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ABSTRACT 

The Traveling Salesman Problem (TSP) is a combinatorial optimization problem 

tasked with finding the shortest tour for visiting a set of cities such that each city is 

visited exactly once, and the tour ends in the starting city. This problem has gained 

attention among researchers because it is easy to describe yet difficult to solve. 

TSP has numerous important real-life applications, but its NP-hardness makes it 

difficult to find an optimal solution even for relatively small problem sizes. The literature 

describes many heuristic algorithms that solve the problem approximately but only few 

exact algorithms. 

The TSP solver implemented in this study is a GPU-accelerated exact solver for 

small problem sizes. The goal is to exploit the computing capabilities of modern GPUs 

for finding an optimal solution using simple algorithms. The algorithms used are 

exhaustive search for up to 7 cities and branch and bound for problems up to 30 cities. 

The branch and bound algorithm performs an irregular traversal of the search tree, 

making it challenging to parallelize efficiently, especially for massively parallel GPUs. I 

implemented the algorithm in CUDA and tested it on GPUs with different compute 

capabilities. My solver is exact and very fast. It outperforms the CONCORDE and LKH 

solvers for problems with up to 15 cities. On a 13-city instance, my solver is 36 and 15 

times faster than CONCORDE and LKH, respectively.



 

1 
 

1. INTRODUCTION 

 

The Travelling Salesman Problem (TSP) is a classical optimization problem that 

finds the shortest possible tour for a given set of cities visiting each city exactly once and 

returning to the origin. The problem statement of TSP may look simple but is very 

difficult to solve. Since TSP is an NP-hard problem, it becomes geometrically more 

difficult to find an optimal solution when more cities are added to the problem. This 

characteristic of TSP has made it an interesting area of research for decades. The 

objective of this thesis is to design a simple exact TSP solver for small problem sizes 

running on massively parallel GPUs. 

TSP is one of the best-known NP-hard problems. There is no known exact 

algorithm to solve it in polynomial time. Mathematically, it is represented as a set of n 

cities, and these n cities have (n-1)! possible tours. So, an increase in the number of cities 

results in an exponential increase in the number of paths. The goal is to find the minimum 

distance tour (Hamiltonian path) in which all cities are visited. TSP can be represented as 

an undirected graph G = (V, d), where V is the set of cities to be visited and di,j is the cost 

of traveling from city i to city j. This thesis’ goal is to design a GPU version for finding 

the exact solution quickly, using exhaustive search for small inputs (up to 7 cities) and a 

branch and bound algorithm for larger inputs (up to 30 cities). 

Applications of TSP in its pure form and as a sub-problem have made it an 

interesting area of research. For example, it has a wide range of applications in the field 

of science and technology such as routing of delivery trucks where it is used to find the 

optimal vehicle route with minimum total cost [17]. It is also used in planning of robot 

arm movements to enhance production levels [11], scheduling the drilling of holes in 
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printed circuit boards [18], analyzing the structure of crystals [19], and connecting 

components on a computer board [19]. It has further been used for photographic mask 

plotter control in PCB production and wireless sensor networks [20]. Because of its broad 

application, it is important to develop efficient TSP solvers. 

Exact algorithms for finding the TSP solution are exhaustive enumeration 

algorithms [21], dynamic programming [1], branch and bound [22], constraint 

programming [23], and hybrid methods [24]. Enumeration algorithms generate all 

possible tours for a given set of cities and evaluate them to find the shortest distance. 

The broad application of TSP in different fields and its NP-hardness have 

motivated researchers to find faster “heuristic” solutions. Several approximation 

algorithms that use heuristics have been developed to solve the TSP problem. Heuristic 

algorithms such as Ant colony optimization [5, 8, 18] and iterative hill climbing [25] can 

find a near optimal solution and focus mostly on solving larger instances.  

The rest of this thesis is organized as follows. In Section 2, the approach used to 

design my TSP solver is discussed. In Section 3, related literature on exact solutions for 

the Traveling Salesman Problem is reviewed. Section 4 explains the evaluation 

methodology. Section 5 discusses the results and analyzes the solver implemented in this 

study. Section 6 summarizes the thesis and discusses the conclusion and possible future 

improvements. 
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2. APPROACH 

 

The exact TSP solver designed in this thesis uses a hybrid approach (both CPU 

and GPU) to find the solution quickly. To achieve maximum performance, I decided to 

use exhaustive search on the CPU for small problem sizes up to 7 cities and the branch 

and bound algorithm on the GPU for problem sizes between 8 and 30 cities. The TSP 

solver I implemented for this study reads inputs from TSPLIB [13]. It supports most of 

the TSPLIB formats, including the two-dimensional Euclidean, Explicit, Geo, and CVRP 

formats. 

For a given set of n cities, the exhaustive algorithm enumerates the search space 

for all possible paths and determines the least cost path. The distance between all city 

pairs is pre-computed and stored as a distance matrix. Consider the example graph shown 

in Figure 2.1, where the graph represents a TSP of 4 cities with the distance between each 

city pair marked. Figure 2.2 shows the search tree to describe the exhaustive algorithm.  

 

Figure 2.1: Example TSP problem 
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2.1 Exhaustive Algorithm 

The algorithm starts the search from city A. At this level it has n-1 children. It 

moves to the first child city B and travels down adding the distance value at each level. 

The search continues with the next child of city B until all children are explored. The 

minimum distance value is propagated back to city B from its children and then to the 

root level. At any point, if the obtained distance is lower than the best distance so far, the 

value is updated. The search then continues with all other children of city A and the 

optimal distance value is updated if it is a new minimum value. Since this search explores 

all possible city permutations, the final distance is the optimal distance. However, the 

nature of TSP is that the number of permutations increases exponentially as the problem 

size increases, making it hard to find the solution using exhaustive search. So, this 

algorithm is only suitable for finding solutions for small problem sizes. For larger 

problem sizes, I used parallelization to speed up the search. 
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Figure 2.2: Search tree for the example TSP problem 

The idea is to assign the search to several threads so that each thread can run it in 

parallel, and the minimum distance is calculated. But parallelizing at or close to the root 

of the search tree would not work due to a small number of children present. So, to take 

advantage of parallelism, we need to travel down the tree to a level with a higher number 

of children to spawn multiple parallel threads. To achieve this, an alternate exhaustive 

search approach that uses a modulo operation to enumerate all possible permutations is 

implemented. This approach launches (n – 1)! threads for a problem size with n cities. 

For each permutation, it determines the cities to visit and adds the distance for each 

visited city. Using this approach, I was able to produce enough parallelism, but it has a 
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limitation. The required modulo and division operations used to generate the 

permutations made it slow. 

To speed up the approach, the search is stopped at a certain tree depth and the 

information of the tour such as the distance, unvisited cities, and the last city visited are 

stored in a worklist. Each element in the worklist is a unique tour path, which is suitable 

to run in parallel. Threads equal to the total number of elements in the worklist are 

launched and each of them is assigned a unique path to find the distance. Finally, a global 

atomicMin operation is performed to determine the shortest distance. This 

implementation made the TSP solver much faster, but it was still expensive for problem 

sizes with more than about 14 cities. A further improvement is to exclude parts of the 

search space that cannot contain the optimal solution. This can be done using the branch 

and bound technique [26]. 
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Figure 2.3 Branch and Bound search tree for 4-city problem 
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branch and bound algorithm on the search tree for the 4-city problem shown in Figure 

2.1. Figure 2.4 shows the shortest distance from every city to every other city. The lower 

bound is calculated as the sum of all the shortest distances shown in Figure 2.4. When a 

city is added to the tour, a new lower bound estimate is calculated by adding the current 

distance at the level to the remaining shortest distance values of all unvisited cities. If this 

lower bound estimate is larger than the best distance found so far, the path is pruned as it 

cannot lead to a better solution. The algorithm calculates the distance of the first 

complete tour and uses it as the initial best distance. Whenever a better distance is found, 

this value is updated. For some inputs, the initial distance value calculated may not be 

close to the optimal distance. This causes the search to travel down many suboptimal 

paths, which increases the search space of the branch and bound algorithm and lowers 

performance. The circled paths in Figure 2.3 shows how suboptimal paths are not pruned, 

causing the branch and bound algorithm to travel down the entire way to the leaf. To 

avoid this problem and prune the search space more effectively, a heuristic algorithm is 

executed first. This heuristic algorithm finds a near optimal distance, which is then used 

as the initial best distance to better prune the search space. 

2.3 Performance improvement using heuristics 

There are several simple heuristic algorithms to find good quality approximate 

solutions for TSP. In this implementation I used greedy construction heuristic [27] 

followed by the 2-opt improvement heuristic [30]. The greedy TSP algorithm takes all the 

edges in a complete, undirected graph and sorts them in non-decreasing order. The edge 

with smallest distance is added to the tour if the vertices associated with the edge have 

degree less than 2 and adding the edge does not form a cycle. Cycles in the greedy tour 
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path are detected using a disjoint set data structure [28]. This data structure is used to 

create non-overlapping subsets using two simple operations: union and find. Initially, 

there is only one vertex in each subset. When an edge is added to the tour, I check if both 

the vertices of the edge belong to the same subset. If the degree of the vertices is less than 

2 and the subsets are different, there is no cycle, and I add the edge to the tour. The 

source and the destination vertices of the edges that forms the tour is stored in an array 

and this information is used in improving the solution using the 2-opt heuristic.  

The 2-opt heuristic checks if the current tour distance can be decreased and 

modifies the tour with the best such move if possible. 2-opt removes two edges of the 

tour generated using the greedy heuristic, splitting the tour into two subtours. One of the 

subtours is reversed and then again attached to the other subtour. 2-opt attempts this 

operation for all possible edge pairs and selects the pair that results in the greatest tour-

length reduction. Applying this move generates a new (shorter) tour. 2-opt then 

iteratively tries to shorten the new tour in the same manner until a local minimum is 

reached. This way, the 2-opt improvement operations further refine the greedy tour. 

Ultimately, the distance of the final tour is calculated. This distance value is used as the 

initial distance when launching the exact TSP solver. This approach significantly 

improves the performance of the branch and bound implementation as the overhead of 

running the greedy and 2-opt algorithms is much smaller than the time saved in the exact 

solver. 
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2.4 GPU Implementation 

The full performance of a GPU is unleashed by running many parallel threads that 

do similar tasks. As discussed above, sufficient parallelism was achieved in the algorithm 

by traveling down the tree to a level where it has a sufficiently large number of children. 

Each of these children can be assigned to a unique thread to calculate the tour distance. 

So, the GPU kernel only needs the total number of permutations, the depth, and the 

number of cities to launch the threads in parallel. The GPU launch configuration in this 

implementation was optimized based on the number of nodes at the tree depth of 6. This 

depth was determined based on several performance experiments. This cut-off depth 

enables enough parallelism for my GPU implementation. If there is a need for more or for 

less parallelism on a different computing device, the depth can easily be adjusted 

accordingly. The thread count per block was tuned based on the number of nodes at the 

specified depth, the maximum threads per SM, the maximum threads per block and the 

maximum number of blocks. These values are calculated based on the queried GPU 

properties before launching the kernel. Each thread starts its tour from city 0 and the next 

cities in the tour are based on the index of the thread. This makes sure that each thread 

runs a different permutation. At the set depth, each thread calls the tsp device function by 

passing the details of the tour at that depth level. Information such as unvisited cities, 

estimated bound, current distance and the city from which the tour should be continued is 

passed to the tsp function. These values are used to continue the tour until all the cities 

are visited.  

Though generating the optimal tour length is the main criterion for TSP solvers, 

doing it quickly is important in real-world applications. To make the solver more 
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efficient, I tweaked the performance multiple times and implemented different 

techniques. Initially, the distance matrix, lower bound value, and lower bound array were 

using the GPU’s global memory. But this caused a strain on the runtime. Since constant 

memory has its own cache and threads can access it much faster, moving the global 

memory contents to constant memory resulted in better performance.  

Shared memory in a GPU is allocated per thread block and every thread has 

access to the memory shared by a thread block. This meant shared memory could 

potentially provide further improvement in performance, so the next experiment was to 

copy the distance matrix and the lower bound array from constant memory to shared 

memory. To avoid race conditions and to ensure correct results, the synchronization 

primitive __syncthreads() is used, which blocks all the threads until the distance matrix 

and the lower bound array are copied. This change from constant to shared memory 

proved to be helpful in improving the runtime. To further optimize the algorithm when 

the number of unvisited cities reaches 3, the possible tour from that level is split into 

three different functions tsp3, tsp2 and tsp1, which are highly optimized for these specific 

problem sizes.  
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3.  RELATED WORK 

 

The Traveling Salesman Problem is an interesting area of research due to the 

different challenges it presents. A lot of research, detailing different approaches, has been 

done over the years in solving the traveling salesman problem. In 1962, Held-Karp and 

Bellman proposed an algorithm based on dynamic programming for the classical 

traveling salesman problem [1]. It is considered the best exact dynamic programming 

algorithm for TSP to this day. The input for the algorithm is a distance matrix between a 

set of cities, and the starting city is designated arbitrarily. Set S consists of all cities in the 

problem excluding the starting city and l  S. The algorithm calculates the shortest one-

way path from the starting city to every city in the set S. It then recursively calculates the 

minimum cost from the starting city to all cities in the set S terminating at city l. The 

values are computed starting with the smallest sets of S and finishing with the largest. 

The shortest path is finally reconstructed from the stored values of the second-to-last city 

on the path from 1 to l through S.  

In 1995, Dyduch [2] parallelized the Branch and Bound (B&B) algorithm for TSP 

on CPUs. The Branch and Bound method is based on the construction of a decision tree 

by partitioning the feasible solutions into smaller subsets. The paper parallelizes a 

sequential B&B for TSP by modifying its branching rule. The sequential version 

partitions the solution subset into two subsets, one subset with a specific edge (i, j) 

between the cities and another subset without the specific edge. In the parallel algorithm, 

the branching rule partitions the subsets of the root and the first level of the decision tree 

into n-1 and n-2 mutually disjoint subsets and the subsets of further levels are partitioned 

into two subsets, like in the sequential algorithm. The subproblems are assigned 
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dynamically to free processors. Process 0 determines the basic distribution row (root) as 

well as the local distribution row (first level) and assigns each processor with these first 

stage subtree elements. Nodes of the subtree are examined with the use of a backtracking 

strategy. The second stage subtrees are generated and tested recursively and are assigned 

to free processors dynamically by process 0. 

In 1997, Caseau and Laburthe [3] proposed a set of techniques that made 

constraint programming a choice for solving the traveling salesman problem with small 

instances. The paper discusses the local and global constraints that describe TSP. The 

local constraint is that there can be only one incoming edge and one outgoing edge in a 

node while the global constraint is that there can be no cycles in the tour. The paper 

describes a propagation scheme for local constraints by associating each node to its 

immediate successor. The node that has the largest cost difference with the parent node is 

chosen for branching. To propagate the no-cycle constraint (global constraint), the start, 

the end, and the length of the tour going through the starting node are all stored and 

checked if the sub-chains associated with the successors are already built. The standard 

branching strategy chooses the most critical variable over all the next available nodes in 

the tour. Applications of constraint programming to solve TSP have been used in pickup-

delivery [7] and parcel delivery with drones [9]. 

The Concorde TSP solver, an exact method for solving the traveling salesman 

problem, was written by Applegate in 1998 [4]. It is primarily based on the cutting-plane 

method for solving the TSP, but this method is believed to be slow even for some small 

instances. By finding subtour cuts and combining them with branch-and-cut, the cutting 

plane method can be improved to solve the problem much faster. The quality of a cut 
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(i.e., the number of edges passing a solution boundary) is based on its contribution in 

reducing the total running time of the cutting-plane method. The paper proposed a 

template paradigm for cuts using different separation algorithms. The separation 

algorithms are exact separation algorithms for subtour cuts, blossom cuts, comb cuts and 

a greedy heuristic for certain path cuts.  As the number of cuts added increases, the 

increase in finding the optimal value of cutting plane methods LP relaxation decreases. 

So, branching is used when the increase is too small. The set of tours are partitioned into 

two subproblems and the cutting-plane method is applied to each. Further, either one of 

these subproblems or both can be divided into sub-subproblems. In the end, the 

subproblems will be solved by the cutting-plane method without recourse to branching. 

The Concorde TSP solver is probably the most widely used exact solver to solve large 

instances quickly with the largest problems comprising 85,900 cities. 

In 1971, Lin and Kernighan developed a highly effective heuristics that produces 

optimal and near-optimal solutions for the traveling salesman problem [29]. The idea of 

the heuristic is a generalization of the interchange transformation. A non-optimal but 

feasible tour T is not optimal because it has k nodes that are out-of-place, and it can be 

made optimal by replacing it with a different set of k nodes in the tour. The algorithm 

first identifies the most-out-of-place pair and then finds another pair in the remaining set 

of the tour to replace it. The algorithm uses a selection rule that chooses the most out-of-

place pair. It chooses pairs in which the total gain associated with the proposed set of 

exchanges is positive. The selection process stops only when the total gain is less than 0 

for all k out-of-place nodes. The algorithm stops when there is no further profit in 

searching for out-of-place nodes, i.e., the gain in exchange does not yield any 



 

15 

improvement. When there is no gain found in the nearby nodes, a backtracking function 

is invoked, which selects replacement nodes with increasing order of length. If all the 

choices are searched and there is no gain, then the algorithm returns to the node at the 

other side of the selected edge and continues to find a better replacement. The algorithm 

backtracks only when no gain can be found and only at levels 1 and 2. It uses a limited 

backtracking to effectively compromise between exponentiality and running time. Only a 

maximum of five nodes are checked against each other to see if it can be replaced with 

the selected out-of-place node. This algorithm considers time taken to reach the first local 

optimum T where no further progress can be made and ignores the time spent on the later 

cases where it arrives at the same tour. Once the locally optimum tour has been found, the 

procedure checks if the links of the tour can be broken to yield further improvement. If 

this process produces an improvement, it may convert the non-optimal solution to an 

optimal solution. This heuristic developed by Lin-Kernighan is considered to be the most 

effective heuristic to generate optimal and near-optimal solutions for the traveling 

salesman problem. However, the implementation of this algorithm is complex, and a 

decision must be made at each step, most of which influence the performance.  

Whereas there are different exact algorithms as described above, there are also 

heuristic methods to solve the TSP approximately. Heuristic algorithms solve TSP 

problems by settling on near optimal tours. A lot of research has been done in designing 

heuristic algorithms for TSP with larger instances [6], one such meta heuristic approach 

is Ant Colony Optimization. Ant colony optimization was used by Ivan and Zuzana in 

2011 [5] to solve small traveling salesman problems. The base of Ant Colony 

Optimization is to simulate the real behavior of ants. It uses two parameters  and  to 
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simulate the probability based on pheromone quantity. Every virtual ant has its own 

memory to save the path it travelled and moves to a new state if no ending constraint is 

compiled. The next motion depends on the probability calculated based on the 

pheromone quantity of the edges. The movement of ants provides a parallel and 

independent search of the route. Based on this approach, the solution quality depends on 

the number of virtual ants and deviates a little from the optimal solution. 

This related work gives us an idea of the techniques that have been used to solve 

the traveling salesman problem over the years. Despite all this research, finding an 

optimal solution for TSP is NP-hard and most of the techniques proposed so far are to 

find a near optimal tour. Also, most of the parallel TSP algorithms for GPUs are based on 

heuristic approaches and focus only on solving larger instances. My thesis proposes a 

GPU version for an exact solution approach based on exhaustive search (up to 7 cities) 

and branch and bound (up to 29 cities).  
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4.  EXPERIMENTAL METHODOLOGY 

 

The primary objective of the TSP solver is to figure the shortest tour distance. 

This means the optimal length calculated by a TSP solver and the runtime taken to 

produce this optimal length are the primary metrics for determining the effectiveness of a 

TSP solver. The input instances used to evaluate the optimal TSP solver are from the 

standard TSPLIB and the solutions obtained are compared. All the execution times are 

measured in seconds; in my approach, this time also includes the time taken by the 

heuristic TSP function for calculating the initial distance used in the exact solver. 

The time taken by the implemented TSP solver and the optimal solutions are 

compared with other TSP solvers to understand where my code stands. The solvers that 

are used for this comparison are the CONCORDE TSP solver [4] and the LKH TSP 

solver [29]. CONCORDE and LKH are the best-known solvers available today that 

produce an optimal solution. 

All solvers were evaluated on two systems named “Austin” and “Ithaca”. Below 

are the specifications of the two systems. 

4.1 Austin 

o CPU: Two Intel Xeon Gold 6226R CPU @ 2.9 GHz 

o Number of Cores: 32 (2x 16-core NUMA) 

o Number of Threads: 64 

o Main Memory: 64 GB 

My CUDA implementation was executed on an NVIDIA GeForce RTX 3090 GPU. The 

specifications are as follows: 

o 82 SMs 
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o 1536 maximum threads per streaming multiprocessor 

o 24 GB memory size 

o L1 cache: 128 KB (per SM) 

o L2 cache: 6 MB 

o CUDA compute capability: 8.6 

The CUDA code was compiled on Austin using the CUDA toolkit version in v11.6.124 

with the NVCC compiler build version 11.6 with the “-O3 -arch=sm_86” flags. 

4.2 Ithaca 

o CPU: AMD Ryzen Threadripper 2950X @ 2.7 GHz 

o Number of Cores: 16 

o Number of Threads: 32 

o Main Memory: 64 GB 

The CUDA implementation was evaluated on a Titan V GPU. The specification are as 

follows: 

o 80 SMs 

o 2048 maximum threads per streaming multiprocessor 

o 12 GB memory size 

o L1 cache 96 KB (per SM) 

o L2 cache: 4.5 MB 

o CUDA Compute capability: 7.0 

The codes were compiled on Ithaca using the CUDA toolkit version v11.7.64 with 

the NVCC compiler build version 11.7 with ‘-O3 -arch=sm_70’ flags. 
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Inputs from the TSPLIB are used as a standard to study TSP and other related 

problems. The inputs the solver is tested with are from the TSPLIB with fewer than 30 

cities, and the same inputs were used for the CONCORDE TSP solver and the LKH TSP 

solver. My TSP solver can also read the CVRP inputs from the TSPLIB and calculate 

their shortest path distance. 
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5.  RESULTS 

 

I compared the performance of my TSP solver to that of the CONCORDE TSP 

solver designed by Applegate in 1998 and the LKH TSP solver designed by Lin-

Kernighan in 1971. I measured the runtime for city counts from 7 to 29 and calculated the 

speedup. The optimal tour length obtained with my TSP solver always matches that 

obtained from the CONCORDE and LKH solvers. The runtimes were measured on the 

two machines called “Austin” and “Ithaca” as outlined above. Bolded speedups in the 

comparisons indicate that my solver is faster. The runtimes do not steadily increase with 

higher city counts. This is because the runtime is not only a function of the number of 

cities but also of how the cities are arranged in the input and how close the heuristic 

solution is to the exact solution, that is, how much of the search space can be pruned. 

5.1 Comparison with CONCORDE 

This section compares my solver to CONCORDE on the Austin and Ithaca 

machines. Table 5.1 outlines the results on Ithaca. The highest speedup is achieved for 

the TSPLIB input eil7, on which my code calculates the shortest distance 21.7 times 

faster than CONCORDE. Overall, my TSP solver outperforms CONCORDE for 

problems with up to 15 cities. Figure 5.1 shows the speedup graph for comparison against 

CONCORDE. 

When run on Austin (Table 5.2), a machine with a higher compute capability, my 

code is up to 60.8 times faster (on eil7). Again, my solver outperforms CONCORDE on 

problems up to 15 cities as shown in Figure 5.2. 

The speedup is higher for smaller problem sizes and drops below one above 15 

cities, at which point CONCORDE is faster. The reason is that CONCORDE employs 
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branch-and-cut and several other advanced algorithms to optimize the solver, which 

generates additional constraints, thus reducing the search space beyond what my solution 

is capable of. 

 Table 5.1: Result comparison with CONCORDE on Ithaca. The runtimes are in seconds. 

Input My Solver Concorde Speedup Optimal Distance 

eil7 0.00001 0.00015 21.71 66 

eil13 0.00028 0.004 13.90 142 

burma14 0.002 0.010 4.91 3323 

p01.tsp (15 cities) 0.000 0.001 3.83 291 

ulysses16 0.494 0.037 0.08 6859 

gr17 0.139 0.014 0.10 2085 

gr21 0.072 0.005 0.08 2707 

ulysses22 3247.388 0.076 0.00 7013 

eil22 0.677 0.013 0.02 278 

eil23 3.319 0.009 0.00 470 

gr24 50.991 0.011 0.00 1272 

fri26 484.978 0.015 0.00 937 

bays29   0.020  2020 

bayg29   0.015  1610 

eil30   0.056  381 
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Figure 5.1 Speedup achieved in comparison with CONCORDE on Ithaca 

 

 

Table 5.2 Result comparison with CONCORDE on Austin. The runtimes are in seconds. 

Input My solver Concorde Speedup Optimal Distance 

eil7.vrp 0.000006 0.000365 60.83 66 

eil13.vrp 0.000192 0.007 36.46 142 

burma14 0.001 0.016 13.29 3323 

p01.tsp (15 

cities) 0.000 0.004 16.95 291 

ulysses16 0.294 0.027 0.09 6859 

gr17 0.097 0.009 0.09 2085 

gr21 0.051 0.008 0.16 2707 

ulysses22 2137.547 0.069 0.00 7013 

eil22.vrp 0.456 0.015 0.03 278 

eil23.vrp 2.198 0.005 0.00 470 

gr24 33.540 0.020 0.00 1272 

fri26 322.594 0.011 0.00 937 

bays29   0.011  2020 

bayg29   0.022  1610 

eil30.vrp   0.040  381 
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Figure 5.2 Speedup achieved in comparison with CONCORDE on Austin 

 

5.2 Comparison with LKH 

 The following data show the results of the comparison between my TSP solver 

and LKH. Table 5.3 denotes the comparison on Ithaca. Like CONCORDE, the LKH 

solver performs better for problem sizes above 15 cities. Figure 5.3 shows the speedup 

over the LKH solver on Ithaca. The highest speedup is for the input eil7, where my solver 

is 82 times faster. 

Table 5.4 lists the results of all tested TSPLIB instances on Austin. Although the 

LKH solver performs better for higher problem sizes, due to the faster GPU, the 

performance benefit of my GPU-based solver is twice as high compared to Ithaca and 

outperforms LKH by a larger factor on small problem sizes. Figure 5.4 shows the 

speedup achieved against the LKH solver on Austin. The highest speedup is 234 when 

solving the instance eil7. 
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Table 5.3 Result comparison with LKH on Ithaca. The runtimes are in seconds. 

  

Input My Solver LKH Speedup Optimal Distance 

eil7 0.00001 0.001408 82.29 66 

eil13 0.00028 0.003 7.94 142 

burma14 0.002 0.003 0.62 3323 

p01.tsp (15 cities) 0.0003 0.001 1.73 291 

ulysses16 0.494 0.003 0.00 6859 

gr17 0.139 0.003 0.01 2085 

gr21 0.072 0.003 0.03 2707 

ulysses22 3247.388 0.004 0.00 7013 

eil22 0.677 0.007 0.01 278 

eil23 3.319 0.003 0.00 470 

gr24 50.991 0.007 0.00 1272 

fri26 484.978 0.005 0.00 937 

bays29   0.006  2020 

bayg29   0.011  1610 

eil30   0.009  381 
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Figure 5.3 Speedup achieved in comparison with LKH on Ithaca 

 

Table 5.4: Result comparison with LKH on Austin. The runtimes are in seconds. 
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Input My solver LKH Speedup Optimal distance 

eil7.vrp 0.000006 0.001408 234.67 66 

eil13.vrp 0.000192 0.003 15.63 142 

burma14 0.001 0.003 2.49 3323 

p01.tsp (15 cities) 0.000 0.001 4.24 291 

ulysses16 0.294 0.003 0.01 6859 

gr17 0.097 0.003 0.03 2085 

gr21 0.051 0.003 0.06 2707 

ulysses22 2137.547 0.004 0.00 7013 

eil22.vrp 0.456 0.007 0.02 278 

eil23.vrp 2.198 0.003 0.00 470 

gr24 33.540 0.007 0.00 1272 

fri26 322.594 0.005 0.00 937 

bays29   0.006   2020 

bayg29   0.011   1610 

eil30.vrp   0.009   381 
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Figure 5.4 Speedup achieved in comparison with LKH on Austin 
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6.  SUMMARY AND CONCLUSION 

With the recent expansion in delivery services, solving the Traveling Salesman 

Problem to its optimality has gained attention. An important challenge is to find the most 

efficient tour very quickly. Especially the last mile challenges faced in recent delivery 

systems has increased the importance of finding optimal solutions. But the NP-hardness 

of TSP makes this difficult. This thesis proposes a CUDA implementation of TSP that is 

based on the simple branch and bound algorithm and exhaustive enumeration. 

My TSP solver is a hybrid solver that utilizes both the CPU and the GPU. 

Maximum performance is achieved by running small problems with up to 7 cities on the 

CPU using exhaustive search and larger problems on the GPU using a branch and bound 

algorithm. The search starts at city A and visits the remaining cities; at each step the 

minimum distance value is propagated to the previous level. This guarantees to find the 

optimal solution by exploring all possible paths but is only efficient for very small 

problem sizes. To solve larger problems, parallelization is used to improve performance. 

To parallelize the algorithm effectively and run it on a GPU, I implemented a 

modulo approach to travel down a few levels of the search tree until a sufficiently larger 

number of children is reached. At each level, the distance value is added and at level 6 

the distance value and information about the current city are stored in a worklist. This 

approach produces enough parallelism but the use of modulo operations is expensive. To 

further improve the algorithm, I used branch and bound to eliminate parts of the search 

space that cannot yield an optimal solution. 
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The branch and bound algorithm limits the search space using a bounding factor. 

This lower bound is calculated by adding all the shortest distances from each city to 

every other city. At each level, the best distance obtained so far is compared with this 

lower bound estimate and the path is pruned if the minimally estimated distance is larger. 

To further improve the algorithm, I used a greedy construction heuristic and the 2-opt 

improvement heuristic to find a good initial guess to prune the search space. This 

approach improved the performance substantially. 

To further boost the performance on the GPU, the launch configuration in the 

implementation was optimized based on the number of child nodes at depth 6. The 

distance matrix was copied to the shared memory. The thread count per block was tuned 

based on the number of children, maximum threads per SM, maximum threads per blocks 

and the maximum number of blocks. This improves the utilization of the GPU. 

In conclusion, I implemented a GPU-accelerated exact solver for small TSP 

problem sizes and compared its performance with the two state-of-the-art solvers 

CONCORDE and LKH. My GPU solver, which uses simple algorithms, outperforms 

both CONCORDE and LKH for up to 15 cities and can solve problems with up to 26 

cities in a reasonable amount of time. Future exploration would be to use more 

sophisticated heuristics (e.g., genetic algorithms) to find a better near-optimal solution to 

prune the search space and to improve the performance on larger problem sizes using 

more advanced algorithms. 
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