The implementation is described in detail within Figure 3, and Table 9 exemplifies the 

parallel decoding process via the same example input used in previous sections. 
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Figure 3: Parallel Phases of the Decoder. 

Table 9: Parallel Decoder – Example 

Input: (0,B,A) (0,A,C) (3,5,D) (4,4,E) (0,A,F) (6,5,G) (7,7,H) (8,8,I) 

 T1 T2 T3 T4 T5 T6 T7 T8 

1 (0, B, A) (0, A, C) (3, 5, D) (4, 4, E) (0, A, F) (6, 5, G) (7, 7, H) (8, 8, I) 

2 AB = 2 CA = 2 5 + D = 6 4 + E = 5 FA = 2 5 + G = 6 7 + H = 8 8 + I = 9 

3 AB CA _ _ _ _ _ D _ _ _ _ E FA _ _ _ _ _G _ _ _ _ _ _ _H _ _ _ _ _ _ _ _ I 

4 AB CA BCABCD ABCDE FA BCDEFG ABCDEFGH ABCDEFGHI 

OUTPUT = ABCABCABCDABCDEFABCDEFGABCDEFGHABCDEFGHI 

In Figure 3, Phase 1 pairs with rows 1 and 2 in Table 9. This may seem strange 

because row 1 just shows the nine triples unchanged. However, the triples themselves 

hold the data necessary to drive all phases of the algorithm. What row 1 represents is the 

division of the input among the available threads. In this example, there are a total of 8 

threads, one for each triple. Each triple can be processed independently, and given the 

triple’s length and value data, each thread knows how many bytes it produces for the 

decoded output.  

There are two possible cases: unmatched and matched triples. In the unmatched 

cases, the triple’s length and value positions each hold a byte for the output and are 

always going to account for two bytes of the output. This is due to the added storage 

condition described at the beginning of the Approach section.  In match cases, the triple’s 

length position holds the size of the match, and the triple’s value holds one byte for the 
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output. This accounts for length + 1 number of bytes for the output, which is handled by 

the triple’s thread. This addition can be seen in row 2 of Table 9. It is with these numbers 

that the prefix sum array is populated. Each number represents one value per index of the 

prefix sum array and will be used in Phase 2’s operation. The populated data for this 

example can be seen in the Prefix Array Populated column of Table 10, where each “T” 

value represents a thread. 

For Phase 2, the values populated in the previous phase must now undergo the 

same inclusive prefix sum operation I referenced in the Parallel Encoder section [16]. 

This provides the precise index range each thread can safely operate within. Without this 

range, any attempt to do the subsequent phases would result in data race conditions. The 

result of this prefix sum can be seen in the Prefix Sum column of Table 10. Each number 

in said column will be used to determine what output index to start and stop populating 

data within. In Table 10, thread 1 starts at 0 and can submit write changes to all output 

indices less than 2. Thread 8 can submit write changes to all output indices starting from 

thread 7’s Prefix Sum value to indices less than 40. In the later phases, both the parent 

and output arrays use the prefix sum values to write in a thread safe manner. 

Table 10: Phase Data – Example 

T Encoding Prefix Sum 

Array Populated 

Prefix 

Sum 

Populated 

Parent Array 

Find Operation Matches 

1 (0, B, A) 2 2 AB   

2 (0, A, C) 2 4 CA   

3 (3, 5, D) 6 10 _ _ _ _ _ D BCABCD BCABC 

4 (4, 4, E) 5 15 _ _ _ _ E ABCDE ABCD 

5 (0, A, F) 2 17 FA   

6 (6, 5, G) 6 23 _ _ _ _ _ G BCDEFG BCDEF 

7 (7, 7, H) 8 31 _ _ _ _ _ _ _ H ABCDEFGH ABCDEFG 

8 (8, 8, I) 9 40 _ _ _ _ _ _ _ _ I ABCDEFGHI ABCDEFGH 

Output = ABCABCABCDABCDEFABCDEFGABCDEFGHABCDEFGHI 

Phase 3 can be seen in row 3 of Table 9 or in the Populated Pared Array column 
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of Table 10. This stage of the algorithm is used to prepare the parent array for Phase 4’s 

union find operation. In order to populate this correctly, an array that is the size of the 

output plus 256 is used. This padding of 256 indices is referred to as the offset, and the 

offset is used specifically because there are 256 values possible for any byte in the input. 

In other words, each index of the offset can be viewed as a value for every possible byte 

being decoded. The parent array keeps the offset unpopulated and uses the 0 to 255 

indices themselves as parent references for matched bytes. 

The parent array is populated starting from 256 onward and uses the prefix sum 

values found in the previous phase to be sure all writes are done in a thread safe manner. 

All unmatched values are decoded without conflict and can be used to populate the 

indices after the offset. However, this is not done by inserting the value into the array. 

Instead, the parent array value is set to be equal to the offset’s index matching it. This is 

called a parent pointer because it is literally pointing to its numeric equivalent, and it is 

used for both unmatched and matched cases. The unmatched cases are self-explanatory as 

they are stored directly in the length and value positions of the triple and can point to 

their parent directly. Matched cases are handled differently. Instead of pointing to an 

index within the offset, they point to the position known to be where their match is 

located. This allows for a chain of references to be resolved in a near constant work time 

complexity, during Phase 4. 

In Phase 4, each thread performs a find operation for every value they have that 

has yet to be accounted for (i.e., the match cases). Union find is a known means by which 

this operation can happen in a thread safe manner [12]. Essentially, each parent pointer 

chains with the next and results in populating all remaining parent array indices that are 
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outside of the offset’s range. The multi-threaded chains each end when a parent pointer 

referencing an index from the offset because that index is the equivalent of the matched 

byte. Table 9’s row 4 matches this phase, and Table 10’s Find Operation column does 

as well. That covers the decoder implementation on the GPU. 
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V. EXPERIMENTAL METHODOLOGY 

My work includes the modified serial versions of the LZ77 encoder and decoder, 

the parallelized version of the decoder, and the parallelized version of the encoder. To 

test each approach, I compare the serial implementations to the parallel implementations 

and do a comparative study with other parallelized attempts at lossless encoding and 

decoding in literature. The test sets include images, spreadsheets, text documents, and 

large graph files. Both the serial and parallel approaches successfully encode and decode 

all of the test data. Additionally, the parallel and serial versions are interchangeable in 

that both serial and parallel versions produce the same result, but each algorithm is tested 

and verified independently. 

The following table includes the current list of files used in the test set, their file 

type, and the size of the file. 

Table 11: Test Set Files 

File Name Size in MB File Type 

Large Canterbury Corpus: [11] 

Bible.txt 4.05 Text 

E.coli  4.64 Text 

world192.txt 2.47 Text 

Graph Dataset: [13] 

rgg_n_2_22_s0.egr 259.65 Graph 

cit-Patents.egr 147.25 Graph 

coPapersDBLP.egr 124.13 Graph 

in-2004.egr 114.26 Graph 

as-skitter.egr 95.55 Graph 

2d-2e20.sym.egr 37.72 Graph 

amazon0601.egr 21.16 Graph 

internet.egr 3.60 Graph 

Generated Dataset: 

Test4.bmp 9.36 Image 

Canterbury Corpus: [11] 

Kennedy.xlsx 1.03 Spreadsheet 
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These varied file types and sizes are used to test validity, provide a wide scope of 

analysis, and ensure that there are no corner cases for the encoder or decoder versions. 

Sources for the files used are listed in the table. All but the image file are used in other 

parallelization and compression focused publications and provide a great baseline from 

which to interpret test results.  

I used an NVIDIA GeForce RTX 3090 GPU and an Intel Xeon Gold 6226R CPU 

for all my tests. 
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VI. ANALYSIS & RESULTS 

There are two metrics by which I analyze the algorithms: compression ratio and 

throughput. The compression ratio is the size of the original data divided by the size of 

the compressed data. The timers used to measure the runtime, from which I calculate the 

throughput, are captured on the same section of code in my parallel and serial codes.  

In addition to the serial versus parallel comparison, I also compare each version 

with existing algorithms from the literature. When comparing my algorithms to other 

compression approaches, great effort was expended in being sure that the timed sections 

in the code were comparable. In some cases, different timed sections within my code are 

used to ensure fairness in analysis. 

Serial vs. Parallel Results 

For the test set, two separate measurements of time were taken: (1) the time for 

both data being copied to the GPU and the compression/decompression portion, (2) just 

the time of the compression/decompression on the GPU. The reason the time 

measurement with the data copying was included is due to how one of the benchmarks 

measured their time. It was important to have my time measurements be comparable with 

the benchmarks to be sure my analysis was as accurate as possible. So, the following 

tables represent the two different throughput measurement sets. The time measurement 

without copying data to the GPU will be referred to as “default” and the time 

measurement including the data copying will be referred to as “extended”. All table 

references to encoder throughput will be labeled “ET”, and all table references to decoder 

throughput will be labeled “DT”. 
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Table 12: Serial and Default Parallel Throughput Results. 

Test File Serial ET 

(MB/s) 

Parallel  

ET (MB/s) 

Serial DT 

(MB/s) 

Parallel 

DT (MB/s) 

Encoder 

Speedup 

Decoder 

Speedup 

rgg_n_2_22_s0.egr 20.54 1,071.06 147.27 10,258.22 52.14 69.65 

cit-Patents.egr 13.29 1,124.12 117.69 37,540.00 84.59 318.97 

coPapersDBLP.egr 19.19 990.98 146.31 20,313.85 51.65 138.84 

in-2004.egr 20.46 697.35 161.04 10,829.63 34.08 67.25 

as-skitter.egr 17.98 873.59 120.51 15,698.36 48.58 130.27 

2d-2e20.sym.egr 13.72 818.13 119.69 29,396.71 59.65 245.61 

amazon0601.egr 15.28 802.96 102.93 28,480.29 52.56 276.68 

test4.bmp 15.92 654.86 106.03 21,288.53 41.14 200.78 

E.coli 6.03 551.34 106.46 11,258.96 91.44 105.75 

bible.txt 11.17 658.70 85.17 9,981.24 58.97 117.19 

internet.egr 14.35 489.49 129.60 6,623.45 34.12 51.11 

world192.txt 12.60 585.77 81.26 4,546.69 46.50 55.95 

kennedy.xls 23.59 550.81 182.94 2,954.79 23.35 16.15 

Geometric Mean 14.94 733.95 120.45 12,757.16 49.13 105.91 

 Table 12 shows the throughputs of the serial version and default parallel version 

of the encoder. Using these throughputs, the speedup values for the parallel code can be 

derived. The bottom row shows the geometric mean of the column values. For example, 

Table 12 shows a geometric mean speedup of 49.13 for the parallel encoder and a 

geometric mean speedup of 105.91 for the parallel decoder. The is a substantial 

improvement on throughput for both the parallel encoder and decoder compared to the 

serial code and shows how massively parallelizing the algorithms improves the overall 

efficiency of the lossless compression process. Table 13 shows the extended 

throughputs, which include preparation items like copying data to the GPU before 

processing the data. The default throughputs focus on how much time the actual 

compression and decompression sections of the code actually take. 

Table 13: Serial and Extended Parallel Throughput Results 

Test File Serial ET 

(MB/s) 

Extended 

ET (MB/s) 

Serial DT 

(MB/s) 

Extended 

DT (MB/s) 

Extended 

Encoder 

Speedup 

Extended 

Decoder 

Speedup 

rgg_n_2_22_s0.egr 20.54 931.85 147.27 10,258.22 45.36 8.06 

cit-Patents.egr 13.29 936.01 117.69 37,540.00 70.43 9.70 

coPapersDBLP.egr 19.19 876.16 146.31 20,313.85 45.66 8.89 

in-2004.egr 20.46 643.66 161.04 10,829.63 31.46 7.94 
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as-skitter.egr 17.98 778.83 120.51 15,698.36 43.31 10.36 

2d-2e20.sym.egr 13.72 721.35 119.69 29,396.71 52.59 10.24 

amazon0601.egr 15.28 715.84 102.93 28,480.29 46.86 12.29 

test4.bmp 15.92 595.41 106.03 21,288.53 37.41 11.22 

E.coli 6.03 513.16 106.46 11,258.96 85.11 11.07 

bible.txt 11.17 599.39 85.17 9,981.24 53.66 12.79 

internet.egr 14.35 458.95 129.60 6,623.45 31.99 8.40 

world192.txt 12.60 534.38 81.26 4,546.69 42.43 11.63 

kennedy.xls 23.59 511.67 182.94 2,954.79 21.69 4.88 

Geometric Mean 14.94 660.42 120.45 1,149.42 44.21 9.54 

 The thing to note in Table 13 is that the geometric mean change for speedup is 

more pronounced in the extended decoder than it is in the extended encoder. Timing the 

data copying portion of the code with the compression section of the code can 

significantly change the time, but even with this inclusion, the extended decoder speedup 

is 9.54. The encoder speedup is 44.21. The point of distinguishing these differences is 

that the CULZSS benchmark comparison uses the extended throughputs and not the 

default. CULZSS includes portions of their setup in their timed sections, and in order to 

be fair, I made the extended timers to accommodate that difference. 

 Next, it is important to cover the compression ratio of the encoder. As stated 

previously, the serial and parallel compression ratios are identical due to the fact that the 

exact same triple scheme is used in both cases. Table 14 shows how the original size 

compares to the compressed size provided by my encoders and shows the resulting 

compression ratios. 

Table 14: Compression Output Comparison 

Test Files Original Size (MB) Compressed Size (MB) Compression 

Ratio 

rgg_n_2_22_s0.egr 259.65 199.58 1.30 

cit-Patents.egr 147.25 189.27 0.78 

coPapersDBLP.egr 124.13 83.25 1.49 

in-2004.egr 114.26 57.45 1.99 

as-skitter.egr 95.55 72.77 1.31 

2d-2e20.sym.egr 37.72 40.69 0.93 
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amazon0601.egr 21.16 19.05 1.11 

test4.bmp 9.36 8.25 1.13 

E.coli 4.64 2.74 1.69 

bible.txt 4.05 3.20 1.26 

internet.egr 3.60 1.98 1.82 

world192.txt 2.47 2.21 1.12 

kennedy.xls 1.03 0.29 3.49 

Geometric Mean  1.39 

 There are only two instances in the test set where the encoder fails to compress 

the data down to a smaller size. Those instances are “cit-Patents.egr” and “2d-

2e20.sym.egr”. All other files were compressed to a smaller size, and given the 

throughput data, all of the files were processed faster with the Parallel implementation. 

So, only two out of eight graph files failed to reduce in size, and all of the other file types 

tested were successfully reduced. That does not mean that all files of those types will 

successfully reduce in every case, but it does show that the algorithm generally 

compresses data of differing types well. Take into account the speedup, and one can also 

conclude that the parallel implementation is a significant improvement in throughput 

compared to serial LZ77 compression. 

Benchmark Tests 

 There were very few offerings of preexisting parallel LZ77 implementations 

available to test my results against. Many emails were sent to professors of related 

publications and only a few responded or had publicly accessible code for me to test. 

However, there were three different compression algorithms that I was able to utilize as 

my benchmark suite, and they cover different approaches of both parallel and serial 

lossless compression. 



 

31 

PLZ 

 The first benchmark used was an encoder-only, CPU parallelized compression 

algorithm that is functionally equivalent to LZ77 [9]. This algorithm is called PLZ and 

was covered in the Previous Work section. PLZ has three different modes of 

compression. Each mode represents a different throughput capability of PLZ. Therefore, I 

chose to use the fastest mode to compare my code against. The throughput comparison 

can be seen in Table 15. The second column shows the throughputs for the fastest PLZ 

mode, and the third and fourth columns show my serial and parallel throughput compared 

to PLZ. 

Table 15: PLZ Throughput Comparison 

Test Files PLZ 

Throughput 

(MB/s) 

Serial ET / PLZ 

Throughput 

Parallel ET / PLZ 

Throughput 

rgg_n_2_22_s0.egr 2.51 8.19 426.94 

cit-Patents.egr 1.93 6.89 582.48 

coPapersDBLP.egr 2.54 7.56 390.39 

in-2004.egr 2.78 7.35 250.53 

as-skitter.egr 2.19 8.22 399.54 

2d-2e20.sym.egr 2.67 5.15 306.94 

amazon0601.egr 2.56 5.96 313.05 

test4.bmp 3.84 4.14 170.43 

E.coli 3.29 1.83 167.59 

bible.txt 3.58 3.12 183.90 

internet.egr 4.39 3.27 111.60 

world192.txt 4.21 2.99 139.02 

kennedy.xls 9.11 2.59 60.44 

Geometric Mean 3.21 4.65 228.39 

 As seen in Table 15, the PLZ throughput geometric mean is 3.21 MB/s, and when 

compared to both my serial and parallel encoders, it is far slower than my 

implementations for every file tested. Bearing in mind that PLZ is a parallelized LZ77 

equivalent, it might seem surprising that even the serial implementation has a greater 

throughput, but there happens to be a very good reason why it is slower. The compression 

ratio it achieves is much greater than mine. This is a common trade off in compression 
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algorithms [18]. Depending on the use case for an algorithm, people may choose one 

aspect over the other. PLZ would be the better choice if compression ratio was the 

highest priority. However, if throughput was more important for the use case, then both 

my serial and parallel implementations would be better choices. Table 16 shows how my 

compression ratio compares with PLZ’s. 

Table 16: PLZ Compression Ratio Comparison 

Test Files Original 

Size (MB) 

PLZ Compressed 

Size (MB) 

PLZ Compression 

Ratio 

Encoder Ratio / 

PLZ Ratio 

rgg_n_2_22_s0.egr 259.65 30.76 8.44 0.15 

cit-Patents.egr 147.25 32.78 4.49 0.17 

coPapersDBLP.egr 124.13 3.79 32.72 0.05 

in-2004.egr 114.26 6.52 17.52 0.11 

as-skitter.egr 95.55 13.42 7.12 0.18 

2d-2e20.sym.egr 37.72 8.65 4.36 0.21 

amazon0601.egr 21.16 3.85 5.49 0.20 

test4.bmp 9.36 1.67 5.59 0.20 

E.coli 4.64 0.43 10.72 0.16 

bible.txt 4.05 0.34 11.99 0.11 

internet.egr 3.60 0.65 5.54 0.33 

world192.txt 2.47 0.19 12.80 0.09 

kennedy.xls 1.03 0.15 6.76 0.52 

Geometric Mean 8.54 0.16 

 Referencing Table 14, my encoder ratio geometric mean is 1.39. If that is 

compared with the PLZ ratio geometric mean, it is clear why their algorithm took so long 

to complete. It is able to achieve an 8.54 compression ratio geometric mean, which is 

excellent. Every single file shows a red ratio in the Encoder Ratio / PLZ Ratio column 

because none of my ratios beat theirs. However, the time cost to achieve this great ratio is 

significant. This illustrates the common tradeoff between compression ratio and 

throughput. The other benchmarks used in this section show the same tradeoff to a degree 

but not as clearly as this PLZ example. 
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CULZSS 

 For the second benchmark, I chose a well-cited algorithm by the name of 

CULZSS [14]. It is a parallelized approach to LZSS, which is closely related to LZ77 [8]. 

Their approach includes both CPU and GPU parallelization techniques, as described in 

the Previous Work section. It is because of their unique approach that it was prudent to 

use the extended throughput timers instead of the default timers I use for the other two 

benchmarks. To do otherwise would have been an unfair comparison. This comparison 

can be found in Table 17. As stated before, ET stands for Encoder Throughput, and DT 

stands for Decoder Throughput. Additionally, Table 17 reduces the word “Extended” to 

Ext. in order to make the headers more readable. 

Table 17: CULZSS Throughput Comparison 

Test Files CULZSS 

ET (MB/s) 

CULZSS 

DT (MB/s) 

Serial ET / 

CULZSS 

ET 

Ext. ET / 

CULZSS 

ET 

Serial DT / 

CULZSS 

DT 

Ext. DT / 

CULZSS 

DT 

rgg_n_2_22_s0.egr 101.99 214.90 0.20 9.14 0.69 5.53 

cit-Patents.egr 105.73 232.22 0.13 8.85 0.51 4.91 

coPapersDBLP.egr 144.42 213.94 0.13 6.07 0.68 6.08 

in-2004.egr 159.54 244.50 0.13 4.03 0.66 5.23 

as-skitter.egr 125.47 233.97 0.14 6.21 0.52 5.34 

2d-2e20.sym.egr 122.97 289.54 0.11 5.87 0.41 4.23 

amazon0601.egr 86.66 205.25 0.18 8.26 0.50 6.16 

test4.bmp 56.12 112.57 0.28 10.61 0.94 10.57 

E.coli 32.19 67.14 0.19 15.94 1.59 17.55 

bible.txt 31.49 58.80 0.35 19.03 1.45 18.53 

internet.egr 29.08 57.74 0.49 15.78 2.24 18.85 

world192.txt 20.25 38.56 0.62 26.39 2.11 24.51 

Geometric Mean 68.74 134.77 0.21 9.81 0.86 8.71 

 Table 17’s first two columns show CULZSS’ encoder throughput and decoder 

throughput, respectively. The subsequent four columns include the serial encoder 

comparison, the parallel encoder comparison, the serial decoder comparison, and the 

parallel decoder comparison. Unsurprisingly, CULZSS beats my serial code 

considerably, but this is a good thing. It further shows that this algorithm is a good 
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comparator with which my parallel algorithms can be analyzed. Where PLZ effectively 

illustrated the tradeoff between time and compression, CULZSS balances its compression 

ratio cost similarly to mine. This is illustrated in both Table 17 and Table 18’s 

comparison columns. 

 Looking specifically at the parallel comparison of throughputs in Table 17’s fifth 

and seventh columns, it is clear that my algorithm’s throughput exceeds CULZSS’ 

encoder and decoder by a geometric mean of 9.81 and 8.71, respectively. In fact, every 

file processed by the parallel encoder and decoder reported a greater throughput than 

what CULZSS did for those same files. 

Table 18: CULZSS Compression Ratio Comparison 

Test Files Original 

Size (MB) 

CULZSS Compressed 

Size (MB) 

CULZSS 

Compression Ratio 

Encoder Ratio / 

CULZSS Ratio 

rgg_n_2_22_s0.egr 259.65 222.39 1.17 1.11 

cit-Patents.egr 147.25 145.34 1.01 0.77 

coPapersDBLP.egr 124.13 98.86 1.26 1.19 

in-2004.egr 114.26 69.74 1.64 1.21 

as-skitter.egr 95.55 74.98 1.27 1.03 

2d-2e20.sym.egr 37.72 36.00 1.05 0.88 

amazon0601.egr 21.16 18.39 1.15 0.97 

test4.bmp 9.36 7.91 1.18 0.96 

E.coli 4.64 3.42 1.36 1.25 

bible.txt 4.05 3.17 1.28 0.99 

internet.egr 3.60 1.57 2.30 0.79 

world192.txt 2.47 1.53 1.62 0.69 

Geometric Mean 1.32 0.97 

 Table 18 shows the compression ratio of CULZSS in the CULZSS Compression 

Ratio column. Unlike with my algorithm, CULZSS successfully reduces every file. This 

includes the two files that my algorithm failed to compress to a smaller size. However, 

when CULZSS’ ratios are compared to my encoder ratios in the Encoder Ratio / 

CULZSS Ratio column, the geometric mean result is nearly one-to-one. As an additional 
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test, I ran the algorithms on a few more files to see if the trend would remain. Depending 

on the files I added, all of which were large, the geometric mean consistently hovered 

either above or below 1. Meaning, CULZSS and my encoder have nearly a one-to-one 

ratio trend. Additionally, if you look at Table 14, the geometric mean for my encoder is 

1.39. That is larger than CULZSS’ 1.32 geometric mean of the same files. However, 

when calculating the comparison, the result is 0.97. This shows how the ratio variance 

plays a role in the resulting geometric mean. 

It is also important to note that my serial decoder performs better on the smaller 

files of the test set than CULZSS’ decoder, but this was expected. The Kennedy.xlsx file 

was removed for this precise reason. CULZSS specifies the file sizes must exceed 1MB, 

and Kennedy.xlsx was too close to that that size for CULZSS to process it. CULZSS’ 

design specifications require larger files in order to be truly efficient, but this is quite 

reasonable given the costs of exchanging data from host to device in GPU programming. 

My design allows for smaller files than CULZSS to still run efficiently. However, mine 

also loses out to the serial version if the files get small enough. This is an excellent 

example of the overhead associated with parallelizing algorithms. In both algorithms 

there is a lower bound where the overhead exceeds the benefit. 

To summarize this benchmark, my parallel encoder consistently runs faster on all 

files of the data set by a substantial margin, and although CULZSS successfully reduces 

two files that my algorithm cannot, it has nearly the same geometric-mean compression 

ratio. 

LZ4 

 For the final benchmark, I used LZ4. The LZ4 algorithm being tested for this 
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benchmark is serial, but an adapted parallel version of it does exist. The reason for 

choosing this algorithm is explained further in the Previous Work section. However, it is 

a descendant of LZ77 that is highly optimized to compress on the CPU [19]. LZ4’s 

compression is far more complex in how it works than my algorithm and the classic 

LZ77 algorithm. To learn more about how it works, please refer to the LZ4 portion of the 

Previous Work section of this document. It has a GitHub repository that is well 

contributed to and a package maintained by Microsoft [15]. The reason this algorithm has 

been chosen is that it is a contemporary, lossless, and CPU based compression algorithm 

that can demonstrate how my parallelization of LZ77 might compete with modern 

descendants of LZ77. 

 There are two different modes available for LZ4 compression. The mode that is 

optimized for compression ratio is selected by passing the flag “9” as a command line 

argument, and the mode that is optimized for throughput is selected by passing the flag 

“1”. I ran both modes, and decided to focus the comparison on the throughput optimized 

option. This was chosen due to the fact that the ratio optimized version was unanimously 

slower and had a better compression ratio for all files except for Kendedy.xlsx. The better 

compression ratio is obviously achieved at the cost of time like with PLZ. So, it made 

more sense to compare with the mode similar in focus to my own. The comparison of 

mode “1” can be seen in Table 19. 

Table 19: LZ4 Throughput Comparison 

Test Files LZ4 ET 

(MB/s) 

LZ4 DT 

(MB/s) 

Serial ET 

/ LZ4 ET 

Parallel ET 

/ LZ4 ET 

Serial DT 

/ LZ4 DT 

Parallel DT 

/ LZ4 DT 

rgg_n_2_22_s0.egr 347.65 800.02 0.06 3.08 0.18 12.82 

cit-Patents.egr 773.81 849.92 0.02 1.45 0.14 44.17 

coPapersDBLP.egr 749.01 887.59 0.03 1.32 0.16 22.89 

in-2004.egr 802.46 892.46 0.03 0.87 0.18 12.13 

as-skitter.egr 428.72 757.09 0.04 2.04 0.16 20.74 

2d-2e20.sym.egr 494.63 706.15 0.03 1.65 0.17 41.63 
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amazon0601.egr 375.64 679.10 0.04 2.14 0.15 41.94 

test4.bmp 366.86 660.03 0.04 1.79 0.16 32.25 

E.coli 325.80 638.72 0.02 1.69 0.17 17.63 

bible.txt 253.92 626.10 0.04 2.59 0.14 15.94 

internet.egr 280.54 613.59 0.05 1.74 0.21 10.79 

world192.txt 284.68 620.52 0.04 2.06 0.13 7.33 

kennedy.xls 380.89 659.46 0.06 1.45 0.28 4.48 

Geometric Mean 417.99 715.84 0.04 1.76 0.17 17.82 

 In Table 19, the serial codes run significantly slower than LZ4. This is not 

surprising because I was essential testing LZ77 against its highly optimized descendant. 

What is interesting is that the parallel encoder and decoder comparison to LZ4 has a 

geometric mean speedup of 1.76 and 17.82, respectively. This is obviously an 

improvement to the serial LZ4 algorithm mode that focuses on throughput, especially for 

the decoder throughput comparison. The encoder throughput comparison makes sense 

when taking into account the compression ratio. Similar to PLZ, there is a clear tradeoff 

between throughput and ratio. This can be seen in Table 20. 

Table 20: LZ4 Compression Ratio Comparison 

Test Files Original Size 

(MB) 

LZ4 Compressed 

Size (MB) 

LZ4 Compression 

Ratio 

Encoder Ratio / 

LZ4 Ratio 

rgg_n_2_22_s0.egr 259.65 151.00 1.72 0.76 

cit-Patents.egr 147.25 147.25 1.00 0.78 

coPapersDBLP.egr 124.13 25.52 4.86 0.31 

in-2004.egr 114.26 24.91 4.59 0.43 

as-skitter.egr 95.55 66.23 1.44 0.91 

2d-2e20.sym.egr 37.72 36.30 1.04 0.89 

amazon0601.egr 21.16 17.20 1.23 0.90 

test4.bmp 9.36 6.43 1.46 0.78 

E.coli 4.64 2.60 1.79 0.95 

bible.txt 4.05 1.98 2.05 0.62 

internet.egr 3.60 2.18 1.65 1.10 

world192.txt 2.47 1.23 2.02 0.55 

kennedy.xls 1.03 0.37 2.75 1.27 

Geometric Mean 1.87 0.74 

 It is clear that the improvement to throughput, which my encoder shows in this 

dataset, is balanced by LZ4’s better compression ratio. The column Encoder Ratio / LZ4 
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Ratio shows this. Only two of the files have a better compression ratio when comparing 

my encoder to LZ4’s, and they are among the smaller files tested. What this further 

illustrates is the costs associated with optimizing for throughput or for compression 

ratios. The LZ4 mode tested was the mode optimized for throughput, and a parallelized 

version of its predecessor (i.e., my encoder) outpaced that mode’s throughput. Even with 

the better ratios, this is a good example of how an algorithm that is exceptionally better in 

serial can be outpaced by a simpler solution in parallel. This does not prove that LZ4 

would not outmatch my algorithm when parallelized, but it does show how parallelism is 

invaluable when it comes to time-based optimizations. 
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VII. SUMMARY AND CONCLUSION 

My work started by creating a serial version of LZ77 and included some byte 

saving techniques to improve the compression ratio. By preventing single byte matches 

and adding a storage condition to unmatched triples, I was able to improve the 

compression ratio. I then converted the serial codes into massively parallelized versions 

of the same encoding and decoding scheme. This created a foundation to compare the 

serial throughput against the parallel throughput. The parallel throughput was much 

improved due to how the input bytes were split among threads on the GPU, processed in 

phases on the GPU to limit the need for data synchronization, and by using techniques 

from the literature to prevent data races. For the parallel encoder, I divided the bytes to be 

individually processed by threads, marked each overlapping location of match and 

unmatched triples, reduced the overlapping triple locations to a non-overlapping set that 

covered the entire input, used a prefix sum to determine the number of compressed 

triples, and then created said triples in parallel. For the decoder, I divided the triples to be 

independently processed on GPU threads, calculated an inclusive prefix sum using the 

provided triple data, populated a parent array with a padding of 256 bytes, and performed 

a union-find operation on the parent array to restore the original input values. Each phase 

runs in parallel. 

This approach to massively parallel compression and decompression made the 

difficult task of parallelizing LZ77’s dependencies feasible. By utilizing storage saving 

techniques that resemble LZSS’, I was able to improve upon the compression ratio and 

approximately match more contemporary algorithms like CULZSS in compression ratio. 

This was done with a faster throughput than CULZSS. That already shows that there is 
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merit in my approach. Although both LZ4 and especially PLZ provide better compression 

ratios, my algorithm’s throughput outpaced theirs consistently. When looking at the 

parallel decoder throughput alone, it always produced faster throughputs than both LZ4 

and CULZSS, and it exceeded LZ4 in geometric mean by nearly 18 times. 

In conclusion, the goal of massively parallelizing LZ77 on the GPU was met, and 

the results show that my parallelization approach could be a better option than some 

contemporary algorithms if the use case emphasizes throughput over compression ratio. 

There is room to improve upon the compression ratio, but it is unclear whether those 

optimizations would be at the cost of throughput. Regardless, the benefits of this 

massively parallelized approach used for both the decoder and encoder are clear. 
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