ENHANCING DENGUE FEVER MODELING THROUGH A MULTI-SCALE ANALYSIS FRAMEWORK – A CASE STUDY IN THE CENTRAL VALLEY OF COSTA RICA

DISSERTATION

Presented to the Graduate Council of Texas State University-San Marcos in Partial Fulfillment of the Requirements for the Degree Doctor of PHILOSOPHY by

Robinson Roberto Campos Rodríguez, B.A., M.S.

San Marcos, Texas
August 2013
ENHANCING DENGUE FEVER MODELING THROUGH A MULTI-SCALE ANALYSIS FRAMEWORK – A CASE STUDY IN THE CENTRAL VALLEY OF COSTA RICA

Committee Members Approved:

Sven Fuhrmann, Chair

John Tiefenbacher

Richard Dixon

Rodion Podorozhny

Approved:

J. Michael Willoughby
Dean of the Graduate College
FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgement. Use of this material for financial gain without the author’s expressed written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Robinson Roberto Campos Rodríguez, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only.
ACKNOWLEDGEMENTS

I would never have been able to finish my dissertation without the guidance of my committee members, help from friends, and support from my family.

I would like to express my deepest gratitude to my advisor, Dr. Sven Fuhrmann, for his excellent guidance, caring attitude, patience, and for providing me with an appropriate atmosphere for doing research. In addition, I would also like to thank all my committee members for guiding my research for the past several years and helping me to develop a scholarly background in my research area. Special thanks go to Dr. Richard Dixon, who was willing to participate on my committee at the last moment. Professor Emeritus Dick Richardson of the University of Texas served on my committee early on and gave me many ideas and a great deal of encouragement until he could no longer participate due to illness.

I would like to thank Diane Click who as good friend was always willing to help and give her best suggestions. It would have been a much more difficult task without her. Many thanks to all those people that I may not be able to mention here for helping me and supporting me all this years of study. My research would not have been possible without their help. I would also like to thank my parents. They were always supporting me and encouraging me with their best wishes. Finally, I would like to thank my best friend, Allen Click. He was always there cheering me up and stood by me through the good times and bad.

This manuscript was submitted on July 2, 2013.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xiii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Problem Statement</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Scope</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Hypothesis and Research Questions</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Methodological Approach</td>
<td>10</td>
</tr>
<tr>
<td>1.5 Expected Results</td>
<td>15</td>
</tr>
<tr>
<td>II. REVIEW OF RELATED LITERATURE</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Dengue Fever</td>
<td>18</td>
</tr>
<tr>
<td>2.1.2 Social and Cultural Aspects of the Disease</td>
<td>22</td>
</tr>
<tr>
<td>2.1.3 GIS and Statistical Applications to Epidemiology</td>
<td>29</td>
</tr>
<tr>
<td>2.1.4 Computer and Mathematical Modeling</td>
<td>33</td>
</tr>
<tr>
<td>2.1.5 Agent-Based Modeling</td>
<td>35</td>
</tr>
<tr>
<td>III. RESEARCH DESIGN AND METHODOLOGY</td>
<td></td>
</tr>
<tr>
<td>3.1.1 The Study Area</td>
<td>54</td>
</tr>
<tr>
<td>3.1.2 Base Data for the Study</td>
<td>56</td>
</tr>
<tr>
<td>3.1.3 GIS Analysis</td>
<td>57</td>
</tr>
<tr>
<td>3.1.4 ArcGIS Geo-statistical Analyst</td>
<td>58</td>
</tr>
<tr>
<td>3.1.5 Agent-based Modeling Analysis</td>
<td>59</td>
</tr>
<tr>
<td>3.1.6 Proposed Framework for Dengue Fever Modeling</td>
<td>62</td>
</tr>
</tbody>
</table>
IV. ANALYSIS OF DATA / RESULTS
4.1.1 Organization of Data Analysis ... 73
4.1.2 Research Questions and Associated Hypotheses 75
4.1.3 Analysis of Data ... 76

V. FINDINGS, CONCLUSIONS, AND IMPLICATIONS
5.1.1 Findings ... 112
5.1.2 Conclusions ... 116
5.1.3 Implications and Limitations ... 118
5.1.4 Future Research .. 121
5.1.5 Summary of the Study .. 124

WORKS CITED ... 129
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Statistical Models and ABMs Complement Each Other</td>
<td>38</td>
</tr>
<tr>
<td>2. Susceptibility Analysis of the Annual Rates of Dengue Cases</td>
<td>74</td>
</tr>
<tr>
<td>3. Result of Geographic Weighted Regression</td>
<td>89</td>
</tr>
<tr>
<td>4. High Rates of Dengue Fever Zones</td>
<td>90</td>
</tr>
<tr>
<td>5. Medium Rates of Dengue Fever Zones</td>
<td>92</td>
</tr>
<tr>
<td>6. Low Rates of Dengue Fever Zones</td>
<td>94</td>
</tr>
<tr>
<td>7. Selected Zones: High, Medium, and Low Rates of Dengue Fever</td>
<td>96</td>
</tr>
<tr>
<td>8. Excel Table Created by Simulation</td>
<td>99</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure Page
1. The Epidemiological Progress of the Disease ..1
2. A Computational Epidemiology View...3
3. An Overview of the Framework ...8
4. The Central Valley of Costa Rica ...11
5. A Conceptual Model View ..13
6. The Mosquito and Temperature ...18
7. Computational Models Steps ..34
8. A Simplistic View of Agent-Based Modeling ...35
9. Validation and Verification Methods ..44
10. Comparing Outputs to Historical Data ..46
11. Stages of Agent-Based Modeling ...48
12. The Study Area (The Greater Metropolitan Area) ..55
13. Elements Affecting the Disease ..59
14. The Waterfall Model of Software Engineering ...61
15. The Overall Propose Framework Flowchart of the Model62
16. The GIS Outline for the Analysis of the Secondary Data64
17. The Dengue Fever Agent-Based Model ..66
18. Different Stages of the SEIR Infection Model ...67
19. Possible Stages of an Epidemic Model ..67
20. The Compartmental Phases of the ABM ...68
21. The Data Flow Affecting the SEIR Model ...69
22. An Overview of the Class Diagram ..71
23. MA Maps: % Poor Condition Houses, and Dengue Rates76
24. MA Maps: Pop Density, % Males, % Poor Condition Houses, Dengue Rates77
25. Precipitation (Point Interpolation) and Rates of Dengue Cases78
26. Temperature (Point Interpolation) and Rates of Dengue Case78
27. Summer Average High Temperatures and Rates of Dengue79
28. Point Interpolation: Precipitation ...80
29. Point Interpolation: Temperature ...80
30. Percentage of Urban Population, and Rates of Dengue Fever81
31. GWR: Precipitation and Supported Table ...82
32. GWR: Averages Temperatures and Supported Table83
33. GWR: % Poor Conditions Houses and Supported Table84
LIST OF ABBREVIATIONS

ABM .. Agent-Based Modeling
ABMs .. Agent-Based Models
DFABM ... Dengue Fever Agent-Based Model
API .. Application Programming Interface
CCSS ... Social Security Fund
CDC ... Center for Disease Control and Prevention
DF .. Dengue Fever
DFABM ... Dengue Fever Agent-Based Model
DHF .. Dengue Hemorrhagic Fever
DSS .. Dengue Shock Syndrome
DV .. Dependent Variable
GIS .. Geographic Information System
GMA ... Greater Metropolitan Area
GUI .. Graphical User Interface
INEC .. National Institute of Statistics and Censuses
IMN ... National Meteorological Institute
IV ... Independent Variable
MA Maps .. Multiple Attributes Maps
MAS .. Multi-Agent Systems
MDPs ... Markov Decision Processes
SIR .. Susceptible, Infective, Resistance
SPSS..Statistical Package for the Social Sciences
V&V...Verification and Validation
ABSTRACT

ENHANCING DENGUE FEVER MODELING THROUGH A MULTI-SCALE ANALYSIS FRAMEWORK – A CASE STUDY IN THE CENTRAL VALLEY OF COSTA RICA

by

Robinson Roberto Campos Rodríguez

Texas State University-San Marcos

August 2013

SUPERVISING PROFESSOR: SVEN FUHRMANNS

Dengue fever is the second most widespread tropical disease after malaria and affects populations of more than 100 countries (Derouich and Boutayeb 2006). It is considered one of the most severe viral diseases in terms of morbidity and mortality (Guzmán and Kourí 2004). Over the last decade, dengue fever has become the most wide-spread vector-borne disease in Costa Rica (CCSS 2008). However, only a few research studies have been conducted in Costa Rica to investigate the factors influencing the rates of dengue fever. While GIS and statistical analysis have been used in research studies, agent-based modeling has not been applied to the study of dengue. This study emphasizes how traditional macro level GIS analysis and the implementation of a micro-level dengue fever agent-based model can be merged into a novel framework for the
study of dengue fever in the Central Valley of Costa Rica. One of the main objectives was to develop an agent-based model, which integrated GIS to simulate the spread of dengue fever disease in an urban environment, as a result of an individual’s interactions in a geospatial context.

Precipitation, temperature, socio-economic and demographic variables were analyzed using these technologies to identify the factors affecting the rates of dengue fever in the study area. GIS was used to map dengue risk and the spatial distribution and vulnerability of dengue risk in the study area using geographically weighted regression. The Dengue Fever Agent Based Model (DFABM) was developed using the Java programming language and the open-source MASON simulator, a multi-threaded agent-based simulation platform. The DFABM represented daily movements and interactions of people, the environment, and the vector, relative to dengue cases. The simulation examined detailed data about each scenario to identify the significant events occurring during outbreaks. The data employed included the number of susceptible, exposed, and infected people. The locations (described by longitude and latitude) and temporal data describing infected individuals were also collected for analysis. The DFABM tracked the factors affecting dengue fever, including precipitation, temperature, and the most important demographic and socio-economic characteristics of the population in the study area.

The research questions guiding this study were: Does a community-level dengue fever agent-based model (DFABM) produce results comparable (agree) to those produced by traditional macro-level GIS analysis? Does a community-based dengue fever agent-based model (DFABM) enhance traditional geographic information system analysis and
could it aid in predicting future dengue fever outbreaks? The findings of the community-level ABM generated similar results to (they were in agreement with) the traditional GIS analysis technique. Likewise, the DFABM enhanced traditional methods of analysis and could aid in predicting dengue fever outbreaks. Therefore, the coupling of GIS and ABM was the optimal research design for the study of dengue fever in the Central Valley of Costa Rica.
CHAPTER I

INTRODUCTION

1.1 Problem Statement

Dengue fever (DF) is the second most widespread tropical disease after malaria (Derouich and Boutayeb 2006). Dengue fever (including the more severe dengue hemorrhagic fever (DHF)), is considered one of the most severe viral diseases in terms of morbidity and mortality (Guzmán and Kourí 2004). Dengue fever is transmitted to humans through the bite of the infected Aedes aegypti mosquito. DF can be caused by the four dengue viruses: DEN 1, 2, 3, and 4. Although the four viruses are closely related, the serotype provides only life-long immunity to one specific virus (Rigau-Pérez et al. 1998). There is no cross-protective immunity between the serotypes, so a person may have as many as four dengue infections during his/her life (Gubler and Trent 1993).

Figure 1. The Epidemiological Progress of the Disease
Dengue fever affects people in more than 100 countries (Derouich and Boutayeb 2006). In Costa Rica, cases of dengue have been recorded since 1993 with more than 180,000 cases reported through December 2008 (CCSS 2008). The CCSS (2008) indicate several patterns, most noticeably a fluctuation of reported dengue fever cases. In 2007, 26,000 dengue fever cases were reported while 2008 data indicated 8,000 infections. Researchers have concluded weather variables contributed substantially to the spread and control of dengue fever (Kolivras and Comrie 2004; Patz 2002; Patz et al. 1998). In addition, several studies have also shown that socioeconomic and demographic characteristics influence disease patterns (Aiken and Leigh 1978; Campbell-Lendrum and Woodruff 2006; Caprara et al. 2009; Goldstein 1990; Mondini and Chiaravalloti-Neto 2008; Suarez et al. 2005; Weinhold 2004). However, only a few research studies have been conducted in Costa Rica to investigate these dengue fever spread factors, i.e. the relationship of rates of dengue fever cases to weather variability and socioeconomic and demographic variables. Data accessibility and data quality might have contributed to the small number of studies in Costa Rica (Troyo et al. 2009). However, studies in other countries have shown the value of geo-databases, mapping and GIS analysis in spatial-temporal dengue fever modeling (Ali et al. 2003; Kolivras 2006; Moreno-Sanchez et al. 2006; Morrison et al. 1998; Vogel 2002). Moreover, research indicates that the integration and coupling of an agent-based computational dengue fever model with quantitative and qualitative spatial analysis could assist health officials in predicting and preventing dengue fever outbreaks (Aschorn 2004; Brown et al. 2005).
Computational Models in Epidemiology

Computational epidemiology combines the fields of computer science, mathematics, geographic information science, and epidemiology to identify certain risk factors related to how diseases spread.

Figure 2. A Computational Epidemiology View

A comprehensive understanding of the epidemiology of a population under study and knowledge in mathematical, statistical and computer modeling are prerequisites to rigorous quantitative risk analyses. Epidemiology is the study of the social and environmental dynamics of health promotion and disease prevention processes in populations and computer modeling can give researchers insight into understanding the mechanisms of disease dynamics both through data analysis and theoretical framework. Mathematical models, with the aid of computer simulations, are useful theoretical and experimental tools for building and testing theories on complex biological systems involving disease, assessing quantitative theories, determining sensitivities to changes in
parameter values, and estimating key parameters from data (Lawson and Williams 2001). The magnitude of modern epidemiological problems and the large data sets that may arise necessitate the use of computational methods for studying these large and complex models. New computational methods must be devised to solve the dynamics of multiple interacting strains of viruses, as well as pattern analysis and simulation to solve problems with the spatial spread of disease, and an early detection of new diseases through rapid response surveillance systems. Computational methods for simulating stochastic processes in complex spatial environments and in large networks are making it possible to simulate more complex biological interactions.

Purpose of this study

The purpose of this research was to develop a multi-scale analysis framework that applies geographic information systems (GIS) and agent based modeling (ABM) methods to identify and analyze the variables affecting the rates of dengue fever in the Central Valley of Costa Rica. GIS methods were used to analyze the available data, collected from government agencies, at the macro-level. Then a community level dengue fever agent based model (DFABM) was implemented for a micro level analysis of three urban zones of the study area. The research assessed the spatial and temporal distribution of dengue fever cases in the Central Valley of Costa Rica relative to weather characteristics, demographic and socioeconomic variables.

The integration and coupling of an agent based dengue fever model (DFABM) with Geographic Information Systems (GIS) could assist researchers when data collection is not an option and/or only partial datasets are available from previous outbreaks. This research design using GIS and an ABM offers a novel framework for the understanding,
identification, and possible prevention of dengue outbreaks. Coupling computational simulation models with other technologies such as GIS may enrich traditional methods of analysis. Being able to supplement and/or simulate the datasets (that may exist) by exploiting the causal relations between the variables affecting the disease could assist researchers understand and describe the complex process of dengue fever at the micro level by exploring the patterns that arise from interactions among the rules leading each agent. In agent based modeling a system is modeled as a collection of autonomous decision-making entities called agents. Each agent executes various behaviors appropriate for the system they represent and separately assesses its situation and makes decisions on the basis of a set of rules, allowing unexpected behaviors to emerge (Bonabeau 2002). The rules for the individual agent allow researchers to investigate the collective behavior of the system or the possible emergent behavior from micro- to macro-levels. Therefore, the emerging behavioral analysis of the data collected may be used for containment and prevention purposes of dengue outbreaks. This research facilitated the study of complex system explorations, which are difficult to accomplish with analytical and GIS models alone and/or impossible to study in reality.

1.2 Scope

Infectious diseases are among the main causes of human deaths (Derouich and Boutayeb 2006; McMichael 2004; Weinhold 2004) and nearly half of the world’s population lives in areas that pose a dengue fever threat (Derouich and Boutayeb 2006; Rigau-Pérez et al. 1998). The *Aedes aegypti* mosquito, the carrier of dengue fever and several related viruses, infects nearly 50 million people annually. An average of 500,000 people are hospitalized each year and about 2.5 percent of them die (Maantay 2002;
Roberts 2002; Satterthwaite 2003). Dengue fever places a heavy burden on public health systems in many tropical countries. Several mosquito species that act as disease vectors have adapted to living in or near human settlements in tropical areas (including Costa Rica) (Roberts 2002; Vogel 2002). Currently, no vaccine or treatment exists for dengue fever (Kapella 2006). According to the Center for Disease Control and Prevention (2008), new dengue viruses, strains, and serotypes will continue to be introduced into tropical areas with densely populated human settlements. Densely populated (i.e. urban) tropical environments are high-risk areas for inhabitants and are breeding sites for *Aedes* mosquitoes (Van-Benthem et al. 2005). Increasing populations and weather variability have exposed more people to infectious diseases and extended the mosquitoes’ geographic ranges (CDC 2008; Vogel 2002). Furthermore, increasing temperatures and extreme weather conditions have enhanced mosquito survival and have extended its geographic range (Kovats et al. 2001; McMichael, Woodruff, and Hales 2006).

Over the last decade, dengue fever has become the most wide-spread vector-borne disease in Costa Rica (CCSS 2008). Research in Costa Rica has been limited due to financial constraints and lack of human resources (Troyo et al. 2006). The *Aedes aegypti* mosquito was eliminated from Costa Rica in 1960. It reappeared in some regions of the country during the 1970s however, and by 1993 it was reported throughout the country (Troyo et al. 2006). In Costa Rica, more research is needed to identify the local variables (as well as the relationships among them) that affect the disease.

This research is focused on the Central Valley in Costa Rica. The Central Valley region consists of urban and semi-urban areas (CCSS 2008; IMN 2008). The monthly precipitation amounts and average monthly temperatures as well as socio-economic and
demographic characteristics of the population form optimal conditions for the survival of
the *Aedes aegypti* mosquito and the spread of dengue fever (CCSS 2008). This study
analyzes the relationships between the rates of dengue fever and precipitation,
temperature, socio-economic, and demographic characteristics of the population in the
Central Valley region of Costa Rica from 1993 to 2008. The demographic and socio-
economics characteristics of the population that are considered include: education,
income, household density, age differences, sex differences, housing, land cover, and
urbanization.

The partial dengue fever datasets that are available in Costa Rica were
supplemented by exploiting the causal relations between the variables that describe the
disease process by implementing an agent-based model. This research will enhance
dengue fever modeling though a multi-scale analysis framework. A traditional method of
analysis, geographic information systems, was used for the macro-scale assessment of the
rates of dengue fever in relation to the variables affecting the disease (these include
temperature, precipitation, and socio-economics and demographic characteristics of the
population). The micro-scale analysis of dengue fever rates was achieved using a
community-level computational ABM based on the same variables as the macro-analysis.
The multi-scale framework will develop an understanding of the modeling process using
geographic information systems and agent-base modeling combined. The framework
integrated time/space GIS layers and data collection/analysis in an agent- based model of
dengue fever and analyzed the results of the agent’s interactions. These were compared
to the macro-scale method of analysis, the behavior that emerges from micro- to macro-
scale interactions.
The research demonstrates complex system explorations that are difficult to accomplish with the traditional analytical and GIS methods and are otherwise impossible to study.

1.3 Hypothesis and Research Questions

Since complete eradication of the vector in the near future is unlikely, the only strategy for disease control is to reduce breeding grounds for the mosquito through prediction, prevention, containment and management (Brightmer and Fantato 1998). For this reason there is a need to identify sporadic dengue cases before a major outbreak develops (Nogueira et al. 1999). The development and use of a multi-scale prevention framework, which include GIS analysis and agent-based modeling, may assist public health officials in Costa Rica and other tropical countries reduce the number of dengue infections. While GIS and statistical analysis have been used in research studies (Bhandari, Raju, and Sokhi 2008; Bohra and Andrianasolo 2001; Khun and Manderson 2008; Lian, Seng, and Chai 2006; Mahilum et al. 2005; Phuanukoonnnon, Brough, and
Bryan 2006; Suarez et al. 2005), agent-based modeling has not been applied to prediction and management of the disease. Therefore, ABMs may further the understanding of the complex spatial behavior of dengue fever by identifying the environmental, demographic and behavioral rules of the agents (humans and mosquitoes). In conjunction with established spatial analysis methods the ABM enhanced the understanding of dengue and assist in projecting patterns to predict potential dengue outbreaks. The ability to understand and predict how a disease manifests in a population at large is critical for disease monitoring, intervention, and control strategies and an agent-based model is an important tool in this effort. This study demonstrates how traditional macro level GIS analysis methods and the implementation of a micro-level agent-based model can be merged into a novel framework for dengue fever prevention. This study answers the following research questions:

1. Does a community-level dengue fever agent-based model (DFABM) produce results comparable (agree) to those produced by traditional macro-level GIS analysis?

2. Does a community-based dengue fever agent-based model (DFABM) enhance traditional geographic information system analysis and could it aid in predicting future dengue fever outbreaks?

Although the study will focus on the research questions stated above, this research will discuss the following questions as well:

a) What are the current approaches and limitations of dengue fever modeling in Costa Rica?
b) What are the results and limitations of the macro-level modeling approach?
 Which aspects of the spatial analysis are useful? Which need to be modified and reviewed at a different (micro-level) scale?

c) What are the limitations and design requirements for a community-level agent-based model?

d) What are the results of the micro-level agent-based modeling?

e) What are the essential components for a multi-scale dengue-fever analysis framework?

f) How could the framework be used for dengue fever prevention and possibly prediction purposes?

1.4 Methodological Approach

This study focuses on the Greater Metropolitan Area (GMA) or Central Valley of Costa Rica. The Central Valley is a highly populated urban and semi-urban area with more than two million inhabitants that concentrates more than 50 per cent of Costa Rica’s population in just 4 per cent of its national territory (INEC 2011). San Jose, Alajuela, Cartago, and Heredia provinces form part of the GMA. This region is characterized by an average daily temperature of 24 degrees Celsius and precipitation of 245 mm per month (CCSS 2008; IMN 2008). The climate, interacting with the dense population, creates an optimal set of conditions for the proliferation of the Aedes aegypti mosquito and the spread of dengue fever to people (CCSS 2008).
The datasets of most importance to this study are: rates of reported dengue cases, weather descriptors (including precipitation and temperature), and demographics and socio-economic measures of the population. The monthly number of dengue cases reported from 1993 to 2008 were obtained for all the cantons of the study region from the Costa Rica Department of Epidemiological Surveillance Unit at the Ministry of Health (Ministerio-de-Salud 2008). The weather information for the same period, 1993-2008, was provided by the Costa Rica National Meteorological Institute (IMN 2008). The weather information contains data from:

- Twelve rain gauge weather stations located across the districts of the study area;
Twelve weather stations located in different districts of the study area measuring monthly average high and low temperature in degrees centigrade.

The demographic and socio-economic characteristics of the population were obtained from the population census of 2000 provided by the National Institute of Statistics and Census of Costa Rica, INEC. Lastly, all the geographic information layers were provided by the Geography Department of the National University of Heredia, UNA, Costa Rica, the University of Costa Rica, UCR and the Regional and Urban Planning of the Greater Metropolitan Area Central Valley of Costa Rica, PRUGAM.

Method of Analysis

Geographic Information Systems was used to generate a risk map of dengue incidents, with several risk levels, i.e., very high, high, medium and low risks of contracting dengue fever. GIS was also used to map the spatial distribution of dengue in the study area using Geographically Weighted Regression (GWR). These methods reveal the correlation between dengue fever cases, meteorological factors and demographic and socio-economic variables affecting dengue fever reported cases.

The dengue fever agent-based model included the most important variables identified through a review of the literature identified as affecting the rates of dengue fever and were combined with GIS in the macro analysis. The dengue fever agent-based model represented the daily interactions of humans with respect to the environment, and the mosquito vector relative to the rates of dengue cases. The simulation examined detailed data (infected people) and strived to identify the significant events occurring during outbreaks. The data employed included the number of susceptible, infected, and recovered people. The locations (based on longitude and latitude) and temporal data
(month and year) corresponding to the infected individuals were also analyzed (see figure 5).

Figure 5. A Conceptual Model View

Furthermore, the ABM compiled the factors that ostensibly affect dengue fever spread. An agent-based modeling approach is developed here that integrates GIS and statistical models to simulate the spread of dengue fever disease in an urban environment, as a byproduct of individuals' geospatial interactions. The model was developed in the MASON simulator, a multi-threaded agent-based simulation platform that offers a modeling paradigm and a set of tools for simulation of complex systems like that which produces dengue fever. The ABM process involves: 1) defining a conceptual model using domain knowledge about agent types, agent rules, environmental factors, spatial layout
and rules of interaction; 2) defining the quantitative and qualitative data collection for each time interval of the model; 3) implementing the model using the MASON API toolkit; and 4) running and fine-tuning the model until it is calibrated and validation and verification of the model using observational data or a mathematical equation for dengue fever.

The two hypotheses for this study were:

Hypothesis I:

H₀: The analysis of the emergence data of a community level agent based model of dengue fever (DFABM), which studied the same variables of the macro analysis (precipitation, temperature, demographic, and socio-economics features of the population), disagreed with Geographic Information System (GIS) analysis.

Hₐ: The analysis of the emergence data of the community level agent based model of dengue fever (DFABM), which studied the same variables of the macro analysis (precipitation, temperature, demographic, and socio-economics features of the population), agreed with traditional methods of GIS analysis.

Hypothesis II:

H₀: An agent based model (community level) of dengue fever (DFABM) does not enhance traditional methods of analysis using Geographic Information System (GIS) analysis and does not further the understanding and possible prediction of dengue outbreaks.

Hₐ: A community based dengue fever agent based model (DFABM) enhances traditional methods of analysis using Geographic Information System (GIS) and furthers the understanding and possible prediction of dengue outbreaks.
1.5 Expected Results

Analytical modeling follows well-established methodological protocols (Leombruni et al. 2005). The increasing availability of ABMs for complex global, national and community-based systems enables supplementation of traditional analytical methods (Aschorn 2004; Skvortsov et al. 2007). ABMs can be used for quantitative, qualitative, experimental, and participatory research (Boero and Squazzoni 2005).

A dengue fever ABM offers a methodological approach that exemplifies the diversity of intervening components, such as environmental factors, disease vectors and hosts. ABMs provide options to determine spatial behaviors, spatial distributions through rapid insertion of new components and natural consideration of non-linear interactions between agents (Isidoro et al. 2009). These abilities facilitate the exploration of the numerous ways dengue fever develops over geographical space, behaves, interacts and/or evolves. ABM supports experimentation in ways, which would not be possible in the real world (Castle and Crooks 2006; Osgood 2007; Torrens 2010). Thus, the implemented dengue fever ABM will be an appropriate analysis technique for implementing a geospatial dengue fever simulation (Castle and Crooks 2006; Torrens 2010). This study was expected to show that:

- The results of the community level dengue fever agent based model yielded similar results as Geographical Information Systems analysis.
- An agent based model of dengue fever would enhance traditional methods of GIS analysis in the understanding and possible prediction of dengue outbreaks.

The coupling of Geographic Information Systems (GIS) and Agent Based Modeling (ABM) are well suited for a dengue fever and other studies of mosquito
vectored tropical diseases. Computation intensive properties of ABMs, however, could become problematic for simulating large systems. An ABM of dengue fever may be especially helpful to assist researchers when data collection is not an option and/or only partial datasets are available by supplementing the existing datasets and/or exploiting the causal relations between the various variables that describe the disease process.

In Costa Rica, one of the main epidemiological limitations is data availability. The current data and its resolution may not reveal the relationships that may exist between rates of dengue fever outbreaks and precipitation, temperature, socio-economic and demographic characteristics. Also, the primary data generated by the ABM and its analysis may not reveal relationships between dengue fever outbreaks and precipitation, temperature, socio-economic and demographic characteristics.

A community-level agent based model, can help to identify possible future patterns of dengue and therefore could support community preventions programs. ABMs are representations of reality. They are designed to have enough robustness to meet their intended purposes. Yet, researchers must remember that, when analyzing ABM results, their findings are only partial representations of a complex problem. Overall, ABM results must be used carefully (Sullivan and Mordechai 2000).

The framework used here is a novel approach to investigate, analyze, and experiment with ABMs to study dengue fever. Traditional methods of analysis using statistical and GIS methods are well known among dengue fever researchers (Ai-leen and Song 2000; Ali et al. 2003; Almeida, Medronho, and Valencia 2009; Almeida et al. 2007; Braga et al. 2010; Eisen and Lozano-Fuentes 2009; Syed et al. 2010; Troyo et al. 2009). Nevertheless, in Costa Rica, there have been no studies that use ABMs and/or couple GIS
and ABM methods. One of the major difficulties with GIS and analytical methods that use differential equations has been the growing mathematical complexity and detail of models used to represent the many aspects of the phenomena under investigation. (Bagni, Berchi, and Cariello 2002). The construction of a model that simulates or represents a dengue epidemic could provide a valid tool for decision-making and disease intervention.

Changes in population composition and dynamics, as well as, the changing demographics and geography of the region under investigation require the design of models that bring together knowledge of the specific variables affecting the disease. Computational models supports the identification of factors and mechanisms of epidemic spread during the descriptive phase and allows the examination of different scenarios in determining sensitivities to changes in parameter values, and estimation key parameters from data in a reasonably rapid way (Bagni, Berchi, and Cariello 2002). These computational models characteristics are essential in order to be able to carry out qualitative and quantitative evaluation of strategy choices to select the best control and eradication practices for a specific disease such as dengue fever. The ability to predict and understand how a disease might manifest in the population under study is essential for disease monitoring, intervention and control strategies.
CHAPTER II

REVIEW OF RELATED LITERATURE

2.1 Dengue Fever

According to the Center for Disease Control and Prevention (2008), temperature is the major variable linked to the survival and reproduction of the *Aedes aegypti* mosquito. The temperature spectrum in which the mosquito breeds and feeds ranges from 68 to 102 Fahrenheit (20 to 39 ºC) with an optimal survival temperature of approximately 80 to 87 degrees Fahrenheit (27 to 31 ºC) (CDC 2008). The *Aedes aegypti* vector becomes inactive in temperature ranges below 50 (10 ºC) and above 102 (39 ºC) degrees Fahrenheit. Temperatures below 32 (0 ºC) degrees Fahrenheit or above 105 (41 ºC) Fahrenheit are fatal to the species (Tun-Lin, Burkot, and Kay 2000). See figure 6.

Figure 6. The Mosquito and Temperature

The flight distances of the mosquito range between 2.5 km over 24 hours in a desert and 25 meters in an urban environment. An experimental release of female *Aedes aegypti* in Rio de Janeiro estimates that female mosquitoes can fly at least 800 m in six days and, if infected, potentially spread the virus quickly (Honório et al. 2003). Under normal local
meteorological conditions, *Aedes aegypti* need 11-12 days to develop from egg to adult (Heukelbach et al. 2001).

Climate variability has an impact on many infectious diseases around the world (Ebi et al. 2006; Epstein 2002; Kolivras and Comrie 2004; Patz 2002; Patz et al. 1998; Reiter 2001; Tibbetts 2007; Zhang, Bi, and Hiller 2008). Moisture or precipitation levels and temperature patterns indirectly influence diseases by providing optimal environmental conditions for the growth, reproduction, and survival of the host species (Epstein 2002; Gage et al. 2008; Kolivras and Comrie 2004; Kovats et al. 2001). Patz (2002) found a strong relationship between weather variability and epidemiological diseases. Many vector-borne diseases exhibit seasonal and thus weather sensitive patterns (Gubler et al. 2001).

Social and cultural aspects are also significant factors in the effectiveness of dengue control programs. However, these aspects are often not considered when creating and implementing prevention and control programs (Itrat et al. 2008; Suarez et al. 2005). A study in Villavicencio, in southeastern Colombia described low-income and high-income communities and their differing sanitary practices, which influence dengue prevention and control (Suarez et al. 2005). Across all income levels, Itrat et al. (2008) concluded disease control programs were mainly focused on avoidance of mosquito bites rather than eradication of the mosquito population. The use of anti-mosquito spray was the most commonly encouraged preventive measure and television was considered the most important and useful source of information for disease prevention (Acharya et al. 2005; Itrat et al. 2008). Suarez et al. (2005) indicate that public perceptions of dengue fever and public policies advertised in booklets, flyers and on television differ radically
from people’s everyday reality in terms of what protections individuals can financially afford or what actions people can take to eliminate the mosquito breeding grounds. The study indicates that income differences are useful predictors of the success or failure of public prevention policies.

The widespread use of insecticides has been a dominant approach to controlling *Aedes aegypti* mosquitoes populations in several countries such as Brazil, Cambodia, and Thailand (Chantha, Guyant, and Hoyer 1998; Khun and Manderson 2007; Thavara et al. 2004). Insecticide treatments used to contain or prevent diseases may create a false sense of safety and pose future health hazards (Khun and Manderson 2007). For example, Khun and Manderson (2007) suggested mosquitoes rapidly re-colonize sprayed territories and female mosquitoes utilize new breeding habitats. Insecticide resistance, which occurs in vector populations after continued application of the same insecticide, also serves as an important impediment to sustainable control. For these reasons, Spiegel et al. (2005) suggested limiting insecticide applications only to government interventions. Therefore, better public education and consistent government interventions in mosquito habitats and breeding grounds could increase the effectiveness of mosquito population management.

Programs for the Control of Dengue

Before the 1980s, dengue fever and especially dengue hemorrhagic fever were uncommon diseases in the tropics of the western hemisphere (Gubler 2002). However, in the last two decades, dengue epidemics have become a significant public health hazard in tropical regions (Gubler 2002). The lack of resources for public health surveillance, management and research programs, in addition to demographic and societal changes, urbanization, and modern transportation have contributed greatly to the increased spread
of dengue (Gubler 1998; Gubler 2002; Spiegel et al. 2005; Tol and Dowlatabadi 2001). The increased movement of people and mosquitoes within and between regions has enlarged the geographical distribution of dengue fever (Gubler 2002; Gubler and Meltzer 1999). For example, there are four modes of human transportation that contribute to the dissemination of the dengue vector: ships, railways, automobiles, and air travel (Kuno 1995).

Khun (2007) suggested that community programs are required to establish and sustain vector control and the extent to which these programs succeed or fail depends on the ability of government officers to maintain an association with the local community. A study conducted in Trinidad and Tobago on knowledge, attitudes, prevention and control of dengue fever found the need for well-defined environmental sanitation strategies when planning community-based vector control (Rosenbaum et al. 1995). The findings indicate that even if there is a high level of dengue fever awareness, there is poor understanding of the disease symptoms and hence little concern about the health risk associated with the disease or prevention efforts (Mahilum et al. 2005; Rosenbaum et al. 1995).

Community-based intervention approaches are essential when controlling outbreaks of dengue fever and offer the highest success rates for program sustainability in the control of the Aedes aegypti mosquito (Ayyub et al. 2006; Chantha, Guyant, and Hoyer 1998; Khun and Manderson 2007; Nam et al. 2004; Phuanukoonnon, Brough, and Bryan 2006; Toledo Romani et al. 2007). Persuading communities to recognize their potential exposure and susceptibility to the disease and identify the benefits of dengue larva control is essential for successful control initiatives of dengue (Khun and Manderson 2007; Phuanukoonnon, Brough, and Bryan 2006). Year-around community-
based programs’ emphasis ought to be on interrupting the diffusion cycle at an early phase through larva mosquito control sustainable practices (Nam et al. 2004; Spiegel et al. 2005). Simple community-based vector management measures, which may include cleanup campaigns before rainy seasons followed by routine garbage pickup during the rainy season, could prevent outbreaks of dengue fever and guarantee larva control sustainable practices (Bulto et al. 2006; Kittayapong et al. 2006). For example, many mosquitoes exploit discarded containers and other urban garbage as breeding grounds (Chepesiuk 2003).

Therefore, effective control programs need to address social and ecological factors influencing the program’s effectiveness such as the mosquito’s behavior, public education programs, the demographic and socio-economic characteristics of the community (Spiegel et al. 2005; Suarez et al. 2005). Programs and campaigns need to be targeted locally and modified seasonally to address potentially shifting ecologies of both humans and the mosquito vector activities (Itat et al. 2008; Spiegel et al. 2005). The prevention of dengue epidemics by early case detection (to geographically contain the spread of infection) and by prevention of virus transmission to the mosquito population should be a priority of public health professionals (McBride et al. 1998).

2.2 Social and Cultural Aspects of the Disease

Dengue is endemic in most tropical countries and some of the reasons for its continuation can be related to socioeconomic factors (Mondini and Chiaravalloti-Neto 2008). The identification of these socioeconomic and others factors such as demographic, behavioral, and housing quality involved in the transmission of infectious diseases such as dengue is key to the implementation of effective control measures against the disease
(Guha-Sapir and Schimmer 2005). Some of the variables that predicted the spatial
distribution were people with the lowest socio-economic levels, the percentage of
illiterate heads of household, number of residents in a home, the percentage of female
heads of households in an area, the percentage of residents in an area who earn less than
minimum wage, population density, and homes lacking water services, waste collection
or sewage systems (Braga et al. 2010; Costa and Natal 1998; Guha-Sapir and Schimmer

Knowledge, attitude, and practices against the disease

Poor knowledge of control methods, incompatibility of control practices with
people’s beliefs, and dengue knowledge are significantly related to the transmission of
dengue (Phuanukoonnon, Brough, and Bryan 2006). For instance, a study in Trinidad and
Tobago on knowledge, attitudes, and practice regarding dengue found a high level of
awareness about dengue, but there was poor understanding of the symptoms and little
concern about the health risks (Rosenbaum et al. 1995). Persuading people to recognize
their potential exposure and susceptibility to the disease can benefit dengue control
(Phuanukoonnon, Brough, and Bryan 2006). For example, people with knowledge of the
disease more often reported the use of preventive actions, indicating the value of
education programs as a tool in dengue prevention (Benthem et al. 2002). A study in
Mexico found that housewives, the unemployed and the elderly have poorer
understanding of the disease compared to students and persons of younger age and
therefore, may be more likely to be at higher risks of being infected by dengue (Espinoza-
Gómez et al. 2003).
Education

Educational levels of individuals have been analyzed as a possible risk factor influencing the disease (Almeida, Medronho, and Valencia 2009; ko, Chen, and Yeh 1992; Vasconcelos et al. 1998). For example, during a seven-year surveillance study in Belo Horizonte, Brazil, incidence rates of dengue were correlated with low educational level (Almeida et al. 2007). Low education levels were associated with the distribution of dengue fever cases in Singapore (Ma et al. 2004). But other studies indicated illiteracy was not associated with dengue (Heukelbach et al. 2001; Spiegel et al. 2007).

Income

Social status or income was a significant determinant of dengue cases in rural Puerto Rico (Torres 1997). The outbreak was greatest in low-income communities and in urban and semi-rural areas. Low-income communities were prone to environmental and social problems that contributed to the spread of dengue such as site and situation (marginal land next to rivers), crowding, poor housing and water storing due to broken pipes, water contamination, and garbage and trash accumulation, including discarded automobile tires. A study performed in Brazil reported low socio-economic status of residents was a high risk factor for dengue transmission (Penna 2004). Another Brazilian study indicated deprived socioeconomic areas are three times higher in infection than those of higher socioeconomic areas (Braga et al. 2010). The Mexico-USA border has higher rates of dengue incidents on the Mexican side than on the American one (Reiter, Lathrop, and Bunning 2003). Researchers concluded that the low occurrence of dengue on the USA side was primarily due to economic factors. As cities improve environmental quality through better sanitation and water supply, the patterns of dengue cases reflect
factors that are less related to socioeconomic variables (Mondini and Chiaravalloti-Neto 2008).

Household density

A study of the spatial exposure to dengue in a Brazilian urban area showed incident rates of dengue were characterized by household density and higher in children and elderly women (Almeida et al. 2007). In Cuba, a study indicated crowded living conditions are a risk factor associated with dengue (Spiegel et al. 2007). A Singapore study found household sizes greater than eight members were at higher risk for contracting dengue (Ma et al. 2004).

Race and Ethnicity

According to a Cuban research study and others, whites are more likely to develop severe dengue disease such as dengue hemorrhagic fever or dengue shock syndrome than blacks (Bravo, Guzmán, and Kouri 1987; Guzmán et al. 2000; Kouri et al. 1989). A comparison of the proportions of individuals with DHF/DSS with ethnic distribution indicated that the frequency of DHF/DSS both among children and adults was significantly higher among whites (Bravo, Guzmán, and Kouri 1987). A Brazilian study found that both Afro-Brazilian ethnicity and African ancestry were protected against DHF (Blanton et al. 2008). Furthermore, even though dengue viruses circulate in Africa, there have been no reported epidemics of DHF (Gubler 1998). In Asia, two studies reported racial differences in disease incidences between Chinese, Malaysian, and Indians (Goh 1997; Shekhar and Huat 1992). The Chinese appear to be more vulnerable to DHF than Malaysian followed by Indians (Shekhar and Huat 1992).
Age Differences

Classical dengue (dengue fever) is primarily a disease of older children and adults (Gubler and Meltzer 1999). However, dengue hemorrhagic fever is typically acknowledged to be a childhood disease under 15 (Aiken and Leigh 1978). In Thailand, dengue fever/dengue hemorrhagic fever is a leading cause of hospitalization and death among children (Vanwambeke et al. 2006). Also, DHF is an important cause of morbidity in Southeast Asia and used to occur almost exclusively in young children, but in recent years DHF is becoming common in both children and adults (Wichmann et al. 2004).

Gender Differences

Knowledge of differences in male-female is important for public health control programs against dengue (Guha-Sapir and Schimmer 2005). Various studies have shown male-female differences. For example, studies and surveillance data showed difference in infection rates, being highest in males than females (Agarwal et al. 1999; Goh et al. 1987; Wali et al. 1999). However, Puerto Rican studies reported no or insignificant differences in male-females patients and suggested that both sexes are equally affected (Rigau-Perez et al. 2001; Waterman et al. 1985). Other studies did not find any correlation evidence between dengue and gender (Bartley et al. 2002; Blanton et al. 2008; Bongsebandhu-phubhakdi et al. 2008; Braga et al. 2010; Espinoza-Gómez et al. 2003; Siqueira-Junior et al. 2008; Spiegel et al. 2007; Teixeira et al. 2002; Vasconcelos et al. 1998).

Housing and Land Cover

Dengue infection is more likely to take place at home (Sujariyakul et al. 2005). The pattern and structure of housing may be a risk factor for dengue (Thammapalo et al. 2008) and housing type and condition have been related to incidences of dengue fever
(Caprara et al. 2009; Van-Benthem et al. 2005). A study in two Puerto Rican communities showed that wood constructed housing vs. concrete housing and slum housing were risk variables significantly associated with increases of dengue incidence (Waterman et al. 1985). In Thailand, dengue incidents were associated with the percentages of shop-houses, houses in rows connected to one another by a common walking path and with their windows and/or doors open though the day, brick houses (lower interval temperature and high humidity) and houses with poor garbage disposal practices (garbage disposal near the house) (Thammapalo et al. 2008). People living in houses surrounded by natural and agricultural land cover had lower risk of dengue infection.

Therefore, land cover could be an significant risk determinant for dengue infection, depending on whether the landscape surrounding people supports a large mosquito population or not, generally by providing breeding habitats (Vanwambeke et al. 2006). Patterns of urban occupation such as living close to junkyards and dump sites are associated to dengue (Braga et al. 2010). High vector density and the proximity of vector-breeding sites to human hosts are two major risk factors for dengue transmission (Lian, Seng, and Chai 2006). Furthermore, dengue transmission is facilitated in any vector-infested places where people gather together, such as schools, commercial establishments, churches/temples, factories, hospitals, and theaters (Kuno 1995).

Urbanization

The population growth in cities and the urbanization of rural areas in the tropics over the past few decades has contributed to more frequent epidemics of dengue (Kuno 1995; Tapia-Conyer, Méndez-Galván, and Gallardo-Rincón 2009). Poor health is
associated with poverty, malnutrition, poor housing, inadequate sanitation, as well as with inadequate health services (Goldstein 1990; ko, Chen, and Yeh 1992; Rodriguez-Figueroa et al. 1995; Weinhold 2004). Higher population density resulting from urbanization has created an increase in breeding sites for the vector in domestic settings (e.g., plastic containers, automobile tires) and environmental sanitation problems, e.g., limited garbage collection and irregularity of water supply (Caprara et al. 2009; Torres 1997). The breeding habitats of the mosquito are influenced by housing types/density, and the living habits of people (Aiken and Leigh 1978). Squatter settlements and slums lacking piped water and adequate sewage facilities provide breeding sites for mosquitoes (Aiken and Leigh 1975). When piped water is available but unreliable, people collect water in storage tanks and others containers, which may result in higher vector densities (Barrera, Avila, and Gonzalez-Tellez 1993; Brightmer and Fantato 1998; Caprara et al. 2009).

Expansion of Travel and Trade

Expanding travel and trade and rapid urban population growth are significantly related to the spread of dengue fever (Brightmer and Fantato 1998; Caprara et al. 2009; Gubler and Trent 1993; Kay and Nam 2005). For example, an early outbreak of dengue spread in Australia was likely to have been caused by train passengers carrying the virus (Wolstenholme 1993). The introduction of dengue outbreaks in China and Taiwan were associated with the migration of people or the return of travelers from dengue-endemic places (Harn et al. 1993; Qiu et al. 1993). Increases of tourism to endemic areas can increase dengue risk in previously dengue-free places (Ayyub et al. 2006; Bulugahapitiya et al. 2007; Guzmán and Kouri 2002). Ayyub et al. (2006) found that 27 of 39 confirmed
cases of people having dengue were actually imported from others countries (countries in Asia, Africa, and Middle East) rather than the country of study (Saudi Arabia). Dengue has become common in western travelers to the tropics (Lindbäck et al. 2003) and they play a double role; potential victims and vehicles for the spread of dengue (Brightmer and Fantato 1998; Jelinek 2000).

2.3 GIS and Statistical Applications to Epidemiology

Spatial epidemiology is the description and analysis of geographically indexed health data. It is the spatial variation in disease risk or incidence, with respect to demographic, environmental, behavioral, economic and weather variability linked to a disease (Elliott and Wartenberg 2004; Ostfeld, Glass, and Keesing 2005). Geographic Information Systems (GIS) are automated systems for the capture, storage, retrieval, analysis, and display of spatial data. When geographic distributions are part of the problem under study, GIS offers new and expanding opportunities, especially for epidemiology, allowing a spatial perspective of disease (Clarke, McLafferty, and Tempalski 1996). One of the main objectives of mapping diseases is to find out about the spatial distribution of a disease and identify areas that could potentially experience epidemics (Wen et al. 2006). Geographic information systems are increasingly popular in epidemiological studies to provide needed spatial analysis tools (Betts 1997; Beyea and Hatch 1999; Nuckols, Ward, and Jarup 2004). For instance, GIS has been used for disease mapping, geographic correlation studies and disease-cluster analysis such as malaria and dengue fever (Alderson 2004; Ali et al. 2003; Betts 1997; Elliott and Wartenberg 2004; Morrison et al. 1998).

Research utilizing GIS technology, and analytical mapping can be conducted at
different geographical scales from large- (village-level) to small-scale (continent-based) models and at various temporal resolutions (days to years) (Kitron 2000). At the continental scale, climate change may be a good predictor of disease distribution. For example, GIS has been used to produce analytical maps of malaria epidemics in Africa (Craig, Snow, and le Sueur 1999). At a large-scale, human and environmental factors including socio-economic, cultural differences, and rural and urban use practices may be important for explaining epidemiological diseases (Ebi et al. 2006).

One of the challenges for large-scale epidemiological studies has been gaining access to sufficient data to assure accurate and reliable analysis. However, advances in GIS-compatible health databases create opportunities to examine both human and environmental factors that may explain spatial variations of epidemiological diseases (Elliott and Wartenberg 2004; Vine, Degnan, and Hanchette 1997). Most diseases occur as a result of the combined effects of humans and their environment (Schmidt 2006). GIS may play an important role in understanding not only the environmental factors but cultural, socio-economic, and demographic factors as well, affecting diseases (Mennecke, Crossland, and Killingsworth 2000).

GIS technology may be used to compile and present the epidemiological data and spatial analysis required for making public health risk assessments (Betts 1997; Jankowski and Nyerges 2001). GIS has been used to characterize transmission patterns during a community-wide outbreak of dengue and dengue hemorrhagic in Dhaka, Bangladesh (Ali et al. 2003). In this study, clusters of dengue illnesses and high-density vector populations were observed in distinct sectors of the city and used for planning target interventions by public health officials. A cluster was defined as the incidence of
more than the expected number of people diagnosed with dengue within a specific geographic area. Precise knowledge of the distribution of dengue infection is valuable for planning and evaluating prevention and control programs (Van-Benthem et al. 2005).

Many scientific fields have made use of modern computational methods especially those that use methods of discrete mathematics. These efforts have been guided by algorithms, models, and concepts of theoretical computer science that make these tools more available than they were in the past. Other fields, in particular, geography have made use of spatial mapping tools like GIS, which have great applicability to the field of epidemiology.

The major development in epidemiology that makes tools of discrete mathematics and theoretical computer science especially relevant is the use of GIS. These systems allow analytic approaches to spatial data that were not used previously. GIS permits the analysis of spatial data generated by other resources, such as global positioning systems (GPS) and remote sensing. When combined with data from surveillance and management activities, GIS and GPS provide powerful tools for analysis and decision making by providing an integrated approach to disease control and surveillance at local, regional and national levels (Clarke, McLafferty, and Tempalski 1996).

The main development in epidemiology in the last two decades is the increase in the availability and power of computing systems and the development of software to deal with the relations of spatially explicit data (Glass 2000). The ability to input, store, manipulate and present the spatial relation of health events to other important features of interest is the critical characteristic of the field. As such, GIS, which has experienced an explosive growth as a scientific tool, is likely to continue to impact the field, especially as
these tools are joined with other technologies such as agent-based modeling, and statistical tools. It seems likely that using mapped environmental features stored in GIS databases as predictors for variable outcomes in epidemiological studies could be used with a substantial degree of success in computer modeling.

Another development is the availability of large and disparate digital databases on subjects related to disease. Modern methods of data mining can clearly be of use here. Data mining methods, grounded in theoretical computer science and statistics, are relevant to spatial-temporal patterning, which focus on identifying diseases that reach epidemic stage and construction of exposure categories. It may also be useful to develop an integrated genetic epidemiological information system that could integrate clinical and research information, so that scientists, policy makers and health professionals can plan and evaluate population-based disease prevention strategies and also provide educational materials for health professionals and the public (Muin and Khoury 1997).

The use of GIS methods, are well known in the research of epidemiological studies such as dengue fever (Bhandari, Raju, and Sokhi 2008; Braga et al. 2010; Caprara et al. 2009; Cummings et al. 2009; Eisen and Lozano-Fuentes 2009; Mondini and Chiaravalloti-Neto 2008; Pathirana, Kawabata, and Goonetilake 2009; Syed et al. 2010; Thammapalo et al. 2008; Troyo et al. 2009; Wu et al. 2009). Using GIS-based spatial analysis tools researches can derive new information from the existing data, analyze spatial relationships, build spatial models, and perform complex raster operations to find suitable locations for the spread of dengue fever to conduct risk assessments and possible predict dengue risk outbreaks. Nevertheless, few studies in Costa Rica have utilized GIS
technology in the study of dengue fever and there are no known studies using computer modeling such as agent-based modeling.

2.4 Computer and Mathematical Modeling

Geographers gather and analyze many different kinds of data including physical measurements, observation of behavior, archives, explicit reports, and data collected from computational modeling (Montello and Sutton 2006). Computational modeling, defined as computer simulations of simplified representations of portions of reality, evaluates theoretical structures and processes expressed mathematically (Montello and Sutton 2006). Advantages of computer technology and software have made computational modeling an attractive method of data collection. Experimentation with computational modeling is done by changing the parameters or variables of a system and analyzing the differences in the experiment outcomes (Goldstone and Gureckis 2009; Montello and Sutton 2006). Modeling gives empirical access to events or systems that no longer exist or do not yet exist, are very rare, or operate over spatial and temporal scales that are too large to bring into the laboratory (Kirkby et al. 1993; Montello and Sutton 2006; Valanides and Angeli 2008). The system under study is often a complex nonlinear system where simple, intuitive analytical solutions are not available or difficult to apply. Unlike the other types of data collection, in which portions of reality are directly measured, computer models simulate those portions of reality. The model outputs are treated conceptually as if they were measurements and the simulated data are typically compared to standard empirical measurements for validation and verification (Montello and Sutton 2006; Sargent 2008). Some disadvantages of modeling are: extensive computational resource requirements, extensive training in computer science and
mathematics and the results might not be accurate or a good representation of reality. The figure below shows the steps associated with building a computational model.

Figure 7. Computational Models Steps (Montello and Sutton, 2006, page 130)

It is clear by following the steps in a computational model that this type of data collection method is complex and requires extensive computational resources. However, when data collection is limited and/or not an option, it is possible to supplement the data by looking at the possible causal relationships between the variables that describe a particular disease process using computer modeling (Barendregt et al. 2003). On the other hand, computational models are partial (miniature and incomplete) representations of reality consequently, the outputs of these models such as agent-based models must be analyzed with diligence and care (Sullivan and Mordechai 2000).
2.5 Agent-Based Modeling

The three major prototypes in simulation modeling are system dynamics (Osgood 2007), discrete event (Page and Nance 1994) and agent-based modeling (Borshchev and Filippov 2004). ABMs can be built from existing system dynamics or discrete event models and can be further enhanced to capture complicated behavior, dependencies and interactions of complex systems, thus providing for deeper insight into the system being modeled which allow researchers to capture more real life phenomena than the other two simulation techniques (Borshchev and Filippov 2004). The idea of ABM was developed as a rather simple concept in the late 1940s. The ideas central to ABMs are agents as objects, emergence, and complexity. See figure 8.

Figure 8. A Simplistic View of Agent-Based Modeling

Since ABMs require computation-intensive processes, ABMs did not become widespread until the 1990s (Isidoro et al. 2009). Technological advances in computing have made possible a growing number of application using agent-based models. Applications range from modeling agent behaviors in the stock market, supply chains,
and consumer markets, to predicting the spread of epidemics, the threat of bio-warfare, and the factors responsible for the fall of ancient civilizations (Bonabeau 2002; Macal and North 2007). ABMs combine elements of game theory, artificial intelligence, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming. It has been proposed that agent-based models may compliment the study of social sciences, in addition to argumentation and formalization (Gilbert and Terna 2000; Macal and North 2005; Macy and Willer 2002).

Agent-based modeling is the process of building an abstraction of a system for a specific purpose (Galan et al. 2009). The abstraction of what is being modeled may only retain features that are considered the most relevant to model; may make assumptions about unknown aspects of the system; and/or most commonly simplify aspects of the system modeled (Galan et al. 2009; Perez and Dragicevic 2009). ABMs, multi-agent system, and multi-agent simulation are types of computational models where multiple entities sense stochastically response to conditions in their local environments, mimicking complex large-scale systems behavior (Sanchez 2002). ABMs simulate the actions and interactions of autonomous agents, both individual and collective entities, with a view to assessing their effects on the system as a whole through simple internal rules for decision-making, movement and actions (Sanchez 2002). With an ABM, in contrast to other methods, it is possible to formalize complex theories about processes, carry out experiments and observe the occurrence of emergence phenomena (Gilbert and Terna 2000; Grimm et al. 2005; Macy and Willer 2002).

The models simulate the simultaneous operations and interactions of multiple agents, in an attempt to re-create and predict the appearance of complex phenomena
(Torrens 2010). The process is one of emergence from the lower- (micro-) level of systems to a higher- (macro-) level (Auchincloss and Diez Roux 2008; Grimm et al. 2005). This aggregate behavior of the simulated system is the result of the dense interaction of the relatively simple behaviors of the individual simulated agents (Sanchez 2002). The key notion in this type of modeling is that simple behavioral rules govern the interactions of individual agents as they generate or emerge into complex behavior. These individual agents are typically characterized as bounded rational, presumed to be acting in what they perceive as their own environment such as reproduction, socio-economic and demographic characteristics, or social status, using heuristics or simple decision-making rules and likewise may experience learning and adaptation to their environment (Getchell 2008; Macal and North 2010; Patlolla et al. 2006; Perez and Dragicevic 2009; Torrens 2010).

Most agent-based models are composed of: (1) numerous agents specified at various scales (agent-granularity); (2) decision-making heuristics; (3) learning rules or adaptive processes; (4) an interaction topology; and (5) a non-agent environment (Macal and North 2010). Using simple rules, agent-based modeling can result in the study of far more complex and interesting behaviors including emerging social patterns that can appear suddenly, transform and/or disappear (Macy and Willer 2002; Sanchez 2002). They consist of dynamically interacting rule-based agents commonly implemented in software as objects (Axtell 2000) and the environment within which they interact can simulate real world-like complexity. They could be intelligent and purposeful, situated or located in some space and time, encoded in algorithmic form in a computer programs (Axtell 2000). The modeler, designer, or researcher implements or creates those
characteristics relevant to the agents and make assumptions about the system though the most relevant variables to the situation being studied and then observes the phenomena emerging from the agent’s interactions. Sometimes the results of the model are equilibria, or an interesting emergent pattern may appear including an incoherent or by chance unexpected result of the system modeled because of a computers implementations errors or misunderstanding of how the system work. Even though agent-based models are not the main stream of geography research they are becoming an important tool, complimenting the study of social sciences and are becoming increasingly popular (Gilbert and Terna 2000; Macal and North 2005; Macy and Willer 2002).

traditional methods and agent-based modeling

ABM could complement and/or enhance traditional analytical methods (Auchincloss and Diez Roux 2008). See Table 1 below.

Table 1. Statistical Models and ABMs Complement Each Other

<table>
<thead>
<tr>
<th>Statistical Models</th>
<th>Agent based models</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Are an abstraction of a social process for which data are collected</td>
<td>• Presuppose rules of behavior</td>
</tr>
<tr>
<td>• Goal: similarity between prediction and observation</td>
<td>• Challenge the validity of these rules</td>
</tr>
<tr>
<td>• Understand why specific rules are applied</td>
<td>• Verify whether these micro based rules can or cannot explain macroscopic regularities</td>
</tr>
<tr>
<td>• Induction: find patterns in data</td>
<td>• Are often applied to formulate theories</td>
</tr>
<tr>
<td>• Deduction: find consequences of assumptions</td>
<td></td>
</tr>
<tr>
<td>• Constitute abstraction of an objective</td>
<td></td>
</tr>
<tr>
<td>• Allow to implement a large set of agent characteristics</td>
<td></td>
</tr>
<tr>
<td>• Allow for a high level of heterogeneity</td>
<td></td>
</tr>
<tr>
<td>• Allow to model endogenous social networks</td>
<td></td>
</tr>
</tbody>
</table>

Statistical Models and ABMs complement each other.
As stated in Table 1, statistical models and ABMs could complement each other. Where analytical methods enable researchers to characterize the equilibria of a system, ABMs may allow the possibility of generating that equilibrium. Agent based models can explain the emergence of higher order patterns or can be used to identify lever points, defined as moments in time in which interventions have extreme consequences, and to distinguish among types of path dependency and rather than focusing on stable states, ABMs adapt to internal and external pressures so as to maintain their functionalities and system’s robustness (Axtell 2000).

Macro-simulation techniques are normally based on mathematical models where the characteristics of a population are averaged together and the model attempts to simulate changes in these averaged characteristics for the entire population (Davidsson 2001). In macro-simulations, the set of individuals is viewed as a structure that can be characterized by a number of variables, whereas in micro-simulations such as ABM the structure is viewed as emergent phenomena from the interactions between the individual agents (Davidsson 2001).

Most of the methods to analyze the spread of dengue fever focus on developing mathematical models (Jacintho et al. 2010). One drawback of mathematical models is to disregard the importance of micro-level behavior, concentrating on the macro-level phases of the system (Jacintho et al. 2010). Therefore, simulation models differ from traditional models in the sense that they allow: (i) the study of how the modeled system behaves in certain condition; (ii) the examination of the consequences of changing internal behaviors of the system; and (iii) vice versa (Jacintho et al. 2010). Another
important difference is even though live testing is preferred (traditional methods), ABM could be an attractive method because the technology, cost, and time limitations prohibit or made impossible extensive live testing for the studying of complex systems (Sanchez 2002). However, this approach requires considerable computational power to simulate individual agents and parameter tuning is not trivial, it lacks the formalism provided by differential equations (Isidoro et al. 2009).

Some of the simulation model goals are to discover and formalize theoretical models, to develop a better understanding of some features of the system, to test hypotheses of the modeled system and predict future actions and behaviors (Jacintho et al. 2010). Agent-based simulations provide an adequate infrastructure to model and understand processes related to social interactions of the relationship established between local and global behavior. These relationships may lead to explicit chains of cause and effect of how internal agent components affect the global agents behavior (Jacintho et al. 2010). The use of agent-based modeling is well suitable for describing complex systems in general, and a useful approach for modeling population dynamics and disease transmission (Isidoro et al. 2009). They offer a natural way to exemplify the diversity of intervening components, such as environmental factors, disease vectors and disease hosts, and the possibility to determine spatial behavior distribution, rapid insertion of new components and the natural consideration of non-linear interactions between agents (Isidoro et al. 2009).

There are presently three main approaches to epidemiological modeling: equation-based modeling with analytical models, agent-based modeling which are computer models where populations are presented as a system of interacting software
agents, and closely associated or complementary to ABM, network-based modeling where social interactions are modeled based on a network theory approach (Skvortsov et al. 2007). Agent-based simulation is the most flexible in terms of a realistic scenario evaluation and has become increasingly popular (Galan et al. 2009; Gilbert and Terna 2000; Haynes, Cohen, and Ritter 2009; Isidoro et al. 2009; Jacintho et al. 2010; Macal and North 2010; Malleson, Heppenstall, and See 2010; Sanchez 2002; Skvortsov et al. 2007; Sullivan and Mordechai 2000; Tan and Lau 2007). On the other hand, traditional analytical modeling in the social sciences follows or relies on a very well established methodological protocol both with respect to the way models are presented and to the kinds of analysis that are performed (Leombruni et al. 2005). Computer-simulated models often lack such a reference to an accepted methodological standard which implies one of the main reasons for the skepticism amongst mainstream social scientists that results in a low acceptance of papers with agent-based methodology in the top journals (Leombruni et al. 2005). The increasing availability of computer resources in recent time allows high fidelity modeling of complex systems on global, national and community levels that could be used to actually enhance traditional methods of analysis (Skvortsov et al. 2007).

There is a long tradition of analytic modeling in science, where formal structures using mathematics are employed to represent aspects of natural phenomena and to predict them (Galan et al. 2009). In computational modeling there is a formal representation that is animated by the computer to produce the outcomes of the model, which may be in the form of a computer program or an algorithm plus a set of equations (Galan et al. 2009). One of the advantages of ABM is that it still has the formal object for the model (as
traditional methods), which can be replicated, checked and used by other researchers but is autonomous from the need to be able to derive general results as the analytical modeling approach (Galan et al. 2009). Consequently the use of dynamic models such as ABM could complement and/or enhance traditional epidemiological analysis (Auchincloss and Diez Roux 2008). For example, ABMs have been gradually adopted in the social and geographical sciences to investigate processes involving interactions between heterogeneous agents and dynamics interactions between agents and environment (Brown et al. 2005; Brown and Robinson 2006; Malleson 2009; Malleson, Heppenstall, and See 2010; Torrens 2006). Thus, it may be useful to combine modeling techniques e.g., regression, ABM, and dynamic equations (Auchincloss and Diez Roux 2008).

Characteristics of Agent-Based Modeling

The task of emergence complexity requires attention of the agents themselves including their diversity, connectedness, and level of interactions. A typical agent-based model has three elements: a set of agents, their attributes and behaviors; a set of agent relationships and methods of interaction (an underlying topology of connectedness defines how and with whom agents interact); and the agent’s environment (agents interact with their environment in addition to other agents) (Macal and North 2010). According to Macal and North (2010) an agent has several characteristics: is a self-contained, modular, and uniquely identifiable individual; is autonomous and self-directed; has a state that varies over time; is social having dynamic interactions with other agents that influence its behavior; may be adaptive, for example, by having rules or more abstract mechanisms that modify its behaviors; may be goal-directed, having goals to achieve with respect to
its behaviors; and finally agents may be heterogeneous - agent simulations often consider
the full range of agent diversity across a population. A researcher must consider, identify,
model, and program these elements to create an agent-based model.

The ABM flexibility in representing dynamic and highly adaptive physical or human phenomena facilitates the exploration of ideas about the numerous ways geographical systems develop, behave, interact and evolve, and often support experimentation within geographical systems in ways that may not be possible in the real world (Castle and Crooks 2006; Torrens 2010). Therefore, ABM techniques make possible a methodological approach for the spatial sciences that could be used as the building-blocks for analysis as well as experimentation for developing geospatial simulations (Castle and Crooks 2006; Torrens 2010). Primarily because of the value placed on spatial science and behavioral geography in ABM work, this method is helping to infuse geographical perspectives and spatial thinking into an interdisciplinary approach (Torrens 2010).

Verification & Validation of Agent-Based Models

One of the most important aspects of simulation models is to ensure both the conceptual and the computational models represent, in a reliable way, the target system by using the processes of validation and verification (V&V) (David, Simão-Sichman, and Coelho 2005; Jacinthe et al. 2010; Küppers and Lenhard 2005; Ormerod and Rosewell 2009; Wilensky and Rand 2007; Yilmaz 2006). An acceptable degree of adherence validation aims to assure that the conceptual model represents the target system or verifies the conceptual model is correctly translated to the computational environment (Jacinthe et al. 2010).
Figure 9. Validation and Verification Methods

Therefore, the validation procedure is the process of assessing how useful a model is for a certain purpose and verification is the process of ensuring that the model performs in the manner intended by the design and implementation (Galan et al. 2009).

One important question to answer when validating a model is what is the reliability of the model output for a given ‘what if’ scenario (which may have never occurred) and what means does one have to validate these predictive results (Skvortsov et al. 2007). One approach of validation is to use an already validated mathematical model for the case being studied or cross-validation. This step of ABM validation is also called model alignment. The ABM output is reconciled with other modeling approaches, such as a mathematical model, for realistic (observable) values of model parameters (Skvortsov et al. 2007).
Therefore, a critical factor for a high fidelity epidemiological model is the ability to independently validate its predictive results (Skvortsov et al. 2007). But, it is often very difficult and/or (sometimes) impossible to validate epidemiological models due to a lack of reliable field data (the simulated event may have never occurred) or there are ethical reasons the model could not be validated. Consequently, the choice of validation techniques in such situations is to use cross-validation or model alignment, which means to run a validated model for some scenarios (where the result is known) or to compare its output with other available models that have been validated. For example, validating the model by using a statistical methodology for the analysis of stochastic SIR (Susceptible → Infective → Removed or Resistance) epidemic models or SEIR (Susceptible → Exposed → Infectected → Resistance) mathematical models (Bobashev et al. 2007; Britton, Kypraios, and O'Neill 2011; Dunham 2005; Epstein et al. 2008; O'Neill 2002) using equation-based approaches or by comparing existing field data using a statistical model (Ford, Kaufman, and Eiron 2006; Skvortsov et al. 2007). Stochastic epidemic models are appropriate stochastic processes that can be used to model disease propagation. The use of stochastic epidemic models naturally facilitates estimation of important epidemiological parameters including learning and implicit representation of population demographics.

Consequently, to produce accurate computer simulation models that approximate the real system under study and/or modeled, the steps of calibration, verification, and validation should be used. A model should be calibrated by adjusting any available parameters in order to adjust how the model operates and simulates the process so that it matches the problem being studied. The calibrated model should be verified by obtaining output data from the model and comparing it to what is expected from the input data.
Finally, validate the model by comparing the outputs to historical data from the study area and GIS.

Figure 10. Comparing Outputs to Historical Data

If the outputs do not reasonably match historic values during the validation process, the model should be reviewed and updated. The validation process establishes the credibility of the model by demonstrating its ability to replicate actual scenarios of the real world. The importance of model validation underscores the need for careful planning, design and implementation of the model.

Challenges of Agent-Based Modeling Complexity

ABM is one of the techniques that can be used to model social systems and what differentiates this approach from others is that it enables a more direct correspondence
between the entities in the target system and the parts of the model that represent them: the agents (Galan et al. 2009; Gilbert and Terna 2000). However, one problem with computer simulations is that they can be very complex, so that understanding them in reasonable detail is not a straightforward exercise and ABMs are generally mathematically intractable (high complexity, difficult to solve) (Galan et al. 2009). Consequently, it is apparent that a prerequisite to understanding a simulation is to ensure there is no significant disparity between what the programmer thinks the computer code is doing and what it is actually doing (Galan et al. 2009).

Nevertheless, no matter how careful researchers have designed and built the simulation, it may contain bugs, or code that does something different than what is expected. Therefore, achieving internal validity is harder than it might appear because of not knowing whether a sudden result in the model is an echo of a bug in the programming, or a consequence of the model itself (Galan et al. 2009; Gore and Reynolds 2010). Hence, the unexpected behaviors in simulations need justification, so that decision-makers and subject matter experts can separate valid behaviors from design or coding errors (Gore and Reynolds 2010) and ABMs are known for unexpected behaviors that emerge as the simulation executes. Consequently, implementing of ABMs is not a straightforward task. The following figure shows the different stages in the complex process of designing, implementing and using an ABM.
The first stage’s aim is to produce the main conceptualization of the target system, defining the objectives and the purpose of the model. The second stage transforms the non-formal model into the formal requirements specifications that the third stage needs to formulate the executable model such as inputs and output. The final stage is to transfer this executable model into a software program. Any mismatch or misunderstood transfer between stages is to the next stage a possible error (Galan et al. 2009). For example, unexpected or unjustified emergent behaviors often occur in ABMs where the simulation specification are incomplete or the application domain is poorly understood (Gore and Reynolds 2010).

Figure 11. Stages of Agent-Based Modeling

<table>
<thead>
<tr>
<th>Mathematician</th>
<th>Target System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical specification</td>
<td>Abstraction</td>
</tr>
<tr>
<td>[Potential error]</td>
<td></td>
</tr>
<tr>
<td>[Intentional design]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modeler</th>
<th>Non-formal model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeler’s specification</td>
<td>Design</td>
</tr>
<tr>
<td>[Potential error]</td>
<td></td>
</tr>
<tr>
<td>[Intentional approximation]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Scientist</th>
<th>Formal model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer scientist’s specification</td>
<td>Approximation</td>
</tr>
<tr>
<td>[Potential error]</td>
<td></td>
</tr>
<tr>
<td>[Same Model]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programmer</th>
<th>Executable model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmer’s specification</td>
<td>Coding</td>
</tr>
<tr>
<td>[Potential error]</td>
<td></td>
</tr>
<tr>
<td>[Intentional approximation]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agent-Based Models and Epidemiology

The possibilities or advantage that ABMs possess as a bottom-up approach to model the spread of epidemics, have been used in epidemiology to study and track the movement of infected individuals and their contacts in a social system and in geographic space (Bagni, Berchi, and Cariello 2002; Dunham 2005; Gordon 2003; Isidoro et al. 2009; Jacintho et al. 2010; Patlolla et al. 2006; Skvortsov et al. 2007; Tan and Lau 2007). ABMs allow interaction between individuals (agents) and are capable of overcoming the limitations of different approaches such as cellular automata and classical epidemic models, allowing the study of specific spatial characteristics of the spread of epidemics and addressing the naturally stochastic nature of the epidemic process (Perez and Dragicevic 2009). Consisting of a population of individual simple actors (agents), an environment, and a set of rules governing the agents (Durlauf 1997), actions in ABM take place through the agents or self-contained programs that collect information from their environment (surroundings) and use these actions to determine how to act next (Axtell 2000; Macal and North 2005). This allows ABMs in the study of epidemiology to follow the progression of a disease through each individual (agent) even when populations become highly heterogeneous by health status during simulations, and also tracks the contacts of each individual with others in a social networks and geographical areas (Perez and Dragicevic 2009). Therefore, ABMs capability to produce emergent macro-effects from micro-rules have assisted as a foundation for the development of different methodological frameworks in epidemiology (Patlolla et al. 2006).

Epidemiologic applications using ABM approaches are mostly designed to allow epidemiological researchers to conduct an initial "what-if" analysis with the purpose of
assessing a systems behavior under various circumstances and evaluating which alternative control programs to adopt in order to control epidemics. Although these models effectively track the progression of the disease, they need to add physical infrastructures such as road networks, and real geographic environments to account for more realistic complex interactions among susceptible and infected individuals (Perez and Dragicevic 2009). Another important application of ABM in epidemiology is the modeling of vector-borne diseases such as dengue fever or malaria and the changes in their incidence that are attributable to climatic variability such as temperature, precipitation, and humidity (Chengbin, Haiyan, and Zhiwei 2008; Isidoro et al. 2009; Jacin thro et al. 2010; Linard et al. 2009; Lloyd King 2009). Nonetheless, none of these models had incorporated geo-spatial characteristics such as adding GIS layers into their models as to study and simulate more realistic epidemiological problems.

Therefore, an interesting feature of coupling GIS and ABM developments is the intersection of these two major methodological developments for social simulations allows new scientific and policy analysis and could enhance or enrich policy-making analysis by simulating the complexity of these problems (Kim 2007). Furthermore, spatial effects on health problems could emerge from complex interdependent processes in which individuals interact with each other and their environment, and in which both the individuals and the environment adapt and change over time (Auchincloss and Diez Roux 2008). Traditional epidemiological research study designs and statistical regression methods examine these dynamic methods, which have constrained the types of questions asked, the answers received, and the hypotheses and theoretical explanations that are developed (Auchincloss and Diez Roux 2008). Hence, ABM could enhance or
complement traditional methods of analysis. Also, results from collected data obtained from epidemiological simulation can complement and/or help in the decision-making process, in the understanding and evaluation of these complex systems, and in reducing implementation time and cost of those problems being studied (Jacintho et al. 2010).

Applications of computer modeling

Although the basic goal of any kind of data mining is prediction (Shalizi 2006), computer modeling has many other applications, namely furthering theory development and addresses the reasons for when or why to build models in the social sciences (Axtell 2000; Epstein 2008). Knowing that the main value of simulation in the social sciences is for theory development rather than for prediction (Gilbert and Terna 2000), computer modeling is used to:

- Explain and/or understanding complex systems, which is very distinct from predict;
- Guide data collection (modeling is one of the types of data collection);
- Illuminate core dynamics (as somebody famous said “all models are wrong, but some are useful”);
- Suggest dynamical analogies (unrelated processes have formally identical models);
- Discover new questions (curiosity lead to new questions);
- Promote a scientific habit of mind (the freedom to doubt);
- Bound (bracket) outcomes to plausible ranges;
- Illuminate core uncertainties;
- Offer crisis options in near-real time;
• Demonstrate tradeoffs / suggest efficiencies;
• Challenge the robustness of prevailing theory through perturbations;
• Expose prevailing wisdom as incompatible with available data;
• Train practitioners;
• Discipline the policy dialogue;
• Educate the general public; and
• Reveal the apparently simple (complex) to be complex (simple).

The benefits of ABM over other modeling techniques can be understood in three statements: (i) to capture emergent phenomena; (ii) provides a natural description of a system; and (iii) have flexibility to incorporate more elements (variables) (Bonabeau 2002). The ability of ABM to deal with emergent phenomena is what drives any of the others benefits. There are several benefits or ways to how and when ABMs could enhance others types of research methodology, such as quantitative and qualitative research methods (Aschorn 2004). ABMs should be viewed as models included with quantitative, qualitative, experimental, and participatory methodology (Boero and Squazzoni 2005). According to Aschorn (2004), ABMs are useful for problems where: there are many interrelated factors, high uncertainty, and where a novel approach with competitive differentiation is the goal; emergent behaviors are to be modeled; all the way down; interactions between agents are complex, nonlinear, or discontinuous; spatial issues are of interest, i.e. social networks; the population is heterogeneous; and agents exhibit learning and adaptive behaviors, i.e. dynamic strategies.

Most or all of these characteristics are presented in epidemiological research
problems studies and proposed dengue fever research, making dengue fever a good candidate for building an ABM. Thus, ABM is intended to complement and enhance rather than displace traditional approaches (Aschorn 2004; Gilbert and Terna 2000).
CHAPTER III
RESEARCH DESIGN AND METHODOLOGY

3.1 The Study Area

Costa Rica is located on the Central American isthmus, lying between latitudes 8° and 12° north, and longitudes 82° and 86° west. Costa Rica comprises an area of 51,100 sq. km (19,730 sq. mi.) with a population of 4,563,539 people in 2010, and an annual population growth rate of 1.347%. The major cities, which constitute the Greater Metropolitan Area (GMA), are San Jose, Alajuela, Cartago, and Heredia which have a combined population of 2.1 million. The terrain is rugged, and a central range of mountains separates the eastern and western coastal plains. Costa Rica’s climate is mild in the central highlands, and tropical and subtropical in coastal areas. Most of the people are descendants of Europeans rather than of mestizo (i.e. mixed) descent. Their origins are European and mestizo 94%, African 3%, Chinese 1%, Amerindian 1%, and other 1%. The literacy rate in Costa Rica is 94.9%. Its residents have an average life expectancy of 79 years (INEC 2011; Lytle 2011).

This study focuses on the Greater Metropolitan Area or Central Valley of Costa Rica (Figure 12). The Central Valley is a highly populated, urban and semi-urban, area with more than two million inhabitants. It contains more than 50 per cent of the total population in an area comprising just 4 per cent of the national territory (INEC 2011; Lytle 2011). In this setting, there are many ideal habitats for the *Aedes* mosquitoes and many breeding sites for the vector (Van-Benthem et al. 2005). The Central Valley has a
mean elevation of 1,161 meters (3809.06 feet) above sea level and is characterized by a climate with an annual average temperature of 23 degrees Centigrade (74 degrees Fahrenheit) and precipitation of 150 millimeters (5.9 inches) per month (CCSS 2008; IMN 2008).

![The Greater Metropolitan Area of Costa Rica (GMA)](image)

The Central Valley is a highly populated urban and semi-urban area with more than two million total inhabitants, concentrates more than 50 per cent of the total population in just 4 per cent of the national territory (INEC 2009).

Figure 12. The Study Area (The Greater Metropolitan Area)
These parameters constitute an optimal set of conditions for the survival of the *Aedes aegypti* mosquito and the spread of dengue fever (CCSS 2008). In Costa Rica, there is a need for more research on the local variables that affect dengue fever and their relationships. The Department of Health is the entity that directs and conducts surveillance programs for dengue. Another public institution that works closely with the Department of Health is the Costa Rican Social Security Fund or Caja Costarricense de Seguro Social. This government institution is in charge of public health care services and social security. Most of this organization’s control programs against dengue focus on public education, using such tools as school and television programs (Troyo et al. 2006).

3.2 Base Data for the Study

The number of dengue cases each month from 1993 to 2008 were obtained for all the cantons of the study area from the Costa Rica Department of Epidemiological Surveillance Unit at the Ministry of Health (Ministerio-de-Salud 2008). The weather information for the same period, 1993-2008, including temperature and precipitation rates, were acquired from the Costa Rica National Meteorological Institute (IMN 2008). The weather information contains data from:

- Twelve rain gauge weather stations located in different districts of the study area; and
- Twelve weather stations located in different districts of the study area from which monthly average high and low temperatures in degrees centigrade.

The demographic and socio-economic characteristics of the population were obtained from the population census of 2000 provided by the National Institute of
Statistics and Census of Costa Rica, INEC. Lastly, all the geographic information layers were provided by the Geography Department of the National University of Heredia, UNA, Costa Rica, the University of Costa Rica, UCR and the Regional and Urban Planning of the Greater Metropolitan Area Central Valley of Costa Rica, PRUGAM.

The variables gathered for analysis included weather characteristics (precipitation and temperature) and demographic characteristics of the region’s residents. These were evaluated for their relationships to reported rates of dengue fever. The independent variables of the study are temperature, precipitation, and socio-economic and other characteristics of the population. The dependent variable is the reported number of dengue cases.

3.3 GIS Analysis

GIS was used to create maps depicting the risk, or the likely patterns, or spatial distribution, or areas for the potential for outbreaks of dengue fever (Jarup 2004). By supplementing GIS with space-time permutation scan statistic tools, the spatial variation of dengue incidence can be mapped using geographically weighted regression, or GWR (Brunsdon, Fotheringham, and Charlton 1996; Harris, Brunsdon, and Fotheringham 2011; Wheeler and Páez 2010). GWR mapping and analysis were used in this research to determine the spatial correlation between dengue fever occurrence and the meteorological and demographic variables.

Identifying Areas of High Risk to dengue fever using GIS

To identify zones possessing high dengue fever potential, a risk assessment map was created by comparing where people live, the potential for exposure to the mosquito, and the probability of presence of the disease. By mathematically combining these three
components, a risk assessment of the Central Valley of Costa Rica can be achieved. The building-density function in ArcGIS Spatial Analyst was used to assess population densities in the region’s subdivisions. Areas that possessed the presence of dengue fever and areas with highest chance to experience a spread of the disease, according to the factors influencing the microbe, were identified, and they were reclassified using ArcGIS Spatial Analyst.

Several GIS layers, including those that reflected areas with optimal temperature for the survival of the mosquito, low and high precipitation rates, and socio-economic data, were reclassified to determine a classification of areas as having high- or low-levels of risk for dengue fever. Multiple operations were performed to create a dengue-fever behavior index. The model was run through a series of classifications and mathematical overlays to define a dengue behavior index for the study area.

3.4 ArcGIS Geo-statistical Analyses

Combining temperature, precipitation, socio-economic, and demographic of the population into one feature dataset accurately classified the risk areas of dengue hazards for the Central Valley of Costa Rica. Then GIS geo-statistical analyst tools were used to create a probability surface of the likelihood of dengue cases occurrences to further analyze areas that have the highest risk to the disease. An exploratory spatial data analysis tools including interpolation process, map algebra, combinational operators, output surfaces, and data conversion in the ArcGIS Geo-statistical Analyst extension were used to efficiently identify trends and outliers in the data that may play a role in the final surface as well as exploring the distribution of the data, looking for global trends, and understanding spatial dependence in the data. After the probability surface was
created, a final risk assessment map was generated showing the high-risk areas of dengue fever for the Central Valley of Costa Rica.

3.5 Agent-based Model Analysis

The ABM was based on the most important variables identified in the literature review and the GIS analysis of the data collected influencing the spread of dengue fever. Namely, the human interactions with the environment, the characteristics of the vector including traveling distance, reproduction rate, mosquito’s breeding grounds, and climate variability such as temperature and precipitation (see figure 13).

![Diagram](image)

Figure 13. Elements Affecting the Disease

These elements made the development of the model simple yet robust and capable of extracting useful information (data) from the manipulation of the different scenarios that may occur from changes in the input parameters and/or by assigning different properties rules to the various factors based on the characteristics of the disease. The model represented the daily movements and interactions of people, the environment, and the vector (mosquitoes) in a community, simulates the spread of dengue disease in an
urban area. The agent-based model could allow for the assessment of disease prevention, intervention, and eventually response strategies as well as an experimental test tool for analyzing the parameters affecting the disease within an urban area.

The simulation provided detailed information about each simulated scenario and the significant events that may happen during an outbreak simulation—including the number of susceptible, infected, and recovered people—along with a time stamp and current location. Likewise, the model keeps track of all the other factors affecting the numbers of cases including precipitation, temperature, and/or the most important demographic and socio-economics characteristics of the population. The objective of this study was to develop an agent-based modeling approach that integrated GIS and ABM to simulate the spread of dengue fever disease in an urban environment, as a result of individual’s interactions in a geospatial context. The main objective was to implement a framework for modeling the spatial and temporal progression of dengue fever affecting multiple populations in a geographically distributed location. GIS methods were used to analyze the available data collected from government agencies at the macro level of the whole study area. Then, a community-level agent-based model was implemented for a micro-level analysis of three urban zones in the study area.

Implementation of the Agent-based Model

This section outlines the design and implementation of an ABM, spatially explicit simulation for the study of dengue in a community-based population of two of the 48 cantons of the study area that will be selected from the macro analysis. There are many simulation toolkits available including REPAST, MASON, AnyLogic, NetLogo, STEM, JADE, and much more which requiring various levels of programming experience
One of those, the MASON toolkit, which is a set of open source Java-based libraries for agent-based modeling, was used in the study for the implementing the ABM (Luke et al. 2004). MASON is quite user friendly, and has all the required elements for creating a realistic dengue epidemiology model (Dunham 2005; Luke et al. 2004). For a list and assessment of others ABM toolkits refers to http://jasss.soc.surrey.ac.uk/7/1/6.html (Allan 2009; Getchell 2008; Macal and North 2005).

The implementation of the agent-based model followed the waterfall model of the software development process (Thummadi et al. 2011). During this stage, several documents were written including software requirements specifications, software systems architecture, interface design specification, software component detailed design, annotated source code, software test plan, and software test procedures. This process was noted following the phases in the diagram.

![Figure 14. The Waterfall Model of Software Engineering](image-url)
3.6 Proposed Framework for Dengue Fever Modeling

The following figure details the key components of the framework for the multi-scale analysis of dengue fever in the Central Valley of Costa Rica. The framework is composed of two analysis techniques: the macro analysis using GIS and the micro analysis using the agent-based model. See figure 15.

Figure 15. The Overall Propose Framework Flowchart of the Model
The main process of building the framework is presented as follows:

- Create a report from the literature review of the most important variables that influence the disease;
- Preform GIS macro analysis using secondary data collection;
- Combine results from first two steps and creates a document to start building the conceptual model for the ABM;
- Define a concept model using the research domain knowledge;
- Choose an agent-based model toolkit and built the ABM architecture from the conceptual model;
- Use the waterfall model of software engineering to create necessary documents including the SRS, SDS, and the STS. Figure out the integration process of GIS and statistical tools into the ABM;
- Using open source technologies implement and integrate GIS methods into the ABM. Incorporate data and GIS layers of the macro-analysis for realistic simulation and better results;
- Run the models and calibrate parameters accordingly to research domain knowledge;
- Perform models interaction (run the models several times);
- Run any necessary GIS analysis for primary data collected from ABM and compare to mathematical and/or real field data to validate and verify the model;
- Reject or accept hypotheses, is model agreed with traditional methods? Why and Why not?; and finally, perform any improvement to the model.

The first part of the proposed framework is to examine the secondary data for the
macro-level analysis using GIS. The steps are presented as follows: Collect the required data for analysis; get familiar with data, and prepare for spatial and tabular analysis (GIS); reclassify and derived necessary data from input dataset; combine datasets and perform GIS analysis; evaluated and interpret results; produced final maps and tabular reports; perform any other required analysis and reject or accept hypothesis; and finally use the collected results of macro analysis for implementing the ABM (see figure 16).

Figure 16. The GIS Outline for the Analysis of the Secondary Data
The second part of the framework is the implementation of the agent-based model. The ABM model was developed in the MASON simulator, a multithreaded agent based simulation platform which offer a modeling pattern and a set of tools for the simulation of complex systems such as dengue fever. The platform is implemented in Java and makes use of several open source libraries which provide tools for spatial organization, visualization, event scheduling, simulation output, and class implementation. The simulation was performed in discrete time and two dimensional space using GIS layers of the study area. The main actors (agents) in the simulation are humans, and mosquitoes. Other elements that were simulated are temperature and precipitation. Agents are discrete and independent decision-making entities which have socio-economic and demographic characteristics. When prompted to act, each agent analyzes its current situation and/or location, e.g. what resources are available, what other agents are in the area, and acts accordingly, based on a set of rules implemented. Elements are real valued objects which obey predetermined rules of the environment, such as physical laws of precipitation and temperature.

The process of building the ABM is shown as follows:

- Define a concept model using the research domain knowledge. Define agent types, their rules, environment, space and rules of interaction.
- Define the quantitative and qualitative data collection for each time interval of the model.
- Implement the model (MASON toolkit) from the concept model.
- Run the model, collect data, and compare the results with a calibration data set.
- Repeat first four steps until model is calibrated.
• Validate and verify the model using data from the research domain or a mathematical equation for dengue fever. See figure 17 below.

Figure 17. The Dengue Fever Agent-Based Model

The ABM was validated using cross-validation or model alignment, run a validated model for some scenarios where the result is known. The two methods to validate the dengue fever ABM are SEIR (Susceptible, Exposed, Infected, Resistance) mathematical models (Bobashev et al. 2007; Dunham 2005; Epstein et al. 2008) using equation-based approaches, and/or comparing existing field data using a statistical model (Ford, Kaufman, and Eiron 2006; Skvortsov et al. 2007). The SEIR model represents a sub-model inside the ABM of dengue fever.
Figure 18. Different Stages of the SEIR Infection Model

Figure 18 represents the different states of the SEIR infection model, to simulate the progress of an epidemic in a human population. L_{pi}: latency period, I_{pi}: infectious period, t_i: first day that an individual is exposed to the virus for the first time, x_{LP}: number of days for an exposed individual to become infective, and x_{IP}: number of days for an individual to recover from the disease (Perez and Dragicevic 2009). The figures (19 and 20) below depict flowcharts of possible states in an epidemic model SIS, SIR, SEIS, and SEIR and their multiple compartmental phases.

Figure 19. Possible Stages of an Epidemic Model
Figure 20. The Compartmental Phases of the ABM

The probability in transition between stages in the SIER model used Markov Decision Processes (MDPs). MDPs offer a mathematical framework for modeling sequential decision-making in situations where outcomes are partly random and partly under the control of a decision maker (Yinyu 2011). MDP is one of the most fundamental dynamic decision models in social science as well as mathematical science, physical science, and management science. Modern applications include dynamic planning, support learning, social networking, and almost all other dynamic/sequential decision making problems (Yinyu 2011).
The application of the Dengue Fever Agent-Based Model (DFABM) simulation system implemented several Java classes. It is composed of four packages, the dfabm, GUI, exceptions, and File package. This packages uses the functionality of the open source MASON framework, the Geo Mason package and several others open Java libraries. The GUI package is composed of three classes; the DFABMWithUI, the PanelSymbology, and the PanelFile. These three classes handled the visualization of the Graphical User Interface (GUI), allowing for change of simulation parameters. The exception package, which is composed of one class, handles any input/output (I/O) error messages that may occur during the simulation. The File package, which contains four classes, handles the reads and the writes of any data used by the simulation. Finally, the core dfabm package contains the main classes that control the simulation. To travel from home to work (Building class) and vice-versa, the agents (Human class) use the shortest...
path algorithm (AStart class) to find his/her way out in the road layer. The DFABM is the main class that oversees the others ones.

The StudyArea class manages the attributes and operations (get and set) of the study area. Also, assign the socio-economic and demographic characteristics to each one of the agents (Humans). The WeatherData class supervises the attributes and operations of the meteorological characteristics for the study area (precipitation and temperature). RowInformation class handles the output files, the Excel and the GIS files created by the simulation. DengueCases class controls the reads and writes of the number of dengue cases used in the simulation. Building class implements the attributes and operations of houses and work buildings. It also handles the actual infection of agents. Thus, the rules and probabilities of infections are oversees by this class. Human class handles the attributes and operations of the agents (Humans). It supervises the different stages of the humans (SEIR states). Besides, it takes care of the human portrayal for the simulation, and its location. The DFABM is the main class that oversee the others classes. This class implements the rules and interactions between the agents (see figure 22 below).
Figure 22. An Overview of the Class Diagram

This diagram only represents the main classes and packages that were used in the implementation of the dengue fever agent based model (DFABM). They do not contain any of the properties and/or methods.

In summary, Agent Based Model (ABM) and Geographic Information System (GIS) analysis may provide a valuable framework or methodology for the study of dengue fever in the Central Valley of Costa Rica. Precipitation, temperature, socio-economic and demographics variables were analyzed using these technologies to possibly identify factors affecting the rates of dengue fever cases in the study area. GIS was used to generate risk maps of dengue incidences, as well as to map the spatial distribution and vulnerability of dengue risk surfaces in the study area using weighted regression.

The implementation of the dengue fever agent based model (DFABM) included the most important variables affecting the rates of dengue fever as identified from the...
literature review and GIS analysis. The agent-based model represented daily movements, changes and interactions of humans, the environment, and the vector in relation to the appearance of dengue cases. The simulation collects data about each scenario and the significant events that may happen during an outbreak simulation. The simulation models physical processes and evaluate “what if” scenarios of the disease. Through evaluation and experimentation of the “what if” scenarios the model may act or evolve into a decision support system. Topics of computation time, durations of processes, and number of agents were assessed in the software design specification. Complementing traditional methods of analysis with an agent based model may yield enhanced analysis techniques for the study of dengue fever.
CHAPTER IV

ANALYSIS OF DATA / RESULTS

4.1 Organization of Data Analysis

The framework is composed of two analysis techniques: the macro analysis using Geographic Information Systems (GIS) and the micro analysis using the dengue fever agent based model (DFABM). GIS was used to analyze the available data collected from government agencies, universities, and private agencies at the macro level of the study area. Then, a community level dengue fever agent based model was implemented for a micro level analysis of three urban zones in the study area.

The study focused on the Greater Metropolitan Area or Central Valley of Costa Rica. The base data utilized for the study was; annual rates of dengue cases, weather information, which included temperature and precipitation; demographic and socio-economic characteristics of the population, which include, sex, age differences, education, household density, land cover (percentage of urbanization), household condition; and geographic information layers for the study area, which included roads, built areas, borders, neighborhoods, and segments for each of the 35 zones of the study area. Table 2 depicts the variables used for the susceptibility analysis of the annual rates of dengue cases.
Table 2. Susceptibility Analysis of the Annual Rates of Dengue Cases

<table>
<thead>
<tr>
<th>Sensibility</th>
<th>Scale of Analysis</th>
<th>Rate</th>
<th>Exposure Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>1993-2008</td>
<td>Canton</td>
<td>Seasonal</td>
</tr>
<tr>
<td>Average low and high temperature</td>
<td></td>
<td></td>
<td>Grand Metropolitan Area (GMA)</td>
</tr>
<tr>
<td>Average low and high temperature</td>
<td></td>
<td></td>
<td>Summer</td>
</tr>
<tr>
<td>Precipitation (mm)</td>
<td>1993-2008</td>
<td>Canton</td>
<td>Seasonal</td>
</tr>
<tr>
<td>Summer precipitation</td>
<td></td>
<td></td>
<td>GMA</td>
</tr>
<tr>
<td>Winter precipitation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socio-economics variables</td>
<td>Census 2000</td>
<td>Canton</td>
<td></td>
</tr>
<tr>
<td>% of urban population (land use)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% high school and more (education)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of economically active and students (occupation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average occupants (housing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of houses condition poor (housing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of overcrowded housing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demographics variables</td>
<td>Census 2000</td>
<td>Canton</td>
<td></td>
</tr>
<tr>
<td>% of males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of group age 0 to 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of group age 65 and over</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis Techniques

GIS was used to create risk maps depicting likely patterns, spatial distribution, and/or areas for outbreaks of dengue fever. The spatial variation of dengue incidence was mapped using geographical weighted regression (GWR). GWR was utilized to understand the relationships between dengue fever occurrences, demographic and socio-economic variables of the population distribution, as well as the meteorological factor of temperature and precipitation. GIS was also used to identify high risk zones to dengue fever. Several GIS layers, including areas with optimal temperature for the survival of the mosquito, precipitation, socio-economic, and demographic areas were reclassified to obtain the areas of high, medium, and low risk for dengue fever. The ABM was based on
the most important variables identified in the literature review and the GIS analysis identified as influencing the annual rates of dengue fever (see Table 2).

4.2 Research Questions and Associated Hypotheses

This study focused on the following research questions:

Research Question I: Does a community-level dengue fever agent-based model (DFABM) produce results comparable (agree) to those produced by traditional macro-level GIS analysis?

The resulting hypothesis for this research question was:

Hypothesis I:

- **H₀:** The analysis of the emergence data of the community level dengue fever agent-based model, which studied the same variables of the macro analysis (precipitation, temperature, demographic, and socio-economics features of the population), disagreed with traditional macro-level GIS analysis.
- **Hₐ:** The analysis of the emergence data of the community level dengue fever agent-based model, which studied the same variables of the macro analysis (precipitation, temperature, demographic, and socio-economics features of the population), agreed with traditional macro-level GIS analysis.

Question II: Does a community-based dengue fever agent-based model (DFABM) enhance traditional geographic information system analysis and could it aid in predicting future dengue fever outbreaks?

The resulting hypothesis for this research question was:

Hypothesis II:

- **H₀:** A community level agent-based model of dengue fever (DFABM) does not enhance GIS analysis and further the understanding and possible prediction of dengue outbreaks.
Hₐ: A community level agent-based model of dengue fever (DFABM) enhances GIS analysis and furthers the understanding or possible prediction of dengue outbreaks.

4.3 Analysis of Data

Performing the Geographic Information System Analysis

The GIS analysis used the variables depicted on page 69 (see Table 2). Thematic mapping (i.e. choropleth maps) was used to represent these variables: population density, precipitation, temperature, rates of dengue fever, and demographic of the population. Most of the maps are Multiple Attributes Maps (MA Maps). They symbolize the data using more than one attribute, creating a multivariate display to provide an initial analysis and assist with visualization across the study area. These maps reflect the spatial variability of the potential predictors (independent variables) within the region. Therefore, the map analysis depicts a visualization of the variance explained by each of the independent variables.

![Figure 23. MA Maps: % Poor Condition Houses, and Dengue Rates](image)
Maps indicate the majority of cantons with the highest rates of dengue fever also have the highest averages temperatures, more precipitation, and highest percentages of houses on poor condition. For instance, the area of Mora is a zone with warm, rainy, high temperatures.

![Multiple Atribute Map: Population Density, % of Males, Poor Conditions Houses, and Rates of Dengue Cases](image)

Figure 24. MA Maps: Pop Density, % Males, % Poor Condition Houses, Dengue Rates

When examining this second map (figure 24) and considering the rates of dengue cases, the analysis appeared to depict these three variables together were not good predictors to the rates of dengue cases, indicating a possible different variable affecting the rates. The following figures depict interpolation maps of precipitation and temperature. Figure 27, representing summer averages high temperatures and rates of dengue fever indicated high temperatures was a variable affect, or is related to the reported cases of dengue fever.
Figure 25. Precipitation (Point Interpolation) and Rates of Dengue Cases

Figure 26. Temperature (Point Interpolation) and Rates of Dengue Cases
Figure 27. Summer Average High Temperatures and Rates of Dengue

The following maps show other characteristics of the study area such as percentages of urban population, interpolation of the weather points with the division of the study area which correspond to the 35 cantons or zones. The interpolation method was used to construct new data points within the range of the discrete set of the weather stations points used in the study. Costa Rica is divided in seven provinces and the study area covers 35 zones of four of those provinces. The map analysis depicts the study area as divide into cantons, and the distribution of rates of dengue cases.
Figure 28. Point Interpolation: Precipitation

Figure 29. Point Interpolation: Temperature
Performing Geographically Weighted Regression (GWR)

The spatial variation of dengue incidence was mapped using geographically weighted regression (GWR). GWR was utilized to understand the relationships between dengue fever occurrences, demographic and socio-economic variables of the population distribution, as well as the meteorological factor of temperature and precipitation. Following there are series of maps and tables that show the output of the variability of the independent variables, IV, with respect to the dependent variable, DV.
Figure 31. GWR: Precipitation and Supported Table
Figure 32. GWR: Averages Temperatures and Supported Table
Figure 33. GWR: % Poor Conditions Houses and Supported Table
Figure 34. GWR: % Overcrowded Houses and Supported Table
Figure 35. GWR: Land Use and Supported Table
Figure 36. GWR: % High school and More and Supported Table
Figure 37. GWR: % Houses with 1 to 2 Rooms and Supported Table
Table 3. Result of Geographic Weighted Regression

<table>
<thead>
<tr>
<th>Independent Variables (IV)</th>
<th>R^2</th>
<th>R^2 Adjusted</th>
<th>% of the variation in the Dependent Variable (DV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Precipitation</td>
<td>0.660559</td>
<td>0.490281</td>
<td>49 %</td>
</tr>
<tr>
<td>Averages Temperatures</td>
<td>0.52181</td>
<td>0.376437</td>
<td>38 %</td>
</tr>
<tr>
<td>% Poor Conditions Houses</td>
<td>0.813255</td>
<td>0.722182</td>
<td>72 %</td>
</tr>
<tr>
<td>% Overcrowded Houses</td>
<td>0.705287</td>
<td>0.550934</td>
<td>55 %</td>
</tr>
<tr>
<td>Land Use (% urban population)</td>
<td>0.694892</td>
<td>0.532532</td>
<td>53 %</td>
</tr>
<tr>
<td>% high school and more (education)</td>
<td>0.655652</td>
<td>0.466227</td>
<td>47 %</td>
</tr>
<tr>
<td>% Houses with 1 to 2 Rooms</td>
<td>0.698188</td>
<td>0.535499</td>
<td>54 %</td>
</tr>
</tbody>
</table>

Table 3 depicts the percentages of poor conditions houses had on the highest percentage of variation on the rates of dengue fever. Others variables were not important to the percentage of variation in the dependent variable (rates of dengue fever), such as age, sex, occupation, and percentages of houses occupants. Geographic Weighted Regression, which is a local form of linear regression used to model spatially varying relationships, was an important way to visualize space instead of number.

Identified High Risk Zones of Dengue Rates

Geographic Information System (GIS) was used to identify high risk zones to dengue fever. Several GIS layers, including areas with optimal temperature, precipitation, socio-economic, and demographic areas were analyzed and reclassified to obtain the areas of high, medium, and low risk rates of dengue fever. From these results, three zones (cantons) were selected with high, medium, and low rates of dengue fever for agent based modeling assessment (see Table 7). These three areas were used to run the DFABM simulation in addition to calibrate and validated the model. They were also used to compare and depict the results of the emergence data of the simulation. Figures below are multiple attributes maps. The attributes were used for analysis and depicted rates of dengue fever, total precipitation, and average temperature. Particular cantons with high
rates of dengue fever identified were; Atenas, Alajuela, Mora, and Santa Ana. Table 4 describes the variables that characterized the identified zones. Specific cantons with medium rates of dengue fever were; Moravia, Barva, and Santa Barbara. Table 5 explains the characterized zones. Finally, those cantons documented with low rates of dengue fever were Alvarado, Valverde Vega, and Oreamuno and are depicted in Table 6.

Table 4. High Rates of Dengue Fever Zones

<table>
<thead>
<tr>
<th></th>
<th>Atenas</th>
<th>Alajuela</th>
<th>Mora</th>
<th>Santa Ana</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD_CANTON</td>
<td>205</td>
<td>201</td>
<td>107</td>
<td>109</td>
</tr>
<tr>
<td>CANTON</td>
<td>Atenas</td>
<td>Alajuela</td>
<td>Mora</td>
<td>Santa Ana</td>
</tr>
<tr>
<td>Summer Precipitation</td>
<td>2647</td>
<td>10074</td>
<td>2647</td>
<td>2138</td>
</tr>
<tr>
<td>Winter Precipitation</td>
<td>28952</td>
<td>48469</td>
<td>28952</td>
<td>24485</td>
</tr>
<tr>
<td>Annual Precipitation</td>
<td>31598</td>
<td>58543</td>
<td>31598</td>
<td>26623</td>
</tr>
<tr>
<td>Summer Average Low Temperature</td>
<td>19.90</td>
<td>12.87</td>
<td>19.90</td>
<td>18.36</td>
</tr>
<tr>
<td>Winter Average Low Temperature</td>
<td>19.77</td>
<td>13.71</td>
<td>19.77</td>
<td>18.90</td>
</tr>
<tr>
<td>Summer Average High Temperature</td>
<td>32.14</td>
<td>21.12</td>
<td>32.14</td>
<td>27.27</td>
</tr>
<tr>
<td>Winter Average High Temperature</td>
<td>29.02</td>
<td>21.29</td>
<td>29.02</td>
<td>27.12</td>
</tr>
<tr>
<td>Average Low Temperature</td>
<td>19.8</td>
<td>13.4</td>
<td>19.8</td>
<td>18.7</td>
</tr>
<tr>
<td>Average High Temperature</td>
<td>30.3</td>
<td>21.2</td>
<td>30.3</td>
<td>27.2</td>
</tr>
<tr>
<td>Average Temperature</td>
<td>25.1</td>
<td>17.3</td>
<td>25.1</td>
<td>22.9</td>
</tr>
<tr>
<td>Total Population</td>
<td>22479</td>
<td>222853</td>
<td>21666</td>
<td>34507</td>
</tr>
<tr>
<td>Percentage Males</td>
<td>50.52</td>
<td>50.10</td>
<td>50.03</td>
<td>48.97</td>
</tr>
<tr>
<td>Summer Number Dengue Cases</td>
<td>62</td>
<td>1045</td>
<td>65</td>
<td>88</td>
</tr>
<tr>
<td>Winter Number Dengue Cases</td>
<td>1072</td>
<td>5626</td>
<td>564</td>
<td>839</td>
</tr>
<tr>
<td>Summer Rates Dengue Cases</td>
<td>27.58</td>
<td>46.89</td>
<td>30.00</td>
<td>25.50</td>
</tr>
<tr>
<td>Winter Rates Dengue Cases</td>
<td>476.89</td>
<td>252.45</td>
<td>260.32</td>
<td>243.14</td>
</tr>
<tr>
<td>Total Number Dengue Cases</td>
<td>1134</td>
<td>6671</td>
<td>629</td>
<td>927</td>
</tr>
<tr>
<td>Total Rates Dengue Cases</td>
<td>504.47</td>
<td>299.35</td>
<td>290.32</td>
<td>268.64</td>
</tr>
<tr>
<td>Percentage Age 0 To 9</td>
<td>18.12</td>
<td>19.30</td>
<td>20.58</td>
<td>19.16</td>
</tr>
<tr>
<td>Percentage Age 65 and More</td>
<td>7.47</td>
<td>5.66</td>
<td>6.16</td>
<td>5.44</td>
</tr>
<tr>
<td>Percentage Urban Population</td>
<td>27.6</td>
<td>55.4</td>
<td>39.8</td>
<td>52.2</td>
</tr>
<tr>
<td>Percentage High School and More</td>
<td>43.9</td>
<td>46.5</td>
<td>42.5</td>
<td>52.6</td>
</tr>
<tr>
<td>Percentage Workers and Students</td>
<td>48.77</td>
<td>48.77</td>
<td>48.02</td>
<td>52.93</td>
</tr>
<tr>
<td>Total Housing</td>
<td>5720</td>
<td>55496</td>
<td>5469</td>
<td>8600</td>
</tr>
<tr>
<td>Average Occupants</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Percentage Poor Conditions Houses</td>
<td>6.48</td>
<td>8.08</td>
<td>10.15</td>
<td>7.96</td>
</tr>
<tr>
<td>Percentage Overcrowded Houses</td>
<td>3.20</td>
<td>6.40</td>
<td>6.40</td>
<td>5.90</td>
</tr>
</tbody>
</table>
Some important facts emerging from the data and map analysis for the high rates dengue were: they have the highest percentages of overcrowded and poor conditions houses; seasonal temperatures are always high, winter (low and high) average temperatures were high, which were optimal for the vector; high precipitation patterns with warm winters; and high percentages of males.

Figure 38. High Rates of Dengue Fever Zones
Table 5. Medium Rates of Dengue Fever Zones

<table>
<thead>
<tr>
<th>Independent Variables (predictor)</th>
<th>Moravia</th>
<th>Barva</th>
<th>Santa Barbara</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD_CANTON</td>
<td>114</td>
<td>402</td>
<td>404</td>
</tr>
<tr>
<td>CANTON</td>
<td>Moravia</td>
<td>Barva</td>
<td>Santa Barbara</td>
</tr>
<tr>
<td>Summer Precipitation</td>
<td>9809</td>
<td>4152</td>
<td>4152</td>
</tr>
<tr>
<td>Winter Precipitation</td>
<td>31827</td>
<td>36777</td>
<td>36777</td>
</tr>
<tr>
<td>Annual Precipitation</td>
<td>41636</td>
<td>40930</td>
<td>40930</td>
</tr>
<tr>
<td>Summer Average Low Temperature</td>
<td>14.79</td>
<td>14.57</td>
<td>14.57</td>
</tr>
<tr>
<td>Winter Average Low Temperature</td>
<td>15.74</td>
<td>15.34</td>
<td>15.34</td>
</tr>
<tr>
<td>Summer Average High Temperature</td>
<td>21.82</td>
<td>25.39</td>
<td>25.39</td>
</tr>
<tr>
<td>Winter Average High Temperature</td>
<td>23.11</td>
<td>25.25</td>
<td>25.25</td>
</tr>
<tr>
<td>Average Low Temperature</td>
<td>15.3</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Average High Temperature</td>
<td>22.6</td>
<td>25.3</td>
<td>25.3</td>
</tr>
<tr>
<td>Average Temperature</td>
<td>19.0</td>
<td>20.2</td>
<td>20.2</td>
</tr>
<tr>
<td>Total Population</td>
<td>50419</td>
<td>32440</td>
<td>29181</td>
</tr>
<tr>
<td>Percentage Males</td>
<td>47.92</td>
<td>49.41</td>
<td>50.18</td>
</tr>
<tr>
<td>Summer Number Dengue Cases</td>
<td>27</td>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td>Winter Number Dengue Cases</td>
<td>175</td>
<td>114</td>
<td>141</td>
</tr>
<tr>
<td>Summer Rates Dengue Cases</td>
<td>5.36</td>
<td>10.17</td>
<td>2.74</td>
</tr>
<tr>
<td>Winter Rates Dengue Cases</td>
<td>34.71</td>
<td>35.14</td>
<td>48.32</td>
</tr>
<tr>
<td>Total Number Dengue Cases</td>
<td>202</td>
<td>147</td>
<td>149</td>
</tr>
<tr>
<td>Total Rates Dengue Cases</td>
<td>40.06</td>
<td>45.31</td>
<td>51.06</td>
</tr>
<tr>
<td>Percentage Age 0 To 9</td>
<td>16.02</td>
<td>19.01</td>
<td>20.35</td>
</tr>
<tr>
<td>Percentage Age 65 and More</td>
<td>6.53</td>
<td>5.13</td>
<td>4.90</td>
</tr>
<tr>
<td>Percentage Urban Population</td>
<td>82.6</td>
<td>53.2</td>
<td>41.8</td>
</tr>
<tr>
<td>Percentage High School and More</td>
<td>68.4</td>
<td>58.9</td>
<td>47.7</td>
</tr>
<tr>
<td>Percentage Workers and Students</td>
<td>56.41</td>
<td>51.82</td>
<td>48.20</td>
</tr>
<tr>
<td>Total Housing</td>
<td>13406</td>
<td>7765</td>
<td>7099</td>
</tr>
<tr>
<td>Average Occupants</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Percentage Poor Conditions Houses</td>
<td>4.50</td>
<td>5.79</td>
<td>6.11</td>
</tr>
<tr>
<td>Percentage Overcrowded Houses</td>
<td>3.20</td>
<td>4.10</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Some significant details of medium rates of dengue cantons were they have fewer percentages of overcrowded and poor conditions houses, seasonal temperatures fluctuated between high and low; high precipitation patterns, but continued highest percentages of males.
Figure 39. Medium Rates of Dengue Fever Zones
Table 6. Low Rates of Dengue Fever Zones

<table>
<thead>
<tr>
<th>Independent Variables (predictor)</th>
<th>Alvarado</th>
<th>Valverde Vega</th>
<th>Oreamuno</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD_CANTON</td>
<td>306</td>
<td>212</td>
<td>307</td>
</tr>
<tr>
<td>CANTON</td>
<td>Alvarado</td>
<td>Valverde Vega</td>
<td>Oreamuno</td>
</tr>
<tr>
<td>Summer Precipitation</td>
<td>11342</td>
<td>2035</td>
<td>5294</td>
</tr>
<tr>
<td>Winter Precipitation</td>
<td>27553</td>
<td>31534</td>
<td>23042</td>
</tr>
<tr>
<td>Annual Precipitation</td>
<td>38895</td>
<td>33569</td>
<td>28336</td>
</tr>
<tr>
<td>Summer Average Low Temperature</td>
<td>13.21</td>
<td>16.99</td>
<td>14.27</td>
</tr>
<tr>
<td>Winter Average Low Temperature</td>
<td>12.90</td>
<td>18.51</td>
<td>15.88</td>
</tr>
<tr>
<td>Summer Average High Temperature</td>
<td>20.25</td>
<td>30.96</td>
<td>23.29</td>
</tr>
<tr>
<td>Winter Average High Temperature</td>
<td>20.61</td>
<td>29.13</td>
<td>24.50</td>
</tr>
<tr>
<td>Average Low Temperature</td>
<td>13.0</td>
<td>17.9</td>
<td>15.2</td>
</tr>
<tr>
<td>Average High Temperature</td>
<td>20.5</td>
<td>29.9</td>
<td>24.0</td>
</tr>
<tr>
<td>Average Temperature</td>
<td>16.7</td>
<td>23.9</td>
<td>19.6</td>
</tr>
<tr>
<td>Total Population</td>
<td>12290</td>
<td>16239</td>
<td>39032</td>
</tr>
<tr>
<td>Percentage Males</td>
<td>50.87</td>
<td>49.29</td>
<td>49.79</td>
</tr>
<tr>
<td>Summer Number Dengue Cases</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Winter Number Dengue Cases</td>
<td>0</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>Summer Rates Dengue Cases</td>
<td>0.00</td>
<td>1.23</td>
<td>1.02</td>
</tr>
<tr>
<td>Winter Rates Dengue Cases</td>
<td>0.00</td>
<td>1.23</td>
<td>5.64</td>
</tr>
<tr>
<td>Total Number Dengue Cases</td>
<td>0</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>Total Rates Dengue Cases</td>
<td>0.00</td>
<td>2.46</td>
<td>6.66</td>
</tr>
<tr>
<td>Percentage Age 0 To 9</td>
<td>22.10</td>
<td>21.60</td>
<td>21.93</td>
</tr>
<tr>
<td>Percentage Age 65 and More</td>
<td>4.89</td>
<td>5.83</td>
<td>4.54</td>
</tr>
<tr>
<td>Percentage Urban Population</td>
<td>18.5</td>
<td>33.9</td>
<td>73.4</td>
</tr>
<tr>
<td>Percentage High School and More</td>
<td>23.7</td>
<td>34.5</td>
<td>41.1</td>
</tr>
<tr>
<td>Percentage Workers and Students</td>
<td>43.49</td>
<td>44.91</td>
<td>47.96</td>
</tr>
<tr>
<td>Total Housing</td>
<td>2700</td>
<td>3927</td>
<td>8513</td>
</tr>
<tr>
<td>Average Occupants</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Percentage Poor Conditions Houses</td>
<td>5.74</td>
<td>10.42</td>
<td>6.31</td>
</tr>
<tr>
<td>Percentage Overcrowded Houses</td>
<td>5.70</td>
<td>4.80</td>
<td>6.90</td>
</tr>
</tbody>
</table>

Significant specifics of low rates of dengue areas were have high percentages of overcrowded and poor conditions houses; but seasonal temperatures were the lowest of the zones selected; less precipitation patterns; and lowest percentages of urban population.
Figure 40. Low Rates of Dengue Fever Zones
Table 7. Selected Zones: High, Medium, and Low Rates of Dengue Fever

<table>
<thead>
<tr>
<th>Independent Variables (predictor)</th>
<th>High Rates of DF</th>
<th>Medium Rates of DF</th>
<th>Low Rates of DF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atenas</td>
<td>Barva</td>
<td>Alvarado</td>
</tr>
<tr>
<td>COD_CANTON</td>
<td>205</td>
<td>402</td>
<td>306</td>
</tr>
<tr>
<td>CANTON</td>
<td>Atenas</td>
<td>Barva</td>
<td>Alvarado</td>
</tr>
<tr>
<td>Summer Precipitation</td>
<td>2647</td>
<td>4152</td>
<td>11342</td>
</tr>
<tr>
<td>Winter Precipitation</td>
<td>28952</td>
<td>36777</td>
<td>27553</td>
</tr>
<tr>
<td>Annual Precipitation</td>
<td>31598</td>
<td>40930</td>
<td>38895</td>
</tr>
<tr>
<td>Summer Average Low Temperature</td>
<td>19.90</td>
<td>14.57</td>
<td>13.21</td>
</tr>
<tr>
<td>Winter Average Low Temperature</td>
<td>19.77</td>
<td>15.34</td>
<td>12.90</td>
</tr>
<tr>
<td>Summer Average High Temperature</td>
<td>32.14</td>
<td>25.39</td>
<td>20.25</td>
</tr>
<tr>
<td>Winter Average High Temperature</td>
<td>29.02</td>
<td>25.25</td>
<td>20.61</td>
</tr>
<tr>
<td>Average Low Temperature</td>
<td>19.8</td>
<td>15.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Average High Temperature</td>
<td>30.3</td>
<td>25.3</td>
<td>20.5</td>
</tr>
<tr>
<td>Average Temperature</td>
<td>25.1</td>
<td>20.2</td>
<td>16.7</td>
</tr>
<tr>
<td>Total Population</td>
<td>22479</td>
<td>32440</td>
<td>12290</td>
</tr>
<tr>
<td>Percentage Males</td>
<td>50.52</td>
<td>49.41</td>
<td>50.87</td>
</tr>
<tr>
<td>Summer Number Dengue Cases</td>
<td>62</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>Winter Number Dengue Cases</td>
<td>1072</td>
<td>114</td>
<td>0</td>
</tr>
<tr>
<td>Summer Rates Dengue Cases</td>
<td>27.58</td>
<td>10.17</td>
<td>0.00</td>
</tr>
<tr>
<td>Winter Rates Dengue Cases</td>
<td>476.89</td>
<td>35.14</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Number Dengue Cases</td>
<td>1134</td>
<td>147</td>
<td>0</td>
</tr>
<tr>
<td>Total Rates Dengue Cases</td>
<td>504.47</td>
<td>45.31</td>
<td>0.00</td>
</tr>
<tr>
<td>Percentage Age 0 To 9</td>
<td>18.12</td>
<td>19.01</td>
<td>22.10</td>
</tr>
<tr>
<td>Percentage Age 65 and More</td>
<td>7.47</td>
<td>5.13</td>
<td>4.89</td>
</tr>
<tr>
<td>Percentage Urban Population</td>
<td>27.6</td>
<td>53.2</td>
<td>18.5</td>
</tr>
<tr>
<td>Percentage High School and More</td>
<td>43.9</td>
<td>58.9</td>
<td>23.7</td>
</tr>
<tr>
<td>Percentage Workers and Students</td>
<td>48.77</td>
<td>51.82</td>
<td>43.49</td>
</tr>
<tr>
<td>Total Housing</td>
<td>5720</td>
<td>7765</td>
<td>2700</td>
</tr>
<tr>
<td>Average Occupants</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Percentage Poor Conditions Houses</td>
<td>6.48</td>
<td>5.79</td>
<td>5.74</td>
</tr>
<tr>
<td>Percentage Overcrowded Houses</td>
<td>3.20</td>
<td>4.10</td>
<td>5.70</td>
</tr>
</tbody>
</table>

The chosen areas with the high, medium, and low rates of dengue fever presented in Table 7 depicts the differences between temperature, precipitation, socio-economics and demographic predictor influencing the dependent variable, annual rates of dengue fever. As indicated, temperature is one of the main factors that may responsible for the reported
cases of dengue fever. Finally, according to the maps and Tables analysis, percentages of poor conditions houses, and percentages of urban population may affect the rates of dengue fever.

Figure 41. Selected Zones: High, Medium, and Low Rates of Dengue Fever

The development of the DFABM (Dengue Fever Agent-Based Model) simulation

The development of the simulation follows the waterfall model software engineering technique to implement a design as humble as possible using open source code, MASON toolkit, yet robust-complex and capable of extracting useful data from the manipulation of the different scenarios, which may occur from changes in the input
parameters and/or by assigning different properties and probabilities rules to the various factors affected, or based on the characteristics of the disease. The GUI presented to the user is displayed below. All figures presented in this part of the document correspond to the actual running of the simulation.

Figure 42. Graphical User Interface (GUI)

The simulation represented the daily movements and interactions of people, the environment, and the vector (mosquitoes) in a community, simulating the spread of dengue disease. The simulation provided detailed real time information about each simulated scenario and the significant events that may happen during an outbreak simulation—including the number of susceptible, exposed, infected, and recovered people—along with a time stamp and current location were the dengue cases are happening, longitude-latitude. Likewise, the model keeps track of all the others factors, including precipitation, temperature, and the most important demographic and socio-economics characteristics of the population.

Furthermore, the system creates a folder where several files are saved for further analysis. A data excel file that contains the cases of dengue fever simulated, which are displayed in rows, and the variables affecting the cases displayed in columns.
Table 8. Excel Table Created by Simulation

<table>
<thead>
<tr>
<th>GIS_FID</th>
<th>Cod_Area</th>
<th>Month</th>
<th>Year</th>
<th>Precip</th>
<th>Temp</th>
<th>Sex</th>
<th>Age</th>
<th>Economically</th>
<th>Education</th>
<th>%_urban pop</th>
<th>House Cond</th>
<th>House Occupants</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>27.6</td>
<td>2</td>
<td>7</td>
<td>456703.725</td>
<td>1105123.953</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>27.6</td>
<td>2</td>
<td>2</td>
<td>458796.412</td>
<td>1098721.843</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>27.6</td>
<td>1</td>
<td>5</td>
<td>455412.986</td>
<td>1108734.18</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>27.6</td>
<td>2</td>
<td>2</td>
<td>458205.8536</td>
<td>1103315.037</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>27.6</td>
<td>2</td>
<td>2</td>
<td>456644.005</td>
<td>1102210.9</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>27.6</td>
<td>2</td>
<td>2</td>
<td>459159.0837</td>
<td>1105186.44</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>27.6</td>
<td>2</td>
<td>4</td>
<td>449986.2986</td>
<td>1099722.551</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>27.6</td>
<td>2</td>
<td>1</td>
<td>454598.1303</td>
<td>1108903.131</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>27.6</td>
<td>2</td>
<td>0</td>
<td>454598.1303</td>
<td>1108903.131</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>27.6</td>
<td>2</td>
<td>2</td>
<td>455180.108</td>
<td>1107037.036</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>27.6</td>
<td>2</td>
<td>1</td>
<td>456703.725</td>
<td>1105123.953</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>27.6</td>
<td>1</td>
<td>1</td>
<td>457709.842</td>
<td>1105447.597</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>27.6</td>
<td>1</td>
<td>1</td>
<td>457709.842</td>
<td>1105447.597</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>27.6</td>
<td>2</td>
<td>1</td>
<td>457709.842</td>
<td>1105447.597</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>27.6</td>
<td>2</td>
<td>1</td>
<td>454777.8604</td>
<td>1099326.109</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>27.6</td>
<td>1</td>
<td>2</td>
<td>449940.1569</td>
<td>1099790.649</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>27.6</td>
<td>2</td>
<td>449940.1569</td>
<td>1099790.649</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>27.6</td>
<td>1</td>
<td>454646.0704</td>
<td>1104823.355</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>27.6</td>
<td>1</td>
<td>454646.0704</td>
<td>1104823.355</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>1</td>
<td>2000</td>
<td>400</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>27.6</td>
<td>2</td>
<td>3</td>
<td>453971.7029</td>
<td>1104779.047</td>
</tr>
</tbody>
</table>

The Table above shows the Excel tracking data of the simulation. Sex, age, economically active, and house conditions were saved as categories. The reason for saved categories (number) instead of name categories is in case the researcher wanted to perform SPSS analysis on the data; it would be ready for the analysis. Also, using the column GIS_FID, if the researcher wanted to combine the data with the GIS layer for the respective area, he/she could combine the data and explore it in map format.

The other files created by the simulator are point GIS information data containing actual location (longitude-latitude) of where an agent (human) got infected with dengue fever for the geographic area simulated. These files were used to create three maps with high, medium, and low number of dengue cases (see example below).
The DFABM model was developed in the MASON simulator, an open source multithreaded agent based simulation platform. The simulation was performed in discrete time and two dimensional space using GIS layers for the three zones identified in the GIS analysis. However, the simulator could be used for any of the 35 zones. The main actors (agents) in the simulation were humans. Other simulated elements were temperature and precipitation. Agents are discrete and independent decision-making entities, which have socio-economic and demographic characteristics. When prompted to act, each agent analyzes its current situation and/or location, e.g. with what resources are available, what other agents are in the area, and acts accordingly, based on a set of rules and probabilities implemented.

The system gives the user the option to enter data or read data from files. The three zones selected to run the model were the cantons with the highest, medium, and
lowest number of dengue cases. The data utilized by the system were GIS layers, census data, temperature, precipitation, and number of dengue cases, the same data used in the GIS analysis. The user could run the simulation for any period (month-year) of any of the 16 years of data collected, 1993 to 2008, or any period chosen, inside or outside the time period collected. The DFABM reads the data from three excel files and a GIS folder containing each of the 35 zones for the study area (see figure below).

![Figure 44. Loading Data Into the Simulation](image)

First, the system reads the folder containing the GIS layers, then the file containing all the demographic and socio-economics characteristics of the populations, third, the file containing the number of dengue fever cases for each canton, and finally the file containing the weather data of precipitation and temperature. Then, from a drop down menu the user selects one of the 35 zones, and chooses one, all, or any of the four types of dengue fever type (1-2-3-4).

Likewise, the user has the option to manipulate and change any of the scenarios for the simulation (what-if scenarios) in the model interface (see figure 43). The ABM loads all the data, creates the number of agents for the chosen canton with respect to the
number of people living in the area accordingly to the census file. The ABM system
assigns to each agent (human) socio-economic and demographic characteristics, and
finally loads the right weather data for the chosen area. The system also loads the number
of dengue cases for the chosen canton for validating the simulated number of dengue
cases.

Figure 45. Manipulate and Change Scenarios for the Simulation (What-If Scenarios)

Each agent has an ID which corresponds to a house ID and work ID (see
Figure44). To travel from home to work and vice-versa, the agents use the shortest path
algorithm, called AStart, for the loaded GIS road layer. Start algorithm is a computer
algorithm that is widely used in path-finding and graph traversal, plotting an efficiently
traversable path between those points, called nodes. The ABM reads the number of
houses in the census file and creates houses and work buildings into a GIS built layer.
Several classes or programing modules control the simulation.
Figure 46. Agents (Humans) Socio-economics and Demographics Characteristics

The DFABM simulation is composed of four packages, the dfabm, GUI, exceptions, and File package. The GUI package is composed of three classes. These three classes handled the visualization of the Graphical User Interface (GUI). The exception package handles any input/output error messages that may occur. The File package handles the reads and the writes of any data used by the simulation. Finally, the core dfabm package contains the main classes that control the simulation. The agents (Humans class) have a home and work places (Building class). To travel from home to work and vice-versa, the agents use a shortest path algorithm (AStart class). The DFABM is the main class that oversees the others ones.
The StudyArea class manages attributes and operations related to the study area. Also, manages the socio-economic and demographic characteristics of the agents. The WeatherData class supervises the characteristics of precipitation and temperature for the study area. The RowInformation class handles the Excel and the GIS files created by the simulation. The DengueCases class controls the reads and writes of the number of dengue cases used in the simulation. The Building class implements the location of houses and working buildings. The rules and probabilities of infections are overseen by this class.

The Human class implements the attributes and operations related to the agents. Likewise, it takes care of the human representations and their locations. The DFABM is the class that oversees the others classes, and implements the rules of interactions between the agents.

The simulation loads all the required data and emulates the number of cases for the area being simulated according to the probabilities and set of rules implemented (see...
figure below). It compares the number of simulated cases to the number of cases in the file, allowing a graph to depict the simulated number of cases with the real number of cases. Similarly, the simulation will output other graphs, which depict the number of cases with respect to temperature, precipitation, and the number of susceptible, exposed, infected, and resistant individuals.

Figure 48. A close up of Atenas Canton Simulation and Symbology
Figure 49. Number of Simulated Cases and Temperature, Canton of Atenas

By examining the graph, created by the simulation, high temperatures in the canton of Atenas corresponded to greatest number of dengue cases, which agree with the findings of the GIS analysis. The figure below shows the number of exposed, infected and resistance individuals in the simulation. As is shown, there is zero individual’s resistance to the virus.

Figure 50. Simulated Cases, (Susceptible→Exposed→Infected→Resistance)
Not all the exposed individuals are infected by the dengue virus, as is expected.

Figure 51. Canton of Atenas, Simulated Cases Compared to Real Cases

In the canton of Atenas, chosen as one of the high rates of dengue fever areas, the simulated numbers of cases was very close to the actual number of cases for the area in the year 2003. Also, as is shown in the graph of figure 49, page 101, in the first months of the year, temperatures were high, but cases did not begin to appear until the rainy season (see figure below).

Figure 52. Rainy Season and Number of Dengue Cases, Alvarado
Again, the simulation agreed with the findings of the macro analysis. The simulation was run for the year to 2000 for the canton of Alvarado. This canton was the one selected for the low rates of dengue fever. The simulation agreed with the total number of cases for this year in this canton. The total number of cases for this year, 2000, for Alvarado was zero dengue cases, which agreed with the zero cases simulated by the DFABM. This area of low rates of dengue had very low seasonal temperatures, less precipitation patterns, and a low percentage of urban population.

The expected findings were the analysis of the emergence data of the DFABM (micro analysis), would agree with GIS analysis (macro analysis). The hypothesis was tested using the validation process for the DFABM and the simulation running of several (what-if) scenarios for the occurrences of dengue cases on the selected three cantons (Table 7, page 91). Then, results were compared to the results of the macro level (GIS) and with the results of the micro level of the DFABM. The real time results of the DFABM agreed with the GIS technique, and the review of the literature. Thus, the null hypothesis was rejected and it was concluded that the DFABM did agree with traditional forms of analysis.

Finally, to examine or answer Question II: Does an agent-based model of dengue fever enhance traditional methods of GIS? The hypothesis of this research question specified the DFABM would enhance traditional GIS methods of analysis. Conversely, the null hypothesis indicated the DFABM would not enhance traditional methods GIS of analysis.

The expected findings were an agent-based model of dengue fever enhances traditional methods of analysis using GIS and further the understanding and possible
prediction of dengue outbreaks. The hypothesis was testing using what-if scenarios where
the researcher using the DFABM could analyzed in real time what could happen if the
variables influencing the number of cases may change, which cannot be done with
traditional forms of GIS analysis. Also, maps of point data (longitude-latitude) were
created by the DFABM of the actual location and time of where the cases were occurring.

Excel files were created by the DFABM with the socio-economics and
demographic characteristics of each individual (agent) performing in the simulation. The
Table created by the simulation, which contains the infected cases in the study area,
allowed the researcher to perform any SPSS analysis on the data. Also, using the same
table, if the researcher wanted to combine the data with the respective GIS layer for the
area, he/she could combine the data and analyze the data in map format. Real time graph
and depicted maps of simulated cases were also created and analyzed. Real time
conception of place, time, and scenarios happening during the outbreaks of dengue fever
were visualized. The visualization of agents (people), road, houses, temperature,
precipitation, and others characteristics of the environment were done with the computer
simulation. What if? What is it? and What could happen? Then, certain geographic areas
were viewed and analyzed. This technique cannot be done by GIS alone. The
combination (coupling) of GIS and the DFABM analysis was therefore a better
framework for the study of dengue fever.
Therefore, the null hypothesis was rejected and it was concluded the DFABM enhanced traditional analysis for the study of dengue fever and was also concluded that the framework could be used for estimating and/or possibly predicting new cases of dengue fever in the study area.
CHAPTER V

FINDINGS, CONCLUSIONS, AND IMPLICATIONS

This study emphasized how traditional macro level Geographic Information System (GIS) and the implementation of a micro level agent based model can be merged into a novel framework for the study of dengue fever. One of the main objectives was to develop a community level dengue fever agent based model (DFABM), which integrated GIS to simulate the spread of dengue fever disease in an urban environment, as a result of agents (humans) interactions in a geospatial context. It is a framework for modeling the spatial and temporal progression of dengue fever affecting multiple populations in a geographically distributed location.

DFABM and GIS analysis were used as a methodology approach for the study of dengue fever in the Central Valley of Costa Rica. Precipitation, temperature, socio-economic and demographics variables were analyzed using these technologies to possibly identify factors affecting the rates of dengue fever cases in the study area. GIS was used to generate a risk map of dengue incidences, as well as to map the spatial distribution and vulnerability of dengue risk surfaces in the study area using weighted regression. Finally, an ABM was implemented, which incorporated the GIS findings to supplement the data analysis. The ABM was validated using cross-validation or model alignment, which required running a validated model for some scenarios where the results are known.
5.1 Findings

The development of the multi-scale analysis framework, which applied GIS and ABM methods to identify and analyze the variables affecting the rates of dengue fever in the Central Valley of Costa Rica, is a fairly new way of doing epidemiological studies of dengue. GIS is well known in research epidemiological studies but agent-based dengue fever modeling had not been applied for the prediction, studying, and management of the disease (Bhandari, Raju, and Sokhi 2008; Bohra and Andrianasolo 2001; Khun and Manderson 2008; Lian, Seng, and Chai 2006; Mahilum et al. 2005; Phuanukoonnon, Brough, and Bryan 2006; Suarez et al. 2005).

The Findings of the Study

Changes on the rates of dengue fever can follow the movements of population, changing land use, human population density, weather variability, and socio-economics and demographic characteristics of the inhabitants. However, it is difficult to identify and separate the relations of these predictors on the rates of dengue fever, since variations of these predictors may not be the same from one community to the next. The number of factors that sometimes converge in the appearance of new dengue cases in one community may not be the same for another community.

In this study, the variables analyzed included precipitation, temperature, socio-economic and demographics characteristics of the population (see Table 2). According to the records of the Epidemiological Surveillance Unit of the Ministry of Health (Ministerio-de-Salud 2008) the most vulnerable people are the economically active population, as well as people at school, ages 5 to 45.

When analyzing the data, in the greatest metropolitan area, the rate of dengue
cases increased in the winter seasonal months of May to November. The fluctuation rate is retreated in the summer season months of December to April. This season effect can be explained by the high average temperatures of the rainy seasons of the cantons of the study area. This pattern of behavior can be seen on the years 1994, 1997 and 2002-2003, and 2005. However, the year 2005 was a record high in incidence of rates of dengue cases. This year was one period with similar precipitation and temperatures than the others ones. In addition, an interesting fact emerged: 2005 was a record year in high temperatures worldwide (WMO 2007). Thus, high temperatures with high precipitation patterns affect in highest proportion of reported dengue fever cases. This may also suggest that there are optimal high temperatures that affect the outbreak of mosquitoes. Therefore, accordingly to the analysis, high temperatures, poor housing conditions, and percentages of males, with warm seasonal rainy periods create the optimal conditions for the outbreaks of mosquitoes and therefore, occurrences and rates of dengue cases.

The findings using Geographic Information Science and Systems

The maps served as a depiction of the level of variability the different predictors had on the dependent variable, the rates dengue fever. The analyzed maps indicated the majority of cantons with the highest rates of dengue fever also have the highest average temperatures, more precipitation, and highest percentages of houses in poor condition. Also, the maps appeared to depict some combination of variable to be related to the rates of dengue cases, and some others suggested a certain combination of variable were not. The majority of maps with a combination of variables depicted including summer average high temperatures indicated high temperatures were an important variable related to the reported cases of dengue fever. Geographical weighted regression on the study area
indicated poor conditions houses had the highest percentage of variation on the rates of dengue fever. This predictor was followed by overcrowded houses. Others predictors which were not as important to the percentages of variation on the dependent variable were age, sex, occupation, and percentage of house’s occupants.

The identified high rates zones of dengue fever were: Atenas, Alajuela, Mora, and Santa Ana. Specific cantons with medium rates of dengue fever were: Moravia, Barva, and Santa Barbara. Finally, those cantons documented with low rates of dengue fever were Alvarado, Valverde Vega, and Oreamuno. Important results emerging from the data and map analysis for the high rates of dengue were: highest percentages of overcrowded and poor conditions houses; seasonal temperatures are always high, winter (low and high) average temperatures were high; high precipitation patterns with warm winters; and high percentages of males.

Some significant details of medium rates of dengue cantons were they had fewer percentages of overcrowded and poor conditions houses, seasonal temperatures fluctuated between high and low; and high precipitation patterns. Some characteristics of low rates of dengue were high percentages of overcrowded and poor conditions houses, but seasonal temperatures were the lowest of the zones selected with fewer precipitation patterns and lowest percentages of urban population.

The chosen areas with the high (Atenas), medium (Barva), and low (Alvarado) rates of dengue fever indicated temperature is one of the main factors that may be responsible for the reported cases of dengue fever. Also, percentages of poor conditions houses, and percentages of urban population showed to affect the rates of dengue fever.
The findings of the implementation of the Agent-based Model

An agent based model was implemented and validated using the data of the macro analysis of GIS. The ABM’s real time capability of data analysis and visualization are important when monitoring and predicting possible outbreaks of dengue fever. It provides communities the opportunity for interventions as an essential tool for the identification of possible outbreaks of dengue fever locations. Subsequently, the ABM enhanced GIS analysis by providing real time depiction of outbreaks of dengue fever. It kept track of all factors affecting dengue fever spread, including precipitation, temperature and the most important demographic and socio-economic characteristics of the population for the area under study.

The ability to visualize data (numbers) in real time is a feature than enhances methods of analysis. In others words, the Dengue Fever ABM (DFABM) ability to represent the daily movements and interactions of people, the environment, and the vector (mosquitoes) in a community, simulating the spread of dengue fever, is what made it an improved tool for analysis. Furthermore, this feature could allow for the assessment of disease prevention, intervention, understanding, and eventually response strategies. Similarly, it can be implemented into an important experimental test tool for analyzing the parameters affecting the rates of dengue fever within an urban area.

The ability to extract and see information in real time, graph, maps, agents, (real time/space scenario) made the DFABM simulation an interesting and important tool for the analysis of dengue fever. The agent-based model ability to create maps of the actual longitude-latitude of the infected cases is an important feature of the simulation. This map could be used to identify zones of high risk in a community. Likewise, the capability
of the system to kept track of the predictors influencing the dengue cases, including precipitation, temperature, and the socio-economics and demographic characteristics of the individual being infected made the DFABM and enhancement tool for the traditional techniques of analysis, GIS. The similarity in results of the DFABM with GIS suggested the agent-based model could possibly be used for predicting purposes.

5.2 Conclusions

In Costa Rica, one of the main limitations for doing epidemiological studies on dengue fever is data availability. With the current data available, and at its resolution, a macro study using GIS revealed the relationships, which exist between rates of dengue fever outbreaks and precipitation, temperature, socio-economic and demographic characteristics of the population of the study area. The data obtained from the macro level modeling (GIS) can be used as input to the ABM (micro level), thus enhancing the macro-level analysis. One of the requirements for a multi-scale dengue fever analysis framework is to simplify the complexity of the system while maintaining robustness. This community level dengue fever agent based model will accomplish this objective while furthering the understanding of dengue and subsequently assisting in projecting possible patterns of the spread of dengue fever.

Therefore, the coupling of GIS, and ABM was the optimal research design for the study of dengue fever in the Central Valley of Costa Rica, but the computational complexity of the ABM may remain a problem when it comes to simulating the interactions of such a large system. However, the outcomes of a dengue fever ABM may be used for prevention and ultimately for possibly prediction purposes if the model is calibrated and validated with mathematical equations and/or real field data. A dengue
fever ABM is an attractive method because the technology, cost, and time limitations, which may otherwise prohibit or make impossible extensive field testing for the study of dengue fever’s complex system and/or when enhanced results are necessary.

This framework could assist researchers and/or public health officials when data collection is not an option and/or partial datasets are available for the understanding, identification, and possible prevention of dengue outbreaks of the study area and other tropical countries. Furthermore, coupling computational simulation models with other technologies, which include, GIS analysis may enrich traditional methods of analysis (Aschorn 2004; Skvortsov et al. 2007). On the other hand, traditional analytical modeling in the social sciences follows or relies on a very well established methodological protocol (Leombruni et al. 2005). Nonetheless, the steps of the framework will assist as either a starting point or support methodological procedures for epidemiological studies using agent-based models. ABMs capability to produce emergent macro-phenomena from micro-rules and probabilities may also provide a foundation for the development of different methodological frameworks in epidemiology (Patlolla et al. 2006).

ABMs should be viewed as models included with quantitative, qualitative, experimental, and participatory methodology (Boero and Squazzoni 2005). This research facilitates complex system explorations that are difficult to accomplish with analytical and GIS models alone and/or impossible to study in reality for the study area. ABMs are ideal for studying and comprehending the complex spatial behavior of dengue fever through the study of actors (humans and mosquitoes) and environmental, demographic and behavioral rules. The ability to predict and understand how a disease might manifest in a population is essential for disease monitoring, intervention, and control strategies.
Furthermore, because of the value placed on spatial science and behavioral geography in ABM work, ABM could bridge geographical perspectives and spatial thinking into an interdisciplinary approach of research (Torrens 2010).

5.3 Implications and Limitations

The advantages of computer technology have made possible the study of complex systems using computational simulations (Axtell 2000; Herbert 1996; Isidoro et al. 2009). Agent-based models offers an accepted way to exemplify the diversity of intervening components, such as environmental factors, disease vectors and disease hosts, and the possibility to determine spatial behavior distribution, rapid insertion of new components and the natural consideration of non-linear interactions between agents (Isidoro et al. 2009). The ABM flexibility in representing dynamic processes and highly adaptive physical or human phenomena, facilitates the exploration of ideas about the numerous ways geographical systems develop, behave, interact and evolve, and often support experimentation within geographical systems in ways that would not be possible in the real world (Castle and Crooks 2006; Osgood 2007; Torrens 2010). Thus, ABM is an appropriate analysis technique for developing or implementing geospatial simulations such as dengue fever (Castle and Crooks 2006; Torrens 2010).

However, one significant risk or limitation when developing an ABM is the time it takes to develop the necessarily robust and detailed models necessary for a study (Osgood 2007). For example, model researchers may include problem-irrelevant details that may or may-not add any value to the models, while increasing its complexity. Models grow exponentially as more variables are added. Determining what is relevant and what is not relevant to the model requires a thorough understanding of the variables
affecting the study problem. Thus, the model has to be built at the right level of
description, with just the right amount of detail and robustness to serve its purpose
(Bonabeau 2002).

Additionally, the application programming interface (API) or tool used to develop
the model may add both flexibility and /or limitations when implementing the model. For
example, using an open source framework could allow the researcher to explorer the
source code framework and understand why his or her model is behaving in one way or
another. However, understanding the framework used for the model may require a greater
amount of time and effort than the researcher may have scheduled. Agent-based
modeling toolkits are subtle and sophisticated, and the open source involves a reasonably
amount of time of setup, fine-tuning, and tinkering before even a single line of code is
implemented (Getchell 2008). Still, implementing a ABM could be a very complex task
and understanding the model in a reasonable amount of time and detail is not a
straightforward exercise (Galan et al. 2009). A necessary prerequisite to understanding a
simulation is to ensure there is no significant disparity between what the researcher thinks
the computer code is doing and what it is actually doing (Galan et al. 2009).

On the other hand, there are little or no standard procedures for how to implement
ABMs. Standards frameworks are needed for research fields using ABM. Finally, ABMs
are a replication of reality but can be designed with enough robustness (simple complex)
that they serve their intended purpose. However, researchers must remember when
analyzing the results of the ABM that they are a partial (miniature and incomplete)
representation of the real problem and the outputs of these models must be considered
with diligence and care (Sullivan and Mordechai 2000).
Interdisciplinary Approach Needed

Therefore, computational models can play a critical role in epidemiology and other diseases studies. The rapid evolution of many diseases, such as dengue, leads to increasing complexity in mathematical and computer models, which as a result often require large computers resources for implementation and analysis of those complex subjects. When these computational based mathematical models are combined with GIS and statistical tools they can further assist in locating and monitoring such disease, as well as facilitate preparation of response plans and intervention strategies.

Clearly, steps are needed to introduce geographers, as well as computer and mathematical scientists, to a host of relevant epidemiological and biological topics. Steps should also be taken to introduce epidemiologists and biologists to relevant methods of computer science, geography and mathematics. An interdisciplinary approach will be needed. Computer science students need to cooperate with mathematicians to create computational models, and, in turn, cooperate with geographers to take advantages of spatial tools such as GIS. A knowledge base built on such interdisciplinary cooperation would produce new results and constitute a different approach in improving and solving the complex problems in epidemiology.
Figure 54. Interdisciplinary Approach

Applications to tracking and predicting the spread of specific diseases, such as dengue, is an important example of areas where computer science, mathematics, and scientific geographical tools can combine together to solve problems.

5.4 Future Research

Moreover, because of the value placed on spatial science and behavioral geography in ABM work, ABM could further infuse geographical perspectives into an interdisciplinary approach with computer science (Torrens 2010). ABM will augment traditional analytical modeling in the social sciences, which follows or relies on a well-established methodological protocol both with respect to the way models are presented and to the kinds of analysis that are performed (Leombruni et al. 2005). The increasing availability of ABMs of complex systems on global, national and community levels could be used to actually enhance traditional methods of analysis (Aschorn 2004; Skvortsov et al. 2007). Thus, ABMs should be viewed as models included with quantitative, qualitative, experimental, and participatory methodology (Boero and Squazzoni 2005).
Further research is needed to advance this theory.

Future researchers should continue to explore new lines of inquiries that aim to connect information obtained at the host level and use it to predict both prevalence and incidence of disease at the population level. The use of GIS to locate and monitor the spread of infectious diseases should be further developed to help create public health policies and rapid response plans to contain emerging outbreaks with the assistant of computational models. Computational models that use spatial and temporal data with epidemiologic data could enable analysis of many variables that play significant roles in disease transmission, and this integration of data is essential for social health policies, planning, decision making, and ongoing surveillance efforts of emerging or re-emerging infectious diseases.

Finally, for many diseases in many countries only partial dataset are available. When the partial datasets are insufficient, but data collection is not an option, it is possible to supplement the data by exploiting the causal relations between the various variables that describe a disease process (Kaja et al. 2004). One of the challenges that face geographers, epidemiologists and computer scientists working in the field of spatial-temporal modeling, is trying to comprehend the complexity of the spread of diseases (Perez and Dragicevic 2009). The use of computational models may provide a novel technique to understand complexity in a simple manner. Even though field testing is the most accepted practice, new techniques such as ABMs are attractive alternative methods because the technology, cost, and time limitations prohibit or make impossible extensive field testing for the studying of complex systems (Sanchez 2002). Computational models are going to perform as a virtual laboratory where spatial-temporal complex social and
environmental problems are going to be represented (simulated) so that new knowledge in the founding of preventing spread of disease will emerge (see figure below). The use of agent-based models will help researchers to perform computer-generated experiments that test macro-sociological theories by manipulating structural factors like network topology, social stratification, or spatial mobility (Macal and North 2007; Macy and Willer 2002).

Figure 55. Learning Agents

The study of vulnerable disease areas, such as dengue infected areas, not only can be analyzed by traditional models using statistical and GIS methods, but the used of ABMs can bring together these three techniques into one which incorporate new ways for the analysis of vulnerability (see figure below).
5.5 Summary of the Study

Dengue fever is the second most widespread tropical disease after malaria (Derouich and Boutayeb 2006). It is considered one of the most severe viral diseases in terms of morbidity and mortality (Guzmán and Kourí 2004). Besides, it affects the populations of more than 100 countries (Derouich and Boutayeb 2006). Several studies have shown weather variability, socioeconomic and demographic characteristics influence the disease patterns (Aiken and Leigh 1978; Campbell-Lendrum and Woodruff 2006; Caprara et al. 2009; Goldstein 1990; Mondini and Chiaravalloti-Neto 2008; Suarez et al. 2005; Weinhold 2004).

Over the last decade, dengue fever has become the most wide-spread vector-borne disease in Costa Rica (CCSS 2008). However, only a few research studies have been conducted in Costa Rica to investigate the factors influencing the rates dengue fever.
Data accessibility, data quality, financial constraints, and human resources might have contributed to the small number of studies in Costa Rica (Troyo et al. 2009). While GIS has been used in research studies (Bhandari, Raju, and Sokhi 2008; Bohra and Andrianasolo 2001; Khun and Manderson 2008; Lian, Seng, and Chai 2006; Mahilum et al. 2005; Phuanukoonnon, Brough, and Bryan 2006; Suarez et al. 2005), agent-based modeling has not been applied to the study of dengue. Nevertheless, in Costa Rica, no known studies have been done using ABMs and/or a coupling of GIS and ABM methods.

This study analyzed the relationships between the rates of dengue fever and precipitation, temperature, socio-economic, and demographic characteristics of the population in the Central Valley region of Costa Rica from 1993 to 2008. The demographic and socio-economic characteristics of the population included: education; occupation; household density; age differences; sex; housing condition, and land cover (urbanization). The research assessed the spatial and temporal distribution of dengue fever cases in the Central Valley of Costa Rica relative to those predictors.

The purpose of this research was to develop a multi-scale analysis framework that applies geographic information systems, and agent-based modeling methods to identify and analyze the variables affecting the rates of dengue fever in the Central Valley of Costa Rica. Geographic Information System (GIS) were used to analyze the available data, collected from government agencies, at the macro level. Then a DFABM was implemented for the micro-level analysis of the same variables used at the macro level. The framework integrated time/space GIS layers and data collection/analysis in a DBABM and observed and analyzed the emerging data from the agent’s interactions.
(computer simulation of human’s environment) and compared them to the macro methods of analysis—the emergent behavior from micro to macro.

This study focused on two research questions: Does a community-level dengue fever agent-based model (DFABM) produce results comparable (agree) to those produced by traditional macro-level GIS analysis? And, how does a community-based dengue fever agent-based model (DFABM) enhance traditional geographic information system analysis and could it aid in predicting future dengue fever outbreaks?

Regression analyses were used in GIS to identify the significant relationships of the variable and to map the spatial variability of the factors that contribute to the annual rates of dengue. GIS was used to map the spatial distribution of dengue in the study area using geographically weighted regression and to generate risk maps of dengue incidents with high, medium and low risks. Finally, a DFABM were implemented. The agent-based model included the most important variables identified through a review of the literature and GIS analysis.

The agent-based model represented daily movements, interactions of humans, the environment, and the vector relative to dengue cases. The simulation examined detailed data about each scenario and strived to identify the significant events occurring during outbreaks. The data employed included the number of susceptible, exposed, and infected people. The locations (longitude, latitude) and temporal data describing infected individuals were also collected for further analysis. Additionally, the agent-based model kept track of the factors affecting dengue fever, including precipitation, temperature, and the most important demographic and socio-economic characteristics of the population for the area under study. The DFABM was developed on the Java programming language,
using the open source MASON simulator, a multithreaded agent based simulation platform.

The framework used in this research study was a novel approach for investigating, analyzing, and experimenting with a fairly new technique, the coupling of GIS and agent-based models, for the study of dengue fever in the central valley of Costa Rica. Computational models supports the identification of factors and mechanisms of epidemic spread during the descriptive phase and allows the examination of different scenarios in determining sensitivities to changes in parameter values, and estimation key parameters from data in a reasonably rapid way (Bagni, Berchi, and Cariello 2002).

The DFABM may be especially helpful to assist the researcher when data collection is not an option and/or only partial datasets are available by supplementing the existing datasets and/or exploiting the causal relations between the various variables that describe the disease process. The DFABM provided options to determine spatial behaviors, spatial distributions through rapid insertion of new components and natural consideration of non-linear interactions between agents (Isidoro et al. 2009). Although, a DFABM is a replication of reality, it was designed and implemented with enough robustness to serve it intended purpose. Yet, the researcher must remember when analyzing DFABM results, their findings are partial representations of a complex problem. Therefore, overall, ABM results must be considered with diligence and care (Sullivan and Mordechai 2000).

This research facilitated the study of complex system explorations, which are difficult to accomplish with analytical and GIS models alone and/or impossible to study in reality. Furthermore, the multi-scale framework used in this research developed a
starting point of understanding of the modeling process of coupling geographic information systems, and agent-base modeling. ABM supports experimentation in ways that would not be possible in the real world (Castle and Crooks 2006; Osgood 2007; Torrens 2010). Thus, the implemented DFABM was an appropriate analysis technique for implementing a geospatial dengue fever simulation.
WORKS CITED

Almeida, Maria de Mattos, Caiaffa Waleska, Assunção Renato, and Projetti Fernando. 2007. Spatial vulnerability to dengue in a brazilian urban area during a 7-year surveillance. *Journal of Urban Health* 84, no. 3: 334-345.

Mennecke, Brian E., Martin D. Crossland, and Brenda L. Killingsworth. 2000. Is a map more than a picture? The role of sdss technology, subject characteristics, and problem complexity on map reading and problem solving. *MIS Quarterly* 24, no. 4: 601-629.

Moreno-Sanchez, Rafael, Mary Hayden, Craig Janes, and Geoffrey Anderson. 2006. A web-based multimedia spatial information system to document aedes aegypti breeding sites and dengue fever risk along the us–mexico border. *Health & Place* 12, no. 4: 715-727.

VITA

Robinson Roberto Campos Rodríguez was born in San José, Costa Rica. After graduating from High School, he attended The University of Costa Rica. In 1997, he applied to The University of Texas at Austin and was accepted into the Computer Science Department where he earned his Bachelor of Arts degree in Computer Science. During the following year he was accepted into the graduate college at Texas State University-San Marcos where he earned a Master of Science degree in Software Engineering and in August 2013 a Ph.D. in Geographic Information Systems.

Permanent email address: robertico.cr@gmail.com

This dissertation was typed by Robinson Roberto Campos Rodríguez.