

INVESTIGATING COMPARISON-BASED EVALUATION

FOR SPARSE DATA

by

Jose Antonio Martinez Torres, B.E.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Computer Science

December 2014

Committee Members:

 Byron J. Gao, Chair

 Anne H.H. Ngu

 Yijuan Lu

COPYRIGHT

by

Jose Antonio Martinez Torres

2014

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgment. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Jose Antonio Martinez Torres, authorize

duplication of this work, in whole or in part, for educational or scholarly purposes only.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Byron Gao not only for involving but motivating me to

participate in his research, as well for his enriching advice. I also appreciate Dr. Anne

H.H. Ngu and Dr. Yijuan Lu for being involved in the thesis committee during the

process. Finally, I would like to thank my family for their unconditional support

throughout my education.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

ABSTRACT .. x

CHAPTER

1. INTRODUCTION .. 1

2. RELATED WORK ... 7

2.1 Rating Score Aggregation ... 7

2.2 Ranking ... 8

2.3 Rank Aggregation .. 9

2.4 Reviewer Assignment .. 10

2.5 Recommender Systems ... 12

3. REVA EVALUATION ... 14

3.1 REVA Evaluation Overview ... 14

3.2 REVA Evaluation Methodology ... 15

3.2.1 Pairwise Comparison .. 15

vi

3.2.2 Preferred Directed Pair Set ... 17

3.2.3 Tie-breaking Schema .. 20

3.2.4 Isolated Entities ... 20

3.2.5 Ranking PDP Set .. 21

3.2.6 Compatible Directed Pair .. 22

3.2.7 Computing Final Ranking List ... 25

3.3 Example ... 27

4. REVA EVALUATION ASSIGNMENT .. 31

4.1 REVA Evaluation Assignment Overview ... 31

4.2 REVA Evaluation Assignment Methodology ... 32

4.2.1 Layering Phase .. 32

4.2.2 Assignment Phase ... 33

4.3 Example ... 35

5. IMPLEMENTATION AND DEMONSTRATION .. 37

5.1 Database .. 37

5.2 Architecture Design ... 37

5.3 Technology .. 38

5.4 Demo Implementation ... 39

6. EXPERIMENTS ... 43

6.1 Datasets ... 43

vii

6.2 Error Rate vs. Sample Size .. 44

6.3 Brute Force Approach on Small Data ... 46

6.4 Experiments for REVA Evaluation ... 48

6.5 Experiments for REVA Evaluation Assignment ... 50

6.6 Discussion ... 51

7. CONCLUSION ... 52

8. BIBLIOGRAPHY ... 54

viii

LIST OF TABLES

Table Page

1. Partial matrix ... 16

2. Partial matrix with isolated entity ... 21

3. Sample eleven entities and eleven evaluators ... 27

4. Preferred directed pair set example... 28

5. Final ranking list ... 29

6. REVA ranking vs. average ranking .. 29

7. REVA vs. average rating error rate example .. 30

8. Assignment representation .. 32

9. Bad assignment example... 33

10. Good assignment example .. 35

11. Layer assignment example .. 35

12. Pairwise disagreement counting ... 45

ix

LIST OF FIGURES

Figure Page

1. Error rate vs. sample size .. 3

2. REVA evaluation pseudo code ... 19

3. Compute CP pseudo code ... 23

4. Infer new pair pseudo code ... 25

5. Compute final ranking list pseudo code .. 26

6. Assignment phase ... 34

7. REVA evaluation design... 37

8. REVA evaluation project demo .. 40

9. REVA evaluation demo data .. 41

10. REVA evaluation demo error rate .. 41

11. Bruce force rank aggregation vs. REVA and average rating 47

12. Brute force error rate average ... 48

x

ABSTRACT

Evaluation is ubiquitous. Often we need to evaluate a set of target entities

(movies, restaurants, products, courses, paper submissions) and obtain their true ratings

(average ratings from the population) or true rankings (rankings based on true ratings).

Based on the law of large numbers, average ratings from large samples can well serve the

purpose. However, in practice evaluation data are typically extremely sparse and each

entity would receive a very small number of ratings from evaluators. In this case, the

average ratings would significantly differ from the true ratings due to biased distributions

of evaluators holding different standards or preferences. Based on the observation that

comparative evaluations (e.g., paper 1 is better than paper 2) are more trustworthy than

isolated ratings (e.g., paper 1 has a score of 4.5), in this study we investigate comparison-

based evaluation, where the principle idea is to first extract a partial ranking for the

entities evaluated by each evaluator, and then aggregate all the partial rankings to obtain

a total ranking that well approximates the true ranking. The aggregated total ranking can

be used to further estimate the true ratings. In this study we also investigate an associated

topic of evaluation assignment (assigning target entities to evaluators). In many

applications (e.g., academic conferences) there is such an assignment phase before

evaluation is conducted. Currently in these applications assignment is not sophistically

designed to maximize evaluation quality. We propose a layered assignment approach to

maximize the quality of comparison-based evaluation for given evaluation resources

xi

(evaluation is generally labor-intensive). All the proposed algorithms have been

implemented and validated using benchmark datasets in comparison with state-of-the-art

methods. In addition, to demonstrate the utility of our approach, a prototype system has

been deployed and made available for convenient public access.

 1

1. INTRODUCTION

Evaluation is ubiquitous, where we need to evaluate a set of interested entities

(movies, restaurants, products, courses, paper submissions) and obtain their true ratings

or true rankings. We refer to these entities as evaluatees or target entities. We define true

ratings as average ratings from the population. Statistically, a population is a complete set

of items that share at least one property in common that is the subject of a statistical

analysis. In our case, a population can be considered as the entire group of people who

interact with the interested target entities and from whom we can draw evaluation

conclusions about the entities. For example, a population with respect to a movie can be

considered as all the people who have an interest in (have or have not watched) the

movie. A true ranking is a total ranking for the set of target entities based on their true

ratings. In practice, obtaining the true ranking is often more important than obtaining the

true ratings in making decisions/selections.

Common evaluation procedure: Since it is virtually impossible to collect

evaluations from the entire population, true ratings and true rankings can never be

obtained. They can only be estimated/approximated. As a common evaluation procedure,

a sample of the population will be chosen as evaluators or reviewers to evaluate/review

the target entities. Typically, an evaluation/review can be represented as a rating score

within a certain range (e.g., 1 to 5). Then the average ratings from the sample will be

calculated and used as evaluation scores for the target entities.

As known from the law of large numbers (Grimmett & Stirzaker, 1982), this

procedure works fine if the sample size is large, where each entity receives a large

number of ratings. In this case, the sample would well reflect the distributions of

 2

standards/preferences/opinions/evaluations of the population and average ratings from the

sample would closely approximate the average ratings from the population, e.g., the true

ratings, serving as an unbiased indicator of quality (Marsh & Roche, 1997). In the

following, we use average ratings to particularly refer to the average ratings from the

samples unless otherwise specified.

Sparse data challenge: A practical and critical challenge for the common

evaluation procedure in reality is that evaluation data are typically extremely sparse,

where each target entity only receives very few ratings (although there can be a decent

size of total number of evaluators), and each evaluator only evaluates very few target

entities (due to capacity constraints). Evaluation is labor-intensive and we cannot afford

to have each evaluator to evaluate all the target entities. For example, suppose a computer

science conference has 500 paper submissions to be reviewed by 150 selected

professional reviewers. Each reviewer cannot review all the submissions. Typically they

will be assigned several papers to review. Suppose each reviewer is assigned 10 papers,

then each paper would receive on average 3 reviews from different reviewers.

In this case, since the evaluators/reviewers typically hold different

standards/criteria/preferences in the evaluation/review process, average ratings would

significantly differ from true ratings due to biased distributions of standards/preferences

from the evaluators. This is what we call the evaluation bias problem, which is illustrated

in Figure 1. The figure shows the relationship between error rate and sample size, where

error rate is based on the Kendall tau distance metric and computed between the average

rating-based ranking and the “true ranking” (average rating from the largest sample).

From the figure we can see that the error rate increases as the sample size decreases.

 3

Figure 1: Error rate vs. sample size

One possible straightforward solution to remove the evaluation bias is to

standardize/normalize evaluations for the evaluators. In particular, we can normalize all

the rating scores given by an evaluator, which would have the effect of forcing a common

standard for all the evaluators. However for this approach to work, each evaluator has to

evaluate a large number of target entities that well represent the set of all target entities,

which is impractical and would not happen in our sparse data setting. From Figure 1, we

can observe that the error rate increases as the sample size decreases.

Comparison-based evaluation: For average ratings to be correct and fair, the

following assumption has to hold: All the evaluators hold the same standard/preference at

all times. In practice, this assumption is not reasonable. Obviously, different evaluators

would significantly differ in their standards/preferences/criteria for various reasons in the

evaluation process. However, it is reasonable to assume that each evaluator holds the

same standard/preference at all times. For example, we can reasonably assume that each

paper reviewer holds the same standard in reviewing the three papers assigned to her.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 12 23 34 45 56 67 78 89

E
rr

o
r

R
a

te

Number of ratings per entity

Average
rating

Normalized
average
rating

 4

Therefore, the relative and comparative evaluation from an evaluator is more trustworthy

than the absolute ratings given by her. Based on this observation, we conduct the REVA

project in this thesis work that investigates comparison-based evaluation.

In particular, in the REVA project we design comparison-based evaluation

algorithms that can effectively and efficiently eliminate evaluation bias and approximate

true rankings and true ratings for sparse evaluation data. The principle idea of the REVA

approach is to first extract a partial ranking for the entities evaluated by each evaluator,

and then aggregate all the partial rankings to obtain a total ranking that well approximates

the true ranking. A ranking is partial if it does not cover all the target entities, e.g., a

ranking of 3 papers out of 500 assigned to a particular reviewer. A ranking is total if it

covers all the target entities. We formulate rank aggregation as an optimization problem

that computes an optimized total ranking minimizing a given rank distance metric such as

Kendall tau distance or weighted Kendall tau distance. Such distance metrics are used to

measure the distance between two ranked lists. Since the exact rank aggregation problem

is NP-hard, we focus on designing efficient heuristic algorithms in REVA. Once a quality

aggregated total ranking is obtained, it can be used to further estimate the true ratings.

Evaluation assignment: In the REVA project we also investigate a closely

related topic of evaluation assignment. In many applications (e.g., academic conferences)

before evaluation is conducted there is an assignment phase that assigns target entities to

evaluators. To our best knowledge, currently in none of these applications assignment is

sophistically designed to maximize evaluation quality. Evaluation is generally labor-

intensive. Without intelligent assignment, a lot of evaluation effort would be wasted on

obvious/easy comparisons (e.g., to compare two items with a big difference in quality).

 5

On the other hand, insufficient evaluation effort would be given to subtle/hard

comparisons (e.g., to compare two items with a little difference in quality).

In REVA we propose a layered assignment approach to maximize the quality of

comparison-based evaluation for given evaluation resources, leading to improved

approximation to ground truth. The main idea is to perform evaluation round by round

(thus layered or multi-phase). In each round, assign several comparable entities to each

available evaluator, where entities are comparable is they receive similar evaluations

from the previous round. The assignment of comparable entities to the evaluators leads to

maximized total ranking improvement from round to round. On the other hand, the

improved total ranking also leads to better assignment from round to round because the

comparability of the comparable entities will be more and more justified. As far as

evaluation quality is concerned, it is desirable to use more layers/evaluation phases.

However, this would prolong the whole evaluation process. In practice, the number of

layers can be predetermined based on the given time constraint. Note that our layered

assignment approach generalizes the existing conventional single layer assignment

approach.

Implementation, validation, and demonstration: All the proposed algorithms

as well as the comparison partners have been implemented. The algorithms have been

validated using benchmark datasets in comparison with state-of-the-art methods. In

addition, to demonstrate the utility of our approach, a prototype system has been

deployed and made available for convenient public access through

http://dmlab.cs.txstate.edu/reva/.

http://dmlab.cs.txstate.edu/reva/

 6

Contributions: In this thesis work, we make the following contributions:

 We investigate comparison-based evaluation for sparse evaluation data,

leveraging trustworthy comparative evaluations to eliminate evaluation bias,

leading to improved approximation towards true rankings and true ratings

comparing to conventional evaluation methods.

 We also investigate a closely related topic of evaluation assignment, proposing a

novel layered assignment approach that maximizes evaluation quality for given

evaluation resources.

 We implement the proposed algorithms and validate their effectiveness and

efficiency using benchmark datasets in comparison with state-of-the-art methods.

To further illustrate the utility of our approach, we also deploy and maintain a

demonstrative prototype that is available for convenient public access.

Outline: In Chapter 2, we survey the related work literature. In Chapter 3, we

describe the REVA comparison based evaluation framework and algorithms. In Chapter

4, we describe the REVA layered evaluation assignment approach. In Chapter 5, we

describe the implementation and the demonstrative prototype. In Chapter 6, we report

experimental validation for REVA evaluation and REVA evaluation assignment. In

Chapter 7, we conclude the thesis with a discussion of future work.

 7

2. RELATED WORK

2.1 Rating Score Aggregation

Rating score aggregation aggregates rating scores from many individual

evaluators into an overall quality measurement for target entities. The most

straightforward approach is to take the average of rating scores. A more sophisticated

approach is to consider reputation (e.g., evaluation capacity) of reviewers, and take the

weighted average of rating scores, where more reputable reviewers are given higher

weights. In (Riggs & Wilensky, 2001), the reputation of a reviewer is computed based on

consensus (how closely the reviewer’s rating scores are to the average scores). In (Chen

& Singh, 2001), the reputation of a reviewer is computed based on opinions of other

reviewers. However, reputable reviewers do not necessarily hold the same

standard/preference.

Rating score normalization is a possible solution to overcome evaluation bias and

achieve improved score aggregation. It converts rating scores of reviewers to a

normalized scale. Most score normalization approaches assume that rating scores by each

reviewer fit into a particular distribution (e.g., normal distribution) comparable to that of

true rating scores. (Resnick, Iacovou, Suchak, Bergstrom, & Riedl, 1994) use z-score

normalization (Walpole, Myers, Myers, & Ye, 2002), aiming to calibrate rating scores to

a more equitable standard (Arkes, 2003). (Sarwar, Karypis, Konstan, & Riedl, 2000)

perform normalization by subtracting the rating scores from a reviewer by the reviewer’s

average score. The subtraction can also be followed by LP normalization (Lemire, 2005)

or by factor analysis (Traupman & Wilensky, 2006). However, in reality, the above

 8

assumption does not hold for sparse evaluation data where each reviewer only reviews

very few target entities.

Probability-based normalization approaches (Ferndandez, Vallet, & Castells,

2006), (Jin & Si, 2004) , (Jin, Si, Zhai, & Callan, 2003) convert rating scores to

probability values, with the objective of removing the impact of outlier ratings. However,

accurate probability estimation also requires that each reviewer is associated with many

target entities, which is infeasible in our sparse data setting. Another line of related works

(Lauw, Lim, & Wang, 2006), (Lauw, Lim, & Wang, 2007), (Lauw, Lim, & Wang, 2012)

studied online collaborative rating. These works model leniency, a micro-behavior of

individual reviewers, in order to achieve improved rating score aggregation. Since the

leniency of a reviewer depends on scores of her own as well as co-reviewers, it is

extracted by a mutual reinforcement model.

2.2 Ranking

Ranking a given set of target entities is an important task with vast number of

applications in classification (Fürnkranz, Hüllermeier, Loza Mencía, & Brinker, 2008),

(Saranli & Demirekler, 2001), clustering (Breitenbach & Grudic, 2005), (jun Zeng, cai

He, Chen, ying Ma, & Ma, 2004), (Sun, et al., 2009), (Sun, Yu, & Han, 2009), web

search (Page, Brin, Motwani, & Winograd, 1998), (Kleinberg, 1999), (Robertson,

Walker, Beaulieu, Gatford, & Payne, 1995) databases (Chaudhuri & Das, 2003),

(Chaudhuri, Das, Hristidis, & Weikum, 2004), (Mamoulis, Yiu, Cheng, & Cheung,

2007), (Wang & Su, 2002), software engineering (Inoue, et al., 2003), (Inoue, Yokomori,

Yamamoto, Matsushita, & Kusumoto, 2005), (Gui & Scott, 2007), biology (Furlanello,

 9

Serafini, Merler, & Jurman, 2010), (Chen, et al., 2010), (Liu, Yang, & Xu, 2010), and

natural language parsing (Ng, 2005), (Collins, 2005), (Ng, 2005), just to name a few.

A ranking can be total or partial (Dwork, Kumar, Naor, & Sivakumar, 2001). A

total ranking is a permutation of the given set of target entities. A partial ranking is a

permutation of a subset of the set of target entities. A top k ranking is a special case of

partial ranking that ranks the best k entities and ignore others. There are two well-known

metrics that evaluate the distance between two permutations: the Kemeny optimality

(Kendall & Gibbons, 1990) and the Spearman’s foot rule distance (Diaconis, 1988).

Other than these two classical metrics, (Kumar & Vassilvitskii, 2010) introduced some

variants and a general definition considering specific conditions such as element weights,

position weights and element similarities. (Fagin, Kumar, & Sivakumar, 2003) introduced

some variants for the top k ranking problem.

2.3 Rank Aggregation

Rank aggregation is to combine ranking results of entities from multiple ranking

functions in order to generate a better one (Liu, Liu, Qin, Ma, & Li, 2007). Rank

aggregation has been extensively studied. We discuss several example approaches in the

following. Borda Count (Borda, 1781) assigns a score corresponding to a rank or position

within a ranking from an evaluator/voter, and then total or average scores can be used for

evaluation purposes. Some recent works in the same line include Borda Fuse (Aslam &

Montague, 2001) and median rank aggregation (Fagin, Kumar, & Sivakumar, 2003).

Some other works strive to find a total ranking while optimizing some ranking-

based evaluation criteria, such as Kemeny optimality and Spearman’s foot rule. Markov

chain-based rank aggregation (Dwork, Kumar, Naor, & Sivakumar, 2001) introduced the

 10

notion of a locally Kemeny optimal aggregation, a relaxation of Kemeny optimality, that

ensures satisfaction of the extended Condorcet principle and yet remains computationally

tractable.

Machine learning approaches have also been used for rank aggregation. (Liu, Liu,

Qin, Ma, & Li, 2007) proposed a supervised learning method based on Markov chain for

meta-search. (Klementiev, Roth, & Small, 2008) introduced an EM-based algorithm for

learning parameters of the extended Mallows model (Mallows, 1957) without

supervision.

2.4 Reviewer Assignment

The evaluation assignment problem that we study is related to the conference

reviewer assignment problem. Nowadays academic conferences usually have an

excessively high numbers of paper submissions. It is important to assign these papers to

appropriate reviewers in the program committee so that the content of papers well

matches the expertise and interests of reviewers. The primary input to this problem is a

papers x reviewers matrix of “bids”, expressing positive or negative interests of reviewers

towards papers. The goal is to construct an optimized assignment taking into account

reviewer capacity constraints, adequate numbers of reviews for papers, expertise

modeling, conflicts of interest, and other global conference criteria (Conry, Koren, &

Ramakrishnan, 2009).

There have been new interests in the Artificial Intelligence community for this

problem since it was proposed as a “challenge” task at IJCAI-97. (Wang, Chen, & Miao,

2008) and (Goldsmith & Sloan, 2007) surveyed the recent studies. (Mimno & Mccallum,

2007) evaluated several methods for measuring the affinity of a reviewer to a paper.

 11

(Dumais & Nielsen, 1992) studied reviewer assignment for the Hypertext conference.

The paper observed that automated methods, including a variety of automated methods

based on information retrieval principles and Latent Semantic Indexing, performed

reasonably well in assigning relevant papers to reviewers but were still not satisfactory.

The paper then proposed a new automated assignment method that achieved better

performance than human experts by sending reviewers more papers than they actually

have to review and then allowing them to choose part of their review load themselves.

(Geller, 1997) described a program that automatically selects reviewers for submitted

Artificial Intelligence papers. The program relies on a central knowledge/database of AI

researchers and their areas of specialization. Several filter programs derive this

knowledge from publication data and home pages on the World-Wide Web and from a

well-known AI Genealogy. The Core Reviewer Selection Program relies on author-

supplied subject areas to find reviewers. (Hettich & Pazzani, 2006) discussed a prototype

application deployed at the National Science Foundation for assisting program directors

in identifying reviewers for proposals. The prototype extracts information from the full

text of proposals both to learn about the topics of proposals and the expertise of

reviewers.

The reviewer assignment problem studied in these works focuses on matching the

content of papers with the expertise and interests of reviewers. Our study of evaluation

assignment is in an orthogonal direction, where we assume all papers equally match all

reviewers, and our focus is on finding an assignment scheme that maximizes the quality

of comparison-based evaluation for given evaluation resources, leading to improved

approximation to true rankings and true ratings.

 12

2.5 Recommender Systems

The evaluation problem we study is in the objective rating space (Traupman &

Wilensky, 2006), where rating scores are primarily used to interpret the inherent quality

of target entities. In contrast, recommender and collaborative-filtering systems (Lemire,

2005), (Shen, Lin, Xue, Zhu, & Yao, 2006) are in the subjective rating space, where

rating scores are primarily used to interpret the preferences of reviewers.

Recommender systems generate item recommendations for a target user from a

large collection based on the similarity between the target user and other neighboring

users (Adomavicius & Tuzhilin, 2005), (Herlocker, Konstan, & Riedl, 2000), (Herlocker,

Konstan, & Riedl, 2002). In recent years, recommender systems have become a must-

own tool for e-commerce, such as eBay, Amazon, Last.fm, Netflix, Facebook, and

LinkedIn. The two main paradigms for recommender systems are content-based filtering

and collaborative filtering (CF). Content-based filtering makes recommendations by

finding regularities in the textual content information of users and items, such as user

profiles and product descriptions (Belkin & Croft, 1992). CF is based on the assumption

that if users X and Y rate n items similarly or have similar behaviors, they will rate or act

on other items similarly (Su & Khoshgoftaar, 2009). CF only utilizes the user-item rating

matrix to make predictions and recommendations, avoiding the need of collecting

extensive information about items and users. In addition, CF can be easily adopted in

different recommender systems without requiring any domain knowledge (Liu & Yang,

2008). Ranking-based CF methods recommend items for users based on their rankings of

items. In particular, such methods utilize similarity measures between two users based on

their rankings on the same set of items. A common similarity measure is the Kendall tau

 13

rank correlation coefficient (Marden, 1995). Recent efforts on ranking-based CF (Liu &

Yang, 2008), (Liu, Zhao, & Yang, 2009), (Shi, Larson, & Hanjalic, 2010), (Weimer,

Karatzoglou, Le, & Smola, 2007), (Kahng, Lee, & goo Lee, 2011) have demonstrated

their advantages in recommendation accuracy.

The input data for content-based recommender systems contain profiles of items

and users, which are not given in our evaluation problem. However, CF has a rating

matrix as input, which is similar to our case. Our evaluation problem and CF differ in

their objectives. While CF aims at computing item recommendations for the users, our

evaluation problem aims at computing approximations of true ratings for the items.

Some recommender systems leverage pre-processing to correct certain global

effects such as the number of ratings or the average ratings (Bell & Koren, 2007), or to

perform data imputation replacing missing rating scores (Shen, Lin, Xue, Zhu, & Yao,

2006). Our problem targets elimination of evaluation bias and approximation of true

ratings, which can potentially be used as an effective pre-processing step in recommender

systems to improve recommendation quality.

 14

3. REVA EVALUATION

REVA evaluation framework includes a robust heuristic algorithm that computes

a better ranking that well approximates the true ranking. In this chapter, we will discuss

REVA evaluation algorithm by including its main concepts and the variety of phases it

can go through.

3.1 REVA Evaluation Overview

During the evaluation process, different evaluators will differ in standards,

preferences and criteria for many reasons. We assume that the relative and comparative

evaluation from each evaluator is more reliable than the absolute rating given by the

evaluator. Based on this observation, we conduct the REVA project in this thesis work

that studies comparison-based evaluation.

In REVA evaluation, we design comparison-based evaluation algorithm that is

efficient and effective by removing evaluation bias and approximate the true ranking and

true ratings for sparse data. The main idea of REVA evaluation approach is to first extract

a partial ranking for the entities evaluated by each evaluator, and then aggregate all the

partial rankings to obtain a total ranking that well approximate the true ranking.

We developed an efficient heuristic algorithm in REVA evaluation that generates

good quality aggregated total ranking that can be used to further estimate the true rating.

REVA evaluation consists of different phases that compute the final ranking list.

First, pairwise comparison amongst all entities is conducted using all evaluators’ scores.

After all comparisons have been completed, we then create a set of preferred directed pair

that contains the pairs that are preferred by the evaluators based on the pairwise

comparisons. Later, we calculate the adjusted normalized difference for each pair in the

 15

set of preferred directed pairs and sort them in descending order. After we have

completed this, we process all the preferred pairs into a set of compatible pairs by

maintaining the transitive property, which allows us to make inferences, as well as ignore

violations (e.g., trying to add the pair (C, A) but having the pair (A, C) already in the set).

Based on this compatible pairs, a final ranking list can be generated. Finally, we conduct

a benchmark between REVA evaluation and average rating against the true ranking.

3.2 REVA Evaluation Methodology

In this section, we will discuss in detail the main principles of REVA evaluation.

The main phases of REVA evaluation are pairwise comparison, preferred directed pair

set and compatible pair set generation, entities isolation, threshold setting and final

ranking.

3.2.1 Pairwise Comparison

Pairwise comparison is the process of comparing a pair of entities in order to

evaluate which is preferred. Pairwise comparison is commonly used in elections. The

basic idea of pairwise comparison is that for each possible pair of candidates, one

pairwise count specifies how many voters prefer one of the paired candidates over the

other candidate, and other pairwise count specifies how many voters have the opposite

inclination. This pairwise comparison method was designed to meet the fairness criterion

used by the Condorcet method. For N entities, this will require

 N (N-1) pairwise

comparisons. For instance, in every ten entities there will be forty-five pairwise

comparisons that will be conducted.

 16

Table 1: Partial matrix

 r1 r2 r3 r4

e1 3 - 3 4

e2 4 2 - 5

e3 - 4 2 1

Table 1 represents a set of partial matrix of reviews. Each review eij ∈ [1, 5]

represents the score by a reviewer ri on an entity ej, ‘-‘ denotes that the reviewer did not

give any score for that particular entity. For a given pair of entities (ej,ej+1), we count how

many times entity ej scores higher than entity ej+1, how many times entity ej+1 scores

higher than ej, and how many times are equal. We discard any comparisons where there

are no scores. For example, for the pair (e1,e2), we compare all scores that share in

common. We have that reviewer r1 scored entity e2 higher than entity e1, reviewer r2 did

not give any score to the entity e1, thus we discard this comparison. Reviewer r3 has the

same situation as reviewer r2, and reviewer r4 scored entity e2 higher than entity e1. The

number of cases where entity e2 is higher than entity e1 is two. The number of cases

where entity e1 is higher than entity e2 is zero. Therefore, we generate the pair (e2,e1) in

which entity e2 is being preferred over entity e1. We then compare entity e1 with entity e3

using the same procedure. We discover that the number of cases where entity e1 is higher

than entity e3 is two, whereas entity e3 is not being preferred over entity e1. Thus, we

generate the pair (e1, e3). For the next pair (e2, e3) the number of cases where entity e2 is

higher than entity e3 is one and entity e3 is higher than entity e1 by one too. In this

 17

particular case, entity e2 and entity e3 are treated as the equal. We will discuss this specific

case in the next subsection.

In Figure 2 we describe the pseudo code for REVA evaluation. We start by

selecting a pair of entities (A,B); counting the number of scores that entity A is higher

than entity B, the number of scores that entity B is higher than entity A, and the number of

scores that both entity A and B are equal. We do the same for all pairs in our target set.

The output of this phase serves as input to the next phase for generating the preferred

directed pair set.

3.2.2 Preferred Directed Pair Set

After counting all possible pairwise comparisons, we create the preferred directed

pair set. The preferred directed pair set (PDP) stores the pairs where entity x is preferred

over entity y. For example, for the pairwise comparisons of entity x and entity y, if entity

x is being preferred over entity y, we add the pair (x,y) to the PDP set. After calculating

the comparisons in question for each group of pairs, we add the preferred pair to the PDP

set as follows:

1. Set constant C and threshold T. Let C=10, T=0.10

2. Calculate N = # (ej,ej+1) + #(ej+1,ej) + #(ej = ej+1)

3. Calculate Adjusted Normalized Difference (AND) for each group of pairs (line 2)

AND = (#(ej, ej+1) - #(ej+1, ej)) / (N + C)

4. If the number of reviews where (ej,ej+1) and AND is bigger than the threshold T,

calculate its difference average which is average(ej) – average(ej+1) (it could be

negative). Then, we add the pair (ej, ej+1), its AND, and its difference average to

the PDP set.

 18

5. Else if the number of reviews where (ej+1,ej) and AND is bigger than the threshold

T, calculate its difference average average (ej+1) – average (ej). We then add (ej+1,

ej), its AND, and its difference average to the PDP set.

In these first five steps, we are taking into consideration the AND above the

threshold T. As mentioned, we only need to calculate their difference average and add

them to the PDP set. We are adding the difference average in order to break the ties and

we will elaborate on that later.

We sometimes are presented with a case that may have the AND smaller than the

threshold, this happens because #(ej,ej+1) and #(ej+1,ej) could be very close e.g. #(ej,ej+1)

= 100 and #(ej+1, ej) = 99. In real life, these two entities would have similar quality. This

can make it difficult to select which entity is more likely to be preferred. For this reason,

we have decided to set a threshold where we can identify such cases:

1. For the preferred pair (ej,ej+1) with the AND smaller than the threshold T, we

calculate the difference average of average(ej) – average(ej+1) da1 and difference

average of average(ej+1) – average(ej) da2.

2. If da1 is bigger than da2 then we add (ej,ej+1) and its difference average of

average (ej) – average (ej+1) . Else if da2 is bigger than da1 we add the pair (ej+1,ej)

and its difference average of average (ej+1) – average (ej) into the PDP set.

3. In case where both difference averages are equal, we make use of the total

number of reviewers of each entity to break this tie. If the total number of

reviewers from entity ej is bigger than the total number of reviewers from ej+1 then

we add (ej,ej+1) (line 10). Otherwise if the total number of reviewers from entity

ej+1 is bigger than the total number of reviewers from ej, we add (ej+1, ej) (line 12).

 19

If still the total number of reviewers of both entities is equal, we randomly select a

pair and add it to the PDP set. (line 14)

Figure 2: REVA evaluation pseudo code

Algorithm: REVA evaluation

Input: Array of entities, List of ratings

Output: Array of ranked entities

1: If(#(A,B)) then

2: Calculate AND = #(A,B) - #(A,B) / (N + C)

3: if(AND < threshold)

4: if (avg(A) – avg (B) > avg(B) – avg(A))

5: Add (A,B) and avg(A) – avg(B) into PDP set

6: Else if (avg(A) – avg (B) < avg(B) – avg(A))

7: Add (B,A) and avg(B) – avg(A) into PDP set

8: Else if (avg(A) – avg (B) = avg(B) – avg(A))

9: If(Number of Reviewers (A) > Number of Reviewers (B))

10: Add (A,B) into PDP set

11: Else if(Number of Reviews (A) < Number of Reviews (B))

12: Add(B,A) into PDP set

13: Else if(Number of Reviews (A) = Number of Reviews (B))

14: Random Add (A,B) or (B,A) into PDP set

15: If(#(A,B) equal #(B,A)) then

16: We add the pair with bigger difference average.

17: if pairs never compare, add to PDP set as isolated or never compare

18: Add (A,B) , AND = 0, AVG = 0

19: Order PDP set by AND, then by difference average

20: Create CP set base on PDP.

21: Create the final ranking set base on CP set and add isolated entities.

 20

3.2.3 Tie-breaking Schema

In the previous subsection, we have covered cases where the number of reviews

for the pair (ej,ej+1) is bigger than the pair (ej+1, ej) and vice-versa. On the other hand, we

have investigated cases where the number of reviews for the pair (ej,ej+1) is equal to the

number of reviews of the pair (ej+1, ej). In regards to applying the same principle of AND

under the threshold, we have designed a tie-breaking scheme to address this particular

situation:

1. For example, if #(ej,ej+1) = #(ej+1,ej), to break this tie, we compute the average

score of ej from all the number of reviewers who have reviewed ej and the

average score of ej+1 from all the number of reviewers who have reviewed ej+1 . We

add the pair (ej,ej+1) to the PDP set if average(ej) – average(ej+1) is bigger than

average(ej+1) - average(ej). If the opposite, we add the pair (ej+1, ej). Note that the

AND will be equal to zero.

2. In case where both difference averages are equal average(ej) – average(ej+1) =

average(ej+1) – average(ej), we process the pair (ej,ej+1) if the number of reviewers

who have reviewed ej is bigger than the number of reviewers who have reviewed

ej+1; otherwise we process (ej+1,ej) if the number of reviewers who have reviewed

ej+1 is bigger than the number of reviewers who have reviewed ej.

3.2.4 Isolated Entities

Often, a reviewer r might evaluate only one entity e, thus this entity e is never

compare against others entities. This type of ideology is known as isolated entities.

Isolated entities are ignored during the initial pairwise comparison and it is not to be

added to the PDP set. However, they will be included in the final ranking set.

 21

Table 2 represents a set of partial matrix from reviews. Reviewer r5 only assigns a

score of four to entity e4. Using the pairwise comparison methodology, entity e4 will not

be compared to the rest of the entities; this will then lead to an isolated entity.

Table 2: Partial matrix with isolated entity

 r1 r2 r3 r4 r5 r6

e1 3 - 3 4 - -

e2 4 2 - 5 - 3

e3 - 4 2 1 - 1

e4 - - - - 4 -

e5 - 2 - - - 5

We should take special consideration in regard to isolated entities. There can

always be a chance in which we are presented with a pair of entities that may never be

compared. Table 2 represents the pair (e1,e5) where reviewer r1,r3 and r4 evaluate entity

e1, whereas entity e5 is evaluated by reviewer r2 and r6. In example, neither e1 nor e5 are

considered isolated entities, because for the pair (e1,e2) they share reviews in common, as

well for the pair (e2,e5). In order to tackle such cases, we must follow the same

procedures that we have used for the tie-breaking scheme.

3.2.5 Ranking PDP Set

Having all preferred pairs computed and stored in the PDP set, we can start to

order the PDP set by the AND scores and then followed by the difference average in

descending order. When ordering preferred pairs by the AND and the difference average,

we might encounter ties between them. For example, for the pairs (A,B) and (C,D) with

 22

the same AND, we order (A,B) first if its difference average is bigger than (C,D)

difference average. For this example, if still AND and difference average are equal, we

order the pair (A,B) first if the sum of the number of reviewers who have reviewed entity

A + the number of reviewers who have reviewed entity B (#(A) + #(B)) is bigger than

the sum of the number of reviewers who have reviewed entity C + the number of

reviewers who have reviewed entity D. If and when the opposite is presented, then we

order the pair (C,D) before (A,B). If AND, difference average and the sum of the

reviewers who have reviewed both entities of each pair are still equal, then we randomly

order (A,B) or (C,D) first. By ordering the PDP set, we then ensure that the pairs of

higher positions are more likely to be preferred. For instance, for a given pair (ej,ej+1)

with the AND above the threshold and high difference average average(ej) – average(ej+1)

will be ordered in a higher position in the PDP set. Therefore, we can assume that (ej,ej+1)

is indeed strongly preferred among reviewers who have reviewed these two entities.

3.2.6 Compatible Directed Pair

The compatible directed pair set, better referred to as CP, is a set of pairs that

must always maintain the transitive property. After creating the PDP set that contains the

preferred pairs sorted by the AND scores, then by the difference average and then by the

number of reviewers who reviewed both entities. CP set is derived by selecting all

preferred directed pairs with the largest AND scores. Next, we process all pairs from the

PDP set one by one in descending order. In the last step, we add the preferred directed

pairs to CP if and when it does not violate the transitive property.

 23

Transitive property: The transitive property or closure refers to a binary relation R over

a set of X. if an entity A is related to entity B, and B is related to entity C, then A is also

related to C.

The transitive property can be defined formally as:

For example, if A>B and B>C, then A must be greater than C. If A<B and B<C,

then C must be greater than A. Based on this property, if (A,B) and (B,C) are two

preferred directed pairs in the PDP set with this order, we add (A,B) then (B,C) into the

CP set. We can now infer that the next preferred directed pair must be (A,C).

Figure 3 represents the pseudo code for computing the compatible pair CP set

which works as follows:

Algorithm: Compute CP

Input: Preferred directed pair PDP List

Output: Compatible directed pair CP List

1: For i=0 i < sizeof(PDP) i++

2: If Violation Found PDP(i)

3: break and process next pair

4: If new pair PDP(i) to be added is not in CP

5: Add PDP(i) to CP

6: Call InferNewPair(PDP(i), CP set)

7: Add inferred new pairs into CP

8: Else if new pair PDP(i) to be add is in CP

9: break

10: Return CP set

Figure 3: Compute CP pseudo code

 24

1. Once we have created the PDP set, this is passed as input to the Compute CP

function. We process all preferred directed pairs in descending order (line 1).

2. If the preferred directed pair to be process is already in CP, then do nothing and

continue processing the next one. In the case, that preferred directed pair we want

to process could have already been inferred before (line 8).

3. Check if the preferred directed pair to be process violates the transitive property

in CP set. For example, if (A,B) is the preferred directed pair to be process and

(B,A) is already in CP, then (A,B) must be ignored and continue processing the

next pair. If (C,A) is the preferred directed pair to be process and (A,B), (B,C) are

already in CP, then (C,A) violates the transitive property and must be ignored.

Continue processing the next pair (line 3).

4. If the next preferred directed pair to be process is not in CP, then we add it to CP

set and call the inferNewPair function sending the preferred directed pair and the

CP set as an input. Figure 4 shows the pseudo code for inferring new pair function

which works as follows. First, we find pairs in CP that contain one of the same

entities as the preferred directed pair that have already been added to CP. For

example, if (A,B) was the preferred directed pair added to CP, then find any pair

in CP that contains entity A or B. For instance (B,C), (D,A). If (B,C) and (D,A)

are found in CP, then we can infer (A,C) , (D,B), and (D,C). In order to maintain

the transitive property, we must check that they do not violate the transitive

property and add them to inferred temp set. Each of those newly inferred pairs is

sent to the inferNewPair function and performs the same procedure of trying to

infer new pairs recursively (line 5).

 25

Algorithm: Infer new pair

Input: Preferred directed pair and CP set

Output: Compatible directed pair

1: If pairs found in CP with one of the same entities as the new pair to be add then

2: For i=0 i<number of pairs found in CP i++

3: If new inferred pair has no violations then

4: Add it to Inferred Temp set

5: Call inferNewPair(new Inferred pair, CP set)

6: Else if new inferred pair has violations then

7: Discard and continue inferring

8: Else if no pairs found in CP with one of the same entities

9: Break

10: Return Inferred Temp set

Figure 4: Infer new pair pseudo code

3.2.7 Computing Final Ranking List

After processing all preferred directed pairs from the PDP set into the Compatible

directed pair set, we then compute the final ranking list. Figure 5 represents the pseudo

code for computing the final ranking list. For a given set of pairs {(A,B), (B,C), (A,C),

(D,C)} in the CP set, we process each pair at a time in descending order. We first process

the pair (A,B) and then we generate the final ranking list {A,B}. The next pair is (B,C)

and process it {A,B,C}. The third pair to be processed is (A,C) which we do not do

anything since we have both entities in the final ranking list already. The final pair to be

processed is (D,C). For this pair, we add entity D before entity C and which gives us the

final ranking set for that particular CP set: {A,B,D,C}.

Adding isolated entities: We have come up with the final ranking list; however, we still

need to process the isolated entities. The isolated entities were removed at the pairwise

 26

comparison step; these entities are added to the final ranking set using the following

algorithm:

1. Calculate isolate entity average from all reviewers who reviewed the entity.

2. In the final ranking list, we find the entity e with the lowest position with an

average greater than the average of the isolated entity.

3. Insert the isolated entity below the entity e

4. If the isolated entity average is greater than all entities in the final ranking list,

then add the isolated entity at the beginning of the final ranking list.

For example, for the final ranking list {A, B, D, C} with an average of 4.3, 3.5,

3.7, 2.5 respectively for each entity, and an isolated entity E with an average of 3.6. The

entity with the lowest position with an average greater than the isolated entity E will be

entity D. The Isolated entity E must be inserted after entity D: {A, B, D, E, C}.

Algorithm: Compute final ranking list

Input: CP set

Output: Final ranking list

1: For i=0 sizeof(CP) i++

2: If CP(i) left side entity is not in the final ranking list then

3: Add left side entity to the final ranking list

4: If CP(i) right side entity is in the final ranking list then

5: Move left side entity in front of right side entity

6: If CP(i) right side entity is not in the final ranking list then

7: Add right side entity to the final ranking list

8: If CP(i) right side entity && left side entity are in the final ranking list && right

side entity position > left side entity position then

9: Move left side entity in front of right side entity

10: Return final ranking list

Figure 5: Compute final ranking list pseudo code

 27

3.3 Example

For demonstration purposes, an example of REVA evaluation will be presented to

cover all possible scenarios. We are going to use a sample with eleven entities and eleven

evaluators containing partial ratings.

Table 3: Sample eleven entities and eleven evaluators

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

e1 2

5

e2
1

e3 2

1

2

2

e4 3

2 5

1

5

e5
4

2

3

e6
5 1

e7
1 1

1

5

1 5

e8
2

e9
1

e10
5

e11 3

Table 3 shows an extreme sparse matrix with eleven entities and eleven

reviewers. The first step is to compute all pairwise comparisons; using the formula

 N

(N-1), which will lead us to have fifty-five comparisons. After all comparisons are made,

we will then select the pair with the highest number of preferred ratings, as well as

calculate the difference average and the adjusted normalized difference. From the table,

we observe that entity e11 is an isolated entity because there is no comparison with the

rest of the entities. We will ignore this entity during the pairwise comparison stage and

add it to the final ranking list.

 28

Table 4: Preferred directed pair set example

Pairs AND Difference average Pair AND Difference average

(e4,e3) 0.230 1.450 (e5,e2) 0 2

(e4,e2) 0.09 2.200 (e10, e5) 0 2

(e5,e9) 0.09 2 (e6,e9) 0 2

(e7,e9) 0.09 1.333 (e10,e6) 0 2

(e5,e3) 0.09 1.25 (e6,e2) 0 2

(e4,e8) 0.09 1.200 (e10,e4) 0 1.799

(e5,e8) 0.09 1 (e1,e8) 0 1.5

(e7,e8) 0.09 0.333 (e10,e1) 0 1.5

(e5,e6) 0.09 0 (e7,e2) 0 1.333

(e4,e1) 0.09 -0.29 (e6,e3) 0 1.25

(e7,e6) 0.09 -0.66 (e1,e7) 0 1.16

(e1,e3) 0.083 1.75 (e6,e8) 0 1

(e7,e3) 0.083 0.583 (e8,e2) 0 1

(e5,e7) 0.076 0.666 (e8,e9) 0 1

(e10,e2) 0 4 (e4,e7) 0 0.866

(e10, e9) 0 4 (e3,e2) 0 0.75

(e10,e3) 0 3.25 (e3,e9) 0 0.75

(e10, e8) 0 3 (e1,e5) 0 0.5

(e10,e7) 0 2.666 (e1,e6) 0 0.5

(e1,e2) 0 2.5 (e8,e3) 0 0.25

(e1,e9) 0 2.5 (e4,e5) 0 0.200

(e4,e9) 0 2.200 (e4,e6) 0 0.200

 (e2,e9) 0 0

Table 4 represents the PDP set which includes all preferred pairs ordered by the

adjusted normalized difference and then by the difference average in descending order.

Next, we will process all preferred pairs one by one into the Compatible Directed Pair CP

set in order to maintain the transitive property.

CP = { (e4,e3), (e4,e2), (e5,e9), (e7,e9), (e5,e3), (e4,e8), (e5,e8), (e7,e8), (e5,e6), (e4,e1), (e7,e6),

(e1,e3), (e7,e3), (e5,e7), (e10,e2), (e10,e9), (e10,e3), (e10,e8), (e10,e7), (e10,e6), (e1,e2), (e1,e9),

(e4,e9), (e5,e2), (e10,e5), (e6,e9), (e6,e2), (e7,e2), (e10,e4), (e10,e1), (e1,e8), (e6,e3), (e1,e7),

(e4,e7), (e4,e6), (e1,e6), (e6,e8), (e8,e2), (e8,e9), (e3,e2), (e3,e9), (e1,e5), (e4,e5), (e8,e3), (e2,e9)}

 29

From the CP set, we will process each pair one by one and create the final ranking list.

Table 5 shows the final ranking list:

Table 5: Final ranking list

Rank Average

e10 5

e4 3.2

e1 3.5

e5 3

e7 2.333333

e6 3

e8 2

e3 1.75

e2 1

e9 1

The final step would be to add all the isolated entities. For this particular sample,

entity e11 is an isolated entity with an average of three. Next, we find the entity with the

lowest position that has the average greater or equal to the isolated entity and add the

isolated entity after it. Next, we present the final REVA ranking list with the isolated

entities, average ranking and true ranking.

Table 6: REVA ranking vs. average ranking

REVA Average Average Average True Ranking Average

e10 5

e10 5

e2 3.36

e4 3.2

e1 3.5

e5 3.28

e1 3.5

e4 3.2

e10 3.25

e5 3

e5 3

e4 3.22

e7 2.33

e6 3

e3 3.18

e6 3

e11 3

e8 2.99

e11 3

e7 2.33

e1 2.97

e8 2

e8 2

e7 2.93

e3 1.75

e3 1.75

e6 2.91

e2 1

e2 1

e11 2.85

e9 1

e9 1

e9 2.46

 30

From Table 6, we can observe that REVA ranking entity e4 was ranked higher

than entity e1 even though entity e1 has a bigger average than entity e4. The same case

applies for entity e7 which was ranked higher than entity e6 and e11. If we compare this

observation against the true ranking, we can determine that indeed entity e4 has better

quality than entity e1 and, entity e7 has better quality than entity e6 and e11 as well.

However, based on the average rating, entity e1 is ranked higher than entity e4 and entity

e7 is ranked higher than entity e6 and e11 which is proven not to be true.

Error rate: Table 7 shows the error rate of REVA evaluation and average rating against

the true ranking using Kendall tau distance and weighted Kendall tau distance from this

example.

Table 7: REVA vs. average rating error rate example

REVA evaluation Average rating

Kendall Tau Distance 0.381818 0.436363

Weighted Kendall Tau Distance 0.28523 0.307338

 31

4. REVA EVALUATION ASSIGNMENT

In REVA project, we also investigate a closely related topic of evaluation

assignment. In this section, we will further discuss improvements that REVA evaluation

can apply. We will now explain the main ideas and methodologies.

4.1 REVA Evaluation Assignment Overview

Before evaluation is conducted there is an assignment phase that assigns target

entities to evaluators, it is common to assign these target entities to the evaluators

randomly. To the best of our knowledge, currently, none of the evaluation systems design

evaluator assignment to maximize evaluation quality. Without intelligent assignment, a

lot of evaluation effort would be wasted on obvious/easy comparisons (e.g., to compare

two items with a big difference in quality). In real scenarios such as academic

conferences, each paper has to be reviewed by five different evaluators. The assignment

is made arbitrarily such as each evaluator reviews five papers randomly. We propose a

layered assignment approach to maximize the quality of comparison-based evaluation for

given evaluation resources, leading to improved approximation to ground truth.

The main idea of REVA evaluation assignment is to perform evaluation layer by

layer. In each layer, we assign several comparable entities to each available evaluator

where entities are comparable if they receive similar evaluations from the previous round.

The assignment of comparable entities to the evaluators leads to maximized total ranking

improvement from layer to layer. Moreover, the total ranking improvement also leads to

better assignment from layer to layer because the compatibility of the comparable entities

will be adjusted and gradually improved along the way. For a better performance and

evaluation quality, it is desirable to use as many layers as possible. REVA evaluation

 32

assignment approach makes use of the existing conventional single-layer REVA

evaluation approach.

4.2 REVA Evaluation Assignment Methodology

In this section we will explain the main concepts and methodologies for the

REVA evaluation assignment approach. We discuss its different phases such as layering,

assignments and ranking.

4.2.1 Layering Phase

The main idea of the REVA evaluation assignment is to perform evaluations layer

by layer. In order to achieve this task, we need to manually calculate/set the number of

layers according to the number of entities to be evaluated, and the number of available

evaluators. For each layer, we assign a percentage of the available evaluators. A good

example would be to set four layers for a given sample of one hundred entities and one

hundred evaluators; which gives us a total of twenty-five evaluators for each layer if we

assign 25% of the evaluators to each layer. Let assume that each evaluator must evaluate

four different entities and each entity has to be evaluated by four different evaluators. The

assignment would be best represented on Table 8:

Table 8: Assignment representation

Layer
Number of

entities

Number of

evaluators

Number of

evaluations

1 100 25 25x4=100

2 100 25 25x4=100

3 100 25 25x4=100

4 100 25 25x4=100

 33

For the first layer, we make use of the one hundred entities and randomly choose

twenty-five evaluators. In the second layer, we choose the next twenty-five evaluators

and do the same for layer three and layer four. In each layer, each evaluator will evaluate

an average of four entities and each entity has to be evaluated at least once.

For each layer, a ranking list will be generated and then used by the next layer.

This leads to having a better compatibility and comparability. Next, we will describe the

procedure for entities assignment in each layer.

4.2.2 Assignment Phase

In this phase, we propose an efficient solution for entities assignment. Having a

random assignment or letting the users to select entities to evaluate leads bad

comparability between entities. Table 9 is a representation of a bad assignment. From

entity 1 to entity 4, they share reviews in common and from entity 5 to entity 8 as well.

However, there are no reviews between these two groups of entities. For example, there

is no comparison or reviews in common between entity 1 and entity 5. Therefore, there

will be poor comparability that will result in a bad quality ranking.

Table 9: Bad assignment example

R1 R2 R3 R4

E1 1 1 - -

E2 1 1 - -

E3 1 1 - -

E4 1 1 - -

E5 - - 1 1

E6 - - 1 1

E7 - - 1 1

E8 - - 1 1

 34

In order to achieve a better comparability, we need to ensure that all entity have

the capability to be connected. To make sure that every entity is connected to each other,

the assignment of each evaluator needs to overlap and as even as possible. Figure 6, we

demonstrate how the assignment should be made.

Figure 6: Assignment phase

For example, for entities E1, E2, E3, E4, E5 and reviewers R1, R2, R3 we assign {

E1,E2,E3} to R1, { E2, E3,E4} to R2 and { E3, E4, E5} to R3 as shown in Figure 6. This

assignment ensures that more comparisons can be made between these entities.

Table 10 shows a good assignment example. In this example, all entities share

some common reviewers. In other words, all entities are connected. We then can ensure

that comparisons can be made between all entities.

 35

Table 10: Good assignment example

R1 R2 R3 R4 R5

E1 1 - - - 1

E2 1 - - - 1

E3 1 1 - - -

E4 1 1 - - -

E5 - 1 1 - -

E6 - 1 1 -

E7 - - 1 1

E8 - - 1 1

E9 - - - 1 1

E10 - - - 1 1

4.3 Example

The following example demonstrates REVA evaluation assignment process.

Suppose we have one hundred entities and one hundred evaluators. We have the

constraint that each evaluator can only evaluate ten different entities.

Layering: Let the number of layer = 3. For the first layer, we randomly select

40% of the evaluators and assign ten entities to each evaluator. In the second layer, we

select 30% from the rest of the evaluators and assign ten entities to each evaluator. For

the third layer, we select the remaining 30% of the evaluators and assign them ten entities

to evaluate.

Table 11: Layer assignment example

Evaluators

Number of

evaluations

Layer 1 40% 40x10 = 400

Layer 2 30% 30x10 = 300

Layer 3 30% 30x10 = 300

Total 100% 1000

 36

From Table 11, we can observe the evaluation distribution. There will be a total of

one thousand evaluations. Because we do not have any prior information about the

entities, we have decided to set a high percentage of evaluators to layer one so we can get

sufficient information for further layers.

Assignments: The next step is to assign entities to every evaluator. In total, each

entity would receive an average of ten evaluations. For the first layer, we randomly select

40% of the evaluators and assign ten entities to each of them. In this layer, each entity

will receive an average of four evaluations. Next, we randomly select 30% from the rest

of the evaluators. This would result in thirty evaluators. We assign ten entities to each

evaluator having three hundred evaluations. Each entity would receive an average of

three evaluations. In the second layer, the entities will be ranked based on the layer one

evaluations. This will lead to having similar quality entities close to each other. The

assignment will overlap and be as even as possible as shown in Figure 6. After the

assignment and the evaluation are performed, we will run REVA evaluation algorithm for

the layer two. The result will be an improvement of the ranking from layer one, leading it

to have similar quality entities justified and closer to the true ranking.

In layer three, we randomly select the remaining 30% of the evaluators. As in

layer two, we assign ten entities to each evaluator. We also run REVA evaluation

algorithm on this assignment and evaluation. The final result should be a ranking list that

is better approximated to the true ranking.

 37

5. IMPLEMENTATION AND DEMONSTRATION

In this section, we will discuss the technology and technical aspects in details of

REVA implementation. Both REVA evaluation and REVA evaluation assignment

frameworks were implemented on Visual Studio Ultimate 2012 using C sharp (C#) as a

programming language.

5.1 Database

Our study consists of numerous experiments and comparisons over different

datasets. Therefore, we must ensure that we are using the right tools that support large

data. The database management system used in our study is Microsoft SQL Server 2008.

This DBMS stores the different datasets and customized subsets used in our experiments.

5.2 Architecture Design

Figure 7 shows the main architecture of REVA evaluation framework. REVA

evaluation makes use of customized ratings datasets stored in MS SQL Server. The

processing data module connects to the database to extract the data, then manipulates and

organizes the data into list collections that are sent to the main algorithm.

Data Processing Data REVA algorithm

Helper
methods

Output
Statistical
Metrics

Error
distances

Figure 7: REVA evaluation design

 38

The algorithm takes an array of entities and a list of all ratings as an input

parameters and a final ranking list with its average as an output. The algorithm makes use

of different helper functions in order to make the framework modular, easy to understand

and debug.

The statistical metrics module computes the error distance between two ranking

lists. This module makes use of well-known statistical methods such as Kendall Tau

distance and its different variations: normalized, correlation, and weighted. We compare

our final ranking list from REVA evaluation and average ranking list against the true

ranking. The expected result from this module is to show that our ranking list is closer to

the true ranking.

5.3 Technology

The REVA project consists of different components such as REVA evaluation

and REVA evaluation assignment algorithms, error distance metrics functions, and demo

implementation. The REVA project was implemented in .NET Framework 4.5 using

Visual Studio 2012 as an IDE (integrated development environment). The REVA

evaluation algorithm is implemented as a class library where it can be consumed by any

other project as a reference. The REVA evaluation class library includes the following

important methods and structs:

 DirectedPair struct

 RankingList struct

 List<RankingList> evaluation(int[] EntityArray, List<int[,]> Ratings, float

constant, float threshold)

 39

The Next component of the REVA project is the error distance metrics. This is

also implemented as a class library that is consumed to measure two ranking lists. The

Error distance metrics project includes the following methods:

 Double KendallNormalized(int [] listOne, int[] listTwo) – This method computes

the Kendall tau normalized distance in the range of [0,1]

 Double WeightedKendallNormalized(IComparable[,] listOne, IComparable[,]

listTwo) – This method computes the Weighted Kendall Tau Normalized

Distance in the range of [0,1]

 Double KendallCorrelation(int [] listOne, int[] listTwo) – This method computes

the Kendall Tau correlation distance in the range of [-1,1]

5.4 Demo Implementation

We have implemented a web-based demo application for the REVA project built

in ASP.NET web forms with .NET framework 4.5. The main purpose of the demo

application is to demonstrate the advantages of REVA evaluation and REVA evaluation

assignment. For data extraction, the demo application utilizes databases stored in

Microsoft SQL Server.

Functionality: The demo application extracts a partial sample with sparse data

from a dataset. Then, REVA evaluation and average rating are computed from this

sample. The true ranking is computed from the dataset that is a representation of the

“whole” population ratings. After that, we calculate the error rate of REVA and average

rating against the true ranking using Kendall Tau distance and Weighted Kendall Tau

distance. Finally, we display all three ranking list, the error rate, and the partial sample

data. We use the same procedure for REVA evaluation assignment.

 40

Figure 8: REVA evaluation project demo

 In Figure 8, we present the REVA evaluation demo homepage. By clicking on the

“Run Sample” button, the application generates/extracts a subset/sample from a database

in Microsoft SQL Server. Then, it displays the generated data (Figure 9), REVA

evaluation, average rating and true ranking.

 41

Figure 9: REVA evaluation demo data

It also demonstrates the Kendall tau and weighted Kendall tau error rate of REVA

evaluation and average rating against the true ranking as shown in Figure 10.

Figure 10: REVA evaluation demo error rate

 42

Object relational mapping: For object relational mapping, our demo application

uses Simple.Data
1
 framework. Simple.Data is a lightweight framework that uses the

dynamic features of .NET 4 to offer an expressive, ORM stylish way of accessing and

manipulating data. This framework allows faster data manipulation by eliminating the

need to write SQL queries for data retrieval.

1
 http://simplefx.org/simpledata/docs/index.html

 43

6. EXPERIMENTS

The objective of experiments on real-life datasets is to prove the efficiency of the

proposed REVA evaluation and REVA evaluation assignment, principally by comparing

them against average rating. Then, using several case examples with different data size,

we conduct an overall comparison between both REVA approaches and average rating

against true ranking. Our results show that REVA evaluation and REVA evaluation

assignment perform better than average rating showing a closer similarity with the true

ranking. The experiments were conducted on a PC Intel i5 M 460 @ 2.53GHz CPU with

6 GB of RAM, running Windows 7 Professional.

6.1 Datasets

The datasets used in these experiments were collected from the social computing

research at the University of Minnesota (GroupLens) and Yahoo! Webscope.

Specifically, we used the “MovieLens 100k
2
” which contains ratings by users of the

movie recommendations site MovieLens. This MovieLens 100k dataset consists of

100,000 ratings (1-5) from 943 users on 1682 movies. Each reviewer has rated at least

twenty movies and each movie may be reviewed by at least one reviewer. We also used

the Yahoo! Webscope dataset ydata-ymusic-user-artist-ratings-v1_0
3
. This dataset

contains 15,400 users, 1000 songs and approximately 300,000 ratings.

2
 http://grouplens.org/datasets/movielens/

3
 http://research.yahoo.com/Academic_Relations

 44

6.2 Error Rate vs. Sample Size

As we described in previous chapters, according to the law of large numbers,

average ratings from a large sample can well approximate the true rating and true

ranking. However, obtaining an average rating from a small subset differs significantly

from the true ranking. To confirm such statement, we conduct an experiment using small

subsets from the whole MovieLens dataset. For each small subset, we calculate the

average rating, rank them and compare the similarity with the true ranking. We compare

the ranking lists using Kendall Tau distance (Kendall & Gibbons, 1990). Given two

ranked list X and Y, Kendall tau distance counts the number of pairwise disagreements

between X and Y. Suppose, we have the following two lists:

X = {A,B,C,D}

Y = {B,A,D,C}

 Rank list X contains a set of entities A, B, C, D in that particular order, whereas

rank list Y contains B, A, D, C in that particular order. Table 12 represents the number of

discordant and concordant pairs. The Kendall tau distance between rank list X and Y is

two. Usually, Kendall tau distance is normalized by the following formula, where n is the

size of X and Y:

Kendall(X,Y) =

 45

Table 12: Pairwise disagreement counting

Pair X Y Count

(A,B) A>B A<B ✗

(A,C) A>C A>C ✓

(A,D) A>D A>D ✓

(B,C) B>C B>C ✓

(B,D) B>D B>D ✓

(C,D) C>D C<D ✗

According to the formula, Kendall(X,Y) will be equal to zero if the two lists are

identical and one if X is in the reverse order of Y. Then, the normalized Kendall tau

distance lies in the range [0,1]. For this particular example, the normalized Kendall tau

distance will be 0.33.

Figure 1 represents a graph of Kendall similarity between average rating and true

ranking for different number of reviews. In this particular example, we first extract one

review/rating for each entity and take the average; then we continue increasing the

number of reviews and computing the average. For each ranking list, we compute the

Kendall tau distance against the true ranking. Our observation confirms that where there

are many reviews/ratings per entity, the error distance decreases. In other words, with a

large number of ratings, average rating gets close to the true ranking. On the other hand,

with a small number of ratings, the error distance increases.

 46

6.3 Brute Force Approach on Small Data

We have implemented a brute force rank aggregation algorithm to compute a

ranking list and compare it against REVA evaluation and average rating. This approach

should perform well and possibly better than average rating in some scenarios.

As discussed in section 2.3, rank aggregation consists of combining ranking

results of target entities from multiple ranking functions in order to generate a better one.

One straightforward solution for rank aggregation is to make use of the old-fashion brute

force approach. This approach works for small-size problems and it is not recommended

when using n > 10.

The brute force rank aggregation algorithm works as follows: First, for a given list

of entities, we calculate all possible permutation. For a given list of user’s ratings, we

rank each user’s ranking list by the average. For each permutation, we compute the

number of violations (discordant pairs) with respect to each user’s ranking list. After that,

we select the permutation ranking list with the smallest number of violations. In case we

encounter more than one permutation ranking list with the same number of violations, we

compute the Kendall tau distance for each permutation ranking list against average rating.

Then, we select the permutation ranking list with the smallest error distance.

As we mentioned previously, the brute force approach only works well on

problems with small number of entities. The time complexity for our brute force

approach takes factorial time O(n!) leading to poor performance with a larger number of

entities. For instance, we require 10! (3628800) number of permutation to evaluate a

ranking list with size ten.

 47

We conduct experiments comparing the performance of brute force aggregation

approach, average rating and REVA evaluation against true ranking. We have created ten

different subsets from Yahoo! Music dataset consisting of ten entities and ten users

having extreme sparse data with an average of twenty-five ratings.

Figure 11: Bruce force rank aggregation vs. REVA and average rating

Figure 11 represents a benchmarking between brute force rank aggregation

approach, REVA evaluation and average rating. Brute force approach performed better

than REVA evaluation and average rating in one occasion (subset 2). It also performed

the same as average rating in four occasions whereas REVA evaluation obtained smaller

error distance than the brute force approach and average rating in five occasions. Figure

12 shows the error rate averages from the ten subsets.

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

K
e

n
d

a
ll

 T
a

u
 D

is
n

ta
ce

Subsets

REVA

Average

Brute
Force

 48

Figure 12: Brute force error rate average

As mentioned before, brute force approach does not perform well with large

number of entities; therefore, it will be almost impossible to continue showing

comparisons since we are going to use larger datasets in further experiments.

6.4 Experiments for REVA Evaluation

Having demonstrating the effects of small number of ratings on average ratings,

here we conduct several experiments to study and demonstrate that REVA evaluation will

perform better than average rating on small samples where there are few ratings per target

entity.

First, we compare the quality of the rank list generated by REVA evaluation and

average rating with respect to the true ranking. Given a generated rank list from REVA

evaluation and average rating, in order to measure the outcome performance, we compute

the Kendall tau distance explained in the previous section, and weighted Kendall tau

distance against true ranking. A similarity value of zero specifies a complete agreement

0.384

0.386

0.388

0.39

0.392

0.394

0.396

0.398

REVA Average Brute force

E
rr

o
r

d
is

ta
n

ce

REVA

Average

Brute force

 49

between the two lists. Whereas a similarity value of one indicates a total disagreement

between them.

We have created twenty different subsets from MovieLens and Yahoo! Webscope

Music to observe the performance of REVA evaluation on different scenarios comparing

to average rating. First, we extract thirty random entities and ten random reviewers from

the whole MovieLens and Yahoo! Webscope Music datasets.

For each subset, we compute the ranking using REVA evaluation and average

rating and measure the error distance against the true ranking using Kendall tau distance

and weighed Kendall tau distance. Our main objective is to perform better than average

rating in most of the cases using small subsets. As we defined in the law of large

numbers, average rating well serves the purpose of approximate to true ranking using

large number of reviews. We expect that REVA evaluation performs at least the same or

close to average rating on large number of reviews. However, in reality, each reviewer

typically reviews very few entities generating an extremely sparse data making it difficult

for average rating to meet its purpose.

We obtained an error rate average of 0.31 from REVA evaluation whereas

average rating obtained 0.33 using MovieLens dataset. During the experiments on the

twenty different subsets, REVA evaluation performed eleven times better than average

rating, two times both tied, and seven times average rating performed better than REVA

evaluation.

We observed the error rate average between REVA evaluation and average rating

against true ranking using Yahoo! Webscope dataset ydata-ymusic-user-artist-ratings-

 50

v1_0. REVA evaluation obtained a smaller error rate average of 0.37 while average

rating obtained 0.38.

6.5 Experiments for REVA Evaluation Assignment

We have conducted some experiments that demonstrate the performance of

REVA evaluation assignment against random assignment using average rating and

single-layer REVA evaluation approach.

First, we have created a total number of five samples with fifty entities and fifty

evaluators each. For REVA evaluation assignment, each evaluator will evaluate ten

entities and each entity will receive an average of ten reviews. We have set three layers

with the following evaluators’ percentage: 40% for layer one, 30% for layer two and the

remaining 30% for layer three. For the first layer, we will have twenty evaluators and

each entity an average of four reviews. For the second layer, we will have fifteen

evaluators and the remaining fifteen evaluators for the third layer with an average of three

reviews for each entity. We rank the entities using REVA evaluation algorithm during the

evaluation process in each layer. We will come up with the final ranking in the third

layer.

REVA evaluation assignment will be compared against two different approaches:

Random assignment using average rating and single-layer REVA evaluation approach.

For the random assignment, we use the same idea as the bad assignment example in

Table 9. Each evaluator will evaluate ten entities, and each entity will receive ten

reviews. After the random assignment is completed, we rank the entities base on average

ratings. Then, we use the same random assignment evaluation to rank the entities using

the single-layer REVA evaluation approach.

 51

Then, we will calculate the error rate of REVA evaluation assignment, random

assignment average, and random assignment single-layer REVA approach against true

ranking using Kendall tau distance. The results show that REVA evaluation assignment

obtained 0.3781, random assignment average obtained 0.3982 and single-layer REVA

evaluation approach obtained 0.3985. We observe that REVA evaluation assignment

obtained a smaller error rate comparing with the two other approaches. Due to bad

assignment, single-layer REVA evaluation approach performed very similar to random

assignment.

6.6 Discussion

Test results show that REVA evaluation and REVA evaluation assignment indeed

performs better than average rating and brute force aggregation against true ranking.

Although an average computer was used to perform the experiments, both REVA

evaluation approaches performed relatively fast on large datasets. One limitation on these

experiments is that brute force approach performed slowly; therefore it was almost

impossible to conduct comparisons on larger datasets.

 52

7. CONCLUSION

Average ratings used in conventional evaluation suffer from evaluation bias for

sparse data. Based on the observation that comparative evaluations are more trustworthy

than isolated ratings, in this study we have investigated comparison-based evaluation,

targeting effective elimination of evaluation bias and improved approximation to true

rankings and true ratings. We have also investigated an associated topic of evaluation

assignment and proposed layered assignment, aiming at optimizing evaluation quality for

given resources. We have implemented and validated the proposed algorithms using

benchmark datasets in comparison with state-of-the-art methods. In addition, to

demonstrate the utility of our approach, a prototype system has been deployed and made

available for convenient public access.

There are many interesting directions for future work. Firstly, our proposed

evaluation and assignment algorithms can be optimized in many ways, for example, by

designing more sophisticated pair comparison, pair processing ordering, tie-breaking and

inference schemes. Secondly, it would be interesting to perform a realistic case study, for

example, conference paper evaluation, to further validate the proposed approaches.

Thirdly, in this study we have assumed all ranks in the total ranking are equally

important. In reality, there are cases where only part of the total ranking is important, or it

is only important to find a rank-based cut-off point instead of ranking all the target

entities. These preferences would require modifications and adaptations of both our

proposed evaluation and assignment approaches. Fourthly, in the evaluation assignment

problem we study, we have assumed that all evaluators have the same evaluation capacity

and match the target entities equally. Both may not be true in reality. Ideally evaluator

 53

capacity, expertise, and interests should be considered as additional constraints in the

assignment process. Last but not least, our proposed approach can possibly be extended

and used in applications beyond evaluation, such as recommendation. It is interesting to

explore these possibilities.

 54

8. BIBLIOGRAPHY

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on

Knowl. and Data Eng, 734–749.

Arkes, H. (2003). The nonuse of psychological research at two federal agencies. Psychol.

Science, 1–6.

Aslam, J., & Montague, M. (2001). Models for metasearch. Proceedings of the 24th

Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR).

Belkin, N., & Croft, W. (1992). Information filtering and information retrieval: Two sides

of the same coin? Communications of the ACM, 29-38.

Bell, R., & Koren, Y. (2007). Scalable collaborative filtering with jointly derived

neighborhood interpolation weights. In Proceedings of the 2007 Seventh IEEE

International Conference on Data Mining (ICDM).

Borda, J. (1781). Mémoire sur les élections au scrutin. Historie de l’academie royale des

sciences, Paris.

Breitenbach, M., & Grudic, G. (2005). Clustering through ranking on manifolds. In

Proceedings of the 22nd International Conference on Machine Learning (ICML).

Chaudhuri, S., & Das, G. (2003). Automated ranking of database query result. In

Proceedings of the 1st Biennial Conference on Innovative Data Systems Research

(CIDR).

 55

Chaudhuri, S., Das, G., Hristidis, V., & Weikum, G. (2004). Probabilistic ranking of

database query results. In Proceedings of the 30th International Conference on

Very Large Data Bases (VLDB).

Chen, M., & Singh, J. (2001). Computing and using reputations for internet ratings. In

Proceedings of the 3rd ACM Conference on Electronic Commerce (EC).

Chen, W., Jianhua, X., Huai, L., Yue, W., Ming, Z., Eric, H., & Robert, C. (2010).

Knowledge-guided gene ranking by coordinative component analysis. BMC

Bioinform.

Collins, M. (2005). Discriminative reranking for natural language parsing. Comput.

Linguist, 25–70.

Conry, D., Koren, Y., & Ramakrishnan, N. (2009). Recommender systems for the

conference paper assignment problem. In Proceedings of the 3rd ACM

Conference on Recommender Systems (RecSys).

Diaconis, P. (1988). Group representations in probability and statistics. In Institute of

Mathematical Statistics Lecture Notes–Monograph Series, 11.

Dumais, S., & Nielsen, J. (1992). Automating the assignment of submitted manuscripts to

reviewers. In Proceedings of the 15th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR).

Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for

the web. In Proceedings of the 10th International World Wide Web Conference

(WWW).

Fagin, R., Kumar, R., & Sivakumar, D. (2003). Comparing top k lists. In Proceedings of

the ACM-SIAM Symposium on Discrete Algorithms (SODA).

 56

Fagin, R., Kumar, R., & Sivakumar, D. (2003). Efficient similarity search and

classification via rank aggregation. In Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data (SIGMOD).

Ferndandez, M., Vallet, D., & Castells, P. (2006). Probabilistic score normalization for

rank aggregation. In Proceedings of the 28th European Conference on Advances

in Information Retrieval (ECIR).

Furlanello, C., Serafini, M., Merler, S., & Jurman, G. (2010). Entropy-based gene ranking

without selection bias for the predictive classification of microarray data. BMC

Bioinform, 54.

Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., & Brinker, K. (2008). Multilabel

classification via calibrated label ranking. Mach. Learn, 73(2):133?153.

Geller, J. (1997). Challenge: How ijcai 1999 can prove the value of ai by using ai. In

Proceedings of the 15th International Joint Conference on Artificial Intelligence

(IJCAI).

Goldsmith, J., & Sloan, R. (2007). The ai conference paper assignment problem. In

Proceedings of the AAAI Workshop on Preference Handling in AI.

Grimmett, G., & Stirzaker, D. (1982). Probability and Random processes. Oxford

University Press.

Gui, G., & Scott, P. (2007). Ranking reusability of software components using coupling

metrics. J. Syst. Softw, 1450–1459.

Herlocker, J., Konstan, J., & Riedl, J. (2000). Explaining collaborative filtering

recommendations. In Proceedings of the 2000 ACM Conference on Computer

Supported Cooperative Work (CSCW).

 57

Herlocker, J., Konstan, J., & Riedl, J. (2002). An empirical analysis of design choices in

neighborhood-based collaborative filtering algorithms. Inf. Retr, 287–310.

Hettich, S., & Pazzani, M. (2006). Mining for proposal reviewers: Lessons learned at the

national science foundation. In Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD) .

Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., & Kusumoto, S.

(2003). Component rank: Relative significance rank for software component

search. In Proceedings of the 25th International Conference on Software

Engineering (ICSE).

Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., & Kusumoto, S. (2005).

Ranking significance of software components based on use relations. IEEE Trans.

Software Eng, 213–225.

Jin, R., & Si, L. (2004). A study of methods for normalizing user ratings in collaborative

filtering. In Proceedings of the 27th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR).

Jin, R., Si, L., Zhai, C., & Callan, J. (2003). Collaborative filtering with decoupled

models for preferences and ratings. In Proceedings of the Twelfth International

Conference on Information and Knowledge Management (CIKM).

jun Zeng, H., cai He, Q., Chen, Z., ying Ma, W., & Ma, J. (2004). Learning to cluster

web search results. In Proceedings of the 27th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR).

 58

Kahng, M., Lee, S., & goo Lee, S. (2011). Ranking in context-aware recommender

systems. In Proceedings of the 20th International Conference on World Wide Web

(WWW).

Kendall, M., & Gibbons, J. (1990). Rank Correlation Methods. Edward Arnold, London,

UK.

Kleinberg, J. (1999). Authoritative sources in a hyperlinked environment. J. ACM,

604?632.

Klementiev, A., Roth, D., & Small, K. (2008). Unsupervised rank aggregation with

distance-based models. In Proceedings of the 25th International Conference on

Machine Learning (ICML).

Kumar, R., & Vassilvitskii, S. (2010). Generalized distances between rankings. In

Proceedings of the 19th International World Wide Web Conference (WWW).

Lauw, H., Lim, E.-P., & Wang, K. (2006). Bias and controversy: Beyond the statistical

deviation. In Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD).

Lauw, H., Lim, E.-P., & Wang, K. (2007). Summarizing review scores of "unequal"

reviewers. In Proceedings of the 2007 SIAM International Conference on Data

Mining (SDM).

Lauw, H., Lim, E.-P., & Wang, K. (2012). Quality and leniency in online collaborative

rating systems. ACM Trans. Web, 4:1–4:27.

Lemire, D. (2005). Scale and translation invariant collaborative filtering systems. Inf.

Retr, 129–150.

 59

Liu, N., & Yang, Q. (2008). Eigenrank: A ranking-oriented approach to collaborative

filtering. In Proceedings of the 31st Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR).

Liu, N., Zhao, M., & Yang, Q. (2009). Probabilistic latent preference analysis for

collaborative filtering. In Proceedings of the 18th ACM conference on

Information and Knowledge Management (CIKM).

Liu, Q., Yang, J., & Xu, Y. (2010). In-silico prediction of blood secretory human proteins

using ranking algorithm. BMC Bioinform, 250.

Liu, Y.-T., Liu, T.-Y., Qin, T., Ma, Z.-M., & Li, H. (2007). Supervised rank aggregation.

In Proceedings of the 16th International World Wide Web Conference (WWW).

Mallows, C. (1957). Non-null ranking models. Biometrika, 44:114-130.

Mamoulis, N., Yiu, M., Cheng, K., & Cheung, D. (2007). Efficient top-k aggregation of

ranked inputs. ACM Trans. Database Syst., 32(3):1168.

Marden, J. (1995). Analyzing and Modeling Rank Data. Chapman & Hall, New York.

Marsh, H., & Roche, L. (1997). Making students’ evalutions of teaching effectiveness

effective. American Psychologist, 52(11):1187–1197.

Mimno, D., & Mccallum, A. (2007). Expertise modeling for matching papers with

reviewers. In Proceedings of the 13th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD).

Ng, V. (2005). Machine learning for coreference resolution: From local classification to

global ranking. In Proceedings of the 43rd Annual Meeting of the Asssociation for

Computational Linguistics (ACL).

 60

Ng, V. (2005). Supervised ranking for pronoun resolution: Some recent improvements. In

Proceedings of the 20th National Conference on Artificial Intelligence (AAAI).

Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The pagerank citation ranking:

Bringing order to the web. In Proceedings of the 7th International World Wide

Web Conference (WWW).

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: An

open architecture for collaborative filtering of netnews. In Proceedings of the

1994 ACM Conference on Computer Supported Cooperative Work (CSCW).

Riggs, T., & Wilensky, R. (2001). An algorithm for automated rating of reviewers. In

Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries

(JCDL).

Robertson, S., Walker, S., Beaulieu, M., Gatford, M., & Payne, A. (1995). Okapi at trec-

4. In Proceedings of the 4th Text Retrieval Conference (TREC).

Saranli, A., & Demirekler, M. (2001). A statistical unified framework for rank-based

multiple classifier decision combination. Patt. Recog., 34(4):865–884.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of dimensionality

reduction in recommender systems: A case study. In WebKDD Workshop at the

ACM SIGKKD.

Shen, J., Lin, Y., Xue, G.-R., Zhu, F.-D., & Yao, A.-G. (2006). Irfcf: Iterative rating

filling collaborative filtering algorithm. In Proceedings of the 8th Asia-Pacific

Web Conference on Frontiers of WWW Research and Development (APWeb).

 61

Shi, Y., Larson, M., & Hanjalic, A. (2010). List-wise learning to rank with matrix

factorization for collaborative filtering. In Proceedings of the 4th ACM

conference on Recommender systems (RecSys).

Su, X., & Khoshgoftaar, T. (2009). A survey of collaborative filtering techniques.

Advances in Artificial Intelligence.

Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., & Wu, T. (2009). Rankclus: Integrating

clustering with ranking for heterogeneous information network analysis. In

Proceedings of the 12th International Conference on Extending Database

Technology (EDBT).

Sun, Y., Yu, Y., & Han, J. (2009). Ranking-based clustering of heterogeneous

information networks with star network schema. In Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD).

Traupman, J., & Wilensky, R. (2006). Collaborative quality filtering: Establishing

consensus or recovering ground truth? In Proceedings of the 6th International

Conference on Knowledge Discovery on the Web: Advances in Web Mining and

Web Usage Analysis (WebKDD).

Walpole, R., Myers, R., Myers, S., & Ye, K. (2002). Essentials of Probability & Statistics

for Engineers & Scientists. Prentice Hall, NJ.

Wang, F., Chen, B., & Miao, Z. (2008). A survey on reviewer assignment problem. In

Proceedings of the 21st International Conference on Industrial, Engineering and

Other Applications of Applied Intelligent Systems (IEA/AIE).

 62

Wang, K., & Su, M. (2002). Item selection by “hub-authority” profit ranking. In

Proceedings of the 8th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD).

Weimer, M., Karatzoglou, A., Le, Q., & Smola, A. (2007). Cofirank: Maximum margin

matrix factorization for collaborative ranking. In Proceedings of the 21st Annual

Conference on Neural Information Processing Systems (NIPS).

