

A MASSIVELY PARALLEL EXACT TSP SOLVER

FOR SMALL PROBLEM SIZES

by

Benila Virgin Jerald Xavier, B.E.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Computer Science

December 2022

Committee Members:

 Martin Burtscher, Chair

 Vangelis Metsis

 Kecheng Yang

COPYRIGHT

by

Benila Virgin Jerald Xavier

2022

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Benila Virgin Jerald Xavier, authorize duplication

of this work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

This work is dedicated to my husband Prasanth, who has been a constant source

of support and encouragement during all the challenges over the last couple of years. I am

truly thankful for all his sacrifices. I would also like to dedicate this work to my daughter

who has been putting up with my rigorous schedule and driving me to be the best version

of myself every day.

In loving memory of my father, who will always be on my side.

v

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my advisor Dr. Martin

Burtscher, for giving me the opportunity to work with him and being supportive

throughout this thesis. I am thankful for his encouragement, guidance, and patience

during my research.

I would also like to extend my sincere thanks to Dr. Metsis and Dr. Yang for

being a part of my thesis committee and contributing their time and support.

I am thankful for the supportive environment and great education system at Texas

State University, which has helped me immensely throughout my Master’s degree.

Finally, I am extremely grateful to my family and friends for all the love and

support. None of this would have been possible without them.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

ABSTRACT ... ix

CHAPTER

1. INTRODUCTION ...1

2. APPROACH ..3

2.1. Exhaustive Algorithm ..4

2.2. Branch and Bound Algorithm ..7

2.3. Performance improvement using heuristics ...8

2.4. GPU implementation ..10

3. RELATED WORK..12

4. EXPERIMENTAL METHODOLOGY ..17

4.1. Austin ...17

4.2. Ithaca ..18

5. RESULTS ..20

5.1. Comparison with CONCORDE ...20

5.2. Comparison with LKH ...23

6. SUMMARY AND CONCLUSION ..27

BIBLIOGRAPHY ..29

vii

LIST OF TABLES

Table Page

5.1. Results comparison with CONCORDE on Ithaca ..21

5.2. Results comparison with CONCORDE on Austin ...22

5.3. Results comparison with LKH on Ithaca ..24

5.4. Results comparison with LKH on Austin ...25

viii

LIST OF FIGURES

Figure Page

2.1 Example TSP problem ...3

2.2. Search tree for the example TSP problem ..5

2.3. Branch and Bound search tree for 4-city problem ..7

2.4. Lower bound values for 4-city problem..7

5.1. Speedup achieved in comparison with CONCORDE on Ithaca22

5.2. Speedup achieved in comparison with CONCORDE on Austin23

5.3. Speedup achieved in comparison with LKH on Ithaca ...25

5.4. Speedup achieved in comparison with LKH on Austin ..26

ix

ABSTRACT

The Traveling Salesman Problem (TSP) is a combinatorial optimization problem

tasked with finding the shortest tour for visiting a set of cities such that each city is

visited exactly once, and the tour ends in the starting city. This problem has gained

attention among researchers because it is easy to describe yet difficult to solve.

TSP has numerous important real-life applications, but its NP-hardness makes it

difficult to find an optimal solution even for relatively small problem sizes. The literature

describes many heuristic algorithms that solve the problem approximately but only few

exact algorithms.

The TSP solver implemented in this study is a GPU-accelerated exact solver for

small problem sizes. The goal is to exploit the computing capabilities of modern GPUs

for finding an optimal solution using simple algorithms. The algorithms used are

exhaustive search for up to 7 cities and branch and bound for problems up to 30 cities.

The branch and bound algorithm performs an irregular traversal of the search tree,

making it challenging to parallelize efficiently, especially for massively parallel GPUs. I

implemented the algorithm in CUDA and tested it on GPUs with different compute

capabilities. My solver is exact and very fast. It outperforms the CONCORDE and LKH

solvers for problems with up to 15 cities. On a 13-city instance, my solver is 36 and 15

times faster than CONCORDE and LKH, respectively.

1

1. INTRODUCTION

The Travelling Salesman Problem (TSP) is a classical optimization problem that

finds the shortest possible tour for a given set of cities visiting each city exactly once and

returning to the origin. The problem statement of TSP may look simple but is very

difficult to solve. Since TSP is an NP-hard problem, it becomes geometrically more

difficult to find an optimal solution when more cities are added to the problem. This

characteristic of TSP has made it an interesting area of research for decades. The

objective of this thesis is to design a simple exact TSP solver for small problem sizes

running on massively parallel GPUs.

TSP is one of the best-known NP-hard problems. There is no known exact

algorithm to solve it in polynomial time. Mathematically, it is represented as a set of n

cities, and these n cities have (n-1)! possible tours. So, an increase in the number of cities

results in an exponential increase in the number of paths. The goal is to find the minimum

distance tour (Hamiltonian path) in which all cities are visited. TSP can be represented as

an undirected graph G = (V, d), where V is the set of cities to be visited and di,j is the cost

of traveling from city i to city j. This thesis’ goal is to design a GPU version for finding

the exact solution quickly, using exhaustive search for small inputs (up to 7 cities) and a

branch and bound algorithm for larger inputs (up to 30 cities).

Applications of TSP in its pure form and as a sub-problem have made it an

interesting area of research. For example, it has a wide range of applications in the field

of science and technology such as routing of delivery trucks where it is used to find the

optimal vehicle route with minimum total cost [17]. It is also used in planning of robot

arm movements to enhance production levels [11], scheduling the drilling of holes in

2

printed circuit boards [18], analyzing the structure of crystals [19], and connecting

components on a computer board [19]. It has further been used for photographic mask

plotter control in PCB production and wireless sensor networks [20]. Because of its broad

application, it is important to develop efficient TSP solvers.

Exact algorithms for finding the TSP solution are exhaustive enumeration

algorithms [21], dynamic programming [1], branch and bound [22], constraint

programming [23], and hybrid methods [24]. Enumeration algorithms generate all

possible tours for a given set of cities and evaluate them to find the shortest distance.

The broad application of TSP in different fields and its NP-hardness have

motivated researchers to find faster “heuristic” solutions. Several approximation

algorithms that use heuristics have been developed to solve the TSP problem. Heuristic

algorithms such as Ant colony optimization [5, 8, 18] and iterative hill climbing [25] can

find a near optimal solution and focus mostly on solving larger instances.

The rest of this thesis is organized as follows. In Section 2, the approach used to

design my TSP solver is discussed. In Section 3, related literature on exact solutions for

the Traveling Salesman Problem is reviewed. Section 4 explains the evaluation

methodology. Section 5 discusses the results and analyzes the solver implemented in this

study. Section 6 summarizes the thesis and discusses the conclusion and possible future

improvements.

3

2. APPROACH

The exact TSP solver designed in this thesis uses a hybrid approach (both CPU

and GPU) to find the solution quickly. To achieve maximum performance, I decided to

use exhaustive search on the CPU for small problem sizes up to 7 cities and the branch

and bound algorithm on the GPU for problem sizes between 8 and 30 cities. The TSP

solver I implemented for this study reads inputs from TSPLIB [13]. It supports most of

the TSPLIB formats, including the two-dimensional Euclidean, Explicit, Geo, and CVRP

formats.

For a given set of n cities, the exhaustive algorithm enumerates the search space

for all possible paths and determines the least cost path. The distance between all city

pairs is pre-computed and stored as a distance matrix. Consider the example graph shown

in Figure 2.1, where the graph represents a TSP of 4 cities with the distance between each

city pair marked. Figure 2.2 shows the search tree to describe the exhaustive algorithm.

Figure 2.1: Example TSP problem

A

D

B

C

42

32

27

47

23

71

4

2.1 Exhaustive Algorithm

The algorithm starts the search from city A. At this level it has n-1 children. It

moves to the first child city B and travels down adding the distance value at each level.

The search continues with the next child of city B until all children are explored. The

minimum distance value is propagated back to city B from its children and then to the

root level. At any point, if the obtained distance is lower than the best distance so far, the

value is updated. The search then continues with all other children of city A and the

optimal distance value is updated if it is a new minimum value. Since this search explores

all possible city permutations, the final distance is the optimal distance. However, the

nature of TSP is that the number of permutations increases exponentially as the problem

size increases, making it hard to find the solution using exhaustive search. So, this

algorithm is only suitable for finding solutions for small problem sizes. For larger

problem sizes, I used parallelization to speed up the search.

5

Figure 2.2: Search tree for the example TSP problem

The idea is to assign the search to several threads so that each thread can run it in

parallel, and the minimum distance is calculated. But parallelizing at or close to the root

of the search tree would not work due to a small number of children present. So, to take

advantage of parallelism, we need to travel down the tree to a level with a higher number

of children to spawn multiple parallel threads. To achieve this, an alternate exhaustive

search approach that uses a modulo operation to enumerate all possible permutations is

implemented. This approach launches (n – 1)! threads for a problem size with n cities.

For each permutation, it determines the cities to visit and adds the distance for each

visited city. Using this approach, I was able to produce enough parallelism, but it has a

A

D C B

C D B D C B

D C D B C B

A A A A A A

42 47 71

23 32 23 27 32 27

27 27 32 32 23 23

71 47 71 42 47 42

dist = 71

dist = 98

dist = 121

106

 dist = 148

6

limitation. The required modulo and division operations used to generate the

permutations made it slow.

To speed up the approach, the search is stopped at a certain tree depth and the

information of the tour such as the distance, unvisited cities, and the last city visited are

stored in a worklist. Each element in the worklist is a unique tour path, which is suitable

to run in parallel. Threads equal to the total number of elements in the worklist are

launched and each of them is assigned a unique path to find the distance. Finally, a global

atomicMin operation is performed to determine the shortest distance. This

implementation made the TSP solver much faster, but it was still expensive for problem

sizes with more than about 14 cities. A further improvement is to exclude parts of the

search space that cannot contain the optimal solution. This can be done using the branch

and bound technique [26].

7

Figure 2.3 Branch and Bound search tree for 4-city problem

City: A B C D

42

23

23

27

Figure 2.4 Lower bound values for 4-city problem

2.2 Branch and Bound Algorithm

Branch and bound is an approach to speed up combinatorial optimization

problems. Since TSP is one such problem, limiting the search space using a bounding

factor can improve the algorithm for larger problem sizes. Figure 2.3 illustrates the

A

D C B

C D B D C B

D C D B C B

A A A A A A

4
2

4
7

7
1

2
3

32 2
3

2
7

3
2

2
7

2
7

27 3
2

3
2

2
3

2
3

7
1

4
7

7
1

4
2

4
7

4
2

 dist = 163
148

8

branch and bound algorithm on the search tree for the 4-city problem shown in Figure

2.1. Figure 2.4 shows the shortest distance from every city to every other city. The lower

bound is calculated as the sum of all the shortest distances shown in Figure 2.4. When a

city is added to the tour, a new lower bound estimate is calculated by adding the current

distance at the level to the remaining shortest distance values of all unvisited cities. If this

lower bound estimate is larger than the best distance found so far, the path is pruned as it

cannot lead to a better solution. The algorithm calculates the distance of the first

complete tour and uses it as the initial best distance. Whenever a better distance is found,

this value is updated. For some inputs, the initial distance value calculated may not be

close to the optimal distance. This causes the search to travel down many suboptimal

paths, which increases the search space of the branch and bound algorithm and lowers

performance. The circled paths in Figure 2.3 shows how suboptimal paths are not pruned,

causing the branch and bound algorithm to travel down the entire way to the leaf. To

avoid this problem and prune the search space more effectively, a heuristic algorithm is

executed first. This heuristic algorithm finds a near optimal distance, which is then used

as the initial best distance to better prune the search space.

2.3 Performance improvement using heuristics

There are several simple heuristic algorithms to find good quality approximate

solutions for TSP. In this implementation I used greedy construction heuristic [27]

followed by the 2-opt improvement heuristic [30]. The greedy TSP algorithm takes all the

edges in a complete, undirected graph and sorts them in non-decreasing order. The edge

with smallest distance is added to the tour if the vertices associated with the edge have

degree less than 2 and adding the edge does not form a cycle. Cycles in the greedy tour

9

path are detected using a disjoint set data structure [28]. This data structure is used to

create non-overlapping subsets using two simple operations: union and find. Initially,

there is only one vertex in each subset. When an edge is added to the tour, I check if both

the vertices of the edge belong to the same subset. If the degree of the vertices is less than

2 and the subsets are different, there is no cycle, and I add the edge to the tour. The

source and the destination vertices of the edges that forms the tour is stored in an array

and this information is used in improving the solution using the 2-opt heuristic.

The 2-opt heuristic checks if the current tour distance can be decreased and

modifies the tour with the best such move if possible. 2-opt removes two edges of the

tour generated using the greedy heuristic, splitting the tour into two subtours. One of the

subtours is reversed and then again attached to the other subtour. 2-opt attempts this

operation for all possible edge pairs and selects the pair that results in the greatest tour-

length reduction. Applying this move generates a new (shorter) tour. 2-opt then

iteratively tries to shorten the new tour in the same manner until a local minimum is

reached. This way, the 2-opt improvement operations further refine the greedy tour.

Ultimately, the distance of the final tour is calculated. This distance value is used as the

initial distance when launching the exact TSP solver. This approach significantly

improves the performance of the branch and bound implementation as the overhead of

running the greedy and 2-opt algorithms is much smaller than the time saved in the exact

solver.

10

2.4 GPU Implementation

The full performance of a GPU is unleashed by running many parallel threads that

do similar tasks. As discussed above, sufficient parallelism was achieved in the algorithm

by traveling down the tree to a level where it has a sufficiently large number of children.

Each of these children can be assigned to a unique thread to calculate the tour distance.

So, the GPU kernel only needs the total number of permutations, the depth, and the

number of cities to launch the threads in parallel. The GPU launch configuration in this

implementation was optimized based on the number of nodes at the tree depth of 6. This

depth was determined based on several performance experiments. This cut-off depth

enables enough parallelism for my GPU implementation. If there is a need for more or for

less parallelism on a different computing device, the depth can easily be adjusted

accordingly. The thread count per block was tuned based on the number of nodes at the

specified depth, the maximum threads per SM, the maximum threads per block and the

maximum number of blocks. These values are calculated based on the queried GPU

properties before launching the kernel. Each thread starts its tour from city 0 and the next

cities in the tour are based on the index of the thread. This makes sure that each thread

runs a different permutation. At the set depth, each thread calls the tsp device function by

passing the details of the tour at that depth level. Information such as unvisited cities,

estimated bound, current distance and the city from which the tour should be continued is

passed to the tsp function. These values are used to continue the tour until all the cities

are visited.

Though generating the optimal tour length is the main criterion for TSP solvers,

doing it quickly is important in real-world applications. To make the solver more

11

efficient, I tweaked the performance multiple times and implemented different

techniques. Initially, the distance matrix, lower bound value, and lower bound array were

using the GPU’s global memory. But this caused a strain on the runtime. Since constant

memory has its own cache and threads can access it much faster, moving the global

memory contents to constant memory resulted in better performance.

Shared memory in a GPU is allocated per thread block and every thread has

access to the memory shared by a thread block. This meant shared memory could

potentially provide further improvement in performance, so the next experiment was to

copy the distance matrix and the lower bound array from constant memory to shared

memory. To avoid race conditions and to ensure correct results, the synchronization

primitive __syncthreads() is used, which blocks all the threads until the distance matrix

and the lower bound array are copied. This change from constant to shared memory

proved to be helpful in improving the runtime. To further optimize the algorithm when

the number of unvisited cities reaches 3, the possible tour from that level is split into

three different functions tsp3, tsp2 and tsp1, which are highly optimized for these specific

problem sizes.

12

3. RELATED WORK

The Traveling Salesman Problem is an interesting area of research due to the

different challenges it presents. A lot of research, detailing different approaches, has been

done over the years in solving the traveling salesman problem. In 1962, Held-Karp and

Bellman proposed an algorithm based on dynamic programming for the classical

traveling salesman problem [1]. It is considered the best exact dynamic programming

algorithm for TSP to this day. The input for the algorithm is a distance matrix between a

set of cities, and the starting city is designated arbitrarily. Set S consists of all cities in the

problem excluding the starting city and l S. The algorithm calculates the shortest one-

way path from the starting city to every city in the set S. It then recursively calculates the

minimum cost from the starting city to all cities in the set S terminating at city l. The

values are computed starting with the smallest sets of S and finishing with the largest.

The shortest path is finally reconstructed from the stored values of the second-to-last city

on the path from 1 to l through S.

In 1995, Dyduch [2] parallelized the Branch and Bound (B&B) algorithm for TSP

on CPUs. The Branch and Bound method is based on the construction of a decision tree

by partitioning the feasible solutions into smaller subsets. The paper parallelizes a

sequential B&B for TSP by modifying its branching rule. The sequential version

partitions the solution subset into two subsets, one subset with a specific edge (i, j)

between the cities and another subset without the specific edge. In the parallel algorithm,

the branching rule partitions the subsets of the root and the first level of the decision tree

into n-1 and n-2 mutually disjoint subsets and the subsets of further levels are partitioned

into two subsets, like in the sequential algorithm. The subproblems are assigned

13

dynamically to free processors. Process 0 determines the basic distribution row (root) as

well as the local distribution row (first level) and assigns each processor with these first

stage subtree elements. Nodes of the subtree are examined with the use of a backtracking

strategy. The second stage subtrees are generated and tested recursively and are assigned

to free processors dynamically by process 0.

In 1997, Caseau and Laburthe [3] proposed a set of techniques that made

constraint programming a choice for solving the traveling salesman problem with small

instances. The paper discusses the local and global constraints that describe TSP. The

local constraint is that there can be only one incoming edge and one outgoing edge in a

node while the global constraint is that there can be no cycles in the tour. The paper

describes a propagation scheme for local constraints by associating each node to its

immediate successor. The node that has the largest cost difference with the parent node is

chosen for branching. To propagate the no-cycle constraint (global constraint), the start,

the end, and the length of the tour going through the starting node are all stored and

checked if the sub-chains associated with the successors are already built. The standard

branching strategy chooses the most critical variable over all the next available nodes in

the tour. Applications of constraint programming to solve TSP have been used in pickup-

delivery [7] and parcel delivery with drones [9].

The Concorde TSP solver, an exact method for solving the traveling salesman

problem, was written by Applegate in 1998 [4]. It is primarily based on the cutting-plane

method for solving the TSP, but this method is believed to be slow even for some small

instances. By finding subtour cuts and combining them with branch-and-cut, the cutting

plane method can be improved to solve the problem much faster. The quality of a cut

14

(i.e., the number of edges passing a solution boundary) is based on its contribution in

reducing the total running time of the cutting-plane method. The paper proposed a

template paradigm for cuts using different separation algorithms. The separation

algorithms are exact separation algorithms for subtour cuts, blossom cuts, comb cuts and

a greedy heuristic for certain path cuts. As the number of cuts added increases, the

increase in finding the optimal value of cutting plane methods LP relaxation decreases.

So, branching is used when the increase is too small. The set of tours are partitioned into

two subproblems and the cutting-plane method is applied to each. Further, either one of

these subproblems or both can be divided into sub-subproblems. In the end, the

subproblems will be solved by the cutting-plane method without recourse to branching.

The Concorde TSP solver is probably the most widely used exact solver to solve large

instances quickly with the largest problems comprising 85,900 cities.

In 1971, Lin and Kernighan developed a highly effective heuristics that produces

optimal and near-optimal solutions for the traveling salesman problem [29]. The idea of

the heuristic is a generalization of the interchange transformation. A non-optimal but

feasible tour T is not optimal because it has k nodes that are out-of-place, and it can be

made optimal by replacing it with a different set of k nodes in the tour. The algorithm

first identifies the most-out-of-place pair and then finds another pair in the remaining set

of the tour to replace it. The algorithm uses a selection rule that chooses the most out-of-

place pair. It chooses pairs in which the total gain associated with the proposed set of

exchanges is positive. The selection process stops only when the total gain is less than 0

for all k out-of-place nodes. The algorithm stops when there is no further profit in

searching for out-of-place nodes, i.e., the gain in exchange does not yield any

15

improvement. When there is no gain found in the nearby nodes, a backtracking function

is invoked, which selects replacement nodes with increasing order of length. If all the

choices are searched and there is no gain, then the algorithm returns to the node at the

other side of the selected edge and continues to find a better replacement. The algorithm

backtracks only when no gain can be found and only at levels 1 and 2. It uses a limited

backtracking to effectively compromise between exponentiality and running time. Only a

maximum of five nodes are checked against each other to see if it can be replaced with

the selected out-of-place node. This algorithm considers time taken to reach the first local

optimum T where no further progress can be made and ignores the time spent on the later

cases where it arrives at the same tour. Once the locally optimum tour has been found, the

procedure checks if the links of the tour can be broken to yield further improvement. If

this process produces an improvement, it may convert the non-optimal solution to an

optimal solution. This heuristic developed by Lin-Kernighan is considered to be the most

effective heuristic to generate optimal and near-optimal solutions for the traveling

salesman problem. However, the implementation of this algorithm is complex, and a

decision must be made at each step, most of which influence the performance.

Whereas there are different exact algorithms as described above, there are also

heuristic methods to solve the TSP approximately. Heuristic algorithms solve TSP

problems by settling on near optimal tours. A lot of research has been done in designing

heuristic algorithms for TSP with larger instances [6], one such meta heuristic approach

is Ant Colony Optimization. Ant colony optimization was used by Ivan and Zuzana in

2011 [5] to solve small traveling salesman problems. The base of Ant Colony

Optimization is to simulate the real behavior of ants. It uses two parameters and to

16

simulate the probability based on pheromone quantity. Every virtual ant has its own

memory to save the path it travelled and moves to a new state if no ending constraint is

compiled. The next motion depends on the probability calculated based on the

pheromone quantity of the edges. The movement of ants provides a parallel and

independent search of the route. Based on this approach, the solution quality depends on

the number of virtual ants and deviates a little from the optimal solution.

This related work gives us an idea of the techniques that have been used to solve

the traveling salesman problem over the years. Despite all this research, finding an

optimal solution for TSP is NP-hard and most of the techniques proposed so far are to

find a near optimal tour. Also, most of the parallel TSP algorithms for GPUs are based on

heuristic approaches and focus only on solving larger instances. My thesis proposes a

GPU version for an exact solution approach based on exhaustive search (up to 7 cities)

and branch and bound (up to 29 cities).

17

4. EXPERIMENTAL METHODOLOGY

The primary objective of the TSP solver is to figure the shortest tour distance.

This means the optimal length calculated by a TSP solver and the runtime taken to

produce this optimal length are the primary metrics for determining the effectiveness of a

TSP solver. The input instances used to evaluate the optimal TSP solver are from the

standard TSPLIB and the solutions obtained are compared. All the execution times are

measured in seconds; in my approach, this time also includes the time taken by the

heuristic TSP function for calculating the initial distance used in the exact solver.

The time taken by the implemented TSP solver and the optimal solutions are

compared with other TSP solvers to understand where my code stands. The solvers that

are used for this comparison are the CONCORDE TSP solver [4] and the LKH TSP

solver [29]. CONCORDE and LKH are the best-known solvers available today that

produce an optimal solution.

All solvers were evaluated on two systems named “Austin” and “Ithaca”. Below

are the specifications of the two systems.

4.1 Austin

o CPU: Two Intel Xeon Gold 6226R CPU @ 2.9 GHz

o Number of Cores: 32 (2x 16-core NUMA)

o Number of Threads: 64

o Main Memory: 64 GB

My CUDA implementation was executed on an NVIDIA GeForce RTX 3090 GPU. The

specifications are as follows:

o 82 SMs

18

o 1536 maximum threads per streaming multiprocessor

o 24 GB memory size

o L1 cache: 128 KB (per SM)

o L2 cache: 6 MB

o CUDA compute capability: 8.6

The CUDA code was compiled on Austin using the CUDA toolkit version in v11.6.124

with the NVCC compiler build version 11.6 with the “-O3 -arch=sm_86” flags.

4.2 Ithaca

o CPU: AMD Ryzen Threadripper 2950X @ 2.7 GHz

o Number of Cores: 16

o Number of Threads: 32

o Main Memory: 64 GB

The CUDA implementation was evaluated on a Titan V GPU. The specification are as

follows:

o 80 SMs

o 2048 maximum threads per streaming multiprocessor

o 12 GB memory size

o L1 cache 96 KB (per SM)

o L2 cache: 4.5 MB

o CUDA Compute capability: 7.0

The codes were compiled on Ithaca using the CUDA toolkit version v11.7.64 with

the NVCC compiler build version 11.7 with ‘-O3 -arch=sm_70’ flags.

19

Inputs from the TSPLIB are used as a standard to study TSP and other related

problems. The inputs the solver is tested with are from the TSPLIB with fewer than 30

cities, and the same inputs were used for the CONCORDE TSP solver and the LKH TSP

solver. My TSP solver can also read the CVRP inputs from the TSPLIB and calculate

their shortest path distance.

20

5. RESULTS

I compared the performance of my TSP solver to that of the CONCORDE TSP

solver designed by Applegate in 1998 and the LKH TSP solver designed by Lin-

Kernighan in 1971. I measured the runtime for city counts from 7 to 29 and calculated the

speedup. The optimal tour length obtained with my TSP solver always matches that

obtained from the CONCORDE and LKH solvers. The runtimes were measured on the

two machines called “Austin” and “Ithaca” as outlined above. Bolded speedups in the

comparisons indicate that my solver is faster. The runtimes do not steadily increase with

higher city counts. This is because the runtime is not only a function of the number of

cities but also of how the cities are arranged in the input and how close the heuristic

solution is to the exact solution, that is, how much of the search space can be pruned.

5.1 Comparison with CONCORDE

This section compares my solver to CONCORDE on the Austin and Ithaca

machines. Table 5.1 outlines the results on Ithaca. The highest speedup is achieved for

the TSPLIB input eil7, on which my code calculates the shortest distance 21.7 times

faster than CONCORDE. Overall, my TSP solver outperforms CONCORDE for

problems with up to 15 cities. Figure 5.1 shows the speedup graph for comparison against

CONCORDE.

When run on Austin (Table 5.2), a machine with a higher compute capability, my

code is up to 60.8 times faster (on eil7). Again, my solver outperforms CONCORDE on

problems up to 15 cities as shown in Figure 5.2.

The speedup is higher for smaller problem sizes and drops below one above 15

cities, at which point CONCORDE is faster. The reason is that CONCORDE employs

21

branch-and-cut and several other advanced algorithms to optimize the solver, which

generates additional constraints, thus reducing the search space beyond what my solution

is capable of.

 Table 5.1: Result comparison with CONCORDE on Ithaca. The runtimes are in seconds.

Input My Solver Concorde Speedup Optimal Distance

eil7 0.00001 0.00015 21.71 66

eil13 0.00028 0.004 13.90 142

burma14 0.002 0.010 4.91 3323

p01.tsp (15 cities) 0.000 0.001 3.83 291

ulysses16 0.494 0.037 0.08 6859

gr17 0.139 0.014 0.10 2085

gr21 0.072 0.005 0.08 2707

ulysses22 3247.388 0.076 0.00 7013

eil22 0.677 0.013 0.02 278

eil23 3.319 0.009 0.00 470

gr24 50.991 0.011 0.00 1272

fri26 484.978 0.015 0.00 937

bays29 0.020 2020

bayg29 0.015 1610

eil30 0.056 381

22

Figure 5.1 Speedup achieved in comparison with CONCORDE on Ithaca

Table 5.2 Result comparison with CONCORDE on Austin. The runtimes are in seconds.

Input My solver Concorde Speedup Optimal Distance

eil7.vrp 0.000006 0.000365 60.83 66

eil13.vrp 0.000192 0.007 36.46 142

burma14 0.001 0.016 13.29 3323

p01.tsp (15

cities) 0.000 0.004 16.95 291

ulysses16 0.294 0.027 0.09 6859

gr17 0.097 0.009 0.09 2085

gr21 0.051 0.008 0.16 2707

ulysses22 2137.547 0.069 0.00 7013

eil22.vrp 0.456 0.015 0.03 278

eil23.vrp 2.198 0.005 0.00 470

gr24 33.540 0.020 0.00 1272

fri26 322.594 0.011 0.00 937

bays29 0.011 2020

bayg29 0.022 1610

eil30.vrp 0.040 381

0

5

10

15

20

25

Speedup vs CONCORDE on Ithaca

23

Figure 5.2 Speedup achieved in comparison with CONCORDE on Austin

5.2 Comparison with LKH

 The following data show the results of the comparison between my TSP solver

and LKH. Table 5.3 denotes the comparison on Ithaca. Like CONCORDE, the LKH

solver performs better for problem sizes above 15 cities. Figure 5.3 shows the speedup

over the LKH solver on Ithaca. The highest speedup is for the input eil7, where my solver

is 82 times faster.

Table 5.4 lists the results of all tested TSPLIB instances on Austin. Although the

LKH solver performs better for higher problem sizes, due to the faster GPU, the

performance benefit of my GPU-based solver is twice as high compared to Ithaca and

outperforms LKH by a larger factor on small problem sizes. Figure 5.4 shows the

speedup achieved against the LKH solver on Austin. The highest speedup is 234 when

solving the instance eil7.

0

10

20

30

40

50

60

70

Speedup vs Concorde on Austin

24

Table 5.3 Result comparison with LKH on Ithaca. The runtimes are in seconds.

Input My Solver LKH Speedup Optimal Distance

eil7 0.00001 0.001408 82.29 66

eil13 0.00028 0.003 7.94 142

burma14 0.002 0.003 0.62 3323

p01.tsp (15 cities) 0.0003 0.001 1.73 291

ulysses16 0.494 0.003 0.00 6859

gr17 0.139 0.003 0.01 2085

gr21 0.072 0.003 0.03 2707

ulysses22 3247.388 0.004 0.00 7013

eil22 0.677 0.007 0.01 278

eil23 3.319 0.003 0.00 470

gr24 50.991 0.007 0.00 1272

fri26 484.978 0.005 0.00 937

bays29 0.006 2020

bayg29 0.011 1610

eil30 0.009 381

25

Figure 5.3 Speedup achieved in comparison with LKH on Ithaca

Table 5.4: Result comparison with LKH on Austin. The runtimes are in seconds.

0
10
20
30
40
50
60
70
80
90

Speedup vs LKH on Ithaca

Input My solver LKH Speedup Optimal distance

eil7.vrp 0.000006 0.001408 234.67 66

eil13.vrp 0.000192 0.003 15.63 142

burma14 0.001 0.003 2.49 3323

p01.tsp (15 cities) 0.000 0.001 4.24 291

ulysses16 0.294 0.003 0.01 6859

gr17 0.097 0.003 0.03 2085

gr21 0.051 0.003 0.06 2707

ulysses22 2137.547 0.004 0.00 7013

eil22.vrp 0.456 0.007 0.02 278

eil23.vrp 2.198 0.003 0.00 470

gr24 33.540 0.007 0.00 1272

fri26 322.594 0.005 0.00 937

bays29 0.006 2020

bayg29 0.011 1610

eil30.vrp 0.009 381

26

Figure 5.4 Speedup achieved in comparison with LKH on Austin

0

50

100

150

200

250

Speedup vs LKH on Austin

27

6. SUMMARY AND CONCLUSION

With the recent expansion in delivery services, solving the Traveling Salesman

Problem to its optimality has gained attention. An important challenge is to find the most

efficient tour very quickly. Especially the last mile challenges faced in recent delivery

systems has increased the importance of finding optimal solutions. But the NP-hardness

of TSP makes this difficult. This thesis proposes a CUDA implementation of TSP that is

based on the simple branch and bound algorithm and exhaustive enumeration.

My TSP solver is a hybrid solver that utilizes both the CPU and the GPU.

Maximum performance is achieved by running small problems with up to 7 cities on the

CPU using exhaustive search and larger problems on the GPU using a branch and bound

algorithm. The search starts at city A and visits the remaining cities; at each step the

minimum distance value is propagated to the previous level. This guarantees to find the

optimal solution by exploring all possible paths but is only efficient for very small

problem sizes. To solve larger problems, parallelization is used to improve performance.

To parallelize the algorithm effectively and run it on a GPU, I implemented a

modulo approach to travel down a few levels of the search tree until a sufficiently larger

number of children is reached. At each level, the distance value is added and at level 6

the distance value and information about the current city are stored in a worklist. This

approach produces enough parallelism but the use of modulo operations is expensive. To

further improve the algorithm, I used branch and bound to eliminate parts of the search

space that cannot yield an optimal solution.

28

The branch and bound algorithm limits the search space using a bounding factor.

This lower bound is calculated by adding all the shortest distances from each city to

every other city. At each level, the best distance obtained so far is compared with this

lower bound estimate and the path is pruned if the minimally estimated distance is larger.

To further improve the algorithm, I used a greedy construction heuristic and the 2-opt

improvement heuristic to find a good initial guess to prune the search space. This

approach improved the performance substantially.

To further boost the performance on the GPU, the launch configuration in the

implementation was optimized based on the number of child nodes at depth 6. The

distance matrix was copied to the shared memory. The thread count per block was tuned

based on the number of children, maximum threads per SM, maximum threads per blocks

and the maximum number of blocks. This improves the utilization of the GPU.

In conclusion, I implemented a GPU-accelerated exact solver for small TSP

problem sizes and compared its performance with the two state-of-the-art solvers

CONCORDE and LKH. My GPU solver, which uses simple algorithms, outperforms

both CONCORDE and LKH for up to 15 cities and can solve problems with up to 26

cities in a reasonable amount of time. Future exploration would be to use more

sophisticated heuristics (e.g., genetic algorithms) to find a better near-optimal solution to

prune the search space and to improve the performance on larger problem sizes using

more advanced algorithms.

29

BIBLIOGRAPHY

1. Held, Michael, and Richard M. Karp. “A Dynamic Programming Approach to

Sequencing Problems.” Journal of the Society for Industrial and Applied

Mathematics 10, no. 1 (1962): 196–210. http://www.jstor.org/stable/2098806.

2. Ewa Dudek-Dyducb, Tadeusz Dyducb, Travelling Salesman Problem - Parallel

Algorithms, IFAC Proceedings Volumes, Volume 28, Issue 10, 1995, Pages 657-

662, ISSN 1474-6670,

3. Caseau, Yves & Laburthe, François. (1997). Solving Small TSPs with Constraints.

316-330.

4. Applegate, David L., Robert E. Bixby and William J. Cook. “On the Solution of

Traveling Salesman Problems.” (1998).

5. Brezina, Ivan & Čičková, Zuzana. (2011). Solving the Travelling Salesman

Problem Using the Ant Colony Optimization. International Scientific Journal of

Management Information Systems. 6.

6. Burtscher, Martin. "A high-speed 2-opt tsp solver for large problem sizes." (2013).

7. O'Neil, Ryan J. and Karla L. Hoffman. “Exact Methods for Solving Traveling

Salesman Problems with Pickup and Delivery in Real Time.” (2018).

8. Nwamae, Believe B, Kabari, Ledisi G., 0, Solving Travelling Salesman Problem

(TSP) Using Ant Colony Optimization (ACO), International Journal Of

Engineering Research & Technology (IJERT) Volume 07, Issue 07 (July 2018)

9. Roberti, Roberto & Ruthmair, Mario. (2019). Exact Methods for the Traveling

Salesman Problem with Drone.

30

10. Sara Cavani, Manuel Iori, Roberto Roberti, Exact methods for the traveling

salesman problem with multiple drones, Transportation Research Part C: Emerging

Technologies.

11. Nedjatia, Arman and B'ela Vizv'arib. “Robot Path Planning by Traveling Salesman

Problem with Circle Neighborhood: modeling, algorithm, and applications.” arXiv:

Optimization and Control (2020)

12. V. Burkhovetskiy and B. Steinberg. 2017. An exact parallel algorithm for traveling

salesman problem. In Proceedings of the 13th Central & Eastern European

Software Engineering Conference in Russia (CEE-SECR '17). Association for

Computing Machinery, New York, NY, USA, Article 14, 1–5.

https://doi.org/10.1145/3166094.3166108.

13. TSPLIB. , http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/

14. N. Thakoor, V. Devarajan and J. Gao, "Computation complexity of branch-and-

bound model selection," 2009 IEEE 12th International Conference on Computer

Vision, 2009, pp. 1895-1900, doi: 10.1109/ICCV.2009.5459420.

15. Parallel Branch and Bound Algorithm - A comparison between serial, OpenMP

and MPI implementations Lucio Barreto and Michael Bauer 2010 J. Phys.: Conf.

Ser. 256 012018

16. Blair Archibald, Patrick Maier, Ciaran McCreesh, Robert Stewart, Phil Trinder,

Replicable parallel branch and bound search, Journal of Parallel and Distributed

Computing, Volume 113, 2018, Pages 92-114, ISSN 0743-7315,

https://doi.org/10.1016/j.jpdc.2017.10.010.

31

17. R. A. Palhares and M. C. B. AraÚjo, "Vehicle Routing: Application of Travelling

Salesman Problem in a Dairy," 2018 IEEE International Conference on Industrial

Engineering and Engineering Management (IEEM), 2018, pp. 1421-1425, doi:

10.1109/IEEM.2018.8607472.

18. Eldos, Taisir & Kanan, Aws & Aljumah, Abdullah. (2013). Solving The Printed

Circuit Board Drilling Problem By Ant Colony Optimization Algorithm. Lecture

Notes in Engineering and Computer Science. 1. 584-588.

19. Matai, Rajesh & Singh, Surya & Mittal, M.L... (2010). Traveling Salesman

Problem: An Overview of Applications, Formulations, and Solution Approaches.

10.5772/12909.

20. Jonathan E. Tito, Marco E. Yacelga, Martha C. Paredes, Andres J. Utreras,

Waldemar Wójcik, Olga Ussatova, "Solution of travelling salesman problem

applied to Wireless Sensor Networks (WSN) through the MST and B&B

methods," Proc. SPIE 10808, Photonics Applications in Astronomy,

Communications, Industry, and High-Energy Physics Experiments 2018, 108082F

(1 October 2018); https://doi.org/10.1117/12.2501579

21. P Tipurić, Darko [Editor:] Hruška, Domagoj [Title:] 7th International OFEL

Conference on Governance, Management and Entrepreneurship: Embracing

Diversity in Organisations. April 5th - 6th, 2019, Dubrovnik, Croatia [Pages:] 391-

401

22. P, Rajarajeswari & D, Maheswari. (2020). Travelling Salesman Problem Using

Branch And Bound Technique. International Journal of Mathematics Trends and

Technology. 66. 202-206. 10.14445/22315373/IJMTT-V66I5P528.

https://doi.org/10.1117/12.2501579

32

23. Vali, Masoumeh and Khodakaram Salimifard. “A Constraint Programming

Approach for Solving Multiple Traveling Salesman Problem.” (2017).

24. Focacci, Filippo et al. “A Hybrid Exact Algorithm for the TSPTW.” INFORMS J.

Comput. 14 (2002): 403-417.

25. O'Neil, Molly A. and Martin Burtscher. “Rethinking the parallelization of random-

restart hill climbing: a case study in optimizing a 2-opt TSP solver for GPU

execution.” Proceedings of the 8th Workshop on General Purpose Processing

using GPUs (2015): n.

26. Kianfar, Kiavash. (2011). Branch‐and‐Bound Algorithms.

10.1002/9780470400531.eorms0116.

27. Nilsson, Christian. (2003). Heuristics for the Traveling Salesman Problem.

28. Zvi Galil and Giuseppe F. Italiano. 1991. Data structures and algorithms for

disjoint set union problems. ACM Compute. Surv.23, 3 (Sept. 1991), 319–344.

29. Effective Heuristic Algorithm for The Traveling-Salesman Problem. / Lin, S.;

Kernighan, B. W. In: Operations Research, Vol. 21, No. 2, 1973, p. 498-516.

30. O'Neil, Molly A. et al. “A Parallel GPU Version of the Traveling Salesman

Problem.” (2011).

31. Data For Traveling Salesman problem

https://people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp.html

	FOR SMALL PROBLEM SIZES
	1. INTRODUCTION
	2. APPROACH
	3. RELATED WORK
	4. EXPERIMENTAL METHODOLOGY
	5. RESULTS
	6. SUMMARY AND CONCLUSION
	With the recent expansion in delivery services, solving the Traveling Salesman Problem to its optimality has gained attention. An important challenge is to find the most efficient tour very quickly. Especially the last mile challenges faced in recent ...
	My TSP solver is a hybrid solver that utilizes both the CPU and the GPU. Maximum performance is achieved by running small problems with up to 7 cities on the CPU using exhaustive search and larger problems on the GPU using a branch and bound algorithm...
	To parallelize the algorithm effectively and run it on a GPU, I implemented a modulo approach to travel down a few levels of the search tree until a sufficiently larger number of children is reached. At each level, the distance value is added and at l...
	The branch and bound algorithm limits the search space using a bounding factor. This lower bound is calculated by adding all the shortest distances from each city to every other city. At each level, the best distance obtained so far is compared with t...
	BIBLIOGRAPHY

