

MASSIVELY PARALLEL LZ77 COMPRESSION AND DECOMPRESSION

ON THE GPU

by

Kayla Wesley, B.S.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Computer Science

December 2022

Committee Members:

 Martin Burtscher, Chair

 Vangelis Metsis

 Wuxu Peng

COPYRIGHT

by

Kayla Wesley

2022

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Kayla Wesley, authorize duplication of this work,

in whole or in part, for educational or scholarly purposes only.

DEDICATION

To all who made this opportunity possible.

v

ACKNOWLEDGEMENTS

To Dr. Martin Burtscher, I would like to give my most heartfelt thank you for

asking me to join your group and guiding me during my time at Texas State University.

Your knowledge, kindness, and leadership has made this experience an amazing

opportunity for growth as an engineer, and I am incredibly grateful for the privilege of

being included in your group. To the Lossy Compression group members, thank you for

the critical support during my research and providing very valuable feedback during the

research process. To the ECL group, it has been a privilege to work alongside you and to

hear about your research as it happens. I would also like to thank the committee members

of my thesis for taking an interest in my work and for providing an excellent education in

the respective classes I have taken from them. Lastly, I would like to thank my husband

for his tireless support of me and my educational goals. You have all made this possible,

and I cannot properly bring to words the gratitude I feel regarding your support.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... viii

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS .. xi

ABSTRACT .. xii

CHAPTERS

I. INTRODUCTION ... 1

II. BACKGROUND INFORMATION ... 2

LZ77 Example .. 2

III. PREVIOUS WORK .. 7

IV. APPROACH ... 10

Implementation Definitions .. 11

Serial Encoder ... 11

Serial Decoder ... 12

Parallel Encoder .. 13

Parallel Encoder Example ... 18

Parallel Decoder .. 20

V. EXPERIMENTAL METHODOLOGY ... 25

VI. ANALYSIS & RESULTS .. 27

Serial vs. Parallel Results .. 27

Benchmark Tests ... 30

PLZ ... 31

CULZSS .. 33

vii

LZ4 .. 35

VII. SUMMARY AND CONCLUSION .. 39

REFERENCES ... 41

viii

LIST OF TABLES

Table Page

1. LZ77 Definitions ... 2

2. LZ77 Encoder – Example ... 3

3. Parallel LZ77 Data Dependency of Step 4 & 5 .. 5

4. Definitions of LZ77 Implementation Modifications... 11

5. Serial Encoder – Example ... 11

6. Serial Decoder – Example .. 13

7. Parallel Encoder & Decoder Definitions .. 15

8. Parallel Encoder – Example .. 19

9. Parallel Decoder – Example .. 21

10. Phase Data – Example .. 22

11. Test Set Files ... 25

12. Serial and Default Parallel Throughput Results.. 28

13. Serial and Extended Parallel Throughput Results .. 28

14. Compression Output Comparison ... 29

15. PLZ Throughput Comparison ... 31

16. PLZ Compression Ratio Comparison ... 32

17. CULZSS Throughput Comparison ... 33

18. CULZSS Compression Ratio Comparison ... 34

19. LZ4 Throughput Comparison ... 36

ix

20. LZ4 Compression Ratio Comparison ... 37

x

LIST OF FIGURES

Figure Page

1. Serial LZ77 – Iterative Data Dependency of Step 4 ... 4

2. Parallel Phases of the Encoder. ... 16

3. Parallel Phases of the Decoder. ... 21

xi

LIST OF ABBREVIATIONS

Abbreviation Description

i.e. That is

e.g. For example

ET Encoder Throughput

DT Decoder Throughput

Ext. Extended

Len Length

Dis Distance

Pfx Prefix Array

xii

ABSTRACT

Parallelizing data compression algorithms is difficult because algorithms like

LZ77 have iterative dependencies that cannot easily be circumvented. Previous

computation steps directly impact later steps in the algorithm, and parallelizing those

dependent steps can prove difficult. My solution is to express both the encoding and

decoding portions of LZ77 in terms of prefix sums, union-find operations, and other

parallelizable computations. The results show that this methodology is effective in

improving throughput. Compared to codes from the literature, my CUDA implementation

is an order of magnitude faster but tends to have a lower compression ratio.

1

I. INTRODUCTION

LZ77 is a data compression and decompression algorithm created by Abraham

Lempel and Jacob Ziv in 1977 [1]. Along with its variations, this powerful algorithm is

one of the most widely used lossless compression algorithms. For example, LZ77 is used

in LZSS, LZ4, DEFLATE/INFLATE and countless other compression algorithm

variations [2][3][4]. One of the most notable types resulting from LZ algorithms today is

PNG, and one of the most notable compressors is gzip [5].

LZ77 works by identifying common subsequences in input data and replacing

later occurrences of those common subsequences by a reference to a prior occurrence.

This is sometimes referred to as a dictionary-based reduction. LZ77 is relatively easy to

implement serially. However, decoding and especially encoding are challenging to

parallelize due to dependence chains that run from the beginning to the end of the

computation. In fact, no particularly efficient GPU versions of LZ77 exist. My work

endeavors to improve upon this. Firstly, I created versions of the serial LZ77

compression and decompression algorithms that focus on improving the compression

ratio. This was done using existing byte-saving techniques in the field of compression

and by combining those changes with the standard LZ77 implementation [14]. Secondly,

I made intermediate changes to the serial implementation in order to parallelize the

algorithm and then created efficient GPU implementations of my more parallelizable

codes.

2

II. BACKGROUND INFORMATION

This section outlines the definitions and background information pertinent to

understanding LZ77 as an algorithm and research area. An example input is used

throughout this document to explain precisely what LZ77 does and illustrate how each

algorithm I discuss differs from one another.

In the standard LZ77 algorithm, the example input is iterated through serially by

using a search window of previous input values. This iteration and search is used to find

subsequence matches of previous input occurrences. A look-ahead buffer is used to

compare input values that have yet to be processed with values in the search window. The

search window consists of input values that have already been processed by the algorithm

and may now be used to find matching subsequences. Each round’s iteration produces a

triple in the format: (distance to match, length of matched bytes, value saved). Table 1

contains definitions for the LZ77 algorithm described in this section.

Table 1: LZ77 Definitions

Terms Definitions

Match Input data that match previously processed subsequences within the input data.

Sliding Window

(or window)

The range of previously processed input data that the algorithm searches through

for a match.

Look-ahead

Buffer

The range of input data actively being processed when seeking matches in the

sliding window.

Rule 1 Copy the farthest match in the sliding window.

Rule 2 Copy the longest match in the sliding window.

NOTE: Rule 2 takes precedence over Rule 1

Triple The encoded format of (distance, length, value) for the compression scheme.

Distance The distance to where a match was found in the sliding window when counting

back from the byte being processed to the start of the match (i.e., right to left).

Length The length of the match that was found in the sliding window.

Value The value stored in the last element of the triple for that iteration of encoding.

LZ77 Example

The LZ77 example explained in this section uses a character string of forty bytes.

This same character string will be used throughout the document to exemplify the

3

differences in the algorithms I discuss.

Table 2: LZ77 Encoder – Example

Input: ABCABCABCDABCDEFABCDEFGABCDEFGHABCDEFGHI = 40 bytes

Step Sliding Window

Size = 10

Look Ahead

Size = 10

Encoding Matches

1 [A] BCABCABCDA (0, 0, A)

2 A[B] CABCABCDAB (0, 0, B)

3 AB[C] ABCABCDABC (0, 0, C)

4 ABC[A] BCABCDABCD (3, 6, D) ABCABC

5 ABCABCABCD[A] BCDEFABCDE (4, 4, E) ABCD

6 ABCABCABCDABCDE[F] ABCDEFGABC (0, 0, F)

7 ABCABCABCDABCDEF[A] BCDEFGABCD (6, 6, G) ABCDEF

8 ABCABCABCDABCDEFABCDEFG[A] BCDEFGHABC (7, 7, H) ABCDEFG

9 ABCABCABCDABCDEFABCDEFGAB

CDEFGH[A]

BCDEFGHI (8, 8, I) ABCDEFGH

TOTAL = 9 X 3 Bytes = 27 bytes < original 40 bytes.

 Table 2 shows a step-by-step example of a classically implemented LZ77

algorithm. Each step in the table represents a single iteration of the serial algorithm, and

all greyed out text in the sliding window column is out of bounds for the sliding window

size, which is set to ten. The look ahead buffer is also set to ten in this example. These are

set to ten to simplify and demonstrate how the sliding window works, but in practice,

LZ77 algorithms may use different sized sliding windows to process the data.

In step 1, the algorithm starts with an empty search window and nothing to match

[A] to. Step 2’s search window is not empty, but nothing matches [B]. So, the same

encoding scheme for a matchless state occurs. This matchless triple is stored as: (0, 0,

value). Both zeros indicate that no match exists for this iteration by saying the distance to

the match is 0, the length for number of matched bytes is 0, and the value to be stored in

the triple is the one currently being processed. Step 3 also stores a matchless triple for

[C]. The first match is found in step 4, where it can match all three stored values within

the sliding window and store this iteration’s triple as (3, 6, D). The length is 6 because

the match continues past the index holding [A] and matches the next two bytes. The

4

number 3 in the distance slot of the triple represents the location in the sliding window

that is three positions away from [A], counting right to left. Lastly, the value slot in the

triple stores the subsequent byte in the look ahead buffer. So, with a match of

“ABCABC”, it stores the byte that is after the second “C” in the look ahead buffer, and

that value happens to be “D”.

This example uses Rule 2, which is described in Table 1. Rule 2 can be seen in

step 5. In step 5, “ABC” can be matched at a distance of 10, but seeing as Rule 2 takes

precedence over Rule 1, the largest match (i.e., “ABCD”) is stored for that triple. If both

possible matches were the same size, Rule 1 would have been used as a tie breaker, and

the triple would have stored the farthest possible match in the search window.

The compression ratio for this example is: 40 bytes / 27 bytes = ~1.48. Given

different input sizes and byte sequences, the compression ratio can change, but this

example shows a reduction of 13 bytes in storage cost for the given input.

This example shows why my research is focused on parallelization and why LZ77

is difficult to parallelize. I focus on LZ77 because of its ability to reduce the size of files

by limiting byte redundancy, but LZ77 is difficult to parallelize due to the iterative data

dependency required to match patterns in the search window.

Figure 1: Serial LZ77 – Iterative Data Dependency of Step 4

 Figure 1 shows how the serial version of LZ77 has an iterative data

dependency in step 4 of the example. This dependency occurs for all matched cases, but

for the purpose of this figure, I focus on step 4. This fourth iteration of the input

5

“ABC[A]BCABCD…” would match the letters “[A]BC” with the first, second, and third

iteration values. It also continues the match past the first three to include the value being

searched for and the two values following in the match triple. This makes up the length

of 6 as stated previously. Serially, this happens by simply looking back at previous values

in the search window and matching them in the look-ahead buffer, but if each letter were

to be handled by separate threads at the same time, the dependency becomes problematic.

One thread cannot see what another thread is doing in parallel without communicating to

that other thread. However, cross-thread communication for every iteration would slow

down the parallel process to be worse than serial and eliminate the usefulness of

parallelizing the algorithm in the first place.

Table 3: Parallel LZ77 Data Dependency of Step 4 & 5

 Table 3 shows that during the encoding process, thread 4 will grab the

“ABCABC” match from the search window and store (3, 6, D). If thread 5 operates

independently from thread 4, then there is no way for thread 5 to know that thread 4

found and handled a match condition. Therefore, thread five would attempt to match the

B that was handled already by thread 4. Had threads 1 – 3 been triples with matches,

thread 4 would have the same issue as 5.

 During the decoding process, thread 4 needs to read from other threads to fully

decode the triple. For thread 4, it will require A from thread 1, B from thread 2, and C

Step Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

Encoding

Input

A B C A B

Encoded

Output

(0, 0, A) (0, 0, B) (0, 0, C) Dependent on

threads 1, 2, & 3

ERROR

Decoding

Input

(0, 0, A) (0, 0, B) (0, 0, C) (3, 6, D) ERROR

Decoded

Output

A B C ERROR ERROR

6

from thread 3. However, there is no way of guaranteeing that threads 1 – 3 will have

those values ready for thread 4 when it tries to read those values. Furthermore, given the

error during the encoding process, thread 5 will have nothing to decode.

7

III. PREVIOUS WORK

LZ77 is a lossless data compression algorithm from which many LZ variants have

been derived [1]. The approaches of these variants vary, but the core principle of a

dictionary-based reduction to compress bytes is common among all of them. When

looking for parallelized versions of LZ77, only a few results turn up. This section of my

report covers LZ77 and general lossless compression parallelization in the literature.

The main paper found when searching for parallelized LZ77 work is “Massively-

Parallel Lossless Data Decompression” [6]. In this work, the authors used a combination

of prefix sums, warp-based removal of dependencies, and a high-water mark flag with

ballot voting and a bitmap to hold all thread states in the warp. Their approach yields a

two-fold speedup when compared with some CPU codes. I corresponded with the authors

of this parallel decompression algorithm in the hopes of including their research in my

benchmark suite. Unfortunately, they explained that the research is proprietary and

cannot be made available for a comparative study.

The paper titled “CUDA Lossless Data Compression Algorithms: A Comparative

Study” shows an analysis of parallelized Huffman, LZSS, and Block-Sorting

Compression algorithms [7]. This paper is important because LZSS is one of the closest

variants of LZ77 in use and only differs in that it makes sure that “the dictionary

reference should be shorter than the string it replaces” [8]. The study is directly relevant

to my work in that it has a comparison of current GPU implementations and because the

parallel LZSS algorithm of the study outperforms the others in compression and

decompression time. The other algorithms outperform the parallel LZSS code when the

compression ratio is the metric of comparison [7]. This parallelized LZSS algorithm is

8

called CULZSS and was first published in 2011 [14].

This introduces the first benchmark I used to analyze my work, CULZSS.

CULZSS was published with a CPU version and two GPU versions. However, I only

tested the GPU version provided by the author’s GitHub page [17]. This implementation

passes a buffer pointer to the GPU, compresses the data into a provided memory region,

and returns a pointer to the data and length [14]. This is done by splitting the data into

blocks and threads, outputting the compressed data into buckets, and then finishing up the

process on the CPU by merging the compressed chunks of data in the buckets together.

The next algorithm used in the benchmark suite goes by the name PLZ, and

covers Lempel-Ziv Factorization, which is functionally equivalent to LZ77 [9]. They use

prefix sums and list ranking in their proof. The outcome of their work boasts an O(log2 n)

runtime under certain conditions. This algorithm covers three different modes to encode,

and I selected the fasted of the modes to use as a benchmark in the Analysis & Results

section. The PLZ code includes no decoder. So, my decoders could not be compared to

this benchmark.

LZ4 is the last of the benchmark suite and is referenced in the first paper

discussed in this section [6]. That paper used it and other contemporary algorithms to test

how well their work compared. Unlike with LZSS, LZ4 is a much more recent

descendant of LZ77 and is actively maintained. Its lossless method of compression

incorporates far more optimizations than its distant predecessors. It uses the same kind of

byte-oriented approach as LZ77, has a minimum match length of four, and changes the

storage format from a triple to a two byte system with “block” and “frame” optimizations

[3]. The block and frame optimizations are far more complex in how they are managed

9

when compared to LZ77 or even my encoding scheme, but it is a contemporary algorithm

that is perfect for determining how well my work performs. It is for this reason that I

chose LZ4’s serial implementation as the third benchmark. There is an adapted CUDA

version of LZ4 that I did not test, but I wanted to test how well my code works against

one of the best serial and lossless compression algorithms available on the CPU. This

allows me to see how the parallelization of an older algorithm measures against an

optimized, contemporary CPU version.

10

IV. APPROACH

This section describes my parallel and serial approaches to LZ77 compression and

how they relate to previous work. As a start, the serial LZ77 implementation described in

the Background section is modified. Those modifications are: adding a storage condition

to the triple and including a match limitation similar to LZSS. Modifications such as

these are not new, but they suit my initial goals for improved parallelization and

compression.

To improve the compression ratio, the matchless triples store an additional value

in the length slot of the triple instead of a zero. This added storage condition reduces the

wasted space of one of the two zeros stored in matchless cases. For those cases, the

empty zeros hold little information, but they do take up space. So, the distance slot is

kept as zero, but the zero in the length slot for the triple is replaced with the byte

immediately following the input value being saved for that iteration. An example of this

would be an input data of “ABC”, where “A” is being searched for in the window, but no

match is found for “A”. So, the storage condition saves: (0, B, A) instead of (0, 0, A).

This makes use of one of the zero bytes and reduces the wasted space saved in the triple.

In this example, the next byte to be searched for would be “C” and not “B”, because “B”

was saved in the (0, B, A) triple already.

Next, a match limitation was added. This match limitation guarantees at least a

two-byte minimum for both the matched and unmatched cases. This reduces the worst-

case match condition for LZ77, where the triple saves a match case with a length of only

one byte. For unmatched cases, the added storage condition ensures that at least two of

the input’s bytes are saved in the triple. For matched cases, the algorithm only considers

11

matches greater than or equal to 2 bytes. Matches with only one byte are not considered

and are instead saved as unmatched. With this scheme, the worst-case is only one byte

extra possible for each triple.

All search window and look-ahead buffer sizes are set to 256 for both serial and

parallel implementations. This change is displayed in the example tables for each of the

four algorithms described in the Approach section.

Implementation Definitions

Table 4: Definitions of LZ77 Implementation Modifications

Term Definition

Added Storage

Condition

To save space in the encoding scheme, the unmatched triples save an extra

byte of the input data in the length position of the triple.

Match Limitation All matched and unmatched triples save at least two of the input bytes in the

triple.

Serial Encoder

The serial application uses the longest match and furthest match rules given by

LZ77 and is illustrated by Table 5’s walkthrough of the example input. In addition to

those classic rules, the serial approach also includes the modifications outlined at the start

of the Approach section.

Table 5: Serial Encoder – Example

Input: ABCABCABCDABCDEFABCDEFGABCDEFGHABCDEFGHI = 40 bytes

 Search Window Look Ahead Encoding Matches

1 [A] BCABCABCDA (0, B, A)

2 AB[C] ABCABCDABC (0, A, C)

3 ABCA[B] CABCDABCDE (3, 5, D) BCABC

4 ABCABCABCD[A] BCDEFABCDE (4, 4, E) ABCD

5 ABCABCABCDABCDE[F] ABCDEFGABC (0, A, F)

6 ABCABCABCDABCDEFA[B] CDEFGABCDE (6, 5, G) BCDEF

7 ABCABCABCDABCDEFABCDEFG[A] BCDEFGHABC (7, 7, H) ABCDEFG

8 ABCABCABCDABCDEFABCDEFGABC

DEFGH[A]

BCDEFGHI (8, 8, I) ABCDEFGH

TOTAL = 8 X 3 Bytes = 24 bytes < original 40 bytes.

Table 5 shows the step-by-step walkthrough of my serial encoder. Step one shows

12

that none of the input has been processed yet, and the search window is empty of values

to match with [A]. The only difference between this step one and the step one listed in the

Background section is the storage saving mechanism used in the length slot. In this

algorithm, the length slot of the triple is used as an added storage condition and provides

the first iteration with the encoding scheme of (0, B, A) instead of (0, 0, A).

The rest of the walkthrough operates in the same manner as the original example

listed in the Background section. For this input, the compression ratio is improved due to

the added storage condition. Instead of the compression resulting in the original

example’s output of 27 bytes, it is 24 bytes. That means 3 additional bytes are saved by

using the modifications for this input.

It is from this serial encoder that I began work on the parallelized version of the

encoder. The modifications and classic LZ77 rules are used in the parallel version, but

due to the data dependency restrains of the serial application, the way bytes and matches

are handled in the parallel version is quite different. I first coded some of the changes in

serial to make the algorithm more parallelizable, and then translated the parallelizable

code to callable CUDA kernels. These changes are discussed in the Parallel Encoder

section of this document.

Serial Decoder

 The serial decoder takes the encoded input and serially iterates through each input

triple to restore the original, uncompressed input. In Table 6, the Output column shows

the decoded bytes in red and the match references highlighted in blue. The Matched

Output column shows the populated bytes that are derived by decoding matches.

13

Table 6: Serial Decoder – Example

INPUT: (0,B,A) (0,A,C) (3,5,D) (4, 4, E) (0, A, F) (6,5,G) (7,7,H) (8,8,I)

 Input Output Matched Output

1 (0, B, A) AB

2 (0, A, C) ABCA

3 (3, 5, D) ABCA_ _ _ _ _D ABCABCABCD

4 (4, 4, E) ABCABCABCD_ _ _ _E ABCABCABCDABCDE

5 (0, A, F) ABCABCABCDABCDEFA

6 (6, 5, G) ABCABCABCDABCDEFA_ _ _ _ _G ABCABCABCDABCDEFABCD

EFG

7 (7, 7, H) ABCABCABCDABCDEFABCDEFG_ _ _ _ _

_ _H

ABCABCABCDABCDEFABCD

EFGABCDEFGH

8 (8, 8, I) ABCABCABCDABCDEFABCDEFGABCDEF

GH_ _ _ _ _ _ _ _I

ABCABCABCDABCDEFABCD

EFGABCDEFGHABCDEFGHI

OUTPUT: ABCABCABCDABCDEFABCDEFGABCDEFGHABCDEFGHI

 Most of Table 6 is straightforward. Each triple is read sequentially, and the

matched output is populated accordingly. In step 3, the bytes “BCA” are available due to

the second iteration (i.e., step 2). By iterating through the matched bytes, the first three

compressed spaces are filled prior to the final two spaces. This means that those final two

spaces are filled by “BC” when continuing the byte restoration sequentially.

 To parallelize this algorithm, there is still the issue of iterative dependency. As

seen in step three, the data required to process and restore the compressed bytes are given

in step two. If I were to parallelize this process directly, the same issues as described in

the Background section would occur. This is why parallelization is nontrivial for both the

encoder and decoder.

Parallel Encoder

 The encoder algorithm processes the data in seven steps, as seen in Figure 2. It

starts by having each byte of the input data processed in parallel. Each byte is compared

to the previous bytes within the search window. The search window consists of the

previous 256 bytes that exist within the input data. These independent find operations are

done in parallel and will naturally have overlapping matches, but it allows the encoder to

14

massively parallelize this step in LZ77 compression. From there, the encoder performs a

parallel set of iterations to determine and mark the locations of each non-overlapping

match and populates the locations array with both that data and the data of bytes without

matches. The locations array is the same size as the input array, and therefore each

element in the array can also be split across all threads. The process of marking the

locations correctly will be described in greater detail later in this section. However, I will

refer to the non-overlapping matches and unmatched instances marked in the locations

array as triples, because that is what each location marked represents. The locations are

marked by “1” if a triple exists and “0” if no triple is marked for that position/thread.

 After each triple location is marked, the prefix array is populated with precisely

the same binary numbers as the locations array. The populated prefix array is then used to

perform a parallelized and inclusive prefix sum on the match locations. For each location

marked in the prefix array, the sum increases by one, and the resulting total equals the

number of triples up to the current location. This allows the encoder to determine the

output size of the compressed data and where to output the triple of each marked thread.

The output size is used to create an output array that is populated by the finalized

triples of compressed data. The output array of triples is copied from the GPU and saved

to a binary file. At the start of the binary file, the original size of the input data is saved

for the decoder to use.

These phases cover a high-level flow of the encoder algorithm and are depicted in

Figure 2. All definitions used in this section are listed in Table 7, and Table 8 shows an

example of this algorithm to better illustrate how the input is compressed.

15

Table 7: Parallel Encoder & Decoder Definitions

Term Definition

Maxlen Maxlen = 256. This is the maximum size of the search window.

ThreadsPerBlock ThreadsPerBlock = 512. This is the number of threads per block used.

Input array The file input stored as bytes.

Prefix array or Prefix

Sum array

Prefix array is the array that is populated with the values that the prefix sum

operation will use.

Match length array The match length for each processed byte in the file is stored in the match

length array.

Match distance array The match distance for each processed byte in the file is stored in the match

distance array.

Locations array The array of locations saved during phase 2 of encoding (i.e., triple

locations).

Inclusive Prefix Sum Inclusive prefix sum is the cumulative addition of each element in a list.

Example: 1, 2, 3, 4, 5, 6 1, 3, 6, 10, 15, 21

Parent Array The array that is populated with the values that the union find operation will

use.

Offset Offset is the 256 indices of padding added to the front of the parent array.

Each index in this padding represents the 256 possible bytes any match could

have.

Union Find (e.g.,

disjoint-set)

Navigates a chain of parent array pointers to the offset in order to discover

the encoded match characters. All chains of parent array pointers end by

pointing to an index in the offset. That offset index represents the byte

equivalent of the match.

Output Array Output array is the array that is populated with the fully decoded or encoded

data.

Pre-encoded Data

Size

Pre-encoded data is the first few bytes of the encoded file that is provided as

input to the decoder. This value is set by the encoder during the encoded

file’s creation and is then used by the decoder to account for the size

correctly.

16

Figure 2: Parallel Phases of the Encoder.

 Phase 1 consists of each byte of data being independently processed. As stated

previously, this phase finds possible matches irrespective of overlap. In fact, overlap is to

be expected due to how this is parallelized. Rules 1 and 2 are both accounted for as my

algorithm gives precedence to largest matches over furthest matches. Additionally, all

modifications discussed at the beginning of the Approach section are included in this

algorithm. Each byte searches the 256 bytes preceding it to find the best match possible.

The find procedure of Phase 1 returns both an array of match distances and match lengths

corresponding with each byte processed. These arrays are used during Phase 2 to mark

17

each match location and are used to create the triples in Phase 6.

 Phase 2 has several functions that work to determine the correct location of each

match, and if no match exists, it marks the correct location for the unmatched byte. The

locations array is the same size as the input array, match distance array, and match length

array. Therefore, each thread can be given an element within the array to process in

parallel. The location marking process uses these arrays in a series of parallel functions to

determine which of the overlapping matches should be marked. Firstly, it initializes

supporting variables, determines the reachability of the matches via an atomic add on the

matches’ length, and builds chains by joining sections with just a single match. Each of

these steps is done in parallel by kernel calls, but the next steps require a do-while loop to

remove dangling (unreachable) match chains and to merge the remaining chains. The

undangling and merge functions are kernel calls within the do-while loop, which iterates

until the Boolean flag says that only one chain is left. With the triple positions marked,

the encoder will be able to process each position in parallel.

 During Phase 3, each thread stores the marked locations of triples to the prefix

array. It is a one-to-one transfer of the locations array data to the prefix array. This allows

Phase 4 to perform the prefix sum in parallel and on the prefix array without any need to

modify the locations array. Phase 4 performs the inclusive prefix sum by using an

NVlab’s prefix-sum function from the CUB library [16]. The last value of the result of

this prefix sum call is the overall size of the compressed output. For each location marked

with a “1” and not a “0”, the sum increases by one. Therefore, the inclusive prefix sum’s

total shows precisely the number of triples my compression algorithm is going to

produce. Each intermediate sum of the locations provide the position data for Phase 6 to

18

write the compressed triples in parallel without fear of overlap between threads.

 The output array created in Phase 5 is used to store the compression triples and to

store the original size of the input. Phase 6 creates the triples and stores them in the

output array. These triples are based on the non-overlapping sequences derived from

Phase 2. When combined, these non-overlapping sequences cover the entire input and

therefore can act as the finalized triples for the algorithm. This is done by looking at the

locations array in parallel, one array element per thread, and letting the threads with a

marked location for a triple process the data relating to that position. What I mean by this

is that if and only if a thread has a triple location marked will it proceed in creating the

triple for that position. On the threads that are marked, the match length array holds the

corresponding length for the triple at the same index position as in the locations array.

This is also true for the match distance array being used to acquire the triple’s distance.

The value for each triple is easily read from the input array because the triples’ position

and match length have been accounted for. This parallelized procedure results in the

output array being populated by the correct, compressed triples.

 Phase 7 is the final stage of the algorithm. It copies the output array back to the

host and saves both the compressed data and the original file size to a binary file. This

file is compatible with my decoder algorithm and has the necessary information to allow

the decoder to restore the original data losslessly.

Parallel Encoder Example

 In this section, I will be going through each phase of the parallel encoder and

show how they work on the example input used throughout this document. Each column

heading with “T” and a number represents a thread on the GPU, and each row represents

19

a parallelized step on the GPU.

Table 8: Parallel Encoder – Example

Input: ABCABCABCDABCDEFABCDEFGABCDEFGHABCDEFGHI

 T1 T2 T3 T4 T5 T6 T7

1 [A] A[B] AB[C] ABC[A] ABCA[B] ABCAB[C] ABCABC[A]

2 -

Dis = 0

Len = 0

-

Dis = 0

Len = 0

-

Dis = 0

Len = 0

[ABCABC]

Dis = 3

Len = 6

[BCABC]

Dis = 3

Len = 5

[CABC]

Dis = 3

Len = 4

[ABC]

Dis = 6

Len = 3

3 Loc = 1 Loc = 0 Loc = 1 Loc = 0 Loc = 1 Loc = 0 Loc = 0

4 Pfx = 1 Pfx = 0 Pfx = 1 Pfx = 0 Pfx = 1 Pfx = 0 Pfx = 0

5 Sum = 1 Sum = 1 Sum = 2 Sum = 2 Sum = 3 Sum = 3 Sum = 3

6 (0,B,A) (0,A,C) (3,5,D)

Output: (0,B,A)(0,A,C)(3,5,D)(4,4,E)(0,A,F)(6,5,G)(7,7,H)(8,8,I)

 Table 8 shows the input as it is transformed in phases 1 through 6, but for

simplicity, the table only shows the first seven threads. It starts with the match finding

stage. Each thread (i.e., T1 through T7) represents a single byte in the input. These bytes

are managed independently in parallel, and therefore, during the match phase, they are

not aware of what the other threads’ findings are. T1 through T3 show no matches. T4

shows the first match of ABCABC for the given byte [A]. This match starts at a distance

of three from the starting position and finds a match of six bytes in total. Both T4 and T5

can traverse back three positions to find the start of their match (i.e., Dis). Iterating from

that match point to the last matching byte in the input gives the length value (i.e., Len). In

T7, the furthest match is used because no greater length matches are found.

Row three shows how the locations are marked. For this input, the algorithm

performed two parallel iterations to determine which of the matched and unmatched triple

locations to use. As expected, T1 holds the first triple and accounts for T2’s byte. T2’s

byte is stored in the length portion of the triple, the distance remains zero, and the letter

“A” is stored in the value position of the triple. This procedure of storing the subsequent

byte (i.e., T2’s B) in the length position is used for all unmatched triples.

20

T5 shows the first instance of a matched triple being used. Although T4

technically had a match found, that byte is already accounted for by T3’s unmatched

triple. So, the first match triple saved is T5’s. T5’s triple accounts for T6 and T7’s byte.

All of this is shown in rows three through six. Row three shows the locations marked for

the triples. Row four shows the location array’s values being stored in the prefix array to

prepare for the prefix sum, and row five shows how each location marked iterates the

sum value stored during the prefix sum. Row six shows the triples created as a result of

the previous phases.

The first two triples shown in Table 8 are for unmatched cases, where the

subsequent byte is stored in the length position of the triple. The third triple in the

example shows a match case that covers T5 through T9 for the match and includes the

subsequent byte (i.e., T10’s) in the value position of the triple.

The final row of the table shows the fully compressed output after the algorithm

finishes. This shows a reduction in bytes from the original 40 bytes to the compressed 24

bytes. Each triple represents three bytes, and there are eight triples. This is how the

compressed size is calculated, and the resulting compression ratio is rounded to 1.67.

Parallel Decoder

The decoder employs two important techniques to allow for parallelization: prefix

sum and union find. It is not uncommon for prefix sum or union find (i.e., disjoint-set

data structure) to be used for parallelizing serial algorithms [6][10]. From what my

research has indicated thus far, no previous works use these techniques together on LZ77.

The implementation is described in detail within Figure 3, and Table 9 exemplifies the

parallel decoding process via the same example input used in previous sections.

21

Figure 3: Parallel Phases of the Decoder.

Table 9: Parallel Decoder – Example

Input: (0,B,A) (0,A,C) (3,5,D) (4,4,E) (0,A,F) (6,5,G) (7,7,H) (8,8,I)

 T1 T2 T3 T4 T5 T6 T7 T8

1 (0, B, A) (0, A, C) (3, 5, D) (4, 4, E) (0, A, F) (6, 5, G) (7, 7, H) (8, 8, I)

2 AB = 2 CA = 2 5 + D = 6 4 + E = 5 FA = 2 5 + G = 6 7 + H = 8 8 + I = 9

3 AB CA _ _ _ _ _ D _ _ _ _ E FA _ _ _ _ _G _ _ _ _ _ _ _H _ _ _ _ _ _ _ _ I

4 AB CA BCABCD ABCDE FA BCDEFG ABCDEFGH ABCDEFGHI

OUTPUT = ABCABCABCDABCDEFABCDEFGABCDEFGHABCDEFGHI

In Figure 3, Phase 1 pairs with rows 1 and 2 in Table 9. This may seem strange

because row 1 just shows the nine triples unchanged. However, the triples themselves

hold the data necessary to drive all phases of the algorithm. What row 1 represents is the

division of the input among the available threads. In this example, there are a total of 8

threads, one for each triple. Each triple can be processed independently, and given the

triple’s length and value data, each thread knows how many bytes it produces for the

decoded output.

There are two possible cases: unmatched and matched triples. In the unmatched

cases, the triple’s length and value positions each hold a byte for the output and are

always going to account for two bytes of the output. This is due to the added storage

condition described at the beginning of the Approach section. In match cases, the triple’s

length position holds the size of the match, and the triple’s value holds one byte for the

22

output. This accounts for length + 1 number of bytes for the output, which is handled by

the triple’s thread. This addition can be seen in row 2 of Table 9. It is with these numbers

that the prefix sum array is populated. Each number represents one value per index of the

prefix sum array and will be used in Phase 2’s operation. The populated data for this

example can be seen in the Prefix Array Populated column of Table 10, where each “T”

value represents a thread.

For Phase 2, the values populated in the previous phase must now undergo the

same inclusive prefix sum operation I referenced in the Parallel Encoder section [16].

This provides the precise index range each thread can safely operate within. Without this

range, any attempt to do the subsequent phases would result in data race conditions. The

result of this prefix sum can be seen in the Prefix Sum column of Table 10. Each number

in said column will be used to determine what output index to start and stop populating

data within. In Table 10, thread 1 starts at 0 and can submit write changes to all output

indices less than 2. Thread 8 can submit write changes to all output indices starting from

thread 7’s Prefix Sum value to indices less than 40. In the later phases, both the parent

and output arrays use the prefix sum values to write in a thread safe manner.

Table 10: Phase Data – Example

T Encoding Prefix Sum

Array Populated

Prefix

Sum

Populated

Parent Array

Find Operation Matches

1 (0, B, A) 2 2 AB

2 (0, A, C) 2 4 CA

3 (3, 5, D) 6 10 _ _ _ _ _ D BCABCD BCABC

4 (4, 4, E) 5 15 _ _ _ _ E ABCDE ABCD

5 (0, A, F) 2 17 FA

6 (6, 5, G) 6 23 _ _ _ _ _ G BCDEFG BCDEF

7 (7, 7, H) 8 31 _ _ _ _ _ _ _ H ABCDEFGH ABCDEFG

8 (8, 8, I) 9 40 _ _ _ _ _ _ _ _ I ABCDEFGHI ABCDEFGH

Output = ABCABCABCDABCDEFABCDEFGABCDEFGHABCDEFGHI

Phase 3 can be seen in row 3 of Table 9 or in the Populated Pared Array column

23

of Table 10. This stage of the algorithm is used to prepare the parent array for Phase 4’s

union find operation. In order to populate this correctly, an array that is the size of the

output plus 256 is used. This padding of 256 indices is referred to as the offset, and the

offset is used specifically because there are 256 values possible for any byte in the input.

In other words, each index of the offset can be viewed as a value for every possible byte

being decoded. The parent array keeps the offset unpopulated and uses the 0 to 255

indices themselves as parent references for matched bytes.

The parent array is populated starting from 256 onward and uses the prefix sum

values found in the previous phase to be sure all writes are done in a thread safe manner.

All unmatched values are decoded without conflict and can be used to populate the

indices after the offset. However, this is not done by inserting the value into the array.

Instead, the parent array value is set to be equal to the offset’s index matching it. This is

called a parent pointer because it is literally pointing to its numeric equivalent, and it is

used for both unmatched and matched cases. The unmatched cases are self-explanatory as

they are stored directly in the length and value positions of the triple and can point to

their parent directly. Matched cases are handled differently. Instead of pointing to an

index within the offset, they point to the position known to be where their match is

located. This allows for a chain of references to be resolved in a near constant work time

complexity, during Phase 4.

In Phase 4, each thread performs a find operation for every value they have that

has yet to be accounted for (i.e., the match cases). Union find is a known means by which

this operation can happen in a thread safe manner [12]. Essentially, each parent pointer

chains with the next and results in populating all remaining parent array indices that are

24

outside of the offset’s range. The multi-threaded chains each end when a parent pointer

referencing an index from the offset because that index is the equivalent of the matched

byte. Table 9’s row 4 matches this phase, and Table 10’s Find Operation column does

as well. That covers the decoder implementation on the GPU.

25

V. EXPERIMENTAL METHODOLOGY

My work includes the modified serial versions of the LZ77 encoder and decoder,

the parallelized version of the decoder, and the parallelized version of the encoder. To

test each approach, I compare the serial implementations to the parallel implementations

and do a comparative study with other parallelized attempts at lossless encoding and

decoding in literature. The test sets include images, spreadsheets, text documents, and

large graph files. Both the serial and parallel approaches successfully encode and decode

all of the test data. Additionally, the parallel and serial versions are interchangeable in

that both serial and parallel versions produce the same result, but each algorithm is tested

and verified independently.

The following table includes the current list of files used in the test set, their file

type, and the size of the file.

Table 11: Test Set Files

File Name Size in MB File Type

Large Canterbury Corpus: [11]

Bible.txt 4.05 Text

E.coli 4.64 Text

world192.txt 2.47 Text

Graph Dataset: [13]

rgg_n_2_22_s0.egr 259.65 Graph

cit-Patents.egr 147.25 Graph

coPapersDBLP.egr 124.13 Graph

in-2004.egr 114.26 Graph

as-skitter.egr 95.55 Graph

2d-2e20.sym.egr 37.72 Graph

amazon0601.egr 21.16 Graph

internet.egr 3.60 Graph

Generated Dataset:

Test4.bmp 9.36 Image

Canterbury Corpus: [11]

Kennedy.xlsx 1.03 Spreadsheet

26

These varied file types and sizes are used to test validity, provide a wide scope of

analysis, and ensure that there are no corner cases for the encoder or decoder versions.

Sources for the files used are listed in the table. All but the image file are used in other

parallelization and compression focused publications and provide a great baseline from

which to interpret test results.

I used an NVIDIA GeForce RTX 3090 GPU and an Intel Xeon Gold 6226R CPU

for all my tests.

27

VI. ANALYSIS & RESULTS

There are two metrics by which I analyze the algorithms: compression ratio and

throughput. The compression ratio is the size of the original data divided by the size of

the compressed data. The timers used to measure the runtime, from which I calculate the

throughput, are captured on the same section of code in my parallel and serial codes.

In addition to the serial versus parallel comparison, I also compare each version

with existing algorithms from the literature. When comparing my algorithms to other

compression approaches, great effort was expended in being sure that the timed sections

in the code were comparable. In some cases, different timed sections within my code are

used to ensure fairness in analysis.

Serial vs. Parallel Results

For the test set, two separate measurements of time were taken: (1) the time for

both data being copied to the GPU and the compression/decompression portion, (2) just

the time of the compression/decompression on the GPU. The reason the time

measurement with the data copying was included is due to how one of the benchmarks

measured their time. It was important to have my time measurements be comparable with

the benchmarks to be sure my analysis was as accurate as possible. So, the following

tables represent the two different throughput measurement sets. The time measurement

without copying data to the GPU will be referred to as “default” and the time

measurement including the data copying will be referred to as “extended”. All table

references to encoder throughput will be labeled “ET”, and all table references to decoder

throughput will be labeled “DT”.

28

Table 12: Serial and Default Parallel Throughput Results.

Test File Serial ET

(MB/s)

Parallel

ET (MB/s)

Serial DT

(MB/s)

Parallel

DT (MB/s)

Encoder

Speedup

Decoder

Speedup

rgg_n_2_22_s0.egr 20.54 1,071.06 147.27 10,258.22 52.14 69.65

cit-Patents.egr 13.29 1,124.12 117.69 37,540.00 84.59 318.97

coPapersDBLP.egr 19.19 990.98 146.31 20,313.85 51.65 138.84

in-2004.egr 20.46 697.35 161.04 10,829.63 34.08 67.25

as-skitter.egr 17.98 873.59 120.51 15,698.36 48.58 130.27

2d-2e20.sym.egr 13.72 818.13 119.69 29,396.71 59.65 245.61

amazon0601.egr 15.28 802.96 102.93 28,480.29 52.56 276.68

test4.bmp 15.92 654.86 106.03 21,288.53 41.14 200.78

E.coli 6.03 551.34 106.46 11,258.96 91.44 105.75

bible.txt 11.17 658.70 85.17 9,981.24 58.97 117.19

internet.egr 14.35 489.49 129.60 6,623.45 34.12 51.11

world192.txt 12.60 585.77 81.26 4,546.69 46.50 55.95

kennedy.xls 23.59 550.81 182.94 2,954.79 23.35 16.15

Geometric Mean 14.94 733.95 120.45 12,757.16 49.13 105.91

 Table 12 shows the throughputs of the serial version and default parallel version

of the encoder. Using these throughputs, the speedup values for the parallel code can be

derived. The bottom row shows the geometric mean of the column values. For example,

Table 12 shows a geometric mean speedup of 49.13 for the parallel encoder and a

geometric mean speedup of 105.91 for the parallel decoder. The is a substantial

improvement on throughput for both the parallel encoder and decoder compared to the

serial code and shows how massively parallelizing the algorithms improves the overall

efficiency of the lossless compression process. Table 13 shows the extended

throughputs, which include preparation items like copying data to the GPU before

processing the data. The default throughputs focus on how much time the actual

compression and decompression sections of the code actually take.

Table 13: Serial and Extended Parallel Throughput Results

Test File Serial ET

(MB/s)

Extended

ET (MB/s)

Serial DT

(MB/s)

Extended

DT (MB/s)

Extended

Encoder

Speedup

Extended

Decoder

Speedup

rgg_n_2_22_s0.egr 20.54 931.85 147.27 10,258.22 45.36 8.06

cit-Patents.egr 13.29 936.01 117.69 37,540.00 70.43 9.70

coPapersDBLP.egr 19.19 876.16 146.31 20,313.85 45.66 8.89

in-2004.egr 20.46 643.66 161.04 10,829.63 31.46 7.94

29

as-skitter.egr 17.98 778.83 120.51 15,698.36 43.31 10.36

2d-2e20.sym.egr 13.72 721.35 119.69 29,396.71 52.59 10.24

amazon0601.egr 15.28 715.84 102.93 28,480.29 46.86 12.29

test4.bmp 15.92 595.41 106.03 21,288.53 37.41 11.22

E.coli 6.03 513.16 106.46 11,258.96 85.11 11.07

bible.txt 11.17 599.39 85.17 9,981.24 53.66 12.79

internet.egr 14.35 458.95 129.60 6,623.45 31.99 8.40

world192.txt 12.60 534.38 81.26 4,546.69 42.43 11.63

kennedy.xls 23.59 511.67 182.94 2,954.79 21.69 4.88

Geometric Mean 14.94 660.42 120.45 1,149.42 44.21 9.54

 The thing to note in Table 13 is that the geometric mean change for speedup is

more pronounced in the extended decoder than it is in the extended encoder. Timing the

data copying portion of the code with the compression section of the code can

significantly change the time, but even with this inclusion, the extended decoder speedup

is 9.54. The encoder speedup is 44.21. The point of distinguishing these differences is

that the CULZSS benchmark comparison uses the extended throughputs and not the

default. CULZSS includes portions of their setup in their timed sections, and in order to

be fair, I made the extended timers to accommodate that difference.

 Next, it is important to cover the compression ratio of the encoder. As stated

previously, the serial and parallel compression ratios are identical due to the fact that the

exact same triple scheme is used in both cases. Table 14 shows how the original size

compares to the compressed size provided by my encoders and shows the resulting

compression ratios.

Table 14: Compression Output Comparison

Test Files Original Size (MB) Compressed Size (MB) Compression

Ratio

rgg_n_2_22_s0.egr 259.65 199.58 1.30

cit-Patents.egr 147.25 189.27 0.78

coPapersDBLP.egr 124.13 83.25 1.49

in-2004.egr 114.26 57.45 1.99

as-skitter.egr 95.55 72.77 1.31

2d-2e20.sym.egr 37.72 40.69 0.93

30

amazon0601.egr 21.16 19.05 1.11

test4.bmp 9.36 8.25 1.13

E.coli 4.64 2.74 1.69

bible.txt 4.05 3.20 1.26

internet.egr 3.60 1.98 1.82

world192.txt 2.47 2.21 1.12

kennedy.xls 1.03 0.29 3.49

Geometric Mean 1.39

 There are only two instances in the test set where the encoder fails to compress

the data down to a smaller size. Those instances are “cit-Patents.egr” and “2d-

2e20.sym.egr”. All other files were compressed to a smaller size, and given the

throughput data, all of the files were processed faster with the Parallel implementation.

So, only two out of eight graph files failed to reduce in size, and all of the other file types

tested were successfully reduced. That does not mean that all files of those types will

successfully reduce in every case, but it does show that the algorithm generally

compresses data of differing types well. Take into account the speedup, and one can also

conclude that the parallel implementation is a significant improvement in throughput

compared to serial LZ77 compression.

Benchmark Tests

 There were very few offerings of preexisting parallel LZ77 implementations

available to test my results against. Many emails were sent to professors of related

publications and only a few responded or had publicly accessible code for me to test.

However, there were three different compression algorithms that I was able to utilize as

my benchmark suite, and they cover different approaches of both parallel and serial

lossless compression.

31

PLZ

 The first benchmark used was an encoder-only, CPU parallelized compression

algorithm that is functionally equivalent to LZ77 [9]. This algorithm is called PLZ and

was covered in the Previous Work section. PLZ has three different modes of

compression. Each mode represents a different throughput capability of PLZ. Therefore, I

chose to use the fastest mode to compare my code against. The throughput comparison

can be seen in Table 15. The second column shows the throughputs for the fastest PLZ

mode, and the third and fourth columns show my serial and parallel throughput compared

to PLZ.

Table 15: PLZ Throughput Comparison

Test Files PLZ

Throughput

(MB/s)

Serial ET / PLZ

Throughput

Parallel ET / PLZ

Throughput

rgg_n_2_22_s0.egr 2.51 8.19 426.94

cit-Patents.egr 1.93 6.89 582.48

coPapersDBLP.egr 2.54 7.56 390.39

in-2004.egr 2.78 7.35 250.53

as-skitter.egr 2.19 8.22 399.54

2d-2e20.sym.egr 2.67 5.15 306.94

amazon0601.egr 2.56 5.96 313.05

test4.bmp 3.84 4.14 170.43

E.coli 3.29 1.83 167.59

bible.txt 3.58 3.12 183.90

internet.egr 4.39 3.27 111.60

world192.txt 4.21 2.99 139.02

kennedy.xls 9.11 2.59 60.44

Geometric Mean 3.21 4.65 228.39

 As seen in Table 15, the PLZ throughput geometric mean is 3.21 MB/s, and when

compared to both my serial and parallel encoders, it is far slower than my

implementations for every file tested. Bearing in mind that PLZ is a parallelized LZ77

equivalent, it might seem surprising that even the serial implementation has a greater

throughput, but there happens to be a very good reason why it is slower. The compression

ratio it achieves is much greater than mine. This is a common trade off in compression

32

algorithms [18]. Depending on the use case for an algorithm, people may choose one

aspect over the other. PLZ would be the better choice if compression ratio was the

highest priority. However, if throughput was more important for the use case, then both

my serial and parallel implementations would be better choices. Table 16 shows how my

compression ratio compares with PLZ’s.

Table 16: PLZ Compression Ratio Comparison

Test Files Original

Size (MB)

PLZ Compressed

Size (MB)

PLZ Compression

Ratio

Encoder Ratio /

PLZ Ratio

rgg_n_2_22_s0.egr 259.65 30.76 8.44 0.15

cit-Patents.egr 147.25 32.78 4.49 0.17

coPapersDBLP.egr 124.13 3.79 32.72 0.05

in-2004.egr 114.26 6.52 17.52 0.11

as-skitter.egr 95.55 13.42 7.12 0.18

2d-2e20.sym.egr 37.72 8.65 4.36 0.21

amazon0601.egr 21.16 3.85 5.49 0.20

test4.bmp 9.36 1.67 5.59 0.20

E.coli 4.64 0.43 10.72 0.16

bible.txt 4.05 0.34 11.99 0.11

internet.egr 3.60 0.65 5.54 0.33

world192.txt 2.47 0.19 12.80 0.09

kennedy.xls 1.03 0.15 6.76 0.52

Geometric Mean 8.54 0.16

 Referencing Table 14, my encoder ratio geometric mean is 1.39. If that is

compared with the PLZ ratio geometric mean, it is clear why their algorithm took so long

to complete. It is able to achieve an 8.54 compression ratio geometric mean, which is

excellent. Every single file shows a red ratio in the Encoder Ratio / PLZ Ratio column

because none of my ratios beat theirs. However, the time cost to achieve this great ratio is

significant. This illustrates the common tradeoff between compression ratio and

throughput. The other benchmarks used in this section show the same tradeoff to a degree

but not as clearly as this PLZ example.

33

CULZSS

 For the second benchmark, I chose a well-cited algorithm by the name of

CULZSS [14]. It is a parallelized approach to LZSS, which is closely related to LZ77 [8].

Their approach includes both CPU and GPU parallelization techniques, as described in

the Previous Work section. It is because of their unique approach that it was prudent to

use the extended throughput timers instead of the default timers I use for the other two

benchmarks. To do otherwise would have been an unfair comparison. This comparison

can be found in Table 17. As stated before, ET stands for Encoder Throughput, and DT

stands for Decoder Throughput. Additionally, Table 17 reduces the word “Extended” to

Ext. in order to make the headers more readable.

Table 17: CULZSS Throughput Comparison

Test Files CULZSS

ET (MB/s)

CULZSS

DT (MB/s)

Serial ET /

CULZSS

ET

Ext. ET /

CULZSS

ET

Serial DT /

CULZSS

DT

Ext. DT /

CULZSS

DT

rgg_n_2_22_s0.egr 101.99 214.90 0.20 9.14 0.69 5.53

cit-Patents.egr 105.73 232.22 0.13 8.85 0.51 4.91

coPapersDBLP.egr 144.42 213.94 0.13 6.07 0.68 6.08

in-2004.egr 159.54 244.50 0.13 4.03 0.66 5.23

as-skitter.egr 125.47 233.97 0.14 6.21 0.52 5.34

2d-2e20.sym.egr 122.97 289.54 0.11 5.87 0.41 4.23

amazon0601.egr 86.66 205.25 0.18 8.26 0.50 6.16

test4.bmp 56.12 112.57 0.28 10.61 0.94 10.57

E.coli 32.19 67.14 0.19 15.94 1.59 17.55

bible.txt 31.49 58.80 0.35 19.03 1.45 18.53

internet.egr 29.08 57.74 0.49 15.78 2.24 18.85

world192.txt 20.25 38.56 0.62 26.39 2.11 24.51

Geometric Mean 68.74 134.77 0.21 9.81 0.86 8.71

 Table 17’s first two columns show CULZSS’ encoder throughput and decoder

throughput, respectively. The subsequent four columns include the serial encoder

comparison, the parallel encoder comparison, the serial decoder comparison, and the

parallel decoder comparison. Unsurprisingly, CULZSS beats my serial code

considerably, but this is a good thing. It further shows that this algorithm is a good

34

comparator with which my parallel algorithms can be analyzed. Where PLZ effectively

illustrated the tradeoff between time and compression, CULZSS balances its compression

ratio cost similarly to mine. This is illustrated in both Table 17 and Table 18’s

comparison columns.

 Looking specifically at the parallel comparison of throughputs in Table 17’s fifth

and seventh columns, it is clear that my algorithm’s throughput exceeds CULZSS’

encoder and decoder by a geometric mean of 9.81 and 8.71, respectively. In fact, every

file processed by the parallel encoder and decoder reported a greater throughput than

what CULZSS did for those same files.

Table 18: CULZSS Compression Ratio Comparison

Test Files Original

Size (MB)

CULZSS Compressed

Size (MB)

CULZSS

Compression Ratio

Encoder Ratio /

CULZSS Ratio

rgg_n_2_22_s0.egr 259.65 222.39 1.17 1.11

cit-Patents.egr 147.25 145.34 1.01 0.77

coPapersDBLP.egr 124.13 98.86 1.26 1.19

in-2004.egr 114.26 69.74 1.64 1.21

as-skitter.egr 95.55 74.98 1.27 1.03

2d-2e20.sym.egr 37.72 36.00 1.05 0.88

amazon0601.egr 21.16 18.39 1.15 0.97

test4.bmp 9.36 7.91 1.18 0.96

E.coli 4.64 3.42 1.36 1.25

bible.txt 4.05 3.17 1.28 0.99

internet.egr 3.60 1.57 2.30 0.79

world192.txt 2.47 1.53 1.62 0.69

Geometric Mean 1.32 0.97

 Table 18 shows the compression ratio of CULZSS in the CULZSS Compression

Ratio column. Unlike with my algorithm, CULZSS successfully reduces every file. This

includes the two files that my algorithm failed to compress to a smaller size. However,

when CULZSS’ ratios are compared to my encoder ratios in the Encoder Ratio /

CULZSS Ratio column, the geometric mean result is nearly one-to-one. As an additional

35

test, I ran the algorithms on a few more files to see if the trend would remain. Depending

on the files I added, all of which were large, the geometric mean consistently hovered

either above or below 1. Meaning, CULZSS and my encoder have nearly a one-to-one

ratio trend. Additionally, if you look at Table 14, the geometric mean for my encoder is

1.39. That is larger than CULZSS’ 1.32 geometric mean of the same files. However,

when calculating the comparison, the result is 0.97. This shows how the ratio variance

plays a role in the resulting geometric mean.

It is also important to note that my serial decoder performs better on the smaller

files of the test set than CULZSS’ decoder, but this was expected. The Kennedy.xlsx file

was removed for this precise reason. CULZSS specifies the file sizes must exceed 1MB,

and Kennedy.xlsx was too close to that that size for CULZSS to process it. CULZSS’

design specifications require larger files in order to be truly efficient, but this is quite

reasonable given the costs of exchanging data from host to device in GPU programming.

My design allows for smaller files than CULZSS to still run efficiently. However, mine

also loses out to the serial version if the files get small enough. This is an excellent

example of the overhead associated with parallelizing algorithms. In both algorithms

there is a lower bound where the overhead exceeds the benefit.

To summarize this benchmark, my parallel encoder consistently runs faster on all

files of the data set by a substantial margin, and although CULZSS successfully reduces

two files that my algorithm cannot, it has nearly the same geometric-mean compression

ratio.

LZ4

 For the final benchmark, I used LZ4. The LZ4 algorithm being tested for this

36

benchmark is serial, but an adapted parallel version of it does exist. The reason for

choosing this algorithm is explained further in the Previous Work section. However, it is

a descendant of LZ77 that is highly optimized to compress on the CPU [19]. LZ4’s

compression is far more complex in how it works than my algorithm and the classic

LZ77 algorithm. To learn more about how it works, please refer to the LZ4 portion of the

Previous Work section of this document. It has a GitHub repository that is well

contributed to and a package maintained by Microsoft [15]. The reason this algorithm has

been chosen is that it is a contemporary, lossless, and CPU based compression algorithm

that can demonstrate how my parallelization of LZ77 might compete with modern

descendants of LZ77.

 There are two different modes available for LZ4 compression. The mode that is

optimized for compression ratio is selected by passing the flag “9” as a command line

argument, and the mode that is optimized for throughput is selected by passing the flag

“1”. I ran both modes, and decided to focus the comparison on the throughput optimized

option. This was chosen due to the fact that the ratio optimized version was unanimously

slower and had a better compression ratio for all files except for Kendedy.xlsx. The better

compression ratio is obviously achieved at the cost of time like with PLZ. So, it made

more sense to compare with the mode similar in focus to my own. The comparison of

mode “1” can be seen in Table 19.

Table 19: LZ4 Throughput Comparison

Test Files LZ4 ET

(MB/s)

LZ4 DT

(MB/s)

Serial ET

/ LZ4 ET

Parallel ET

/ LZ4 ET

Serial DT

/ LZ4 DT

Parallel DT

/ LZ4 DT

rgg_n_2_22_s0.egr 347.65 800.02 0.06 3.08 0.18 12.82

cit-Patents.egr 773.81 849.92 0.02 1.45 0.14 44.17

coPapersDBLP.egr 749.01 887.59 0.03 1.32 0.16 22.89

in-2004.egr 802.46 892.46 0.03 0.87 0.18 12.13

as-skitter.egr 428.72 757.09 0.04 2.04 0.16 20.74

2d-2e20.sym.egr 494.63 706.15 0.03 1.65 0.17 41.63

37

amazon0601.egr 375.64 679.10 0.04 2.14 0.15 41.94

test4.bmp 366.86 660.03 0.04 1.79 0.16 32.25

E.coli 325.80 638.72 0.02 1.69 0.17 17.63

bible.txt 253.92 626.10 0.04 2.59 0.14 15.94

internet.egr 280.54 613.59 0.05 1.74 0.21 10.79

world192.txt 284.68 620.52 0.04 2.06 0.13 7.33

kennedy.xls 380.89 659.46 0.06 1.45 0.28 4.48

Geometric Mean 417.99 715.84 0.04 1.76 0.17 17.82

 In Table 19, the serial codes run significantly slower than LZ4. This is not

surprising because I was essential testing LZ77 against its highly optimized descendant.

What is interesting is that the parallel encoder and decoder comparison to LZ4 has a

geometric mean speedup of 1.76 and 17.82, respectively. This is obviously an

improvement to the serial LZ4 algorithm mode that focuses on throughput, especially for

the decoder throughput comparison. The encoder throughput comparison makes sense

when taking into account the compression ratio. Similar to PLZ, there is a clear tradeoff

between throughput and ratio. This can be seen in Table 20.

Table 20: LZ4 Compression Ratio Comparison

Test Files Original Size

(MB)

LZ4 Compressed

Size (MB)

LZ4 Compression

Ratio

Encoder Ratio /

LZ4 Ratio

rgg_n_2_22_s0.egr 259.65 151.00 1.72 0.76

cit-Patents.egr 147.25 147.25 1.00 0.78

coPapersDBLP.egr 124.13 25.52 4.86 0.31

in-2004.egr 114.26 24.91 4.59 0.43

as-skitter.egr 95.55 66.23 1.44 0.91

2d-2e20.sym.egr 37.72 36.30 1.04 0.89

amazon0601.egr 21.16 17.20 1.23 0.90

test4.bmp 9.36 6.43 1.46 0.78

E.coli 4.64 2.60 1.79 0.95

bible.txt 4.05 1.98 2.05 0.62

internet.egr 3.60 2.18 1.65 1.10

world192.txt 2.47 1.23 2.02 0.55

kennedy.xls 1.03 0.37 2.75 1.27

Geometric Mean 1.87 0.74

 It is clear that the improvement to throughput, which my encoder shows in this

dataset, is balanced by LZ4’s better compression ratio. The column Encoder Ratio / LZ4

38

Ratio shows this. Only two of the files have a better compression ratio when comparing

my encoder to LZ4’s, and they are among the smaller files tested. What this further

illustrates is the costs associated with optimizing for throughput or for compression

ratios. The LZ4 mode tested was the mode optimized for throughput, and a parallelized

version of its predecessor (i.e., my encoder) outpaced that mode’s throughput. Even with

the better ratios, this is a good example of how an algorithm that is exceptionally better in

serial can be outpaced by a simpler solution in parallel. This does not prove that LZ4

would not outmatch my algorithm when parallelized, but it does show how parallelism is

invaluable when it comes to time-based optimizations.

39

VII. SUMMARY AND CONCLUSION

My work started by creating a serial version of LZ77 and included some byte

saving techniques to improve the compression ratio. By preventing single byte matches

and adding a storage condition to unmatched triples, I was able to improve the

compression ratio. I then converted the serial codes into massively parallelized versions

of the same encoding and decoding scheme. This created a foundation to compare the

serial throughput against the parallel throughput. The parallel throughput was much

improved due to how the input bytes were split among threads on the GPU, processed in

phases on the GPU to limit the need for data synchronization, and by using techniques

from the literature to prevent data races. For the parallel encoder, I divided the bytes to be

individually processed by threads, marked each overlapping location of match and

unmatched triples, reduced the overlapping triple locations to a non-overlapping set that

covered the entire input, used a prefix sum to determine the number of compressed

triples, and then created said triples in parallel. For the decoder, I divided the triples to be

independently processed on GPU threads, calculated an inclusive prefix sum using the

provided triple data, populated a parent array with a padding of 256 bytes, and performed

a union-find operation on the parent array to restore the original input values. Each phase

runs in parallel.

This approach to massively parallel compression and decompression made the

difficult task of parallelizing LZ77’s dependencies feasible. By utilizing storage saving

techniques that resemble LZSS’, I was able to improve upon the compression ratio and

approximately match more contemporary algorithms like CULZSS in compression ratio.

This was done with a faster throughput than CULZSS. That already shows that there is

40

merit in my approach. Although both LZ4 and especially PLZ provide better compression

ratios, my algorithm’s throughput outpaced theirs consistently. When looking at the

parallel decoder throughput alone, it always produced faster throughputs than both LZ4

and CULZSS, and it exceeded LZ4 in geometric mean by nearly 18 times.

In conclusion, the goal of massively parallelizing LZ77 on the GPU was met, and

the results show that my parallelization approach could be a better option than some

contemporary algorithms if the use case emphasizes throughput over compression ratio.

There is room to improve upon the compression ratio, but it is unclear whether those

optimizations would be at the cost of throughput. Regardless, the benefits of this

massively parallelized approach used for both the decoder and encoder are clear.

41

REFERENCES

[1] J. Ziv and A. Lempel, "A universal algorithm for sequential data compression," in

IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337-343, May 1977,

doi: 10.1109/TIT.1977.1055714.

[2] James A. Storer and Thomas G. Szymanski. 1982. Data compression via textual

substitution. J. ACM 29, 4 (Oct. 1982), 928–951. https://doi-

org.libproxy.txstate.edu/10.1145/322344.322346

[3] Y. Collet, “LZ4/lz4_block_format.MD at dev • LZ4/LZ4,” GitHub, 02-Feb-2022.

[Online]. Available: https://github.com/lz4/lz4/blob/dev/doc/lz4_Block_format.md.

[Accessed: 27-Jul-2022].

[4] P. Deutsch, “RFC 1951 - DEFLATE compressed data format specification version

1.3,” Document search and retrieval page, May-1966. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc1951. [Accessed: 27-Jun-2022].

[5] P. Deutsch, “RFC 1952 - gzip file format specification version 4.3,” Document search

and retrieval page, May-1966. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc1952. [Accessed: 26-Jun-2022].

[6] E. Sitaridi, R. Mueller, T. Kaldewey, G. Lohman and K. A. Ross, "Massively-Parallel

Lossless Data Decompression," 2016 45th International Conference on Parallel

Processing (ICPP), 2016, pp. 242-247, doi: 10.1109/ICPP.2016.35.

[7] K. K. Yong, M. W. Chua and W. K. Ho, "CUDA lossless data compression

algorithms: A comparative study," 2016 IEEE Conference on Open Systems (ICOS),

2016, pp. 7-12, doi: 10.1109/ICOS.2016.7881980.

42

[8] M. Dipperstein, “LZSS (LZ77) Discussion and Implementation,” Index O'Stuff, 11-

Mar-2015. [Online]. Available: http://michael.dipperstein.com/lzss/index.html.

[Accessed: 14-Nov-2021].

[9] J. Shun and F. Zhao, "Practical Parallel Lempel-Ziv Factorization," 2013 Data

Compression Conference, 2013, pp. 123-132, doi: 10.1109/DCC.2013.20.

[10] L. Yang, Y. Yang, G. B. Mgaya, B. Zhang, L. Chen and H. Liu, "Novel Fast

Networking Approaches Mining Underlying Structures From Investment Big Data,"

in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 10,

pp. 6319-6329, Oct. 2021, doi: 10.1109/TSMC.2019.2961378.

[11] J. Abel, “Data Compression Corpora,” The Data Compression Resource on the

Internet, 2002. [Online]. Available: http://data-compression.info/Corpora/. [Accessed:

27-Jun-2022].

[12] Jayadharini Jaiganesh and Martin Burtscher. 2018. A high-performance connected

components implementation for GPUs. In Proceedings of the 27th International

Symposium on High-Performance Parallel and Distributed Computing (HPDC '18).

Association for Computing Machinery, New York, NY, USA, 92–104. https://doi-

org.libproxy.txstate.edu/10.1145/3208040.3208041

[13] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix

Collection. ACM Transactions on Mathematical Software 38, 1, Article 1 (December

2011), 25 pages. DOI: https://doi.org/10.1145/2049662.2049663

[14] A. Ozsoy and M. Swany, "CULZSS: LZSS Lossless Data Compression on CUDA,"

2011 IEEE International Conference on Cluster Computing, 2011, pp. 403-411, doi:

10.1109/CLUSTER.2011.52.

43

[15] Y. Collet, “LZ4/LZ4: Extremely fast compression algorithm,” GitHub. [Online].

Available: https://github.com/lz4/lz4. [Accessed: 26-Jun-2022].

[16] NVIDIA Corporation, “cub::DeviceScan Struct Reference,” Cub: Cub::devicescan

struct reference. [Online]. Available:

https://nvlabs.github.io/cub/structcub_1_1_device_scan.html. [Accessed: 26-Jun-

2022].

[17] A. Ozsoy, “adnanozsoy / CUDA_Compression,” GitHub, 2011. [Online]. Available:

https://github.com/adnanozsoy/CUDA_Compression. [Accessed: 27-Jun-2022].

[18] C. Spackman, “Compression/decompression tradeoffs for data networking and

storage,” EETimes, 09-May-2007. [Online]. Available:

https://www.eetimes.com/compression-decompression-tradeoffs-for-data-networking-

and-storage/. [Accessed: 26-Jun-2022].

[19] T. Matsuoka , LZ4. [Online]. Available: https://lz4.github.io/lz4/. [Accessed: 26-Jun-

2022].

