Dimensions of Innovative Teaching: A Survey of Public Administration Faculty

Caitlin M. R. MacIntyre

An Applied Research Project
cmm218@txstate.edu

TEXAS STATE UNIVERSITY
The rising STAR of Texas

Submitted to the Department of Political Science
Texas State University
In Partial Fulfillment for the Requirements for the Degree of
Masters of Public Administration
Spring 2015

Patricia Shields, Ph.D.

William DeSoto, Ph.D.

Ismael Amaya, MPA
Abstract

Purpose

The purpose of this research is to describe the dimensions of innovative teaching in Master of Public Administration (MPA) programs. To separate itself from the learning styles of undergraduate education, graduate programs must take students into the next level of the cognitive domain because students entering public service careers need information and skills. This higher level of learning can be achieved by using appropriate innovative techniques. This research uses the literature to develop a conceptual framework that organizes dimensions of innovative teaching into the following categories: class activities, course projects, instructor characteristics, and environment.

Method

This research uses a survey, developed from the conceptual framework, to describe the extent to which MPA faculty use and value techniques identified by the literature. The survey was distributed to leadership from the top 170 MPA programs in the United States. These points of contact were used to distribute the survey to faculty members. Total of 217 faculty responded.

Findings

In general, faculty frequently used the innovative techniques that they considered important. Highly endorsed techniques included skill building, collaborative learning, and instructor characteristics such as encouragement and facilitation. Techniques with low endorsement included role play and Blended Learning Distance Education (BLDE). Respondents alluded to the possibility that not all techniques are applicable to all subjects. Additionally, respondents questioned the state of “innovation.”
About the Author

Caitlin MacIntyre was born and raised in Aurora, Colorado. She is a graduate student at Texas State University. She received a B.A. in Political Science with a minor in Sociology from the University of Northern Colorado in December of 2012. Caitlin is currently a grant writing intern at Haven for Hope, a nonprofit organization that provides supportive services for people experiencing homelessness. She expects to complete her Master's Degree of Public Administration at Texas State University in December of 2015.

Contact: caitiemae@gmail.com
Table of Contents

Abstract .. ii
About the Author ... iii
Table of Contents .. iv
List of Tables .. vi
List of Figures ... vii
Chapter I: Introduction ... 1
 Innovation in Public Administration Education ... 3
 Purpose Statement ... 5
 Preview of Chapters .. 5
Chapter II: Conceptual Framework ... 6
 Chapter Purpose .. 6
 Conceptual Framework ... 6
 Class Activities .. 7
 i. Role Play ... 8
 ii. Guest Speakers ... 9
 iii. Collaborative Learning and Student Interaction ... 10
 Course Projects ... 11
 i. Service Learning, Action Learning, and Experiential Techniques 11
 ii. Problem-based Learning ... 12
 iii. Skill Building .. 14
 Instructor Characteristics .. 15
 i. Facilitation .. 15
 ii. Passion ... 16
 iii. Personality ... 16
 Environment .. 17
 i. Blended Learning Distance Education .. 17
 ii. Technology .. 18
 Summary of Conceptual Framework ... 21
Chapter III: Methodology .. 23
 Chapter Purpose .. 24
 Research Strategy .. 24
 Operationalization of Conceptual Framework ... 24
 Survey Research .. 27
 Program Choice ... 28
 Multi-faceted Sampling Procedures ... 29
 Limitations .. 30
 Human Subject Protection .. 31
Chapter Summary ... 32
Chapter IV: Results ... 33
 Chapter Purpose .. 33
 Sample Characteristics ... 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic Plan</td>
<td>35</td>
</tr>
<tr>
<td>Findings</td>
<td>36</td>
</tr>
<tr>
<td>Class Activities</td>
<td>36</td>
</tr>
<tr>
<td>Course Projects</td>
<td>37</td>
</tr>
<tr>
<td>Instructor Characteristics</td>
<td>38</td>
</tr>
<tr>
<td>Environment</td>
<td>39</td>
</tr>
<tr>
<td>Relative Importance</td>
<td>41</td>
</tr>
<tr>
<td>Open-ended Question</td>
<td>43</td>
</tr>
<tr>
<td>Chapter Summary</td>
<td>44</td>
</tr>
<tr>
<td>Chapter V: Conclusion</td>
<td>45</td>
</tr>
<tr>
<td>Chapter Purpose</td>
<td>45</td>
</tr>
<tr>
<td>Research Summary</td>
<td>45</td>
</tr>
<tr>
<td>Summary of Findings</td>
<td>46</td>
</tr>
<tr>
<td>Future Research</td>
<td>50</td>
</tr>
<tr>
<td>Bibliography</td>
<td>49</td>
</tr>
<tr>
<td>Appendices</td>
<td>59</td>
</tr>
</tbody>
</table>
List of Tables

Table 2.1: Conceptual Framework..22
Table 3.1: Operationalization of the Conceptual Framework ...27
Table 4.1: Respondent Demographics ..34
Table 4.2: Percent of Respondents Rating Technique as “Very” or “Extremely” Important...........42
Table 4.3: Cross Tabulation of Importance and Frequency of Use – Role Play43
Table 5.1 Summary of Findings...48
List of Figures

Figure 4.1: Rating and Usage Scale ... 36
Figure 4.2: Importance of Class Activities .. 37
Figure 4.3: Importance of Course Projects ... 38
Figure 4.4: Importance of Instructor Characteristics 39
Figure 4.5: Importance of Environment .. 40
Chapter I: Introduction

Broadly, public administration refers to decision making in the public and nonprofit sector. More specifically, individuals in public administration are tasked with “organizational behavior, management, personnel administration, budgeting, ethics, program planning, and evaluation” (Watson 2002, x). Professionals in public administration organize the day-to-day operations of public agencies including government and nonprofit organizations at the local, state, and federal level.

Famously, Woodrow Wilson (1887) wrote that administration is “government in action” (664) (italics added). The study of public administration in the United States is thought to begin with that same essay: “The Study of Administration.” This piece is considered seminal because Wilson argued that scholars and practitioners in public administration had previously placed too much focus on political institutions at the expense of administrative questions (Denhardt, Denhardt, and Blanc 2014). Such questions—like, ‘how does government actually operate?’—have become significant to the study of political science and have defined the field of public administration. Recognizing the need to train professionals to carry out governmental functions consistent with democratic values, public administration education has moved beyond the study of political institutions and now encompasses managerial skills.

A Master of Public Administration (MPA) degree is a professional degree for a career in public service. Other similar degrees such as Master of Public Policy (MPP) and Master of Public Affairs (MPAff) often converge with one another. According to an authority in the field, Network of Schools of Public Policy, Affairs, and Administration (NASPAA), public service degree curriculums are designed to “aid students in developing the skills and techniques used by
leaders and managers to implement policies, projects, and programs that resolve important societal problems” (NASPAA FAQ). Program emphases are wide-ranging and can include any number of public policy areas like policy analysis, healthcare, environment, nonprofit, economics, and education, among many others. Although program emphases may vary, the common aim of these degrees is to support a career that serves the public.

Graduates of MPA programs tend to work for government agencies or nonprofit organizations. They frequently fill the roles of program managers, staff managers, and policy analysts (Denhardt, Denhardt, and Blanc 2014, 16). Careers in the public sector place individuals in a complex decision-making arena, where public servants are constantly balancing efficiency and responsiveness. Put another way, an administrator's role requires these professionals to operate with “one eye toward managerial effectiveness and the other toward the desires and demands of the public” (Denhardt, Denhardt, and Blanc 2014, 9).

Consequently, Public Administration graduates must enter the field equipped with the necessary knowledge and skills to make informed decisions. Importantly, they must be able to make these decisions within a political context which involves consideration of “a host of interrelated political, ethical, legal, and other factors” (Watson 2002, ix). In the end, MPA programs should be preparing students to be better “decision-makers and managers” (Johnson 2010, 5). What is required of professionals in public administration is an education that develops and encourages critical thinking. In order to do so, MPA programs must take learning into a higher cognitive domain.
Innovation in Public Administration Education

Using Bloom’s (1956) Taxonomy of the Cognitive Domain, Shields and Rangarajan (2013) illustrate the differences between what is required of undergraduate and graduate students. The two least complex dimensions of the cognitive domain, which are likened to the undergraduate level, are remembering which entails “retrieving, recalling, and recognizing” and understanding which involves comprehending and summarizing (Shields and Rangarajan 2013, 12). Traditional modalities of teaching frequently require only these first two dimensions of the domain because they focus on lecture and examination. In this environment, students are uninvolved in the learning process, merely receiving information and using their short-term memory to regurgitate course material. This system is detrimental to both students, who ultimately retain very little knowledge, and their prospective employers who need employees with applicable skills (Lucas 2013).

The traditional teaching methodology of lecture and exams inhibits the development of creativity and critical thinking skills, which are crucial at the graduate level. Graduate students must develop their critical thinking skills and progress further than the first level of the cognitive domain. Correspondingly, graduate instruction should also move beyond traditional modalities of teaching. In order to deliver valuable professionals to the field of public administration, graduate programs must use teaching methods that emphasize thinking skills beyond remembering and understanding (Lucas 2013). There are many stakeholders in graduate education: the students who expect to gain not only knowledge but professional skills; employers who need applicants

1 For additional information on the importance of developing professional skills and competencies see Texas State University Applied Research Projects authored by Palacios (2003), Faulk (2009), and Moore (2009).
that know how to ‘do’; and faculty who are expected to facilitate these expectations of student performance in the ‘real world.’

While there are a number of approaches to innovative teaching\(^2\) these approaches have not been ‘sorted’ or categorized. Categorization is a valuable tool that provides analytic tools “for examining the big picture by breaking it into component parts” (Shields and Rangarajan 2013, 71). Principally, categorization requires the researcher to “find a term or set of words that capture a quality” that succinctly describes what the elements in each category have in common (Shields and Rangarajan 2013, 73). This type of research creates a baseline of information that future researchers can build on.

By using existing literature and a conceptual framework as conveyed by Shields and Rangarajan (2013)\(^3\), this research develops a taxonomy of the various dimensions of innovative teaching. In addition to gathering the literature in one place, this research highlights the opinions of MPA faculty across the United States. This research provides MPA faculty with a single, comprehensive document that details these components of innovative teaching, which can then be used to modify curriculum and act as a baseline for future research. Another goal of this research is to utilize the organization and collection of information regarding teaching techniques to assess the degree of innovation in MPA instruction. As the literature provides a starting point for assessing which techniques are considered innovative today, the taxonomy provides structure to develop a survey which is used to investigate the attitudes and behaviors of faculty members.

\(^2\) See Albers-Miller, Straughan, and Prenshaw 2001; Lynch 2001; Jaskyte, Taylor, and Smariga 2009

\(^3\) See also Shields, 1998; Shields & Tajalli, 2006
Purpose Statement

The purpose of this Applied Research Project is to describe the dimensions of innovative teaching with a focus on techniques that depart from the traditional lecture and test modality. This research is comprised of three steps. First, this research uses the literature to develop a conceptual framework that organizes various dimensions of innovative teaching. Second, it describes the extent to which MPA faculty use and value these techniques. Lastly, the subsequent data are used to provide recommendations for the field of Public Administration. This research is designed to pave the way for future researchers to evaluate and modify MPA programs by developing baseline approaches, framework, and data for innovative teaching techniques.

Preview of Chapters

This ARP is organized into five distinct sections. The second chapter begins with a review of literature, which describes various teaching techniques that have been considered innovative. The chapter then uses this literature review to organize the teaching techniques into a conceptual framework. The third chapter operationalizes the conceptual framework into questionnaire items and discusses methodology for the research. The fourth chapter presents results from the survey. The final chapter provides conclusions and recommendations for future research.
Chapter II: Conceptual Framework

Chapter Purpose

The purpose of this chapter is to highlight and describe elements of innovative teaching as prescribed by the literature. An extensive review of the literature on teaching techniques within MPA programs is discussed. The literature is categorized to develop a framework for the research.

Conceptual Framework

The purpose of this research is Description and the conceptual framework is Categories as characterized by Shields and Rangarajan in *A Playbook for Research Methods* (2013). The descriptive categories framework is developed by breaking the “big picture” down into its component parts (Shields and Rangarajan 2013, 71). In order to better understand innovative teaching, the various dimensions are explicitly named and sorted into identifying categories. The organization of these elements creates a pathway for the research.

Existing literature suggests that innovation in teaching can be divided into four basic Descriptive Categories: 1) class activities, 2) course projects, 3) instructor, and 4) environment. These categories are modeled on the categories of creativity put forth by Denise de Souza Fleith in her article “Perceptions of Creativity in the Classroom” (Fleith 2000, 148). Fleith's categories of classroom creativity (person, product, process, and environment) offered a fruitful starting point. They were, however, limited in coverage and needed modification for the purposes of this study.
The concept “process” in Fleith's (2000) piece is defined by the various components' ability to produce new ideas, make different combinations, or add to existing knowledge (148). “Process” incorporates the methods and techniques used by instructors. These techniques and methods can occur during the relatively short time allotted for class periods or over the course of a semester. Thus, the “process” category is broken down into two categories which are established to differentiate between the short-term and the long-term: Class Activities and Course Projects.

The concept “person” from Fleith (2000) is used to describe the characteristics, qualities, and personality of both instructors and students. In this study however, “person” is used only as a representation of instructors. Fleith's remaining category, “product”, labels actual results of innovative teaching and their value to society. Because this study emphasizes modes of innovative teaching, as opposed to results, “product” is excluded here. A discussion of the supporting literature for the five descriptive categories follows.

Class Activities

Broadly, the category Class Activities refers to the assignments, activities, and interactions that occur during class time. The central theme of these activities is making learning active instead of passive. Traditional pedagogical methods do not involve students in the learning process and instead treat students as passive recipients of knowledge (White 2000). Making the learning process active can be accomplished in many ways. Here we discuss the use of role play, guest speakers, collaborative learning, and student interaction as elements of active learning.
i. Role Play

The activity role play requires some level of 'acting' from students, who must assume the role of an individual and behave in ways they predict that individual might behave. Although some instructors value the use of predetermined scripts (Griggs 2005) and others prefer improvisation (Shapiro and Leopold 2012), the goals of role play remain the same. Primarily, role play teaches students to step into someone else’s shoes in order to understand the “motivations, behavioral constraints, resources, and interactions among institutional actors” when addressing a problem (Shapiro and Leopold 2012).

Requiring students to voice perspectives that are not necessarily their own, encourages empathy towards other viewpoints and may cause students to reflect on their own work experiences. Griggs (2005) had students act out multiple variations of a manager's response to a problem, and then discuss why management would respond in certain ways and how their actions would affect employee responses. Griggs indicates that class discussions were “lively” during and after role play because each student had unique work experiences which influenced how they viewed the scenario at hand (Griggs 2005, 62).

Additionally, Matulich et al. (2008) argues that role-playing scenarios provide “kinesthetic experiences” which students feel provides a more practical and meaningful learning experience (Matulich, Papp, and Haytko 2008, 4). The role play technique is used with the hope that students are exposed to more tangible experiences, which they can replicate in their professional lives. This is particularly important for public administration students, who are

4 Additional sources used in this section include Goodman (2008); Lynch (2001); White (2000); Bryer and Seigler (2012); Howard, McClannon, and Wallace (2014).
entering a public service field that is dependent on person-to-person interactions. These role play interactions provide students with practice in communication.

ii. Guest Speakers

The use of guest speakers in graduate education can be extremely useful in building and communicating theory to students. The presence of professionals brings what Fawcett and Fawcett (2011) call a powerful “second witness” point of view that students can relate to. Theories, concepts, and tools taught in class (Fawcett and Fawcett 2011, 288). Students may trust their professors to be knowledgeable on content, but feel that professionals from the field have more credibility when it comes to application.

Fawcett and Fawcett (2011) assert that the importance of guest speakers comes from the power of storytelling. In the same way that the plot of a book or movie can be easily recalled, a guest speaker's story is a more compelling (and memorable) way of conveying the intricacies and nuances of the professional world. Storytelling is effective for student learning because it 1) imparts a large amount of information in a small amount of time, 2) is personal and relatable, 3) provides a framework to make meaning of class concepts, and 4) shares diverse perspectives (Fawcett and Fawcett 2011, 288).

Inviting civic leaders, business owners, and various other community members as guest speakers is a great way to bring students in contact with the field. Discussing work stories with real professionals can be encouraging and enlightening for students (Nishishiba, Nelson, and Shinn 2005, 276). For students without work experience, a guest speaker can provide them with insight into experiences they may have to encounter in their future careers; for students who are

5 Additional sources used in this section include Beaumont (2005); Irvin (2005); Tanner and Whalen (2013); Mergel (2012).
already in the field, the guest speakers' perspectives can give them new approaches to problem-solving in their own organization.

iii. Collaborative Learning and Student Interaction

Students’ interpersonal skills are invaluable, particularly in the field of public administration. Yet collaboration and interaction among students appears to be an overlooked element of learning. It has been reported that state and community agencies believe that graduates entering the workforce have strong technical skills but cannot work together with other professionals (Gronski and Pigg 2000). In a field that is centered on civic engagement, these future public servants must learn to engage others respectively, negotiate, compromise, relate to others, and work as a team (Beaumont 2005, 296).

On its own, group projects may not be viewed as innovative or important in student learning. In fact, some assert that the one-time nature of group projects is a high-stake, high-stress situation for students that is ultimately harmful (Kirlin 2005, 311). However, ongoing collaboration over the course of the semester provides a much more valuable learning experience. Collaborative learning helps students learn group dynamics and forces them to practice self-directed learning (Spoormans and Vanhoonacker 2005). Regularly participating in group discussions and projects can also help students recognize the value of diverse skills. The exchange of personal life and work experiences shows students how different perspectives can be used to create solutions.

6 Additional sources used in this section Goodman (2008); Lynch (2001); Matulich, Papp, and Haytko (2008); White (2000); Morse et al. (2005); Mergel (2012); Bryer and Seigler (2012); Shellman and Turan (2006); Billet (2009); Lehmann et al. (2008); Shapiro and Leopold (2012); Howard, McClannon, and Wallace (2014).
Course Projects

Akin to the *Class Activities* concept, Course Projects aim to make student learning active instead of passive. These activities, however, occur throughout the semester rather than during a specific class period. Importantly, course projects focus on developing the abilities of students. Various types of course projects that were found in the literature include service learning, problem-based learning, and skill building.

i. Service Learning, Action Learning, and Experiential Techniques\(^7\)

Service Learning (AKA action learning or experiential techniques) occurs when students, through a course project, interact with professionals and organizations within the community to achieve real objectives. Projects for service learning could involve anything from individual students creating budgets for local nonprofits, to an entire class collecting data for a local government agency. A striking example from the University of Oregon involves a semester-long grant writing project which is sponsored by a local financial services firm (Irvin 2005). The firm donates $5,000 to the class who must then choose a local organization to grant the money to. The class must work in groups to visit local organizations, research their various programs, write proposals, and present their findings to both the class and the financial firm that donated the money. The project incorporates course knowledge with work experience, and ultimately ends with a “real world” output.

Projects with outside agencies, like the one described above, help students to relate course material and resources to actual problems they may encounter in their careers. Hands-on

\(^7\) Additional sources used in this section include Matulich, Papp, and Haytko (2008); Tanner and Whalen (2013); White (2000); Albers-Miller, Straughan, and Prenshaw (2001); Mergel (2012); Nishishiba, Nelson, and Shinn (2005); Billet (2009); Lucas, Sherman, and Fischer (2013); Rasul et al. (2012); Spoormans and Vanhoonacker (2005)
work with organizations in the community “provides an understanding of the social, cultural and political implications of planning and management within the [field]” (Lehmann et al. 2008, 288). The learning that occurs in class may introduce problems and people from the workplace, but their representation in lecture does not compare to the tangible experiences students gain from service learning.

Although the process and purpose is familiar, service learning should not be seen as an internship. In fact, Lu and Lambright (2010) assert that service learning may serve best as an alternative to traditional internships (123). Similarly, Gronski and Pigg (2000) write that these types of projects (and the skills expected to be gained from them) should be developed early in a students’ career, instead of being an end-of-program requirement like most internships (784). The benefits of internships are lost if students go directly from the internship into the workplace—the integration of their education in service learning is paramount to making connections between course material and application.

In addition to having a positive effect on student learning, service learning can be beneficial to the program, the university, and the community. Mutually beneficial relationships between faculty and local organizations can lead to future projects for the program and a good reputation for the university.

ii. Problem-based Learning

Problem-based learning (also referred to in the literature as project-based learning and problem-oriented learning) centers on the belief that the starting point for learning should not begin with the presentation of answers; instead, it should begin with a problem the learner wishes

8 Additional sources used in this section include Lynch (2001); Tanner and Whalen (2013); Bryer and Seigler (2012); Lehmann et al. (2008); Lucas, Sherman, and Fischer (2013); Howard, McClannon, and Wallace (2014)
to solve (Spoormans and Vanhoonacker 2005, 97). Traditional pedagogy gives students the questions and the answers at the same time, usually in the form of a textbook or lecture. This approach hinders the development of competencies that students will need beyond the classroom, particularly, self-directed learning.

Furthermore, studying theories and practices is not enough—students need to be able to apply course content to scenarios which are realistic and relatable. Unlike case studies, problem-based learning scenarios are ill-structured and ambiguous, which forces students to think critically, work cooperatively, and effectively communicate with their classmates in order to develop practical solutions (Goodman 2008, 148). Traditional case studies often involve textbook excerpts with chapter questions for students to answer. The cases give limited information and can be out-of-date. In contrast, problem-based learning requires students to problem-solve for current issues, without predetermined questions. This approach allows students to find additional relevant information and consider the bigger picture, instead of focusing on answering fixed, cut-and-dry questions (Goodman 2008, 256).

Forcing students to create their own solutions helps build competencies like communication, critical thinking, reasoned decision making, and self-evaluation (Spoormans and Vanhoonacker 2005). Giving students the answers to questions may help them pass exams but is disadvantageous in learning how to problem-solve. Students should leave their master's program with more than conceptual knowledge; they should leave with the ability to think critically and problem-solve.
iii. Skill Building

Underlying many of the previously discussed innovative processes is the act of skill building, an often undervalued tool in academia. For public affairs students who plan on entering a professional field that relies heavily on the ability to communicate and problem-solve, developing skillsets is paramount. Literature on skill building expresses concerns that current pedagogy may “leave students incapable of or unprepared for taking action in the world beyond the campus gates [italics added]” (Beaumont 2005, 292). Lynch (2001) also discusses the importance of skill building, finding that faculty is increasingly moving away from traditional academia and toward a practical-oriented model of teaching. Developing transferable skills that students take with them into their professional careers requires teaching techniques that incorporate practical experiences into an otherwise theoretical curriculum (Lynch 2001).

The techniques described in Class Activities and Course Projects are different from traditional teaching because they require students to interact with the course material. Engaging with material enables students to become critical thinkers—instead of memorizing information for examinations, innovative teaching processes make students identify, describe, analyze, explain, and synthesize (Kirlin 2005, 308). These techniques can be described as promoting “deep” learning instead of “surface” learning (Lynch 2001, 187). Traditional lecture and examination results in a superficial and short-term understanding of course material; but deep learning takes information beyond the classroom. Consequently, students are able to enter the workforce knowing how to apply, not only what they have learned in the classroom, but also what they have experienced to real world situations.

9 Additional sources used in this section include Irvin (2005); Matulich, Papp, and Haytko (2008); Tanner and Whalen (2013); Mergel (2012); Billet (2009); Gronski and Pigg (2000); Lu and Lambrigh (2010); Lucas, Sherman, and Fischer (2013); Rasul et al. (2012).
Instructor Characteristics

Michaela Driver (2001) suggests that perception of organizational culture is influential on the behaviors and creativity of its members. Organizational culture in the classroom is determined by the instructor who ultimately 'sets the tone' for the semester. Appropriately, it can be said that the characteristics of instructors determine the behaviors and creativity of students. If MPA programs want to produce innovative professionals, instructors must foster creativity in their classrooms. A review of the literature suggests that the most important instructor characteristics for helping students grow are facilitation, passion, flexibility, encouragement, empathy, and openness.

i. Facilitation

The instructor's role in learning can be that of a lecturer or of a facilitator. Conventional learning, or “supply-side teaching,” is based on an instructors' command of knowledge (Spoormans and Vanhoonacker 2005, 97). This type of education places the burden of learning on the instructor as a content expert, instead of the student as an active learner. Traditionally, higher education has valued the lecturer role; however, providing time for facilitation can be instrumental in student learning.

The traditional lecturer role of an instructor as someone who 'gives out' information can discourage students from looking at subjects in new ways and stifles student input. Facilitation means that the instructor is not just “transferring knowledge” to the students, they are guiding the learning process (Lehmann et al. 2008, 286). If the instructor is a facilitator, they can generate

10 Additional sources used in this section include Goodman (2008); Irvin (2005); Lucas, Sherman, and Fischer (2013).
and guide discussion instead of only controlling it. This contributes to student empowerment by allowing students to partially determine the course of conversation. Facilitation reflects the view that students should not be passive receivers of knowledge as is common in traditional pedagogy (White 2000).

ii. Passion

Bryer and Siegler (2012) assert that instructors should not separate their interests from their teaching. As a way to engage students and build trust, professors should incorporate their passions and personal interests into course material. Instead of being general “subject-matter experts,” instructors should discuss theories and concepts through the lens of their areas of interest so that material is more interesting and applicable to students (Bryer and Seigler 2012, 433). Vague discussions of course content can make the real world seem theoretical to students; however, inclusion of passions makes course material less vague and more applicable.

iii. Personality

The remaining instructor characteristics pulled from the literature better describe personality than teaching style. Flexibility, encouragement, empathy, and openness are characteristics that build a working relationship between instructor and student. Having a relationship with students enables instructors to recognize individual needs and develop processes that improve student learning (Jaskyte, Taylor, and Smariga 2009). In a 2009 study, when students were asked to free-list descriptors of innovative teaching, the personality traits of instructors were consistently ranked as the most important component (Jaskyte, Taylor, and Smariga 2009, 113).

11 Additional sources used in this section include Jaskyte, Taylor, and Smariga (2009).
12 Additional sources used in this section include Jaskyte, Taylor, and Smariga (2009); Driver (2001); Fleith (2000); Lynch (2001)
Environment

Although environment can certainly refer to the physical nature of classrooms, investigation of innovative teaching literature indicates that increasingly, environment is describing the lack of physical classrooms. Discussion of the learning environment no longer refers exclusively to the physical tools and personal interactions in the confines of a classroom. Learning environments are changing as online courses become more frequent—technology is being used as an accompaniment to traditional lectures and as a classroom in and of itself. This is particularly important for master’s students who represent a wide range of age groups and who are in different stages in their professional careers. The use of technology in higher education gives students the flexibility to manage school, homework, family, and professional obligations (Bryer and Seigler 2012).

i. Blended Learning Distance Education

A striking method of innovation in classroom environment is combining face-to-face learning with distance learning, a method known as Blended-learning Distance Education (BLDE). Traditional pedagogy consists of physical classrooms where students and instructors meet face-to-face for a predetermined amount of time. While this is still the most common classroom environment, BLDE is becoming increasingly common and manifesting in a variety of forms. Within BLDE there is synchronous and asynchronous learning, which describes the time when students learn. Traditional classroom are synchronous, with students receiving the information in real-time or “live.” Online courses can also be synchronous through programs like Skype and Adobe Connect, in which students receive information in real-time but at different

13 Additional sources used in this section include Albers-Miller, Straughan, and Prenshaw (2001); Morse et al. (2005); Bryer and Seigler (2012); Howard, McClannon, and Wallace (2014).
physical locations. In contrast, asynchronous learning does not occur at the same time for all students. DVD recordings of lectures and participation in online discussion boards are examples of asynchronous learning—students receive course content online or through the mail, watch and read when they have available time, and participate in peer discussions at varying points in time (Ho, Lu, and Thurmaier 2006, 84).

BLDE has an important place in graduate education because of the diverse student population. Pre-service and in-service MPA students have different needs and schedules—BLDE offers students the flexibility to manage coursework around careers, commuting, family, and other classes. The quality of BLDE, as perceived by students, relies on five main factors: visuals, student communication with the instructor, instructor feedback, online communication with other students, and student self-motivation (Ho, Lu, and Thurmaier 2006, 85-86).

Iowa State University’s MPA Program uses a variation of BLDE by offering three sections of the same course, each designed for a different method of delivery. The first section of the course is a traditional face-to-face classroom experience, the second section “attends” the class at its’ scheduled time through video conferencing, and the third section receives a DVD recording of the classroom lecture in a few days’ time (Ho, Lu, and Thurmaier 2006, 88-89). This approach by Iowa State University maximizes the reach of BLDE and incorporates various types of technology.

ii. Technology

Technology is used in the classroom or in students’ homes as a means to transmit and receive course material. This variation of class modalities is another way that programs can
empower students. The dimensions of innovative technology in the classroom include the Internet, multimedia, audiovisual aids, simulations, and audience response systems.

Internet. As BLDE demonstrated, technology can extend the learning environment beyond the physical classroom. It can also extend beyond the constraints of scheduled class time. The use of social media, discussion boards, and other online content allows students to collaborate outside of scheduled class time (Bryer and Seigler 2012). For example, students can apply information learned in the classroom to develop encyclopedia entries (“wikis”) and contribute to class discussion boards. Those students who may not feel comfortable speaking during class, are given an option for participation by use of the Internet. Allowing students to contribute to course material and discussion through both the classroom and the Internet, can be empowering to students with a range of learning styles.

Multimedia and audiovisual aids. Other technologies that can be used to complement instruction during lecture are multimedia and audiovisual aids. Multimedia is the combination of numerous types of media such as video, sound, text, graphics, colors, etc. (Beckwith and Cunniff 2009, 101) Using multiple elements simultaneously may help instructors communicate information more effectively to their students. Ho, Lu, and Thurmaier (2006) asserts that the use of multimedia in the classroom must be tailored to promote creative thinking by highlighting the importance of the quality of visuals, stating that not all use of multimedia is good use (86). To be effective, multimedia should help students focus on key pieces of information, not distract them. For example, a slideshow that uses infographics to illustrate data may help students understand what they are learning; however, a slide that is overcrowded with text takes the student's attention away from their instructor.
Simulations. The use of simulations is another technological advancement that is gaining popularity in graduate education. Simulations, which can be simple computer models or advanced video game-like designs, re-create environments that students can actively navigate. Simulated environments created for education have previously included election campaigns, electoral systems, and international negotiations (Shellman and Turan 2006, 20).

Such simulations create environments where students can apply theories and concepts from class in 'real world' conditions while still under the guidance of their instructors. These types of simulations “immerse students into environments and involve them with course materials that traditional techniques like reading and lecturing cannot” (Shellman and Turan 2006, 19). Importantly, students have the ability to experiment— to adapt and alter their strategies in order to find the best outcomes. Simulations may provide deeper understanding because students experience the dynamics of problem-solving: “Until students try to achieve their goals under such restraints, they do not fully realize the constraints of organizational rules and decision-making procedures” (Shellman and Turan 2006, 22).

Another approach is to use technology as a way to prepare students for tasks and skills performed in the field. Gaming and simulations may be used to immerse students in real world situations where they can practice problem solving and collaboration. Simulations provide students with a visual representation of both people and the environment, while having the safety net of being at a computer screen. This technique has been used to simulate election centers where students use personal avatars to poll other college aged avatars. Later, those students actually went to election centers and conducted polls in person, after practicing in the simulation environment (Bryer and Seigler 2012).
Summary of Conceptual Framework

The collected literature was found to fit into four categories: Class Activities, Course Projects, Instructor Characteristics, and Environment. Each category was developed by grouping techniques with similar features. The framework and its supporting literature are summarized in Table 2.1.
Table 2.1: Conceptual Framework

Title: Dimensions Innovative Teaching

Purpose: The purpose of this ARP is to 1.) Describe the dimensions of innovative teaching, 2.) Describe how MPA faculty rate techniques that depart from the traditional lecture and test modality, and 3.) Describe the extent to which MPA faculty use and value these techniques.

<table>
<thead>
<tr>
<th>Category</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Class Activities</td>
<td></td>
</tr>
<tr>
<td>1.1 Role Play</td>
<td>Shapiro and Leopold (2012); Goodman (2008); Lynch (2001); Matulich, Papp, and Haytko (2008); White (2000); Bryer and Seigler (2012); Griggs (2005); Howard, McClannon, and Wallace (2014)</td>
</tr>
<tr>
<td>1.2 Guest Speakers</td>
<td>Beaumont (2005); Irvin (2005); Nishishiba, Nelson, and Shinn (2005); Tanner and Whalen (2013); Mergel (2012); Fawcett and Fawcett (2011)</td>
</tr>
<tr>
<td>1.3 Collaborative Learning</td>
<td>Beaumont (2005); Goodman (2008); Kirlin (2005); Lynch (2001); Matulich, Papp, and Haytko (2008); White (2000); Morse et al. (2005); Mergel (2012); Bryer and Seigler (2012); Shellman and Turan (2006); Billet (2009); Lehmann et al. (2008); Shapiro and Leopold (2012); Howard, McClannon, and Wallace (2014); Kirlin (2005)</td>
</tr>
<tr>
<td>2. Course Projects</td>
<td></td>
</tr>
<tr>
<td>2.1 Service learning</td>
<td>Irvin (2005); Matulich, Papp, and Haytko (2008); Tanner and Whalen (2013); White (2000); Albers-Miller, Straughan, and Prenshaw (2001); Mergel (2012); Nishishiba, Nelson, and Shinn (2005); Billet (2009); Gronski and Pigg (2000); Lehmann et al. (2008); Lu and Lambright (2010); Lucas, Sherman, and Fischer (2013); Rasul et al. (2012); Spoormans and Vanhoonacker (2005)</td>
</tr>
<tr>
<td>2.2 Problem-based learning</td>
<td>Goodman (2008); Lynch (2001); Tanner and Whalen (2013); Bryer and Seigler (2012); Lehmann et al. (2008); Lucas, Sherman, and Fischer (2013); Spoormans and Vanhoonacker (2005); Howard, McClannon, and Wallace (2014)</td>
</tr>
<tr>
<td>2.3 Skill building</td>
<td>Beaumont (2005); Irvin (2005); Kirlin (2005); Lynch (2001); Matulich, Papp, and Haytko (2008); Tanner and Whalen (2013); Mergel (2012); Billet (2009); Gronski and Pigg (2000); Lu and Lambright (2010); Lucas, Sherman, and Fischer (2013); Rasul et al. (2012)</td>
</tr>
<tr>
<td>3. Instructor Characteristics</td>
<td></td>
</tr>
<tr>
<td>3.1. Facilitator</td>
<td>Goodman (2008); Irvin (2005); White (2000); Lehmann et al. (2008); Lucas, Sherman, and Fischer (2013); Spoormans and Vanhoonacker (2005)</td>
</tr>
<tr>
<td>3.2 Passionate</td>
<td>Jaskyte, Taylor, and Smariga (2009); Bryer and Seigler (2012)</td>
</tr>
<tr>
<td>3.3 Flexible</td>
<td>Jaskyte, Taylor, and Smariga (2009); Driver (2001); Fleith (2000)</td>
</tr>
<tr>
<td>3.4 Encouraging/ Empathetic</td>
<td>Irvin (2005); Jaskyte, Taylor, and Smariga (2009); Driver (2001); Fleith (2000); Lynch (2001)</td>
</tr>
<tr>
<td>3.5 Open with students</td>
<td>Jaskyte, Taylor, and Smariga (2009); Lynch (2001)</td>
</tr>
<tr>
<td>4. Environment</td>
<td></td>
</tr>
<tr>
<td>4.1 Blended learning</td>
<td>Ho, Lu, and Thurmaier (2006); Albers-Miller, Straughan, and Prenshaw (2001); Morse et al. (2005); Bryer and Seigler (2012); Howard, McClannon, and Wallace (2014)</td>
</tr>
<tr>
<td>4.2 Technology</td>
<td>Ho, Lu, and Thurmaier (2006); Albers-Miller, Straughan, and Prenshaw (2001); Matulich, Papp, and Haytko (2008); Morse et al. (2005); Mergel (2012); Bryer and Seigler (2012); Howard, McClannon, and Wallace (2014)</td>
</tr>
<tr>
<td>a. Internet/ Social Media</td>
<td></td>
</tr>
<tr>
<td>b. Multimedia & Audiovisual aids</td>
<td>Matulich, Papp, and Haytko (2008); Bryer and Seigler (2012); Shellman and Turan (2006); Beckwith and Cunniff (2009); Ho, Lu, and Thurmaier (2006); Morse et al. (2005); Mergel (2012); Howard, McClannon, and Wallace (2014)</td>
</tr>
<tr>
<td>c. Simulation</td>
<td>Fleith (2000); Matulich, Papp, and Haytko (2008); Bryer and Seigler (2012); Shellman and Turan (2006); Howard, McClannon, and Wallace (2014)</td>
</tr>
</tbody>
</table>
For the first two categories, the elements of each category are exercises that keep student learning active; however, these categories are distinct because they occur at different times.

Class Activities are singular exercises that occur during class time. Conversely, *Course Projects* take place throughout the semester. *Instructor Characteristics* includes the five most influential traits of faculty, as identified by the literature. Finally, the category *Environment* encompasses technological tools that bring learning outside the confines of a physical classroom.

Chapter Summary

It is important for graduate students to enter a higher cognitive domain, and in order to do so, this paper argues that there needs to be innovation in graduate education. There are, however, numerous approaches to innovative teaching which have not yet been organized. In this chapter, the literature was analyzed to find uniformities among several techniques, methods, and qualities of innovative teaching. These elements were explained and connected to broader categories. The development of these categories provides baseline information for the productive study of innovative teaching (Shields and Rangarajan 2013, 71). The careful organization of the techniques allows for operationalization of the conceptual framework into questionnaire items. Results from the survey can then be used to address each technique found in the literature and describe faculty opinions and the degree of innovation in MPA instruction. In the next chapter, these categories are used to develop the survey used for this research.
Chapter III: Methodology

Chapter Purpose

Using the literature, the previous chapter developed a categorical conceptual framework of innovative teaching techniques. In this chapter, these categories are used to create a survey which is used to describe the extent to which MPA faculty use and value these techniques. First, this chapter explains why MPA were selected for this research. Then, this chapter operationalizes the conceptual framework and demonstrates how the survey methodology was developed. This includes developing the instrument, addressing the particulars of web-based surveys, and explaining procedures. Additionally, this chapter addresses characteristics of the sample and constraints of the study.

Research Strategy

This research addresses the state of innovation in MPA programs in the U.S. There are many groups involved in the learning process that could be surveyed regarding innovation in teaching: students, faculty, and universities are all stakeholders in graduate education. However, to truly investigate the state of innovation in instruction, it is pertinent to survey faculty. As the primary actors in education, instructors are an invaluable source of information regarding the state of innovative teaching. Surveying faculty provides insight into what techniques are endorsed by educators. In order to determine endorsement, the survey asks faculty about two components: importance and use. These two components are used jointly to represent faculty endorsement which is explained at length in the next chapter.

Operationalization of Conceptual Framework

The operationalization of the conceptual framework is based on the methods of Shields and Rangarajan (2013). Development of the conceptual framework serves two purposes: 1) this
process helps to organize a research paper and 2) it provides a simple and complete base for the development of a survey. The operationalization of the framework is essentially the conversion of categories and elements into variables (Shields and Rangarajan 2013, 77). The survey is built directly from the conceptual framework table, ensuring that items of the survey are directly related to the research purpose (Shields and Rangarajan 2013, 77).

The survey instrument used to gather the attitudes of MPA faculty about teaching innovation was developed by constructing questionnaire items based on the categories and subcategories of the conceptual framework. Each survey question addressed a specific element of the four categories of innovative teaching. For example, the category “course projects” has three subcategories, one of which is “service learning.” Two questions were developed for each subcategory, one to determine the perceived importance of the technique and one to determine how often the respondent uses the technique: e.g. “Rate the importance of service learning as a course project” and “Do you use service learning projects in your classroom?” The rating system for the first question was a Likert-type scale from 1 to 5: (1) Not at all Important, (2) Slightly Important, (3) Moderately Important, (4) Very Important, and (5) Extremely Important. The measure for the second question was use-level: (1) Never, (2) Rarely, (3) Sometimes, and (4) Frequently.

Additional questionnaire items were included to provide respondent information and teaching context. Items like classroom size and professorial ranking provide information on the final sample. The operational relationship between each subcategory and the corresponding survey question are illustrated in Table 3.1.

This study used survey research to gauge the extent to which MPA faculty value and use the innovative teaching techniques described in the literature. The operationalization of the
conceptual framework involved three steps. Operationalization 1) Converted each element into questionnaire items that are answered on a Likert-type scale, 2) Allowed respondents to rank the elements, and 3) Included a selection of open-ended questions.

Survey Research

Survey research was chosen because of its wide-reaching capability. The purpose of the research is to gauge the opinions of MPA faculty, generally. Interviews may have brought more in depth answers, but the sample size would have been limited. By doing survey research, a larger number of faculty members were reached. Web-survey research can be limited because of the lower response rates in comparison to postal surveys (Bryman 2012, 674). However, it is possible to increase response rates through a number of methods. Length, appearance, mode of delivery, and consistent contact can all affect response rates.

To avoid “respondent fatigue” and prevent respondents from abandoning the survey, the length of the survey was kept short and the number of open-ended questions was limited (Bryman 2012, 235). Bryman (2012) notes that respondents who abandoned surveys midway through, were most likely to have done so when in the middle of an open-ended question (675). The prospect of answering several open-ended questions, particularly if the questions are more complex and require more than a simple sentence, will likely turn respondents away (Bryman 2012, 234). The researcher included an estimate of the survey length (10 – 20 minutes) in the email correspondence sent to faculty. This estimate was determined through multiple test runs at different speeds, by different individuals.
Table 3.1: Operationalization of the Conceptual Framework

Title: Dimensions Innovative Teaching
Purpose: The purpose of this ARP is to 1.) Describe the dimensions of innovative teaching, 2.) Describe how MPA faculty rate techniques that depart from the traditional lecture and test modality, and 3.) Describe the extent to which MPA faculty use and value these techniques.

<table>
<thead>
<tr>
<th>Category</th>
<th>Questionnaire Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Class Activities</td>
<td></td>
</tr>
</tbody>
</table>
| 1.1 Role Play | Rate the importance of role playing as a class activity.*
Do you use role play in your classroom?** |
| 1.2 Guest speakers | Rate the importance of guest speakers as a class activity.*
Do you use guest speakers in your classroom?** |
| 1.3 Collaborative learning | Rate the importance of collaboration as a class activity.*
Do you use collaborative learning activities in your classroom?** |
| **2. Course Projects** | |
| 2.1 Service Learning | Rate the importance of service learning as a course project.*
Do you use service learning projects in your classroom?** |
| 2.2 Problem-based learning | Rate the importance of problem-based learning as a course project.*
Do you use problem-based learning in your classroom?** |
| 2.3 Skill Building | Rate the importance of skill building as a course project.*
Do you use skill building projects in your classroom?** |
| **3. Instructor Characteristics** | |
| 3.1 Facilitator | Rate the importance of facilitation as an instructor characteristic.* |
| 3.2 Passionate | Rate the importance of passion as an instructor characteristic.* |
| 3.3 Flexible | Rate the importance of flexibility as an instructor characteristic.* |
| 3.4 Encouraging | Rate the importance of encouragement as an instructor characteristic.* |
| 3.5 Openness | Rate the importance of being open with students as an instructor characteristic.* |
| **4. Environment** | |
| 4.1 Blended learning distance education (BLDE) | Rate the importance of BLDE as a learning environment.*
Do you incorporate elements of BLDE in your classroom?** |
| 4.2 Technology | |
| a. Internet | Rate the importance of the Internet as a teaching aid.*
Do you use the Internet in your classroom?** |
| b. Multimedia & Audiovisual aids | Rate the importance of multimedia & audiovisual aids as a teaching aid.*
Do you use multimedia & audiovisual aids in your classroom?** |
| c. Simulation | Rate the importance of the simulation as a teaching aid.*
Do you use simulations in your classroom?** |
| **5. Course Content** | |
| 5.1 Course content | What innovative course content do you use in your classroom? What are some materials and subjects that you consider to be innovative? (Open-ended) |
| **6. Additional Questions** | |
| 6.1 Order of importance | Please rank the following techniques in order of importance (Rank order) |
| 6.2 Recommendations | Are there other techniques you use or would recommend? (Open-ended) |
| **7. Demographic Variables** | |
| 7.1 Gender | What is your gender? (Multiple Choice) |
| 7.2 Experience | How many years have you been teaching? (Number) |
| 7.3 Employment | Are you part-time or full-time? (Multiple Choice) |
| 7.4 Rank | What position do you hold? (e.g. associate professor, etc.) (Multiple Choice) |
| 7.5 Program Type | What is your program’s emphasis? (Open-ended) |
| 7.6 Classroom Size | What is your average classroom size? (Open-ended) |
| 7.7 Courses Taught | What courses do you teach? (Open-ended) |
| 7.8 Focus | On average, what percentage of your time do you spend teaching versus doing research? (Percentage) |
| 7.9 Award | Have you ever received a teaching award? (Yes/ No)
If so, at what level (national, regional, etc.)? |

* Response scale: (1) Not at all important, (2) Slightly important, (3) Moderately Important, (4) Very Important, (5) Extremely Important, (6) No Opinion.
** Response scale: (1) Never, (2) Rarely, (3) Sometimes, (4) Frequently.
Numerous steps were taken to increase the aesthetic appeal of the survey. Consistent fonts, simple layouts, and a limited amount of text per page help to increase response rates (Dillman, Smyth, and Christian 2009). Furthermore, the literature asserts that online surveys can benefit from having progress bars that indicate how close a respondent is to completing the survey as another means of reducing abandonment (Bryman 2012, 675).

A final step taken to increase the response rate was increasing the amount of communication with respondents. Following up with respondents and sending out reminders is a practice that the importance of “cannot be overstated” (Bryman 2012, 236). After initial contact was made to inform the faculty of the upcoming survey, the survey was sent and a reminder email was sent in the subsequent week.

Program Choice

At the outset, a sampling frame was sought through NASPAA that included contact information for all faculty in NASPAA accredited programs. This compilation was not available, so the decision was made to contact top ranked MPA programs and solicit program leadership to distribute the survey to their faculty. The programs chosen for this research came from U.S. News and World Report's graduate school rankings. The Report's rankings, indicative of each program's quality, are based solely on the opinions of academic experts at peer institutions. However, this list has a great deal of overlap with NASPAA's list of accredited master's programs (79% of schools are on both lists). NASPAA's accreditation process requires that programs meet a set of rigorous standards and face review by a team of experts. The overlap of these lists ensures that programs are both highly reputed and academically meritorious. The top 175 programs were chosen for this research.
Multi-faceted Sampling

This sampling for this research was a multiple stage process. The first tier included the top 175 MPA programs; the second tier is a sample based on the Dean's willingness to distribute the survey; and the third tier is a sample based on faculty's willingness to participate. The process began with the sampling of programs to include in the research. Programs were selected because they were ranked in the top 175 MPA programs in the country. As programs that are recognized for their excellence, faculty members from these schools are valuable sources of information on the current status of teaching techniques. After selection of the programs, the contact information for the Deans, Directors, or Department Chairs (depending on the organization of the school) of each program were retrieved by the researcher. The appropriate faculty member was contacted by email and asked to forward the survey link to the remaining faculty in their programs. Those who were willing distributed the questionnaire to their faculty. The next tier of sampling is the faculty who chose to take the survey that was sent to them.

Procedures

Initial contact was made with the department heads of the top 175 MPA programs. A cover letter was sent to the department chairs of each program that explained the reason for the research, the importance of the research, and why they were selected (Bryman 2012, 236). The department heads were asked to help in the distribution of the surveys by forwarding the survey to faculty in their department. The first email was sent on February 16. Individuals were removed from the contact list if they expressed no interest in having their department participate.

14 A similar method was used by Rahm et al. (2015). Their methodology involved using NASPAA-listed programs, identifying program Directors, and sending the survey to these individuals.
An additional email was sent as a reminder on February 25. Copies of both correspondences can be found in Appendix B: Email Correspondence.

Participants received a link to a web-based survey through email correspondence. Although contact was made through email, the survey itself was administered through a web-based service, Qualtrics. This web-based method was chosen because surveys that are conducted through email threads do not give researchers control of layout, format, or design (Bryman 2012, 671).

Additionally, using a web-based service eases the process of data collection and compilation because respondents' answers can be automatically downloaded and sorted. This process not only saves time and energy, it reduces the likelihood of errors during the collection and processing of data (Bryman 2012, 671).

Limitations

This survey gauges the opinions of faculty members on innovative teaching techniques. Faculty members, however, may not be aware of the techniques that they are being asked about. An in-depth explanation of the conceptual framework was not possible within the constraints of a web-survey (primarily, keeping the length down to reduce fatigue). This was addressed by including short descriptions of less well-known techniques with their related survey questions. Additionally, an open-ended question was included that asked respondents to list and describe any techniques left out of the research.

Surveys can cover a large sample size, easily and at low cost. However, researchers cannot explain questions thoroughly to the respondents, or probe for more detailed answers. By providing some open-ended questions, respondents have the opportunity to list and describe a
technique that was not included in the survey. Although the number of open-ended questions is limited, responses to these types of questions are generally of better quality than open-ended questions in paper-based surveys (Bryman 2012, 676).

Another limitation of using an online survey is response rate. Responding to a survey sent in an email, from a stranger, requires a certain amount of motivation on the part of the respondent. This reluctance was addressed by going through the Deans, Directors, and Department Chairs. There was an expectation that faculty would be more inclined to take the survey if it was distributed by leadership in their program. Yet this method introduced limitations of its own, making program leadership the gatekeepers of the survey. The response rate was dependent on whether or not the Dean, Director, or Department Chair circulated the survey link. In addition to potentially limiting response rates, this method may have introduced selection bias. The characteristics of the Dean, Director, or Department Chair may offer insight into the organizational culture of their department. Subsequently, certain types of faculty members from certain program may have self-selected into responding.

Human Subject Protection

This Applied Research project was submitted for review and declared exempt by the Institution Review Board at Texas State University (IRB Approval #EXP2015Y518782R). This research involved the use of survey procedures that gauged the opinions of university faculty regarding teaching innovations. The innovative teaching techniques investigated are not controversial and endorsements of any of these techniques, or disclosure of the human subjects' responses could not reasonably place the subjects at risk. To ensure that respondents remained anonymous, participants were not required to provide personal or identifiable information.
Additionally, a description of the study's research purpose and an explanation of how the results of the survey would be used were included in the survey. Participants were informed that completion of the questionnaire was voluntary and that they were allowed to stop taking the survey at any time.

Chapter Summary

This chapter described the steps taken to operationalize the conceptual framework that was built in Chapter II. Operationalization involved transforming the framework into a survey instrument. Additionally, this chapter discussed elements of survey methodology including specifics of survey research, procedures, limitations, and sampling. The next chapter reports the results from the survey.
Chapter IV: Results

Chapter Purpose

The purpose of this chapter is to present and analyze the results from the questionnaire on innovative teaching techniques. The results are summarized to describe self-reported faculty opinions and behaviors. Data collected from the questionnaire is used to examine faculty perceptions of innovative teaching techniques in MPA programs throughout the United States.

Sample Characteristics

Faculty members of the top 175 MPA programs were asked to respond to an online survey that was made available for twenty-five days during the Spring 2015 Semester (February 16 through March 13). Five of the 175 programs were not included in this research because leadership was either unable to be contacted, or expressly wished not to be. Three of the programs did not list public emails and used an website submission form instead. These programs did not respond. Two of the programs responded to the initial request indicating that they did not want to put additional burdens on their faculty. During the time frame, the survey instrument recorded 233 responses. However, 16 of those responses were missing all data indicating that these individuals only clicked on survey link, causing the survey instrument to record the questionnaire as 'opened.' As such, only 217 responses were analyzed in this study. Additionally, all findings presented in this chapter are based on valid responses only—missing data were removed. Reporting for each question is based on the number of complete responses, not the number of total respondents. The nature of these survey questions allows for the exclusion of missing data for each item without influencing any other survey items.
Table 4.1: Respondent Demographics

<table>
<thead>
<tr>
<th>Respondent Gender</th>
<th>Percent</th>
<th>Employment Status</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>42%</td>
<td>Full Time</td>
<td>90%</td>
</tr>
<tr>
<td>Male</td>
<td>57.5%</td>
<td>Part Time</td>
<td>10%</td>
</tr>
<tr>
<td>Other</td>
<td>0.5%</td>
<td>Total (n = 198)</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respondent Position</th>
<th>Percent</th>
<th>Respondent Emphases*</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>5%</td>
<td>Public Administration</td>
<td>148</td>
</tr>
<tr>
<td>Lecturer</td>
<td>8%</td>
<td>Public Policy</td>
<td>48</td>
</tr>
<tr>
<td>Senior Lecturer</td>
<td>2%</td>
<td>Public Affairs</td>
<td>13</td>
</tr>
<tr>
<td>Assistant Professor</td>
<td>26%</td>
<td>Nonprofit</td>
<td>8</td>
</tr>
<tr>
<td>Associate Professor</td>
<td>27%</td>
<td>Local Government</td>
<td>7</td>
</tr>
<tr>
<td>Professor</td>
<td>32%</td>
<td>International Affairs</td>
<td>5</td>
</tr>
<tr>
<td>Emeritus Professor</td>
<td>1%</td>
<td>Service</td>
<td>4</td>
</tr>
<tr>
<td>Research Professor</td>
<td>1%</td>
<td>Other</td>
<td>11</td>
</tr>
<tr>
<td>Total (n = 196)</td>
<td>100%</td>
<td>Total (n = 193)</td>
<td>244</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Experience</th>
<th>Percent</th>
<th>Responsibility</th>
<th>Time Dedicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 5 years</td>
<td>17.2%</td>
<td>Teaching</td>
<td>42.11%</td>
</tr>
<tr>
<td>6 - 10 years</td>
<td>22.7%</td>
<td>Research</td>
<td>31.36%</td>
</tr>
<tr>
<td>11 - 15 years</td>
<td>18.7%</td>
<td>Service</td>
<td>17.56%</td>
</tr>
<tr>
<td>16 - 20 years</td>
<td>16.2%</td>
<td>(Average)</td>
<td></td>
</tr>
<tr>
<td>21 - 25 years</td>
<td>8.1%</td>
<td>(Average)</td>
<td></td>
</tr>
<tr>
<td>26 - 30 years</td>
<td>5.6%</td>
<td>(Average)</td>
<td></td>
</tr>
<tr>
<td>31 - 35 years</td>
<td>4.0%</td>
<td>(Average)</td>
<td></td>
</tr>
<tr>
<td>36 years or more</td>
<td>7.6%</td>
<td>(Average)</td>
<td></td>
</tr>
<tr>
<td>Total (n = 198)</td>
<td>100%</td>
<td>Total (n = 200)</td>
<td>100%</td>
</tr>
</tbody>
</table>

*May not total number of respondents, because many respondents listed multiple areas of concentration.

According to NASPAA's faculty data from 2012-2013, within 157 accredited programs there were 1,989 faculty. This amounts to an average of 12.67 faculty members per program. Extrapolating to the list of 170 programs sampled, there are approximately 2,154 faculty members. Using this as an estimate of the total possible faculty surveyed, the 233 recorded responses reflects a 10.81% response rate. However, this is a conservative estimate because Deans, Directors, and Department Chairs may have selected out the entire faculty for their program by not forwarding the survey. The faculty members in these programs would not have
had the chance to respond to the survey. The number of faculty exposed to the survey request may not be accurately reflected in the above estimates.15

A slight majority of survey participants were male (57.5%). The vast majority of respondents were full-time faculty (90%), with 85% identifying themselves occupying assistant professor, associate professor, or full professor positions.16 Just over 60% of respondents were faculty members of a program with an administration emphasis and an additional 20% taught in programs with an emphasis on public policy. No other program emphasis was represented significantly as most of the responses in the “Other” category were reported only once.17 No information was collected that identified the respondent’s universities because of concerns that the results from this research would be used to ‘back-door’ rank programs or schools.

Analytic Plan

The next section of this chapter reports the results of the survey. This analysis involves investigating distributions individually to determine each technique’s importance. Each questionnaire item is separately examined using the mode to illustrate the typical view of respondents. Additionally, markedly low- or high-levels of importance and use are reported for contrast. Because the purpose of this research is to identify the techniques that faculty members endorse, it is important to report these values as evidence of support (or lack of) of each technique.

15 Rahm et al. (2015) survey of MPA Program Directors included 261 surveys and received a 47% response rate. Their response rate may be higher because the researchers were also MPA faculty, offering credibility.16 Rahm et al. (2015) 192 full-time and 139 part-time.17 Data on this group was not available. A survey administered by NASPAA offers comparisons only for gender. NASPAA data from 2012-2013 reports 64% Male and 36% Female.
In addition to examining the questionnaire items individually, this analysis looks at distributions in comparison to one another. By combining similar responses categories (e.g. “frequently” and “sometimes”), a scale is created that can be used to determine degrees of endorsement. For example, endorsement of a technique is shown by combining responses of 4 and 5 because they lay on the supportive side of the scale. On the other end of the scale, combined responses of 1 and 2 indicate low levels of support. Figure 4.1 is a reminder of the scales used for rating importance and use.

Figure 4.1: Rating and Usage Scale

<table>
<thead>
<tr>
<th>Please rate the importance of _____</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all important</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slightly important</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderately important</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very important</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extremely important</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How often do you use _____ in your classroom?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Never</td>
</tr>
<tr>
<td>2 Rarely</td>
</tr>
<tr>
<td>3 Sometimes</td>
</tr>
<tr>
<td>4 Frequently</td>
</tr>
</tbody>
</table>

Findings

Class Activities

More than one in three respondents indicated that role play was *moderately* important, with an additional 25% rating it *slightly* important (See Figure 4.2). This view is also reflected in the results from the usage portion of this question, in which 37% of respondents reported *sometimes* using role play. In regards to inviting guest speakers into their courses, roughly two in three respondents considered this technique to be *moderately* to *very* important. More than 72% of respondents reported using guest speakers *sometimes* or *frequently*.
The class activity that received the most faculty support was collaborative learning. A full half of respondents considered collaborative learning to be extremely important, and zero respondents answered the technique was not at all important. Roughly two-thirds of respondents reported frequently using this technique in class and less than 1% reported never using collaborative learning.

![Figure 4.2: Importance of Class Activities](image)

Course Projects

The importance of service learning received mixed results, with nearly equal percentages of respondents indicating the technique was moderately (25%), very (28%), and extremely (29%) important. However, despite only 2% of responses indicating that service learning was not at all important, 17% of respondents reported never using the technique.
Problem-based learning (PBL) received considerable support with 45% of respondents considering the technique to be *extremely* important and 33% considering it to be *very* important. This view was also reflected in that more than 50% of respondents reporting that they *frequently* used PBL techniques. An additional 31% reported using PBL *sometimes*.

The most substantial results from the course project section were those related to skill building. Nearly 66% of respondents considered skill building to be *extremely* important with an additional 29% calling it *very* important. A full 78% of participants reported *frequently* using this technique.

![Figure 4.3: Importance of Course Projects](image)

Instructor Characteristics

More than half of respondents considered facilitation (57%), passion (50%), encouragement (58%), and openness (56%) to be *extremely* important characteristics of
instructors. However, this high level of agreement with regards to importance dropped to 39% when asked about instructor flexibility. It is not surprising that the instructors themselves would consider elements of their communication and personality to be important. Questions asking participants about frequency of use was not included because of potential bias. It is unlikely that faculty would self-report lack of encouragement or passion.

Figure 4.4: Importance of Instructor Characteristics

![Bar chart showing the importance of instructor characteristics with the following categories and percentages:
- Flexibility: 40% (n = 209)
- Encouragement: 40% (n = 209)
- Passion: 40% (n = 208)
- Openness: 40% (n = 209)
- Facilitation: 40% (n = 209)

Environment

Just under one-third of respondents considered blended learning distance education (BLDE) to be *moderately* important. The other two-thirds of responses were relatively evenly spread between *not at all* (12%), *slightly* (18%), *very* (16%) important, and *no opinion* (15%). Nearly 40% of respondents reported that they *never* use BLDE techniques, which is the highest percentage for that level of use, for any technique. This low-usage alongside a considerable percentage of *no opinion* responses for importance may indicate that not much is known about
BLDE techniques. Additionally, it is possible that resources are not available to faculty members and they have not had the opportunity to try BLDE techniques.

Although 60% of respondents reported frequently using the Internet, considerably less considered it extremely important (43%). This may indicate that for some instructors, use of the Internet is based on convenience and not importance. The importance of multimedia and audiovisual aids was mixed. Moderately, very, and extremely-important each hovered around 30%. Akin to the Internet, considerably more respondents reported using multimedia frequently (60%) than those who found it extremely important (36%). This is probably in part due to the popularity of slideshows, as it is common to use them as accompaniments to lectures.

Figure 4.5: Importance of Environment

Simulations received the least support of any elements in the technology section, with only 12% of participants considering the technique extremely important. Large numbers of participants reported their use of simulations as sometimes (31%), rarely (27%), and never
The use of simulations could require technology that may not be available to departments, like computer software and hardware.

Relative Importance

An additional survey item was included that asked respondents to arrange all of the techniques in rank order of importance. The results from this survey item did not indicate substantial differences from the previously presented results. This may be partially due to technical difficulties associated with the “drag and drop” function of the online survey. Although less than ten individuals sent emails indicating that they could not reorder the techniques, it is possible that more individuals had the same experience and chose not to make contact. For this reason, the results of this survey item are not reported here. Instead, an alternate form of ranking is offered.

Below, Table 4.2 illustrates the relative importance of each technique. The two highest ratings of importance (*very* and *extremely*) were combined to create a rank order list of the techniques. All techniques are ranked against each other and organized within their respective categories. Based on this analysis, skill building is considered the single most important teaching technique. Skill building is followed closely by the instructor characteristic, *encouragement*. The other instructor characteristics also ranked as being considered very important—only one other element from another category was in the range of instructor characteristics (collaborative learning).

These rankings may be interpreted as faculty endorsement of techniques. This is decided because of the assumed relationship between importance and use. It can be expected that if a
respondent believes that a technique is extremely important, they would also use the technique frequently. This relationship is discussed further in the next section.

Table 4.2: Percent of Respondents Rating Technique as “Very” or ‘Extremely’ Important

<table>
<thead>
<tr>
<th>Category</th>
<th>Element</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Activities</td>
<td>Collaborative Learning (n = 211)</td>
<td>81.0%</td>
</tr>
<tr>
<td></td>
<td>Guest Speakers (n = 212)</td>
<td>50.0%</td>
</tr>
<tr>
<td></td>
<td>Role Play (n = 207)</td>
<td>22.7%</td>
</tr>
<tr>
<td>Course Projects</td>
<td>Skill Building (n = 207)</td>
<td>94.7%</td>
</tr>
<tr>
<td></td>
<td>Problem Based Learning (n = 207)</td>
<td>78.7%</td>
</tr>
<tr>
<td></td>
<td>Service Learning (n = 209)</td>
<td>58.4%</td>
</tr>
<tr>
<td>Environment</td>
<td>Internet (n = 209)</td>
<td>69.4%</td>
</tr>
<tr>
<td></td>
<td>Multimedia/ Audiovisual Aids (n = 207)</td>
<td>66.7%</td>
</tr>
<tr>
<td></td>
<td>Simulations (n = 206)</td>
<td>34.5%</td>
</tr>
<tr>
<td></td>
<td>Blended Learning Distance Education (n = 206)</td>
<td>23.8%</td>
</tr>
<tr>
<td>Instructor</td>
<td>Encouragement (n = 209)</td>
<td>93.8%</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Facilitation (n = 209)</td>
<td>90.9%</td>
</tr>
<tr>
<td></td>
<td>Openness (n = 209)</td>
<td>90.0%</td>
</tr>
<tr>
<td></td>
<td>Passion (n = 208)</td>
<td>80.8%</td>
</tr>
<tr>
<td></td>
<td>Flexibility (n = 209)</td>
<td>78.5%</td>
</tr>
</tbody>
</table>

Cross Tabulations / Endorsement

Cross tabulations were made to further investigate the relationship between importance and usage. The joint representation offers a method of assessing the extent to which faculty members endorse these techniques. Importance and usage can be viewed as behavioral and cognitive dimensions of endorsement, respectively. Essentially, endorsement could be measured by examining the relationship between how faculty perceives a technique and whether or not they use it.

Table 4.3 examines this relationship for role play: Of those respondents who considered role play to be not at all important, 88% reported never using the technique. In contrast, 100% of respondents who rated role play as extremely important used the technique often (frequently or sometimes). The diagonals of this contingency table indicates a clear relationship between
importance and frequency of use. The remaining cross tabulations behave exactly as one would expect—an increase in importance coincides with an increase in use. This holds true for nearly every teaching technique examined here.

Although this relationship existed for nearly all teaching techniques, there were some relationships that did not behave in the same way. For example, the cross tabulation of importance and use of multimedia and audiovisual aids reveals that even among those respondents who considered these techniques only *slightly* important, 13% still used them *frequently* and 33% still used them *sometimes*. This means that 46% of respondents used multimedia and audiovisual aids frequently, even if they did not think they were substantially important.

Table 4.3: Cross Tabulation of Importance and Frequency of Use – Role Play

<table>
<thead>
<tr>
<th>Importance</th>
<th>Frequency of Use</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Frequently</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all</td>
<td></td>
<td>88%</td>
<td>12%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Slightly</td>
<td></td>
<td>23%</td>
<td>61%</td>
<td>15%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>Moderately</td>
<td></td>
<td>8%</td>
<td>31%</td>
<td>59%</td>
<td>1%</td>
<td>100%</td>
</tr>
<tr>
<td>Very</td>
<td></td>
<td>3%</td>
<td>8%</td>
<td>56%</td>
<td>33%</td>
<td>100%</td>
</tr>
<tr>
<td>Extremely</td>
<td></td>
<td>0%</td>
<td>0%</td>
<td>64%</td>
<td>36%</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>20%</td>
<td>31%</td>
<td>40%</td>
<td>9%</td>
<td>100%</td>
</tr>
</tbody>
</table>

n = 197

Open-ended Question

An open-ended question in the survey asked respondents about additional innovative course content, materials, or subjects that they used in their classroom. It was expected that the results from this question could provide information to begin a taxonomy of content, materials, and subject not listed in the survey. However, the majority of respondents reiterated their use of techniques discussed in the survey. Unfortunately, the results of the open-ended question did not provide much additional information to add to innovative techniques. Still, many respondents...
used this open space as an opportunity to express thoughts on the survey, generally. These responses included thoughts on the definition of innovation and its use. Select excerpts are included in the discussion in Chapter V.

Chapter Summary

This chapter presented the results from the questionnaire. Missing data meant that each data point was presented as a percentage of valid results instead of as a percentage of the total respondents. There was a high level of agreement for nearly all of the survey questions. In general, respondents who reported that a technique was only slightly important also reported that they rarely used it. A rank of the teaching techniques was created by using the combined percentages of the two highest ratings of importance. This chapter also discussed the relationship between importance and use, and how this can be viewed as endorsement.
Chapter V: Conclusion

Chapter Purpose

The purpose of this chapter is to review and summarize the research presented in this paper. The purpose and the framework of this Applied Research Project are reviewed, and key findings from the results are discussed. Additionally, this chapter addresses what this research has offered and the potential for future research.

Research Summary

This Applied Research Project described the dimensions of innovative teaching with a focus on techniques that departed from the traditional lecture and test modality. Existing literature was used to develop a conceptual framework that organized various dimensions of innovative teaching. This framework was then used to create a survey which would help describe the extent to which MPA faculty use and value the techniques identified by the literature.

The literature review revealed that innovative teaching could be divided into four distinct categories, which were subsequently used to develop the conceptual framework for the research. The first category, class activities, included active classroom assignments, activities, and interactions. The second category, course projects, referred to long-term projects that focused on developing student abilities over the course of a semester. Instructor characteristics, the third category, included five instructor attributes that the literature considered to be most meaningful to students. The final category, environment, primarily consisted of technological aids that changed the physical nature of the classroom or the manner in which students consumed course material.
Based on these descriptive categories, a survey questionnaire was developed to gauge the extent to which faculty use and value the techniques presented by the literature. To do so, each category and subcategory was operationalized into individual survey items. The survey was sent to the Deans, Directors, and Department Chairs of the top 170 MPA programs in the United States. These points of contact then forwarded the survey to their faculty. A total of 233 individuals responded to the survey, 217 of which provided valid responses.

Summary of Findings

After individual analysis of survey items, the extent to which faculty use and value techniques was consolidated into the overarching dimension, endorsement. The joint representation of importance and use was decided upon because of the assumption that faculty beliefs and behavior were thought to be components of endorsement. Cross tabulations of importance and use were made to confirm this relationship. Endorsement was then measured by creating a rank order of the teaching techniques based on the combined percentages of the two highest ratings for importance.

The results of this analysis indicated the technique that was most highly endorsed by faculty members was skill building (94.7%). Additionally, every instructor characteristic was highly endorsed by respondents, with only flexibility falling below 80%. Other teaching techniques that were endorsed by faculty include collaborative learning (81.0%) and problem-based learning (78.7%). However, no other techniques had endorsement levels over 70%. In fact, some had endorsement levels below 30%—the techniques role play and BLDE were endorsed by only 22.7% and 23.7% of respondents, respectively.
It is important to note, however, that a low level of endorsement (as measured in this research) may not necessarily mean that the technique is not important. Instead, based on the analysis presented here, this simply indicates lack of consensus. Although role play received a low level of endorsement overall, there were several respondents who believed it was very important and used it frequently. It is possible that respondents who did not believe role play was important do not teach courses in which that technique is appropriate. Low levels of endorsement may indicate that a technique is not important but it may also indicate that different techniques are valued in teaching different subjects. Respondents’ answers to the open-ended question support this notion. Additionally, information was not collected about whether a program was primarily online or on-campus. Certain techniques, like role play, may not be used for online courses.

Several respondents asserted that innovation depended on the context, noting that not all classes are taught in the same way: “It is not efficient or effective to apply all techniques to all content areas.” Indeed, every single innovation may not be practical for all types of courses. For example, simulations like video games offer little purpose in a finance course. The type of course material may play a role in how faculty perceives the importance of a technique.

Another point worth noting is that while there was generally agreement between importance and use, this was not universally true. For some teaching techniques, there was a notable difference between how often faculty used the technique and how important they thought it was. This disparity opens up discussion about what is considered most important versus what is put into practice more often. For techniques like multimedia and audiovisual aids, the implications may be that the popularity—and hence, high usage—of slideshows is due to their simplicity. They require little effort on part of the instructor. The difference in importance and
use for this category could be because "use" is capturing the faculty who use slideshows as an accompaniment to lecture. If this is the case, this survey item may not be capturing something truly innovative and may simply be capturing something commonplace.

Similarly, BLDE and simulations were both used very infrequently but received more favorable ratings for importance. The dissimilarity between ratings for the same technique raises some questions concerning why: Do faculty have access to this technology? Have they ever been trained to use it? Without the resources or the ability, some techniques that are truly innovative may never be used in the classroom. In the open-ended question mentioned earlier, one respondent wrote: "I would like to learn more about effective methods of using technology." This comment indicates that it is true for some that a desire to use technology exists but not the know-how.

Table 5.1 Summary of Findings

<table>
<thead>
<tr>
<th></th>
<th>Importance</th>
<th>Degree of Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Class Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Role Play</td>
<td>No consensus</td>
<td>Low</td>
</tr>
<tr>
<td>1.2 Guest speakers</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>1.3 Collaborative learning</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>2. Course Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Service Learning</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>2.2 Problem-based learning</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>2.3 Skill Building</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>3. Instructor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Instructor Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Facilitator</td>
<td>High</td>
<td>-</td>
</tr>
<tr>
<td>b. Passionate</td>
<td>High</td>
<td>-</td>
</tr>
<tr>
<td>c. Flexible</td>
<td>High</td>
<td>-</td>
</tr>
<tr>
<td>d. Encouraging</td>
<td>High</td>
<td>-</td>
</tr>
<tr>
<td>e. Openness</td>
<td>High</td>
<td>-</td>
</tr>
<tr>
<td>4. Environment / Culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Blended learning distance education (BLDE)</td>
<td>No consensus</td>
<td>Low</td>
</tr>
<tr>
<td>4.2 Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Internet</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>b. Multimedia & Audiovisual aids</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>c. Simulation</td>
<td>No consensus</td>
<td>Low</td>
</tr>
</tbody>
</table>
The set-up of this survey did not allow for it to capture frequency of use for instructor characteristics. Asking faculty to self-report their favorable behavior could lead to potential bias. In future research on instructor characteristics, this limitation could be overcome if a survey methodology is not used. Instead, frequency of use could be gauged by classroom observation or by studying student evaluations of their instructors.

The list of categories and elements of innovative teaching was compiled by examining literature that surfaced from search results for various combinations of “innovative,” “teaching techniques,” “MPA,” etc. Since these teaching techniques were found through a search of current literature in the field, it is surprising that many of the techniques received mediocre support from faculty in that same field. Why is faculty support unenthusiastic if this is what the field is currently discussing?

It could be that faculty members do not have a desire to depart from traditional teaching techniques. Or perhaps inertia (individually or program-wide) has made it difficult to initiate and sustain change. Alternatively, respondents may consider other innovations in teaching more important than those included in this research. Furthermore, it is important to consider the constraints on faculty that may prevent them from focusing on teaching innovations. Research and service demands may take time away from prioritizing innovation in teaching. A final explanation offered here, is that faculty members do not have the resources or the training to use these techniques. If a university does not provide the necessary equipment or professional development, many of these innovative techniques may unwillingly be left behind. This is particularly true of elements in the environment category, such as BLDE, which require technological support from programs and universities.
In the open-ended question, some respondents remarked that they did not believe the techniques discussed in this research were innovative at all. For several respondents, the term “innovation” was a concern in and of itself—what is innovation? and to who? As one respondent remarked: “One person’s ‘innovation’ is another’s trendy fad.” Others reflected on the overuse of the term innovation, lamenting that the word has become “meaningless.” The use of the open-ended question in the survey to express concerns about the definition and extent of innovation points to many paths for future research. These paths are reviewed in the next section.

Future Research

This research was designed to provide description and structure for innovative teaching techniques. The organization of these techniques and the collection of faculty attitudes toward them provide a point of departure for future researchers. A wide variety of research goals can begin with an examination of the taxonomy developed in this paper. From this point, researchers can conduct more thorough investigations of individual techniques and their roles in the classroom. Furthermore, future research may find that the conceptual framework presented in this research does not encompass all possible innovative techniques. This taxonomy does, however, provide a baseline to which additions may be made.

The mediocre degree of support and various concerns about “innovation” from respondents of this survey indicates that more research should be conducted to investigate the relationship between what is recommended in the literature and what is practiced in the field. A comprehensive definition of what innovative teaching truly means needs to be developed. As respondents to this survey suggested, innovation is context specific so an all-encompassing definition of innovation may not be possible. As such, the study of innovation in MPA programs
should be investigated through the lens of what subject is being taught. Additionally, it would be important to discover what fosters innovation. Are faculty self-motivated? Or do they receive support from their departments that encourages innovation?

These innovative techniques, particularly those related to technological advancements, may change the nature of education. As the manner in which students receive information changes and students become more involved in the learning process, there needs to be a discussion about the purpose of innovation. Faculty should reflect on whether or not the innovative techniques they use actually enhance learning for their students. If these techniques, in the context of the specific course, do not push student learning into a higher cognitive domain, faculty should question the importance they place on the techniques.

In the end, innovation in the graduate classroom should be geared towards preparing students for their careers. The teaching techniques that faculty use should be tailored to both transferring knowledge and the development of professional skills. The importance of education that prepares students for their professions cannot be overstated. In addition to student desires to be marketable employees, employers themselves are looking to graduate programs to provide them with capable staff. An ARP from 2005 surveyed city managers regarding the skills they need from employees (Sinclair 2005). The research, which used NASPAA curriculum components as basis, found that city managers considered professional skills like decision-making and writing were equally important as intellectual knowledge such as knowledge of policy. Whatever route that future research takes, changes in MPA education must reflect that
importance of creating curriculum that “reflects the knowledge, skills, and abilities present city managers employ with regularity” (Sinclair 2005, 9).18

18 For additional information on alumni and employer perceptions of the educational outcomes of MPA programs see: Escobar (2008) and Moore (2009).
Bibliography

Billett, Steven. “Realising the educational worth of integrating work experiences in higher education.” *Studies in Higher Education* 34, no. 7 (November 2009): 827-843.

Lucas, Chris M., Nancy E. Sherman, and Cindy Fischer. “Higher education an non-profit community collaboration: innovative teaching and learning for graduate student

Appendix A: Survey Instrument

Thank you for taking the time to complete the survey and assist me in my research. The data collected will provide useful insight into the opinions and behaviors of faculty members in regards to innovative teaching techniques.

The survey questionnaire will require between 10 and 20 minutes of your time. A progress bar will appear at the top of the screen.

Your participation is completely voluntary. You may decline altogether, or leave blank any questions you do not wish to answer. Your responses will be anonymous.

This Applied Research project was submitted for review and declared exempt by the Institution Review Board at Texas State University (IRB Approval #EXP2015Y518782R).

Should you wish to see the results of this research, please contact Caitlin Macintyre by email at cmm218@tstate.edu

If you agree to participate, please click next:

Role play occurs when students act out scenarios in which they have adopted the role of someone else. This technique is used to introduce students to the potential thought processes and behaviors of actors in the field.

Rate the importance of role play as a class activity.

<table>
<thead>
<tr>
<th>Not at all important</th>
<th>Slightly important</th>
<th>Moderately important</th>
<th>Very Important</th>
<th>Extremely Important</th>
<th>No opinion</th>
</tr>
</thead>
</table>

How often do you use role play in your classroom?

<table>
<thead>
<tr>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Frequently</th>
</tr>
</thead>
</table>

< Previous Next >>
A **guest speaker** is someone who is invited to a class to add to the course by sharing expertise or knowledge from the field.

Rate the importance of using guest speakers as a class activity.

- Not at all important
- Slightly important
- Moderately important
- Very Important
- Extremely Important
- No opinion

How often do you use guest speakers in your classroom?

- Never
- Rarely
- Sometimes
- Frequently

Collaborative learning occurs when students are required to work together on group projects, during or outside of class time. This technique is used to practice self-directed learning and build students' interpersonal skills.

Rate the importance of collaboration as a class activity.

- Not at all important
- Slightly important
- Moderately important
- Very Important
- Extremely Important
- No opinion

How often do you use collaborative learning activities in your classroom?

- Never
- Rarely
- Sometimes
- Frequently

Service learning (AKA action learning or experiential learning) occurs when students, through a course project, interact with professionals and organizations within the community. This technique is used to help students relate course materials to tangible experiences in the field.

Rate the importance of service learning as a class project.

- Not at all important
- Slightly important
- Moderately important
- Very Important
- Extremely Important
- No opinion

How often do you use service learning projects in your classroom?

- Never
- Rarely
- Sometimes
- Frequently

Problem-based learning (AKA project-based or problem-oriented learning) is similar to a case study where students conduct detailed examinations of a case and its contextual conditions. However, PBL requires students to develop possible solutions to today’s problems. This technique is used to develop critical thinking skills and reasoned decision making.

Rate the importance of problem-based learning as a class project.

- Not at all important
- Slightly important
- Moderately important
- Very Important
- Extremely Important
- No opinion

How often do you use problem-based learning in your classroom?

- Never
- Rarely
- Sometimes
- Frequently
Skill building focuses on teaching students tangible skills that they can take into the workplace. In social science programs, these skills are often related to communication skills, problem-solving, and critical thinking.

Rate the importance of skill building as a course project.

<table>
<thead>
<tr>
<th>Not at all important</th>
<th>Slightly important</th>
<th>Moderately important</th>
<th>Very important</th>
<th>Extremely Important</th>
<th>No opinion</th>
</tr>
</thead>
</table>

How often do you use skill building projects in your classroom?

<table>
<thead>
<tr>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Frequently</th>
</tr>
</thead>
</table>

How important is it for instructors to be...

<table>
<thead>
<tr>
<th>Facilitators</th>
<th>Not at all important</th>
<th>Slightly important</th>
<th>Moderately important</th>
<th>Very important</th>
<th>Extremely Important</th>
<th>No opinion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Passionate</th>
<th>Not at all important</th>
<th>Slightly important</th>
<th>Moderately important</th>
<th>Very important</th>
<th>Extremely Important</th>
<th>No opinion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flexible</th>
<th>Not at all important</th>
<th>Slightly important</th>
<th>Moderately important</th>
<th>Very important</th>
<th>Extremely Important</th>
<th>No opinion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Encouraging</th>
<th>Not at all important</th>
<th>Slightly important</th>
<th>Moderately important</th>
<th>Very important</th>
<th>Extremely Important</th>
<th>No opinion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open</th>
<th>Not at all important</th>
<th>Slightly important</th>
<th>Moderately important</th>
<th>Very important</th>
<th>Extremely Important</th>
<th>No opinion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
Blended-learning Distance Education involves combining face-to-face learning with distance learning. BLDE courses may have sections online, in a classroom, through video conferencing, or even on DVD recordings. These classes may occur in real-time or at the students’ convenience. This technique is used to offer students flexibility to manage coursework, careers, commuting, family, etc.

Rate the importance of BLDE as a learning environment.

<table>
<thead>
<tr>
<th>Not at all important</th>
<th>Slightly important</th>
<th>Moderately important</th>
<th>Very important</th>
<th>Extremely important</th>
<th>No opinion</th>
</tr>
</thead>
</table>

How often do you incorporate elements of BLDE in your classroom?

- Never
- Rarely
- Sometimes
- Frequently

Technology in the classroom can involve the Internet (discussion boards, wikis, etc.), Multimedia and Audiovisual aids (videos, PowerPoint®, graphics, etc.) and Simulations (games, virtual reality, etc.).

Rate the importance of using these technological resources as teaching aids.

<table>
<thead>
<tr>
<th>Internet</th>
<th>Not at all important</th>
<th>Slightly important</th>
<th>Moderately important</th>
<th>Very important</th>
<th>Extremely important</th>
<th>No opinion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimedia & Audiovisual aids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How often do you use each of these technological resources in your classroom?

<table>
<thead>
<tr>
<th>Internet</th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Frequently</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimedia & Audiovisual aids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next >>
What innovative course content do you use in your classroom? What are some materials and subjects you consider to be innovative?

Please rank the following 11 techniques in order of importance (1 is most important, 11 is least important). Drag and drop to reorder the items.

Service Learning
Guest Speakers
Skill Building
Problem-based Learning
Instructor Characteristics
Simulation
Role Play
Multimedia
Blended Learning Distance Education (BLDE)
Audiovisual Aids
Internet
Are there any other techniques you use, or would recommend? List up to 5 below.

Technique 1
Technique 2
Technique 3
Technique 4
Technique 5

What is your gender?

*

How many years have you been teaching?

*

Are you part-time or full-time?

*

What position do you currently hold?

*
What is your program's emphasis (e.g. public policy, administration, affairs, etc.)?

What is your average classroom size?

What courses do you teach? List up to 5 below.

Course Name 1
Course Name 2
Course Name 3
Course Name 4
Course Name 5

On average, what percent of your time is dedicated to each of the following responsibilities?

Teaching
Research
Service

Total: 100

Have you ever won a teaching award?

Yes
No
From what level was the teaching award received? Check all that apply.

National
Regional
Local
University, College, School, or Department

You have reached the end of the survey.
Thank you for taking time to complete the questionnaire. We value your opinions and appreciate your participation. Should you wish to see the results of this research please contact Caitlin MacIntyre by email at cmac216@txstate.edu.
Appendix B: Email Correspondence

Initial Email:

Dear Contact,

My name is Caitlin MacIntyre and I am currently enrolled in the Master of Public Administration program at Texas State University. I am in the process of writing my Applied Research Project under the supervision of Dr. Patricia Shields. The purpose of the research is to examine faculty opinions on innovative teaching techniques.

Because your program has either (1) been accredited by the Network of Schools of Public Policy, Affairs, and Administration (NASPAA) or (2) ranked in the top 175 programs in the United States, I am inviting you and your faculty to participate in this survey research.

I will be happy to provide results upon completion. If you wish to see the results of the research please contact me at the email below. This research has been approved by the Texas State University Institutional Review Board (IRB Approval #EXP2015Y518782R).

I would be incredibly thankful to you if you forwarded this email to faculty members in your public administration, public policy, and public affairs programs. The survey can be found at the link the below.

If you agree to participate, please click on the following link:

https://txstatecla.az1.qualtrics.com/SE/?SID=SV_a3lkdR4SG815iLP

If you require additional information or have questions, please contact Dr. Shields or myself at the number or emails below.

Caitlin MacIntyre
303-748-9046
cmm218@txstate.edu

Dr. Patricia Shields
ps07@txstate.edu
Follow Up Email:

Dear Contact,

This is a reminder email regarding survey research that I am conducting on innovative teaching techniques. I contacted you last week to distribute the link to the online survey and to ask your kindness in distributing the survey to the faculty members in your public administration, public policy, and public affairs programs.

I selected your program because it has either (1) been accredited by the Network of Schools of Public Policy, Affairs, and Administration (NASPAA) or (2) ranked in the top 175 programs in the United States. This research will gauge your faculty’s perceptions of a variety of innovative teaching techniques. It involves completing a survey and will take about 10 minutes.

This survey is anonymous and will not collect information that could be used to identify faculty members, or your university. I intend to use these data to understand what teaching approaches are commonly used by faculty in this field and to highlight areas of promise for further innovations in teaching.

I will be happy to provide results upon completion. If you wish to see the results of the research please contact me at the email below. This research has been approved by the Texas State University Institutional Review Board (IRB Approval #EXP2015Y518782R).

I would be incredibly thankful to you if you forwarded this reminder email to your faculty. I realize that you may have already sent the survey link once, and that some of your faculty may have already taken the survey. For that, I would like to express my gratitude. However, this follow-up email will be very important in reaching those faculty members who have not yet taken the survey. Again, the survey can be found at the link the below.

If you agree to participate, please click on the following link:

https://txstatecla.az1.qualtrics.com/SE/?SID=SV_a3lkR4SG815iLP

If you require additional information or have questions, please contact Dr. Shields or myself at the number or emails below.

Sincerely,

Caitlin MacIntyre
303-748-9046
cmm218@txstate.edu

Dr. Patricia Shields
ps07@txstate.edu
Appendix C: List of Programs Sampled

American University
Appalachian State University
Arizona State University
Auburn University
Auburn University—Montgomery
Binghamton University—SUNY
Boise State University
Bowling Green State University
Brandeis University (Heller)
Brigham Young University—Provo (Romney)
Brown University (Taubman)
California State University—Fullerton
California State University—Long Beach
California State University—Los Angeles
California State University—Northridge
California State University—Sacramento
California State University—San Bernardino
Carnegie Mellon University (Heinz)
Central Michigan University
Clark University
Cleveland State University (Levin)
College at Brockport—SUNY
College of Charleston
College of William and Mary (Jefferson)
Columbia University
Cornell University
CUNY—Baruch College
CUNY—City College
DePaul University
Drake University
Drexel University
Duke University (Sanford)
East Carolina University
Eastern Kentucky University
Eastern Washington University
Florida Atlantic University
Florida International University
Florida State University (Askew)
George Mason University
George Washington University (Trachtenberg)
Georgetown University
Georgia Institute of Technology
Georgia Southern University
Georgia State University (Young)
Grand Valley State University
Hamline University
Harvard University (Kennedy)
Indiana State University
Indiana University—Bloomington
Indiana University-Purdue University—Fort Wayne
Indiana University-Purdue University—Indianapolis
Iowa State University
North Carolina State University
Georgia Institute of Technology
Jackson State University
James Madison University
Johns Hopkins University
Kansas State University
Kennesaw State University
Kent State University
Louisiana State University—Baton Rouge
Mississippi State University
Missouri State University
Monterey Institute of International Studies
New Mexico State University
New School (Milano)
New York University (Wagner)
North Carolina State University
Northeastern University
Northern Illinois University
Northwestern University
Oakland University
Ohio State University (Glenn)
Ohio University (Voinovich)
Old Dominion University
Pace University
Park University (Hauptmann)
Pennsylvania State University—Harrisburg
Pepperdine University
Portland State University (Hatfield)
Princeton University (Wilson)
Rutgers, The State University of New Jersey—Camden
Rutgers, The State University of New Jersey—New Brunswick (Bloustein)
Rutgers, The State University of New Jersey—Newark
San Diego State University
San Francisco State University
San Jose State University
Seattle University
Seton Hall University
Southern Illinois University—Carbondale
St. Louis University
Suffolk University
Syracuse University (Maxwell)
Tennessee State University
Texas A&M University—College Station (Bush)
Texas State University
Texas Tech University
University at Albany—SUNY (Rockefeller)
University of Akron
University of Alabama
University of Alabama—Birmingham
University of Arizona
University of Arkansas (Clinton)
University of Arkansas—Fayetteville
University of Arkansas—Little Rock
University of Baltimore
University of California—Berkeley (Goldman)
University of California—Los Angeles (Luskin)
University of Central Florida
University of Chicago (Harris)
University of Colorado—Denver
University of Connecticut
University of Dayton
University of Delaware
University of Georgia
University of Hawaii—Manoa
University of Houston
University of Illinois—Chicago
University of Illinois—Springfield
University of Kansas
University of Kentucky (Martin)
University of La Verne
University of Louisville
University of Maryland—Baltimore County
University of Maryland—College Park
University of Massachusetts—Amherst
University of Massachusetts—Boston (McCormack)
University of Memphis
University of Miami
University of Michigan—Ann Arbor (Ford)
University of Missouri (Truman)
University of Missouri (Truman)
University of Missouri—Kansas City
University of Missouri—St. Louis
University of Nebraska—Omaha
University of Nevada—Las Vegas
University of New Hampshire
University of New Mexico
University of New Orleans
University of North Carolina—Chapel Hill
University of North Carolina—Charlotte
University of North Carolina—Greensboro
University of North Carolina—Wilmington
University of North Florida
University of North Texas
University of Oklahoma
University of Oregon
University of Pennsylvania (Fels)
University of Pittsburgh
University of San Francisco
University of South Carolina
University of South Florida
University of Southern California (Price)
University of Southern Maine (Muskie)
University of Tennessee—Chattanooga
University of Texas—Arlington
University of Texas—Austin (LBJ)
University of Texas—Dallas
University of Texas—San Antonio
University of Utah
University of Vermont
University of Virginia (Batten)
University of Washington (Evans)
University of Wisconsin—Madison (La Follette)
University of Wisconsin—Milwaukee
Villanova University
Virginia Commonwealth University (Wilder)
Virginia Tech
Washington State University
Wayne State University
West Virginia University
Western Michigan University
Wichita State University (Wall)
Willamette University (Atkinson)