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ABSTRACT 

Evaluation is ubiquitous. Often we need to evaluate a set of target entities 

(movies, restaurants, products, courses, paper submissions) and obtain their true ratings 

(average ratings from the population) or true rankings (rankings based on true ratings). 

Based on the law of large numbers, average ratings from large samples can well serve the 

purpose. However, in practice evaluation data are typically extremely sparse and each 

entity would receive a very small number of ratings from evaluators. In this case, the 

average ratings would significantly differ from the true ratings due to biased distributions 

of evaluators holding different standards or preferences. Based on the observation that 

comparative evaluations (e.g., paper 1 is better than paper 2) are more trustworthy than 

isolated ratings (e.g., paper 1 has a score of 4.5), in this study we investigate comparison-

based evaluation, where the principle idea is to first extract a partial ranking for the 

entities evaluated by each evaluator, and then aggregate all the partial rankings to obtain 

a total ranking that well approximates the true ranking. The aggregated total ranking can 

be used to further estimate the true ratings. In this study we also investigate an associated 

topic of evaluation assignment (assigning target entities to evaluators). In many 

applications (e.g., academic conferences) there is such an assignment phase before 

evaluation is conducted. Currently in these applications assignment is not sophistically 

designed to maximize evaluation quality. We propose a layered assignment approach to 

maximize the quality of comparison-based evaluation for given evaluation resources 



xi 

 

(evaluation is generally labor-intensive). All the proposed algorithms have been 

implemented and validated using benchmark datasets in comparison with state-of-the-art 

methods. In addition, to demonstrate the utility of our approach, a prototype system has 

been deployed and made available for convenient public access. 
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1. INTRODUCTION 

Evaluation is ubiquitous, where we need to evaluate a set of interested entities 

(movies, restaurants, products, courses, paper submissions) and obtain their true ratings 

or true rankings. We refer to these entities as evaluatees or target entities. We define true 

ratings as average ratings from the population. Statistically, a population is a complete set 

of items that share at least one property in common that is the subject of a statistical 

analysis. In our case, a population can be considered as the entire group of people who 

interact with the interested target entities and from whom we can draw evaluation 

conclusions about the entities. For example, a population with respect to a movie can be 

considered as all the people who have an interest in (have or have not watched) the 

movie. A true ranking is a total ranking for the set of target entities based on their true 

ratings. In practice, obtaining the true ranking is often more important than obtaining the 

true ratings in making decisions/selections. 

Common evaluation procedure: Since it is virtually impossible to collect 

evaluations from the entire population, true ratings and true rankings can never be 

obtained. They can only be estimated/approximated. As a common evaluation procedure, 

a sample of the population will be chosen as evaluators or reviewers to evaluate/review 

the target entities. Typically, an evaluation/review can be represented as a rating score 

within a certain range (e.g., 1 to 5). Then the average ratings from the sample will be 

calculated and used as evaluation scores for the target entities. 

As known from the law of large numbers (Grimmett & Stirzaker, 1982), this 

procedure works fine if the sample size is large, where each entity receives a large 

number of ratings. In this case, the sample would well reflect the distributions of 
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standards/preferences/opinions/evaluations of the population and average ratings from the 

sample would closely approximate the average ratings from the population, e.g., the true 

ratings, serving as an unbiased indicator of quality (Marsh & Roche, 1997). In the 

following, we use average ratings to particularly refer to the average ratings from the 

samples unless otherwise specified. 

Sparse data challenge: A practical and critical challenge for the common 

evaluation procedure in reality is that evaluation data are typically extremely sparse, 

where each target entity only receives very few ratings (although there can be a decent 

size of total number of evaluators), and each evaluator only evaluates very few target 

entities (due to capacity constraints). Evaluation is labor-intensive and we cannot afford 

to have each evaluator to evaluate all the target entities. For example, suppose a computer 

science conference has 500 paper submissions to be reviewed by 150 selected 

professional reviewers. Each reviewer cannot review all the submissions. Typically they 

will be assigned several papers to review. Suppose each reviewer is assigned 10 papers, 

then each paper would receive on average 3 reviews from different reviewers. 

In this case, since the evaluators/reviewers typically hold different 

standards/criteria/preferences in the evaluation/review process, average ratings would 

significantly differ from true ratings due to biased distributions of standards/preferences 

from the evaluators. This is what we call the evaluation bias problem, which is illustrated 

in Figure 1. The figure shows the relationship between error rate and sample size, where 

error rate is based on the Kendall tau distance metric and computed between the average 

rating-based ranking and the “true ranking” (average rating from the largest sample). 

From the figure we can see that the error rate increases as the sample size decreases. 
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Figure 1: Error rate vs. sample size 

One possible straightforward solution to remove the evaluation bias is to 

standardize/normalize evaluations for the evaluators. In particular, we can normalize all 

the rating scores given by an evaluator, which would have the effect of forcing a common 

standard for all the evaluators. However for this approach to work, each evaluator has to 

evaluate a large number of target entities that well represent the set of all target entities, 

which is impractical and would not happen in our sparse data setting. From Figure 1, we 

can observe that the error rate increases as the sample size decreases. 

Comparison-based evaluation: For average ratings to be correct and fair, the 

following assumption has to hold: All the evaluators hold the same standard/preference at 

all times. In practice, this assumption is not reasonable. Obviously, different evaluators 

would significantly differ in their standards/preferences/criteria for various reasons in the 
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Therefore, the relative and comparative evaluation from an evaluator is more trustworthy 

than the absolute ratings given by her. Based on this observation, we conduct the REVA 

project in this thesis work that investigates comparison-based evaluation. 

In particular, in the REVA project we design comparison-based evaluation 

algorithms that can effectively and efficiently eliminate evaluation bias and approximate 

true rankings and true ratings for sparse evaluation data. The principle idea of the REVA 

approach is to first extract a partial ranking for the entities evaluated by each evaluator, 

and then aggregate all the partial rankings to obtain a total ranking that well approximates 

the true ranking. A ranking is partial if it does not cover all the target entities, e.g., a 

ranking of 3 papers out of 500 assigned to a particular reviewer. A ranking is total if it 

covers all the target entities. We formulate rank aggregation as an optimization problem 

that computes an optimized total ranking minimizing a given rank distance metric such as 

Kendall tau distance or weighted Kendall tau distance. Such distance metrics are used to 

measure the distance between two ranked lists. Since the exact rank aggregation problem 

is NP-hard, we focus on designing efficient heuristic algorithms in REVA. Once a quality 

aggregated total ranking is obtained, it can be used to further estimate the true ratings. 

Evaluation assignment: In the REVA project we also investigate a closely 

related topic of evaluation assignment. In many applications (e.g., academic conferences) 

before evaluation is conducted there is an assignment phase that assigns target entities to 

evaluators. To our best knowledge, currently in none of these applications assignment is 

sophistically designed to maximize evaluation quality. Evaluation is generally labor-

intensive. Without intelligent assignment, a lot of evaluation effort would be wasted on 

obvious/easy comparisons (e.g., to compare two items with a big difference in quality). 
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On the other hand, insufficient evaluation effort would be given to subtle/hard 

comparisons (e.g., to compare two items with a little difference in quality). 

In REVA we propose a layered assignment approach to maximize the quality of 

comparison-based evaluation for given evaluation resources, leading to improved 

approximation to ground truth. The main idea is to perform evaluation round by round 

(thus layered or multi-phase). In each round, assign several comparable entities to each 

available evaluator, where entities are comparable is they receive similar evaluations 

from the previous round. The assignment of comparable entities to the evaluators leads to 

maximized total ranking improvement from round to round. On the other hand, the 

improved total ranking also leads to better assignment from round to round because the 

comparability of the comparable entities will be more and more justified. As far as 

evaluation quality is concerned, it is desirable to use more layers/evaluation phases. 

However, this would prolong the whole evaluation process. In practice, the number of 

layers can be predetermined based on the given time constraint. Note that our layered 

assignment approach generalizes the existing conventional single layer assignment 

approach. 

Implementation, validation, and demonstration: All the proposed algorithms 

as well as the comparison partners have been implemented. The algorithms have been 

validated using benchmark datasets in comparison with state-of-the-art methods. In 

addition, to demonstrate the utility of our approach, a prototype system has been 

deployed and made available for convenient public access through 

http://dmlab.cs.txstate.edu/reva/. 

 

http://dmlab.cs.txstate.edu/reva/
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Contributions: In this thesis work, we make the following contributions: 

 We investigate comparison-based evaluation for sparse evaluation data, 

leveraging trustworthy comparative evaluations to eliminate evaluation bias, 

leading to improved approximation towards true rankings and true ratings 

comparing to conventional evaluation methods. 

 We also investigate a closely related topic of evaluation assignment, proposing a 

novel layered assignment approach that maximizes evaluation quality for given 

evaluation resources. 

 We implement the proposed algorithms and validate their effectiveness and 

efficiency using benchmark datasets in comparison with state-of-the-art methods. 

To further illustrate the utility of our approach, we also deploy and maintain a 

demonstrative prototype that is available for convenient public access. 

 

Outline: In Chapter 2, we survey the related work literature. In Chapter 3, we 

describe the REVA comparison based evaluation framework and algorithms. In Chapter 

4, we describe the REVA layered evaluation assignment approach. In Chapter 5, we 

describe the implementation and the demonstrative prototype. In Chapter 6, we report 

experimental validation for REVA evaluation and REVA evaluation assignment. In 

Chapter 7, we conclude the thesis with a discussion of future work. 
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2. RELATED WORK 

2.1 Rating Score Aggregation 

Rating score aggregation aggregates rating scores from many individual 

evaluators into an overall quality measurement for target entities. The most 

straightforward approach is to take the average of rating scores. A more sophisticated 

approach is to consider reputation (e.g., evaluation capacity) of reviewers, and take the 

weighted average of rating scores, where more reputable reviewers are given higher 

weights. In (Riggs & Wilensky, 2001), the reputation of a reviewer is computed based on 

consensus (how closely the reviewer’s rating scores are to the average scores). In (Chen 

& Singh, 2001), the reputation of a reviewer is computed based on opinions of other 

reviewers. However, reputable reviewers do not necessarily hold the same 

standard/preference. 

Rating score normalization is a possible solution to overcome evaluation bias and 

achieve improved score aggregation. It converts rating scores of reviewers to a 

normalized scale. Most score normalization approaches assume that rating scores by each 

reviewer fit into a particular distribution (e.g., normal distribution) comparable to that of 

true rating scores. (Resnick, Iacovou, Suchak, Bergstrom, & Riedl, 1994) use z-score 

normalization (Walpole, Myers, Myers, & Ye, 2002), aiming to calibrate rating scores to 

a more equitable standard (Arkes, 2003). (Sarwar, Karypis, Konstan, & Riedl, 2000) 

perform normalization by subtracting the rating scores from a reviewer by the reviewer’s 

average score. The subtraction can also be followed by LP normalization (Lemire, 2005) 

or by factor analysis (Traupman & Wilensky, 2006). However, in reality, the above 
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assumption does not hold for sparse evaluation data where each reviewer only reviews 

very few target entities. 

Probability-based normalization approaches (Ferndandez, Vallet, & Castells, 

2006), (Jin & Si, 2004) , (Jin, Si, Zhai, & Callan, 2003) convert rating scores to 

probability values, with the objective of removing the impact of outlier ratings. However, 

accurate probability estimation also requires that each reviewer is associated with many 

target entities, which is infeasible in our sparse data setting. Another line of related works 

(Lauw, Lim, & Wang, 2006), (Lauw, Lim, & Wang, 2007), (Lauw, Lim, & Wang, 2012) 

studied online collaborative rating. These works model leniency, a micro-behavior of 

individual reviewers, in order to achieve improved rating score aggregation. Since the 

leniency of a reviewer depends on scores of her own as well as co-reviewers, it is 

extracted by a mutual reinforcement model. 

2.2 Ranking 

Ranking a given set of target entities is an important task with vast number of 

applications in classification (Fürnkranz, Hüllermeier, Loza Mencía, & Brinker, 2008), 

(Saranli & Demirekler, 2001), clustering  (Breitenbach & Grudic, 2005), (jun Zeng, cai 

He, Chen, ying Ma, & Ma, 2004), (Sun, et al., 2009), (Sun, Yu, & Han, 2009), web 

search (Page, Brin, Motwani, & Winograd, 1998), (Kleinberg, 1999), (Robertson, 

Walker, Beaulieu, Gatford, & Payne, 1995) databases (Chaudhuri & Das, 2003), 

(Chaudhuri, Das, Hristidis, & Weikum, 2004), (Mamoulis, Yiu, Cheng, & Cheung, 

2007), (Wang & Su, 2002), software engineering (Inoue, et al., 2003), (Inoue, Yokomori, 

Yamamoto, Matsushita, & Kusumoto, 2005), (Gui & Scott, 2007), biology (Furlanello, 
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Serafini, Merler, & Jurman, 2010), (Chen, et al., 2010), (Liu, Yang, & Xu, 2010), and 

natural language parsing (Ng, 2005), (Collins, 2005), (Ng, 2005), just to name a few. 

A ranking can be total or partial (Dwork, Kumar, Naor, & Sivakumar, 2001). A 

total ranking is a permutation of the given set of target entities. A partial ranking is a 

permutation of a subset of the set of target entities. A top k ranking is a special case of 

partial ranking that ranks the best k entities and ignore others. There are two well-known 

metrics that evaluate the distance between two permutations: the Kemeny optimality 

(Kendall & Gibbons, 1990) and the Spearman’s foot rule distance (Diaconis, 1988). 

Other than these two classical metrics, (Kumar & Vassilvitskii, 2010) introduced some 

variants and a general definition considering specific conditions such as element weights, 

position weights and element similarities. (Fagin, Kumar, & Sivakumar, 2003) introduced 

some variants for the top k ranking problem. 

2.3 Rank Aggregation 

Rank aggregation is to combine ranking results of entities from multiple ranking 

functions in order to generate a better one (Liu, Liu, Qin, Ma, & Li, 2007). Rank 

aggregation has been extensively studied. We discuss several example approaches in the 

following. Borda Count (Borda, 1781) assigns a score corresponding to a rank or position 

within a ranking from an evaluator/voter, and then total or average scores can be used for 

evaluation purposes. Some recent works in the same line include Borda Fuse (Aslam & 

Montague, 2001) and median rank aggregation (Fagin, Kumar, & Sivakumar, 2003). 

Some other works strive to find a total ranking while optimizing some ranking-

based evaluation criteria, such as Kemeny optimality and Spearman’s foot rule. Markov 

chain-based rank aggregation (Dwork, Kumar, Naor, & Sivakumar, 2001) introduced the 
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notion of a locally Kemeny optimal aggregation, a relaxation of Kemeny optimality, that 

ensures satisfaction of the extended Condorcet principle and yet remains computationally 

tractable. 

Machine learning approaches have also been used for rank aggregation. (Liu, Liu, 

Qin, Ma, & Li, 2007) proposed a supervised learning method based on Markov chain for 

meta-search. (Klementiev, Roth, & Small, 2008) introduced an EM-based algorithm for 

learning parameters of the extended Mallows model (Mallows, 1957) without 

supervision. 

2.4 Reviewer Assignment 

The evaluation assignment problem that we study is related to the conference 

reviewer assignment problem. Nowadays academic conferences usually have an 

excessively high numbers of paper submissions. It is important to assign these papers to 

appropriate reviewers in the program committee so that the content of papers well 

matches the expertise and interests of reviewers. The primary input to this problem is a 

papers x reviewers matrix of “bids”, expressing positive or negative interests of reviewers 

towards papers. The goal is to construct an optimized assignment taking into account 

reviewer capacity constraints, adequate numbers of reviews for papers, expertise 

modeling, conflicts of interest, and other global conference criteria (Conry, Koren, & 

Ramakrishnan, 2009). 

There have been new interests in the Artificial Intelligence community for this 

problem since it was proposed as a “challenge” task at IJCAI-97. (Wang, Chen, & Miao, 

2008) and (Goldsmith & Sloan, 2007) surveyed the recent studies. (Mimno & Mccallum, 

2007) evaluated several methods for measuring the affinity of a reviewer to a paper. 
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(Dumais & Nielsen, 1992) studied reviewer assignment for the Hypertext conference. 

The paper observed that automated methods, including a variety of automated methods 

based on information retrieval principles and Latent Semantic Indexing, performed 

reasonably well in assigning relevant papers to reviewers but were still not satisfactory. 

The paper then proposed a new automated assignment method that achieved better 

performance than human experts by sending reviewers more papers than they actually 

have to review and then allowing them to choose part of their review load themselves. 

(Geller, 1997) described a program that automatically selects reviewers for submitted 

Artificial Intelligence papers. The program relies on a central knowledge/database of AI 

researchers and their areas of specialization. Several filter programs derive this 

knowledge from publication data and home pages on the World-Wide Web and from a 

well-known AI Genealogy. The Core Reviewer Selection Program relies on author-

supplied subject areas to find reviewers. (Hettich & Pazzani, 2006) discussed a prototype 

application deployed at the National Science Foundation for assisting program directors 

in identifying reviewers for proposals. The prototype extracts information from the full 

text of proposals both to learn about the topics of proposals and the expertise of 

reviewers. 

The reviewer assignment problem studied in these works focuses on matching the 

content of papers with the expertise and interests of reviewers. Our study of evaluation 

assignment is in an orthogonal direction, where we assume all papers equally match all 

reviewers, and our focus is on finding an assignment scheme that maximizes the quality 

of comparison-based evaluation for given evaluation resources, leading to improved 

approximation to true rankings and true ratings. 
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2.5 Recommender Systems 

The evaluation problem we study is in the objective rating space (Traupman & 

Wilensky, 2006), where rating scores are primarily used to interpret the inherent quality 

of target entities. In contrast, recommender and collaborative-filtering systems (Lemire, 

2005), (Shen, Lin, Xue, Zhu, & Yao, 2006) are in the subjective rating space, where 

rating scores are primarily used to interpret the preferences of reviewers. 

Recommender systems generate item recommendations for a target user from a 

large collection based on the similarity between the target user and other neighboring 

users (Adomavicius & Tuzhilin, 2005), (Herlocker, Konstan, & Riedl, 2000), (Herlocker, 

Konstan, & Riedl, 2002). In recent years, recommender systems have become a must-

own tool for e-commerce, such as eBay, Amazon, Last.fm, Netflix, Facebook, and 

LinkedIn. The two main paradigms for recommender systems are content-based filtering 

and collaborative filtering (CF). Content-based filtering makes recommendations by 

finding regularities in the textual content information of users and items, such as user 

profiles and product descriptions (Belkin & Croft, 1992). CF is based on the assumption 

that if users X and Y rate n items similarly or have similar behaviors, they will rate or act 

on other items similarly (Su & Khoshgoftaar, 2009). CF only utilizes the user-item rating 

matrix to make predictions and recommendations, avoiding the need of collecting 

extensive information about items and users. In addition, CF can be easily adopted in 

different recommender systems without requiring any domain knowledge (Liu & Yang, 

2008). Ranking-based CF methods recommend items for users based on their rankings of 

items. In particular, such methods utilize similarity measures between two users based on 

their rankings on the same set of items. A common similarity measure is the Kendall tau 
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rank correlation coefficient (Marden, 1995). Recent efforts on ranking-based CF (Liu & 

Yang, 2008), (Liu, Zhao, & Yang, 2009), (Shi, Larson, & Hanjalic, 2010), (Weimer, 

Karatzoglou, Le, & Smola, 2007), (Kahng, Lee, & goo Lee, 2011) have demonstrated 

their advantages in recommendation accuracy. 

The input data for content-based recommender systems contain profiles of items 

and users, which are not given in our evaluation problem. However, CF has a rating 

matrix as input, which is similar to our case. Our evaluation problem and CF differ in 

their objectives. While CF aims at computing item recommendations for the users, our 

evaluation problem aims at computing approximations of true ratings for the items. 

Some recommender systems leverage pre-processing to correct certain global 

effects such as the number of ratings or the average ratings (Bell & Koren, 2007), or to 

perform data imputation replacing missing rating scores (Shen, Lin, Xue, Zhu, & Yao, 

2006). Our problem targets elimination of evaluation bias and approximation of true 

ratings, which can potentially be used as an effective pre-processing step in recommender 

systems to improve recommendation quality. 
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3. REVA EVALUATION 

REVA evaluation framework includes a robust heuristic algorithm that computes 

a better ranking that well approximates the true ranking. In this chapter, we will discuss 

REVA evaluation algorithm by including its main concepts and the variety of phases it 

can go through. 

3.1 REVA Evaluation Overview 

During the evaluation process, different evaluators will differ in standards, 

preferences and criteria for many reasons. We assume that the relative and comparative 

evaluation from each evaluator is more reliable than the absolute rating given by the 

evaluator. Based on this observation, we conduct the REVA project in this thesis work 

that studies comparison-based evaluation. 

In REVA evaluation, we design comparison-based evaluation algorithm that is 

efficient and effective by removing evaluation bias and approximate the true ranking and 

true ratings for sparse data. The main idea of REVA evaluation approach is to first extract 

a partial ranking for the entities evaluated by each evaluator, and then aggregate all the 

partial rankings to obtain a total ranking that well approximate the true ranking. 

We developed an efficient heuristic algorithm in REVA evaluation that generates 

good quality aggregated total ranking that can be used to further estimate the true rating. 

REVA evaluation consists of different phases that compute the final ranking list. 

First, pairwise comparison amongst all entities is conducted using all evaluators’ scores. 

After all comparisons have been completed, we then create a set of preferred directed pair 

that contains the pairs that are preferred by the evaluators based on the pairwise 

comparisons. Later, we calculate the adjusted normalized difference for each pair in the 
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set of preferred directed pairs and sort them in descending order. After we have 

completed this, we process all the preferred pairs into a set of compatible pairs by 

maintaining the transitive property, which allows us to make inferences, as well as ignore 

violations (e.g., trying to add the pair (C, A) but having the pair (A, C) already in the set). 

Based on this compatible pairs, a final ranking list can be generated. Finally, we conduct 

a benchmark between REVA evaluation and average rating against the true ranking. 

3.2 REVA Evaluation Methodology 

In this section, we will discuss in detail the main principles of REVA evaluation. 

The main phases of REVA evaluation are pairwise comparison, preferred directed pair 

set and compatible pair set generation, entities isolation, threshold setting and final 

ranking. 

3.2.1 Pairwise Comparison  

Pairwise comparison is the process of comparing a pair of entities in order to 

evaluate which is preferred. Pairwise comparison is commonly used in elections. The 

basic idea of pairwise comparison is that for each possible pair of candidates, one 

pairwise count specifies how many voters prefer one of the paired candidates over the 

other candidate, and other pairwise count specifies how many voters have the opposite 

inclination. This pairwise comparison method was designed to meet the fairness criterion 

used by the Condorcet method. For N entities, this will require  
 

 
 N (N-1) pairwise 

comparisons. For instance, in every ten entities there will be forty-five pairwise 

comparisons that will be conducted. 
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Table 1: Partial matrix 

 r1 r2 r3 r4 

e1 3 - 3 4 

e2 4 2 - 5 

e3 - 4 2 1 

 

Table 1 represents a set of partial matrix of reviews. Each review eij ∈ [1, 5] 

represents the score by a reviewer ri on an entity ej, ‘-‘ denotes that the reviewer did not 

give any score for that particular entity. For a given pair of entities (ej,ej+1), we count how 

many times entity ej scores higher than entity ej+1, how many times entity ej+1 scores 

higher than ej, and how many times are equal. We discard any comparisons where there 

are no scores. For example, for the pair (e1,e2), we compare all scores that share in 

common. We have that reviewer r1 scored entity e2 higher than entity e1, reviewer r2 did 

not give any score to the entity e1, thus we discard this comparison. Reviewer r3 has the 

same situation as reviewer r2, and reviewer r4 scored entity e2 higher than entity e1. The 

number of cases where entity e2 is higher than entity e1 is two. The number of cases 

where entity e1 is higher than entity e2 is zero. Therefore, we generate the pair (e2,e1) in 

which entity e2 is being preferred over entity e1. We then compare entity e1 with entity e3 

using the same procedure. We discover that the number of cases where entity e1 is higher 

than entity e3 is two, whereas entity e3 is not being preferred over entity e1. Thus, we 

generate the pair (e1, e3). For the next pair (e2, e3) the number of cases where entity e2 is 

higher than entity e3 is one and entity e3 is higher than entity e1 by one too. In this 
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particular case, entity e2 and entity e3 are treated as the equal. We will discuss this specific 

case in the next subsection. 

In Figure 2 we describe the pseudo code for REVA evaluation. We start by 

selecting a pair of entities (A,B); counting the number of scores that entity A is higher 

than entity B, the number of scores that entity B is higher than entity A, and the number of 

scores that both entity A and B are equal. We do the same for all pairs in our target set. 

The output of this phase serves as input to the next phase for generating the preferred 

directed pair set.  

3.2.2 Preferred Directed Pair Set 

After counting all possible pairwise comparisons, we create the preferred directed 

pair set. The preferred directed pair set (PDP) stores the pairs where entity x is preferred 

over entity y. For example, for the pairwise comparisons of entity x and entity y, if entity 

x is being preferred over entity y, we add the pair (x,y) to the PDP set. After calculating 

the comparisons in question for each group of pairs, we add the preferred pair to the PDP 

set as follows:  

1. Set constant C and threshold T. Let C=10, T=0.10 

2. Calculate N = # (ej,ej+1) + #( ej+1,ej) + #(ej = ej+1) 

3. Calculate Adjusted Normalized Difference (AND) for each group of pairs (line 2) 

AND = ( #(ej, ej+1) - #( ej+1, ej) ) / ( N + C) 

4. If the number of reviews where (ej,ej+1) and AND is bigger than the threshold T, 

calculate its difference average which is average(ej) – average(ej+1) (it could be 

negative). Then, we add the pair (ej, ej+1), its AND, and its difference average to 

the PDP set. 
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5. Else if the number of reviews where (ej+1,ej) and AND is bigger than the threshold 

T, calculate its difference average average (ej+1) – average (ej). We then add (ej+1, 

ej), its AND, and its difference average to the PDP set. 

In these first five steps, we are taking into consideration the AND above the 

threshold T. As mentioned, we only need to calculate their difference average and add 

them to the PDP set. We are adding the difference average in order to break the ties and 

we will elaborate on that later. 

We sometimes are presented with a case that may have the AND smaller than the 

threshold, this happens because  #( ej,ej+1) and #( ej+1,ej) could be very close e.g. #( ej,ej+1) 

= 100 and #( ej+1, ej) = 99. In real life, these two entities would have similar quality. This 

can make it difficult to select which entity is more likely to be preferred. For this reason, 

we have decided to set a threshold where we can identify such cases: 

1. For the preferred pair (ej,ej+1) with the AND smaller than the threshold T, we 

calculate the difference average of average(ej) – average(ej+1) da1 and difference 

average of average(ej+1) – average(ej) da2.  

2. If da1 is bigger than da2 then we add (ej,ej+1) and its difference average of 

average (ej) – average (ej+1) . Else if da2 is bigger than da1 we add the pair (ej+1,ej) 

and its difference average of average (ej+1) – average (ej) into the PDP set. 

3. In case where both difference averages are equal, we make use of the total 

number of reviewers of each entity to break this tie. If the total number of 

reviewers from entity ej is bigger than the total number of reviewers from ej+1 then 

we add (ej,ej+1) (line 10). Otherwise if the total number of reviewers from entity 

ej+1 is bigger than the total number of reviewers from ej, we add (ej+1, ej) (line 12). 
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If still the total number of reviewers of both entities is equal, we randomly select a 

pair and add it to the PDP set. (line 14) 

Figure 2: REVA evaluation pseudo code 

Algorithm: REVA evaluation 

Input: Array of entities, List of ratings 

Output: Array of ranked entities 

1: If(#(A,B)  ) then 

2:      Calculate AND = #(A,B) - #(A,B) / ( N + C ) 

3:      if( AND < threshold )  

4:          if (avg(A) – avg (B) > avg(B) – avg(A) )  

5:                  Add (A,B) and avg(A) – avg(B) into PDP set 

6:          Else if (avg(A) – avg (B) < avg(B) – avg(A) ) 

7:                  Add (B,A) and avg(B) – avg(A) into PDP set 

8:          Else if (avg(A) – avg (B) = avg(B) – avg(A) ) 

9:                  If(Number of Reviewers (A) > Number of Reviewers (B) )      

10:                          Add (A,B) into PDP set 

11:                  Else if(Number of Reviews (A) < Number of Reviews (B) )      

12:                          Add(B,A) into PDP set 

13:                  Else if(Number of Reviews (A) = Number of Reviews (B) )      

14:                          Random Add (A,B) or (B,A) into PDP set 

15: If( #(A,B) equal #(B,A)) then 

16:        We add the pair with bigger difference average. 

17: if pairs never compare, add to PDP set as isolated or never compare  

18:         Add (A,B) , AND = 0, AVG = 0 

19: Order PDP set by AND, then by difference average 

20: Create CP set base on PDP. 

21: Create the final ranking set base on CP set and add isolated entities. 
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3.2.3 Tie-breaking Schema 

In the previous subsection, we have covered cases where the number of reviews 

for the pair (ej,ej+1) is bigger than the pair (ej+1, ej) and vice-versa. On the other hand, we 

have investigated cases where the number of reviews for the pair (ej,ej+1) is equal to the 

number of reviews of the pair (ej+1, ej). In regards to applying the same principle of AND 

under the threshold, we have designed a tie-breaking scheme to address this particular 

situation: 

1. For example, if #(ej,ej+1) = #(ej+1,ej), to break this tie, we compute the average 

score of  ej from all the number of reviewers who have reviewed ej and the 

average score of ej+1 from all the number of reviewers who have reviewed ej+1 . We 

add the pair (ej,ej+1) to the PDP set if average(ej) – average(ej+1) is bigger than 

average(ej+1) - average(ej). If the opposite, we add the pair (ej+1, ej). Note that the 

AND will be equal to zero. 

2. In case where both difference averages are equal average(ej) – average(ej+1) = 

average(ej+1) – average(ej), we process the pair (ej,ej+1) if the number of reviewers 

who have reviewed ej is bigger than the number of reviewers who have reviewed 

ej+1; otherwise we process (ej+1,ej) if the number of reviewers who have reviewed 

ej+1 is bigger than the number of reviewers who have reviewed ej. 

3.2.4 Isolated Entities 

Often, a reviewer r might evaluate only one entity e, thus this entity e is never 

compare against others entities. This type of ideology is known as isolated entities. 

Isolated entities are ignored during the initial pairwise comparison and it is not to be 

added to the PDP set. However, they will be included in the final ranking set.  



 21 

Table 2 represents a set of partial matrix from reviews. Reviewer r5 only assigns a 

score of four to entity e4. Using the pairwise comparison methodology, entity e4 will not 

be compared to the rest of the entities; this will then lead to an isolated entity. 

Table 2: Partial matrix with isolated entity 

 r1 r2 r3 r4 r5 r6 

e1 3 - 3 4 - - 

e2 4 2 - 5 - 3 

e3 - 4 2 1 - 1 

e4 - - - - 4 - 

e5 - 2 - - - 5 

 

We should take special consideration in regard to isolated entities. There can 

always be a chance in which we are presented with a pair of entities that may never be 

compared. Table 2 represents the pair (e1,e5) where reviewer r1,r3 and r4 evaluate entity 

e1, whereas entity e5 is evaluated by reviewer r2 and r6. In example, neither e1 nor e5 are 

considered isolated entities, because for the pair (e1,e2) they share reviews in common, as 

well for the pair (e2,e5). In order to tackle such cases, we must follow the same 

procedures that we have used for the tie-breaking scheme. 

3.2.5 Ranking PDP Set 

Having all preferred pairs computed and stored in the PDP set, we can start to 

order the PDP set by the AND scores and then followed by the difference average in 

descending order. When ordering preferred pairs by the AND and the difference average, 

we might encounter ties between them. For example, for the pairs (A,B) and (C,D) with 
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the same AND, we order (A,B) first if its difference average is bigger than (C,D) 

difference average. For this example, if still AND and difference average are equal, we 

order the pair (A,B) first if the sum of the number of reviewers who have reviewed entity 

A + the number of reviewers who have reviewed entity B ( #(A) + #(B) ) is bigger than 

the sum of the number of reviewers who have reviewed entity C + the number of 

reviewers who have reviewed entity D. If and when the opposite is presented, then we 

order the pair (C,D) before (A,B). If AND, difference average and the sum of the 

reviewers who have reviewed both entities of each pair are still equal, then we randomly 

order (A,B) or (C,D) first. By ordering the PDP set, we then ensure that the pairs of 

higher positions are more likely to be preferred. For instance, for a given pair (ej,ej+1) 

with the AND above the threshold and high difference average average(ej) – average(ej+1) 

will be ordered in a higher position in the PDP set. Therefore, we can assume that (ej,ej+1) 

is indeed strongly preferred among reviewers who have reviewed these two entities. 

3.2.6 Compatible Directed Pair 

The compatible directed pair set, better referred to as CP, is a set of pairs that 

must always maintain the transitive property.  After creating the PDP set that contains the 

preferred pairs sorted by the AND scores, then by the difference average and then by the 

number of reviewers who reviewed both entities. CP set is derived by selecting all 

preferred directed pairs with the largest AND scores. Next, we process all pairs from the 

PDP set one by one in descending order. In the last step, we add the preferred directed 

pairs to CP if and when it does not violate the transitive property. 
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Transitive property: The transitive property or closure refers to a binary relation R over 

a set of X. if an entity A is related to entity B, and B is related to entity C, then A is also 

related to C.  

The transitive property can be defined formally as: 

 

For example, if A>B and B>C, then A must be greater than C. If A<B and B<C, 

then C must be greater than A. Based on this property, if (A,B) and (B,C) are two 

preferred directed pairs in the PDP set with this order, we add (A,B) then (B,C) into the 

CP set. We can now infer that the next preferred directed pair must be (A,C). 

Figure 3 represents the pseudo code for computing the compatible pair CP set 

which works as follows: 

Algorithm: Compute CP 

Input: Preferred directed pair PDP List 

Output: Compatible directed pair CP List 

1: For i=0 i < sizeof(PDP) i++ 

2:      If Violation Found PDP(i)  

3:               break and process next pair 

4:      If new pair PDP(i) to be added is not in CP 

5:               Add PDP(i) to CP 

6:               Call InferNewPair(PDP(i), CP set) 

7:               Add inferred new pairs into CP 

8:      Else if new pair PDP(i) to be add is in CP 

9:               break 

10: Return CP set 
 

Figure 3: Compute CP pseudo code 
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1. Once we have created the PDP set, this is passed as input to the Compute CP 

function. We process all preferred directed pairs in descending order (line 1). 

2. If the preferred directed pair to be process is already in CP, then do nothing and 

continue processing the next one. In the case, that preferred directed pair we want 

to process could have already been inferred before (line 8). 

3. Check if the preferred directed pair to be process violates the transitive property 

in CP set. For example, if (A,B) is the preferred directed pair to be process and 

(B,A) is already in CP, then (A,B) must be ignored and continue processing the 

next pair. If (C,A) is the preferred directed pair to be process and (A,B), (B,C) are 

already in CP, then (C,A) violates the transitive property and must be ignored. 

Continue processing the next pair (line 3). 

4. If the next preferred directed pair to be process is not in CP, then we add it to CP 

set and call the inferNewPair function sending the preferred directed pair and the 

CP set as an input. Figure 4 shows the pseudo code for inferring new pair function 

which works as follows. First, we find pairs in CP that contain one of the same 

entities as the preferred directed pair that have already been added to CP. For 

example, if (A,B) was the preferred directed pair added to CP, then find any pair 

in CP that contains entity A or B. For instance (B,C), (D,A). If (B,C) and (D,A) 

are found in CP, then we can infer (A,C) , (D,B), and (D,C). In order to maintain 

the transitive property, we must check that they do not violate the transitive 

property and add them to inferred temp set. Each of those newly inferred pairs is 

sent to the inferNewPair function and performs the same procedure of trying to 

infer new pairs recursively (line 5).  
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Algorithm: Infer new pair 

Input: Preferred directed pair and CP set 

Output: Compatible directed pair  

1: If pairs found in CP with one of the same entities as the new pair to be add then 

2:        For i=0 i<number of pairs found in CP i++ 

3:                  If new inferred pair has no violations then 

4:                            Add it to Inferred Temp set 

5:                            Call inferNewPair(new Inferred pair, CP set) 

6:                  Else if new inferred pair has violations then 

7:                             Discard and continue inferring 

8: Else if no pairs found in CP with one of the same entities 

9:         Break 

10: Return Inferred Temp set 
 

Figure 4: Infer new pair pseudo code 

3.2.7 Computing Final Ranking List 

After processing all preferred directed pairs from the PDP set into the Compatible 

directed pair set, we then compute the final ranking list. Figure 5 represents the pseudo 

code for computing the final ranking list. For a given set of pairs {(A,B), (B,C), (A,C), 

(D,C)} in the CP set, we process each pair at a time in descending order. We first process 

the pair (A,B) and then we generate the final ranking list {A,B}. The next pair is (B,C) 

and process it {A,B,C}. The third pair to be processed is (A,C) which we do not do 

anything since we have both entities in the final ranking list already. The final pair to be 

processed is (D,C). For this pair, we add entity D before entity C and which gives us the 

final ranking set for that particular CP set: {A,B,D,C}.  

Adding isolated entities: We have come up with the final ranking list; however, we still 

need to process the isolated entities. The isolated entities were removed at the pairwise 
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comparison step; these entities are added to the final ranking set using the following 

algorithm: 

1. Calculate isolate entity average from all reviewers who reviewed the entity. 

2. In the final ranking list, we find the entity e with the lowest position with an 

average greater than the average of the isolated entity. 

3. Insert the isolated entity below the entity e 

4. If the isolated entity average is greater than all entities in the final ranking list, 

then add the isolated entity at the beginning of the final ranking list. 

For example, for the final ranking list {A, B, D, C} with an average of 4.3, 3.5, 

3.7, 2.5 respectively for each entity, and an isolated entity E with an average of 3.6. The 

entity with the lowest position with an average greater than the isolated entity E will be 

entity D. The Isolated entity E must be inserted after entity D: {A, B, D, E, C}. 

Algorithm: Compute final ranking list 

Input: CP set 

Output: Final ranking list  

1: For i=0 sizeof(CP) i++ 

2:       If CP(i) left side entity is not in the final ranking list then 

3:                Add left side entity to the final ranking list 

4:                If CP(i) right side entity is in the final ranking list then 

5:                        Move left side entity in front of right side entity  

6:       If CP(i) right side entity is not in the final ranking list then 

7:                 Add right side entity to the final ranking list 

8:       If CP(i) right side entity && left side entity are in the final ranking list  && right 

side entity position > left side entity position then 

9:               Move left side entity in front of right side entity 

10: Return final ranking list 
 

Figure 5: Compute final ranking list pseudo code 
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3.3 Example 

For demonstration purposes, an example of REVA evaluation will be presented to 

cover all possible scenarios. We are going to use a sample with eleven entities and eleven 

evaluators containing partial ratings. 

Table 3: Sample eleven entities and eleven evaluators 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 

e1 2 
      

5 
  

 

e2     
1 

     
 

e3 2 
   

1 
  

2 
 

2  

e4 3 
  

2 5 
 

1 
  

5  

e5  
4 

    
2 

  
3  

e6      
5 1 

   
 

e7  
1 1 

 
1 

 
5 

 
1 5  

e8          
2  

e9       
1 

   
 

e10      
5 

    
 

e11           3 

 

Table 3 shows an extreme sparse matrix with eleven entities and eleven 

reviewers. The first step is to compute all pairwise comparisons; using the formula 
 

 
 N 

(N-1), which will lead us to have fifty-five comparisons. After all comparisons are made, 

we will then select the pair with the highest number of preferred ratings, as well as 

calculate the difference average and the adjusted normalized difference. From the table, 

we observe that entity e11 is an isolated entity because there is no comparison with the 

rest of the entities. We will ignore this entity during the pairwise comparison stage and 

add it to the final ranking list.  
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Table 4: Preferred directed pair set example 

Pairs AND Difference average  Pair AND Difference average 

(e4,e3) 0.230 1.450  (e5,e2) 0 2 

(e4,e2) 0.09 2.200  (e10, e5) 0 2 

(e5,e9) 0.09 2  (e6,e9) 0 2 

(e7,e9) 0.09 1.333  (e10,e6) 0 2 

(e5,e3) 0.09 1.25  (e6,e2) 0 2 

(e4,e8) 0.09 1.200  (e10,e4) 0 1.799 

(e5,e8) 0.09 1  (e1,e8) 0 1.5 

(e7,e8) 0.09 0.333  (e10,e1) 0 1.5 

(e5,e6) 0.09 0  (e7,e2) 0 1.333 

(e4,e1) 0.09 -0.29  (e6,e3) 0 1.25 

(e7,e6) 0.09 -0.66  (e1,e7) 0 1.16 

(e1,e3) 0.083 1.75  (e6,e8) 0 1 

(e7,e3) 0.083 0.583  (e8,e2) 0 1 

(e5,e7) 0.076 0.666  (e8,e9) 0 1 

(e10,e2) 0 4  (e4,e7) 0 0.866 

(e10, e9) 0 4  (e3,e2) 0 0.75 

(e10,e3) 0 3.25  (e3,e9) 0 0.75 

(e10, e8) 0 3  (e1,e5) 0 0.5 

(e10,e7) 0 2.666  (e1,e6) 0 0.5 

(e1,e2) 0 2.5  (e8,e3) 0 0.25 

(e1,e9) 0 2.5  (e4,e5) 0 0.200 

(e4,e9) 0 2.200  (e4,e6) 0 0.200 

    (e2,e9) 0 0 

 

Table 4 represents the PDP set which includes all preferred pairs ordered by the 

adjusted normalized difference and then by the difference average in descending order. 

Next, we will process all preferred pairs one by one into the Compatible Directed Pair CP 

set in order to maintain the transitive property.  

CP = { (e4,e3), (e4,e2), (e5,e9), (e7,e9), (e5,e3), (e4,e8), (e5,e8), (e7,e8), (e5,e6), (e4,e1), (e7,e6), 

(e1,e3), (e7,e3), (e5,e7), (e10,e2), (e10,e9), (e10,e3), (e10,e8), (e10,e7), (e10,e6), (e1,e2), (e1,e9), 

(e4,e9), (e5,e2), (e10,e5), (e6,e9), (e6,e2), (e7,e2), (e10,e4), (e10,e1), (e1,e8), (e6,e3), (e1,e7), 

(e4,e7), (e4,e6), (e1,e6), (e6,e8), (e8,e2), (e8,e9), (e3,e2), (e3,e9), (e1,e5), (e4,e5), (e8,e3), (e2,e9)}  
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From the CP set, we will process each pair one by one and create the final ranking list. 

Table 5 shows the final ranking list:  

Table 5: Final ranking list 

Rank Average 

e10 5 

e4 3.2 

e1 3.5 

e5 3 

e7 2.333333 

e6 3 

e8 2 

e3 1.75 

e2 1 

e9 1 

 

The final step would be to add all the isolated entities. For this particular sample, 

entity e11 is an isolated entity with an average of three.  Next, we find the entity with the 

lowest position that has the average greater or equal to the isolated entity and add the 

isolated entity after it. Next, we present the final REVA ranking list with the isolated 

entities, average ranking and true ranking. 

Table 6: REVA ranking vs. average ranking 

REVA Average  Average  Average  True Ranking Average 

e10 5 
 

e10 5 
 

e2 3.36 

e4 3.2 
 

e1 3.5 
 

e5 3.28 

e1 3.5 
 

e4 3.2 
 

e10 3.25 

e5 3 
 

e5 3 
 

e4 3.22 

e7 2.33 
 

e6 3 
 

e3 3.18 

e6 3 
 

e11 3 
 

e8 2.99 

e11 3 
 

e7 2.33 
 

e1 2.97 

e8 2 
 

e8 2 
 

e7 2.93 

e3 1.75 
 

e3 1.75 
 

e6 2.91 

e2 1 
 

e2 1 
 

e11 2.85 

e9 1 
 

e9 1 
 

e9 2.46 
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From Table 6, we can observe that REVA ranking entity e4 was ranked higher 

than entity e1 even though entity e1 has a bigger average than entity e4. The same case 

applies for entity e7 which was ranked higher than entity e6 and e11. If we compare this 

observation against the true ranking, we can determine that indeed entity e4 has better 

quality than entity e1 and, entity e7 has better quality than entity e6 and e11 as well. 

However, based on the average rating, entity e1 is ranked higher than entity e4 and entity 

e7 is ranked higher than entity e6 and e11 which is proven not to be true.  

Error rate: Table 7 shows the error rate of REVA evaluation and average rating against 

the true ranking using Kendall tau distance and weighted Kendall tau distance from this 

example. 

Table 7: REVA vs. average rating error rate example 

 
REVA evaluation Average rating 

Kendall Tau Distance 0.381818 0.436363 

Weighted Kendall Tau Distance 0.28523 0.307338 
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4. REVA EVALUATION ASSIGNMENT 

In REVA project, we also investigate a closely related topic of evaluation 

assignment. In this section, we will further discuss improvements that REVA evaluation 

can apply. We will now explain the main ideas and methodologies. 

4.1 REVA Evaluation Assignment Overview 

Before evaluation is conducted there is an assignment phase that assigns target 

entities to evaluators, it is common to assign these target entities to the evaluators 

randomly. To the best of our knowledge, currently, none of the evaluation systems design 

evaluator assignment to maximize evaluation quality. Without intelligent assignment, a 

lot of evaluation effort would be wasted on obvious/easy comparisons (e.g., to compare 

two items with a big difference in quality). In real scenarios such as academic 

conferences, each paper has to be reviewed by five different evaluators. The assignment 

is made arbitrarily such as each evaluator reviews five papers randomly. We propose a 

layered assignment approach to maximize the quality of comparison-based evaluation for 

given evaluation resources, leading to improved approximation to ground truth. 

The main idea of REVA evaluation assignment is to perform evaluation layer by 

layer. In each layer, we assign several comparable entities to each available evaluator 

where entities are comparable if they receive similar evaluations from the previous round. 

The assignment of comparable entities to the evaluators leads to maximized total ranking 

improvement from layer to layer. Moreover, the total ranking improvement also leads to 

better assignment from layer to layer because the compatibility of the comparable entities 

will be adjusted and gradually improved along the way. For a better performance and 

evaluation quality, it is desirable to use as many layers as possible. REVA evaluation 
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assignment approach makes use of the existing conventional single-layer REVA 

evaluation approach.  

4.2 REVA Evaluation Assignment Methodology 

In this section we will explain the main concepts and methodologies for the 

REVA evaluation assignment approach. We discuss its different phases such as layering, 

assignments and ranking. 

4.2.1 Layering Phase 

The main idea of the REVA evaluation assignment is to perform evaluations layer 

by layer. In order to achieve this task, we need to manually calculate/set the number of 

layers according to the number of entities to be evaluated, and the number of available 

evaluators. For each layer, we assign a percentage of the available evaluators. A good 

example would be to set four layers for a given sample of one hundred entities and one 

hundred evaluators; which gives us a total of twenty-five evaluators for each layer if we 

assign 25% of the evaluators to each layer. Let assume that each evaluator must evaluate 

four different entities and each entity has to be evaluated by four different evaluators. The 

assignment would be best represented on Table 8: 

Table 8: Assignment representation 

Layer 
Number of 

entities 

Number of 

evaluators 

Number of 

evaluations 

1 100 25 25x4=100 

2 100 25 25x4=100 

3 100 25 25x4=100 

4 100 25 25x4=100 
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For the first layer, we make use of the one hundred entities and randomly choose 

twenty-five evaluators. In the second layer, we choose the next twenty-five evaluators 

and do the same for layer three and layer four. In each layer, each evaluator will evaluate 

an average of four entities and each entity has to be evaluated at least once.  

For each layer, a ranking list will be generated and then used by the next layer. 

This leads to having a better compatibility and comparability. Next, we will describe the 

procedure for entities assignment in each layer. 

4.2.2 Assignment Phase 

In this phase, we propose an efficient solution for entities assignment. Having a 

random assignment or letting the users to select entities to evaluate leads bad 

comparability between entities. Table 9 is a representation of a bad assignment. From 

entity 1 to entity 4, they share reviews in common and from entity 5 to entity 8 as well. 

However, there are no reviews between these two groups of entities. For example, there 

is no comparison or reviews in common between entity 1 and entity 5. Therefore, there 

will be poor comparability that will result in a bad quality ranking. 

Table 9: Bad assignment example 

 
R1 R2 R3 R4 

E1 1 1 - - 

E2 1 1 - - 

E3 1 1 - - 

E4 1 1 - - 

E5 - - 1 1 

E6 - - 1 1 

E7 - - 1 1 

E8 - - 1 1 
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In order to achieve a better comparability, we need to ensure that all entity have 

the capability to be connected. To make sure that every entity is connected to each other, 

the assignment of each evaluator needs to overlap and as even as possible. Figure 6, we 

demonstrate how the assignment should be made.  

 
Figure 6: Assignment phase 

 

For example, for entities E1, E2, E3, E4, E5 and reviewers R1, R2, R3 we assign { 

E1,E2,E3} to R1, { E2, E3,E4} to R2 and { E3, E4, E5} to R3 as shown in Figure 6. This 

assignment ensures that more comparisons can be made between these entities.  

Table 10 shows a good assignment example. In this example, all entities share 

some common reviewers. In other words, all entities are connected. We then can ensure 

that comparisons can be made between all entities. 
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Table 10: Good assignment example 

 
R1 R2 R3 R4 R5 

E1 1 - - - 1 

E2 1 - - - 1 

E3 1 1 - - - 

E4 1 1 - - - 

E5 - 1 1 - - 

E6 - 1 1 - 
 

E7 - - 1 1 
 

E8 - - 1 1 
 

E9 - - - 1 1 

E10 - - - 1 1 

 

4.3 Example 

The following example demonstrates REVA evaluation assignment process. 

Suppose we have one hundred entities and one hundred evaluators. We have the 

constraint that each evaluator can only evaluate ten different entities.  

Layering: Let the number of layer = 3. For the first layer, we randomly select 

40% of the evaluators and assign ten entities to each evaluator. In the second layer, we 

select 30% from the rest of the evaluators and assign ten entities to each evaluator. For 

the third layer, we select the remaining 30% of the evaluators and assign them ten entities 

to evaluate. 

Table 11: Layer assignment example 

 
Evaluators 

Number of 

evaluations 

Layer 1 40% 40x10 = 400 

Layer 2 30% 30x10 = 300 

Layer 3 30% 30x10 = 300 

Total 100% 1000 
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From Table 11, we can observe the evaluation distribution. There will be a total of 

one thousand evaluations. Because we do not have any prior information about the 

entities, we have decided to set a high percentage of evaluators to layer one so we can get 

sufficient information for further layers.  

Assignments: The next step is to assign entities to every evaluator. In total, each 

entity would receive an average of ten evaluations. For the first layer, we randomly select 

40% of the evaluators and assign ten entities to each of them. In this layer, each entity 

will receive an average of four evaluations. Next, we randomly select 30% from the rest 

of the evaluators. This would result in thirty evaluators. We assign ten entities to each 

evaluator having three hundred evaluations. Each entity would receive an average of 

three evaluations. In the second layer, the entities will be ranked based on the layer one 

evaluations. This will lead to having similar quality entities close to each other. The 

assignment will overlap and be as even as possible as shown in Figure 6. After the 

assignment and the evaluation are performed, we will run REVA evaluation algorithm for 

the layer two. The result will be an improvement of the ranking from layer one, leading it 

to have similar quality entities justified and closer to the true ranking. 

In layer three, we randomly select the remaining 30% of the evaluators. As in 

layer two, we assign ten entities to each evaluator. We also run REVA evaluation 

algorithm on this assignment and evaluation. The final result should be a ranking list that 

is better approximated to the true ranking. 
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5. IMPLEMENTATION AND DEMONSTRATION 

In this section, we will discuss the technology and technical aspects in details of 

REVA implementation. Both REVA evaluation and REVA evaluation assignment 

frameworks were implemented on Visual Studio Ultimate 2012 using C sharp (C#) as a 

programming language. 

5.1 Database 

Our study consists of numerous experiments and comparisons over different 

datasets. Therefore, we must ensure that we are using the right tools that support large 

data. The database management system used in our study is Microsoft SQL Server 2008. 

This DBMS stores the different datasets and customized subsets used in our experiments.  

5.2 Architecture Design 

Figure 7 shows the main architecture of REVA evaluation framework. REVA 

evaluation makes use of customized ratings datasets stored in MS SQL Server. The 

processing data module connects to the database to extract the data, then manipulates and 

organizes the data into list collections that are sent to the main algorithm.  

Data Processing Data REVA algorithm

Helper 
methods

Output
Statistical 
Metrics

Error 
distances

 

Figure 7: REVA evaluation design 
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The algorithm takes an array of entities and a list of all ratings as an input 

parameters and a final ranking list with its average as an output. The algorithm makes use 

of different helper functions in order to make the framework modular, easy to understand 

and debug. 

The statistical metrics module computes the error distance between two ranking 

lists. This module makes use of well-known statistical methods such as Kendall Tau 

distance and its different variations: normalized, correlation, and weighted. We compare 

our final ranking list from REVA evaluation and average ranking list against the true 

ranking. The expected result from this module is to show that our ranking list is closer to 

the true ranking. 

5.3 Technology 

The REVA project consists of different components such as REVA evaluation 

and REVA evaluation assignment algorithms, error distance metrics functions, and demo 

implementation. The REVA project was implemented in .NET Framework 4.5 using 

Visual Studio 2012 as an IDE (integrated development environment). The REVA 

evaluation algorithm is implemented as a class library where it can be consumed by any 

other project as a reference. The REVA evaluation class library includes the following 

important methods and structs: 

 DirectedPair struct 

 RankingList struct 

 List<RankingList> evaluation(int[ ] EntityArray, List<int[,]> Ratings, float 

constant, float threshold)  
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The Next component of the REVA project is the error distance metrics. This is 

also implemented as a class library that is consumed to measure two ranking lists. The 

Error distance metrics project includes the following methods: 

 Double KendallNormalized(int [ ] listOne, int[ ] listTwo) – This method computes 

the Kendall tau normalized distance in the range of [0,1] 

 Double WeightedKendallNormalized(IComparable[,] listOne, IComparable[,] 

listTwo) – This method computes the Weighted Kendall Tau Normalized 

Distance in the range of [0,1] 

 Double KendallCorrelation(int [ ] listOne, int[ ] listTwo) – This method computes 

the Kendall Tau correlation distance in the range of [-1,1] 

5.4 Demo Implementation 

We have implemented a web-based demo application for the REVA project built 

in ASP.NET web forms with .NET framework 4.5. The main purpose of the demo 

application is to demonstrate the advantages of REVA evaluation and REVA evaluation 

assignment. For data extraction, the demo application utilizes databases stored in 

Microsoft SQL Server. 

Functionality: The demo application extracts a partial sample with sparse data 

from a dataset. Then, REVA evaluation and average rating are computed from this 

sample. The true ranking is computed from the dataset that is a representation of the 

“whole” population ratings.  After that, we calculate the error rate of REVA and average 

rating against the true ranking using Kendall Tau distance and Weighted Kendall Tau 

distance. Finally, we display all three ranking list, the error rate, and the partial sample 

data. We use the same procedure for REVA evaluation assignment.  
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Figure 8: REVA evaluation project demo 

 In Figure 8, we present the REVA evaluation demo homepage. By clicking on the 

“Run Sample” button, the application generates/extracts a subset/sample from a database 

in Microsoft SQL Server. Then, it displays the generated data (Figure 9), REVA 

evaluation, average rating and true ranking.  



 41 

 

Figure 9: REVA evaluation demo data 

It also demonstrates the Kendall tau and weighted Kendall tau error rate of REVA 

evaluation and average rating against the true ranking as shown in Figure 10. 

 

Figure 10: REVA evaluation demo error rate 
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Object relational mapping: For object relational mapping, our demo application 

uses Simple.Data
1
 framework. Simple.Data is a lightweight framework that uses the 

dynamic features of .NET 4 to offer an expressive, ORM stylish way of accessing and 

manipulating data. This framework allows faster data manipulation by eliminating the 

need to write SQL queries for data retrieval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

1
 http://simplefx.org/simpledata/docs/index.html 
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6. EXPERIMENTS 

The objective of experiments on real-life datasets is to prove the efficiency of the 

proposed REVA evaluation and REVA evaluation assignment, principally by comparing 

them against average rating. Then, using several case examples with different data size, 

we conduct an overall comparison between both REVA approaches and average rating 

against true ranking. Our results show that REVA evaluation and REVA evaluation 

assignment perform better than average rating showing a closer similarity with the true 

ranking. The experiments were conducted on a PC Intel i5 M 460 @ 2.53GHz CPU with 

6 GB of RAM, running Windows 7 Professional. 

6.1 Datasets 

The datasets used in these experiments were collected from the social computing 

research at the University of Minnesota (GroupLens) and Yahoo! Webscope. 

Specifically, we used the “MovieLens 100k
2
” which contains ratings by users of the 

movie recommendations site MovieLens. This MovieLens 100k dataset consists of 

100,000 ratings (1-5) from 943 users on 1682 movies. Each reviewer has rated at least 

twenty movies and each movie may be reviewed by at least one reviewer. We also used 

the Yahoo! Webscope dataset ydata-ymusic-user-artist-ratings-v1_0
3
. This dataset 

contains 15,400 users, 1000 songs and approximately 300,000 ratings. 

 

 

                                                 

2
 http://grouplens.org/datasets/movielens/ 

3
 http://research.yahoo.com/Academic_Relations 
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6.2 Error Rate vs. Sample Size 

As we described in previous chapters, according to the law of large numbers, 

average ratings from a large sample can well approximate the true rating and true 

ranking. However, obtaining an average rating from a small subset differs significantly 

from the true ranking. To confirm such statement, we conduct an experiment using small 

subsets from the whole MovieLens dataset. For each small subset, we calculate the 

average rating, rank them and compare the similarity with the true ranking. We compare 

the ranking lists using Kendall Tau distance (Kendall & Gibbons, 1990). Given two 

ranked list X and Y, Kendall tau distance counts the number of pairwise disagreements 

between X and Y. Suppose, we have the following two lists: 

X = {A,B,C,D} 

Y = {B,A,D,C} 

 Rank list X contains a set of entities A, B, C, D in that particular order, whereas 

rank list Y contains B, A, D, C in that particular order. Table 12 represents the number of 

discordant and concordant pairs. The Kendall tau distance between rank list X and Y is 

two. Usually, Kendall tau distance is normalized by the following formula, where n is the 

size of X and Y: 

 

Kendall(X,Y) = 
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Table 12: Pairwise disagreement counting 

Pair X Y Count 

(A,B) A>B A<B ✗ 

(A,C) A>C A>C ✓ 

(A,D) A>D A>D ✓ 

(B,C) B>C B>C ✓ 

(B,D) B>D B>D ✓ 

(C,D) C>D C<D ✗ 

 

According to the formula, Kendall(X,Y) will be equal to zero if the two lists are 

identical and one if X is in the reverse order of Y. Then, the normalized Kendall tau 

distance lies in the range [0,1]. For this particular example, the normalized Kendall tau 

distance will be 0.33. 

Figure 1 represents a graph of Kendall similarity between average rating and true 

ranking for different number of reviews. In this particular example, we first extract one 

review/rating for each entity and take the average; then we continue increasing the 

number of reviews and computing the average. For each ranking list, we compute the 

Kendall tau distance against the true ranking. Our observation confirms that where there 

are many reviews/ratings per entity, the error distance decreases. In other words, with a 

large number of ratings, average rating gets close to the true ranking. On the other hand, 

with a small number of ratings, the error distance increases. 
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6.3 Brute Force Approach on Small Data 

We have implemented a brute force rank aggregation algorithm to compute a 

ranking list and compare it against REVA evaluation and average rating. This approach 

should perform well and possibly better than average rating in some scenarios.  

As discussed in section 2.3, rank aggregation consists of combining ranking 

results of target entities from multiple ranking functions in order to generate a better one. 

One straightforward solution for rank aggregation is to make use of the old-fashion brute 

force approach. This approach works for small-size problems and it is not recommended 

when using n > 10.  

The brute force rank aggregation algorithm works as follows: First, for a given list 

of entities, we calculate all possible permutation. For a given list of user’s ratings, we 

rank each user’s ranking list by the average. For each permutation, we compute the 

number of violations (discordant pairs) with respect to each user’s ranking list. After that, 

we select the permutation ranking list with the smallest number of violations. In case we 

encounter more than one permutation ranking list with the same number of violations, we 

compute the Kendall tau distance for each permutation ranking list against average rating. 

Then, we select the permutation ranking list with the smallest error distance.  

As we mentioned previously, the brute force approach only works well on 

problems with small number of entities. The time complexity for our brute force 

approach takes factorial time O(n!) leading to poor performance with a larger number of 

entities. For instance, we require 10! (3628800) number of permutation to evaluate a 

ranking list with size ten.  
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We conduct experiments comparing the performance of brute force aggregation 

approach, average rating and REVA evaluation against true ranking. We have created ten 

different subsets from Yahoo! Music dataset consisting of ten entities and ten users 

having extreme sparse data with an average of twenty-five ratings. 

 

 

Figure 11: Bruce force rank aggregation vs. REVA and average rating 

Figure 11 represents a benchmarking between brute force rank aggregation 

approach, REVA evaluation and average rating. Brute force approach performed better 

than REVA evaluation and average rating in one occasion (subset 2). It also performed 

the same as average rating in four occasions whereas REVA evaluation obtained smaller 

error distance than the brute force approach and average rating in five occasions. Figure 

12 shows the error rate averages from the ten subsets.  
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Figure 12: Brute force error rate average 

As mentioned before, brute force approach does not perform well with large 

number of entities; therefore, it will be almost impossible to continue showing 

comparisons since we are going to use larger datasets in further experiments. 

6.4 Experiments for REVA Evaluation 

Having demonstrating the effects of small number of ratings on average ratings, 

here we conduct several experiments to study and demonstrate that REVA evaluation will 

perform better than average rating on small samples where there are few ratings per target 

entity.  

First, we compare the quality of the rank list generated by REVA evaluation and 

average rating with respect to the true ranking. Given a generated rank list from REVA 

evaluation and average rating, in order to measure the outcome performance, we compute 

the Kendall tau distance explained in the previous section, and weighted Kendall tau 

distance against true ranking. A similarity value of zero specifies a complete agreement 
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between the two lists. Whereas a similarity value of one indicates a total disagreement 

between them.  

We have created twenty different subsets from MovieLens and Yahoo! Webscope 

Music to observe the performance of REVA evaluation on different scenarios comparing 

to average rating. First, we extract thirty random entities and ten random reviewers from 

the whole MovieLens and Yahoo! Webscope Music datasets.  

For each subset, we compute the ranking using REVA evaluation and average 

rating and measure the error distance against the true ranking using Kendall tau distance 

and weighed Kendall tau distance. Our main objective is to perform better than average 

rating in most of the cases using small subsets. As we defined in the law of large 

numbers, average rating well serves the purpose of approximate to true ranking using 

large number of reviews. We expect that REVA evaluation performs at least the same or 

close to average rating on large number of reviews.  However, in reality, each reviewer 

typically reviews very few entities generating an extremely sparse data making it difficult 

for average rating to meet its purpose.  

We obtained an error rate average of 0.31 from REVA evaluation whereas 

average rating obtained 0.33 using MovieLens dataset. During the experiments on the 

twenty different subsets, REVA evaluation performed eleven times better than average 

rating, two times both tied, and seven times average rating performed better than REVA 

evaluation.  

We observed the error rate average between REVA evaluation and average rating 

against true ranking using Yahoo! Webscope dataset ydata-ymusic-user-artist-ratings-
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v1_0. REVA evaluation obtained a smaller error rate average of 0.37 while average 

rating obtained 0.38. 

6.5 Experiments for REVA Evaluation Assignment 

We have conducted some experiments that demonstrate the performance of 

REVA evaluation assignment against random assignment using average rating and 

single-layer REVA evaluation approach.  

First, we have created a total number of five samples with fifty entities and fifty 

evaluators each. For REVA evaluation assignment, each evaluator will evaluate ten 

entities and each entity will receive an average of ten reviews. We have set three layers 

with the following evaluators’ percentage: 40% for layer one, 30% for layer two and the 

remaining 30% for layer three. For the first layer, we will have twenty evaluators and 

each entity an average of four reviews. For the second layer, we will have fifteen 

evaluators and the remaining fifteen evaluators for the third layer with an average of three 

reviews for each entity. We rank the entities using REVA evaluation algorithm during the 

evaluation process in each layer. We will come up with the final ranking in the third 

layer. 

REVA evaluation assignment will be compared against two different approaches: 

Random assignment using average rating and single-layer REVA evaluation approach. 

For the random assignment, we use the same idea as the bad assignment example in 

Table 9. Each evaluator will evaluate ten entities, and each entity will receive ten 

reviews. After the random assignment is completed, we rank the entities base on average 

ratings. Then, we use the same random assignment evaluation to rank the entities using 

the single-layer REVA evaluation approach. 
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Then, we will calculate the error rate of REVA evaluation assignment, random 

assignment average, and random assignment single-layer REVA approach against true 

ranking using Kendall tau distance. The results show that REVA evaluation assignment 

obtained 0.3781, random assignment average obtained 0.3982 and single-layer REVA 

evaluation approach obtained 0.3985. We observe that REVA evaluation assignment 

obtained a smaller error rate comparing with the two other approaches. Due to bad 

assignment, single-layer REVA evaluation approach performed very similar to random 

assignment.  

6.6 Discussion 

Test results show that REVA evaluation and REVA evaluation assignment indeed 

performs better than average rating and brute force aggregation against true ranking. 

Although an average computer was used to perform the experiments, both REVA 

evaluation approaches performed relatively fast on large datasets. One limitation on these 

experiments is that brute force approach performed slowly; therefore it was almost 

impossible to conduct comparisons on larger datasets.  
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7. CONCLUSION 

Average ratings used in conventional evaluation suffer from evaluation bias for 

sparse data. Based on the observation that comparative evaluations are more trustworthy 

than isolated ratings, in this study we have investigated comparison-based evaluation, 

targeting effective elimination of evaluation bias and improved approximation to true 

rankings and true ratings. We have also investigated an associated topic of evaluation 

assignment and proposed layered assignment, aiming at optimizing evaluation quality for 

given resources. We have implemented and validated the proposed algorithms using 

benchmark datasets in comparison with state-of-the-art methods. In addition, to 

demonstrate the utility of our approach, a prototype system has been deployed and made 

available for convenient public access. 

There are many interesting directions for future work. Firstly, our proposed 

evaluation and assignment algorithms can be optimized in many ways, for example, by 

designing more sophisticated pair comparison, pair processing ordering, tie-breaking and 

inference schemes. Secondly, it would be interesting to perform a realistic case study, for 

example, conference paper evaluation, to further validate the proposed approaches. 

Thirdly, in this study we have assumed all ranks in the total ranking are equally 

important. In reality, there are cases where only part of the total ranking is important, or it 

is only important to find a rank-based cut-off point instead of ranking all the target 

entities. These preferences would require modifications and adaptations of both our 

proposed evaluation and assignment approaches. Fourthly, in the evaluation assignment 

problem we study, we have assumed that all evaluators have the same evaluation capacity 

and match the target entities equally. Both may not be true in reality. Ideally evaluator 
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capacity, expertise, and interests should be considered as additional constraints in the 

assignment process. Last but not least, our proposed approach can possibly be extended 

and used in applications beyond evaluation, such as recommendation. It is interesting to 

explore these possibilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 54 

8. BIBLIOGRAPHY 

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender 

systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on 

Knowl. and Data Eng, 734–749. 

Arkes, H. (2003). The nonuse of psychological research at two federal agencies. Psychol. 

Science, 1–6. 

Aslam, J., & Montague, M. (2001). Models for metasearch. Proceedings of the 24th 

Annual International ACM SIGIR Conference on Research and Development in 

Information Retrieval (SIGIR). 

Belkin, N., & Croft, W. (1992). Information filtering and information retrieval: Two sides 

of the same coin? Communications of the ACM, 29-38. 

Bell, R., & Koren, Y. (2007). Scalable collaborative filtering with jointly derived 

neighborhood interpolation weights. In Proceedings of the 2007 Seventh IEEE 

International Conference on Data Mining (ICDM). 

Borda, J. (1781). Mémoire sur les élections au scrutin. Historie de l’academie royale des 

sciences, Paris. 

Breitenbach, M., & Grudic, G. (2005). Clustering through ranking on manifolds. In 

Proceedings of the 22nd International Conference on Machine Learning (ICML). 

Chaudhuri, S., & Das, G. (2003). Automated ranking of database query result. In 

Proceedings of the 1st Biennial Conference on Innovative Data Systems Research 

(CIDR). 



 55 

Chaudhuri, S., Das, G., Hristidis, V., & Weikum, G. (2004). Probabilistic ranking of 

database query results. In Proceedings of the 30th International Conference on 

Very Large Data Bases (VLDB). 

Chen, M., & Singh, J. (2001). Computing and using reputations for internet ratings. In 

Proceedings of the 3rd ACM Conference on Electronic Commerce (EC). 

Chen, W., Jianhua, X., Huai, L., Yue, W., Ming, Z., Eric, H., & Robert, C. (2010). 

Knowledge-guided gene ranking by coordinative component analysis. BMC 

Bioinform. 

Collins, M. (2005). Discriminative reranking for natural language parsing. Comput. 

Linguist, 25–70. 

Conry, D., Koren, Y., & Ramakrishnan, N. (2009). Recommender systems for the 

conference paper assignment problem. In Proceedings of the 3rd ACM 

Conference on Recommender Systems (RecSys). 

Diaconis, P. (1988). Group representations in probability and statistics. In Institute of 

Mathematical Statistics Lecture Notes–Monograph Series, 11. 

Dumais, S., & Nielsen, J. (1992). Automating the assignment of submitted manuscripts to 

reviewers. In Proceedings of the 15th Annual International ACM SIGIR 

Conference on Research and Development in Information Retrieval (SIGIR). 

Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for 

the web. In Proceedings of the 10th International World Wide Web Conference 

(WWW). 

Fagin, R., Kumar, R., & Sivakumar, D. (2003). Comparing top k lists. In Proceedings of 

the ACM-SIAM Symposium on Discrete Algorithms (SODA). 



 56 

Fagin, R., Kumar, R., & Sivakumar, D. (2003). Efficient similarity search and 

classification via rank aggregation. In Proceedings of the 2003 ACM SIGMOD 

International Conference on Management of Data (SIGMOD). 

Ferndandez, M., Vallet, D., & Castells, P. (2006). Probabilistic score normalization for 

rank aggregation. In Proceedings of the 28th European Conference on Advances 

in Information Retrieval (ECIR). 

Furlanello, C., Serafini, M., Merler, S., & Jurman, G. (2010). Entropy-based gene ranking 

without selection bias for the predictive classification of microarray data. BMC 

Bioinform, 54. 

Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., & Brinker, K. (2008). Multilabel 

classification via calibrated label ranking. Mach. Learn, 73(2):133?153. 

Geller, J. (1997). Challenge: How ijcai 1999 can prove the value of ai by using ai. In 

Proceedings of the 15th International Joint Conference on Artificial Intelligence 

(IJCAI). 

Goldsmith, J., & Sloan, R. (2007). The ai conference paper assignment problem. In 

Proceedings of the AAAI Workshop on Preference Handling in AI. 

Grimmett, G., & Stirzaker, D. (1982). Probability and Random processes. Oxford 

University Press. 

Gui, G., & Scott, P. (2007). Ranking reusability of software components using coupling 

metrics. J. Syst. Softw, 1450–1459. 

Herlocker, J., Konstan, J., & Riedl, J. (2000). Explaining collaborative filtering 

recommendations. In Proceedings of the 2000 ACM Conference on Computer 

Supported Cooperative Work (CSCW). 



 57 

Herlocker, J., Konstan, J., & Riedl, J. (2002). An empirical analysis of design choices in 

neighborhood-based collaborative filtering algorithms. Inf. Retr, 287–310. 

Hettich, S., & Pazzani, M. (2006). Mining for proposal reviewers: Lessons learned at the 

national science foundation. In Proceedings of the 12th ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining (KDD) . 

Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., & Kusumoto, S. 

(2003). Component rank: Relative significance rank for software component 

search. In Proceedings of the 25th International Conference on Software 

Engineering (ICSE). 

Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., & Kusumoto, S. (2005). 

Ranking significance of software components based on use relations. IEEE Trans. 

Software Eng, 213–225. 

Jin, R., & Si, L. (2004). A study of methods for normalizing user ratings in collaborative 

filtering. In Proceedings of the 27th Annual International ACM SIGIR Conference 

on Research and Development in Information Retrieval (SIGIR). 

Jin, R., Si, L., Zhai, C., & Callan, J. (2003). Collaborative filtering with decoupled 

models for preferences and ratings. In Proceedings of the Twelfth International 

Conference on Information and Knowledge Management (CIKM). 

jun Zeng, H., cai He, Q., Chen, Z., ying Ma, W., & Ma, J. (2004). Learning to cluster 

web search results. In Proceedings of the 27th Annual International ACM SIGIR 

Conference on Research and Development in Information Retrieval (SIGIR). 



 58 

Kahng, M., Lee, S., & goo Lee, S. (2011). Ranking in context-aware recommender 

systems. In Proceedings of the 20th International Conference on World Wide Web 

(WWW). 

Kendall, M., & Gibbons, J. (1990). Rank Correlation Methods. Edward Arnold, London, 

UK. 

Kleinberg, J. (1999). Authoritative sources in a hyperlinked environment. J. ACM, 

604?632. 

Klementiev, A., Roth, D., & Small, K. (2008). Unsupervised rank aggregation with 

distance-based models. In Proceedings of the 25th International Conference on 

Machine Learning (ICML). 

Kumar, R., & Vassilvitskii, S. (2010). Generalized distances between rankings. In 

Proceedings of the 19th International World Wide Web Conference (WWW). 

Lauw, H., Lim, E.-P., & Wang, K. (2006). Bias and controversy: Beyond the statistical 

deviation. In Proceedings of the 12th ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining (KDD). 

Lauw, H., Lim, E.-P., & Wang, K. (2007). Summarizing review scores of "unequal" 

reviewers. In Proceedings of the 2007 SIAM International Conference on Data 

Mining (SDM). 

Lauw, H., Lim, E.-P., & Wang, K. (2012). Quality and leniency in online collaborative 

rating systems. ACM Trans. Web, 4:1–4:27. 

Lemire, D. (2005). Scale and translation invariant collaborative filtering systems. Inf. 

Retr, 129–150. 



 59 

Liu, N., & Yang, Q. (2008). Eigenrank: A ranking-oriented approach to collaborative 

filtering. In Proceedings of the 31st Annual International ACM SIGIR Conference 

on Research and Development in Information Retrieval (SIGIR). 

Liu, N., Zhao, M., & Yang, Q. (2009). Probabilistic latent preference analysis for 

collaborative filtering. In Proceedings of the 18th ACM conference on 

Information and Knowledge Management (CIKM). 

Liu, Q., Yang, J., & Xu, Y. (2010). In-silico prediction of blood secretory human proteins 

using ranking algorithm. BMC Bioinform, 250. 

Liu, Y.-T., Liu, T.-Y., Qin, T., Ma, Z.-M., & Li, H. (2007). Supervised rank aggregation. 

In Proceedings of the 16th International World Wide Web Conference (WWW). 

Mallows, C. (1957). Non-null ranking models. Biometrika, 44:114-130. 

Mamoulis, N., Yiu, M., Cheng, K., & Cheung, D. (2007). Efficient top-k aggregation of 

ranked inputs. ACM Trans. Database Syst., 32(3):1168. 

Marden, J. (1995). Analyzing and Modeling Rank Data. Chapman & Hall, New York. 

Marsh, H., & Roche, L. (1997). Making students’ evalutions of teaching effectiveness 

effective. American Psychologist, 52(11):1187–1197. 

Mimno, D., & Mccallum, A. (2007). Expertise modeling for matching papers with 

reviewers. In Proceedings of the 13th ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining (KDD). 

Ng, V. (2005). Machine learning for coreference resolution: From local classification to 

global ranking. In Proceedings of the 43rd Annual Meeting of the Asssociation for 

Computational Linguistics (ACL). 



 60 

Ng, V. (2005). Supervised ranking for pronoun resolution: Some recent improvements. In 

Proceedings of the 20th National Conference on Artificial Intelligence (AAAI). 

Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The pagerank citation ranking: 

Bringing order to the web. In Proceedings of the 7th International World Wide 

Web Conference (WWW). 

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: An 

open architecture for collaborative filtering of netnews. In Proceedings of the 

1994 ACM Conference on Computer Supported Cooperative Work (CSCW). 

Riggs, T., & Wilensky, R. (2001). An algorithm for automated rating of reviewers. In 

Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries 

(JCDL). 

Robertson, S., Walker, S., Beaulieu, M., Gatford, M., & Payne, A. (1995). Okapi at trec-

4. In Proceedings of the 4th Text Retrieval Conference (TREC). 

Saranli, A., & Demirekler, M. (2001). A statistical unified framework for rank-based 

multiple classifier decision combination. Patt. Recog., 34(4):865–884. 

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of dimensionality 

reduction in recommender systems: A case study. In WebKDD Workshop at the 

ACM SIGKKD. 

Shen, J., Lin, Y., Xue, G.-R., Zhu, F.-D., & Yao, A.-G. (2006). Irfcf: Iterative rating 

filling collaborative filtering algorithm. In Proceedings of the 8th Asia-Pacific 

Web Conference on Frontiers of WWW Research and Development (APWeb). 



 61 

Shi, Y., Larson, M., & Hanjalic, A. (2010). List-wise learning to rank with matrix 

factorization for collaborative filtering. In Proceedings of the 4th ACM 

conference on Recommender systems (RecSys). 

Su, X., & Khoshgoftaar, T. (2009). A survey of collaborative filtering techniques. 

Advances in Artificial Intelligence. 

Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., & Wu, T. (2009). Rankclus: Integrating 

clustering with ranking for heterogeneous information network analysis. In 

Proceedings of the 12th International Conference on Extending Database 

Technology (EDBT). 

Sun, Y., Yu, Y., & Han, J. (2009). Ranking-based clustering of heterogeneous 

information networks with star network schema. In Proceedings of the 15th ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining 

(KDD). 

Traupman, J., & Wilensky, R. (2006). Collaborative quality filtering: Establishing 

consensus or recovering ground truth? In Proceedings of the 6th International 

Conference on Knowledge Discovery on the Web: Advances in Web Mining and 

Web Usage Analysis (WebKDD). 

Walpole, R., Myers, R., Myers, S., & Ye, K. (2002). Essentials of Probability & Statistics 

for Engineers & Scientists. Prentice Hall, NJ. 

Wang, F., Chen, B., & Miao, Z. (2008). A survey on reviewer assignment problem. In 

Proceedings of the 21st International Conference on Industrial, Engineering and 

Other Applications of Applied Intelligent Systems (IEA/AIE). 



 62 

Wang, K., & Su, M. (2002). Item selection by “hub-authority” profit ranking. In 

Proceedings of the 8th ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining (KDD). 

Weimer, M., Karatzoglou, A., Le, Q., & Smola, A. (2007). Cofirank: Maximum margin 

matrix factorization for collaborative ranking. In Proceedings of the 21st Annual 

Conference on Neural Information Processing Systems (NIPS). 

 

 

 


