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ABSTRACT 

The arrival of the World Wide Web, smartphones, tablets and GPS-units has 

increased the use, availability, and amount of digital geospatial information present on 

the Internet. Users can view maps, follow routes, find addresses, or share their locations 

in applications including Google Maps, Facebook, Foursquare, Waze and Twitter. These 

applications use digital geospatial information and rely on data sources of street networks 

and address listings. Previously, these data sources were mostly governmental or 

corporate and much of the data was proprietary. Frustrated with the availability of free 

digital geospatial data, Steve Coast created the OpenStreetMap project in 2004 to collect 

a free, open, and global digital geospatial dataset. Now with over one million contributors 

from around the world, and a growing user base, the OpenStreetMap project has grown 

into a viable alternative source for digital geospatial information. The growth of the 

dataset relies on the contributions of volunteers who have been labeled ‘neogeographers’ 

because of their perceived lack-of-training in geography and cartography (Goodchild 

2009b; Warf and Sui 2010; Connors, Lei, and Kelly 2012). This has raised many 

questions into the nature, quality, and use of OpenStreetMap data and contributors (Neis 

and Zielstra 2014; Neis and Zipf 2012; Estima and Painho 2013; Fan et al. 2014; Haklay 

and Weber 2008; Corcoran and Mooney 2013; Helbich et al. 2010; Mooney and 

Corcoran 2012b; Haklay 2010b; Budhathoki and Haythornthwaite 2013; Mooney, 

Corcoran, and Winstanley 2010; Mooney and Corcoran 2011; Haklay et al. 2010; 
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Mooney, Corcoran, and Ciepluch 2013; Stephens 2013). 

This study aims to complement and contribute to this body of research on 

Volunteered Geographic Information in general and OpenStreetMap in particular by 

analyzing three aspects of OpenStreetMap geographic data. The first aspect considers the 

contributors to OSM by building a typology of contributors and analyzing the 

contribution quality through the lens of this typology. This part of the study develops the 

Activity-Context-Geography model of VGI contribution which uses three aspect 

dimensions of VGI contributions: the Activity (the amount and frequency of content 

creation, modification and deletion); Context (the technological and social circumstances 

that support a contribution); and Geography (the spatial dimensions of a contributor’s 

pattern). Using the complete OpenStreetMap dataset from 2005 to 2013 for the forty-

eight contiguous United States and the District of Columbia, the study creates twenty 

clusters of contributors and examines the differences in positional accuracy of the 

contributors against two datasets of public school locations in Texas and California. The 

second part of the study considers the questions of where mapping occurs by evaluating 

the spatial variability of OSM contributions and comparing mapping activity against 

population and socioeconomic variables in the US. The third part of the study considers 

the choices that OSM contributors make through the types of features that are most 

commonly mapped in different locations. Understanding the types of contributors, their 

differences in quality, the spatial variability in mapping activity, and their choices in 

types of features to provide data will provide insight into the credibility of users, the 
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trustworthiness of their contribution, and where there are gaps in mapping activity and 

feature representation. 
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CHAPTER I. INTRODUCTION 

Overview 

The arrival of the World Wide Web, smartphones, tablets and GPS-units has 

increased the use, availability, and amount of digital geospatial information present on 

the Internet. Users can view maps, follow routes, find addresses, or share their locations 

in applications including Google Maps, Facebook, Foursquare, Waze and Twitter. These 

applications use digital geospatial information and rely on data sources of street networks 

and address listings. Previously, these data sources were mostly governmental or 

corporate and much of the data was proprietary. Frustrated with the availability of free 

digital geospatial data, Steve Coast created the OpenStreetMap project in 2004 to collect 

a free, open, and global digital geospatial dataset. Now with over one million contributors 

from around the world, and a growing user base, the OpenStreetMap project has grown 

into a viable alternative source for digital geospatial information. The growth of the 

dataset relies on the contributions of volunteers who have been labeled ‘neogeographers’ 

because of their perceived lack-of-training in geography and cartography (Goodchild 

2009b; Warf and Sui 2010; Connors, Lei, and Kelly 2012). This has raised many 

questions into the nature, quality, and use of OpenStreetMap data and contributors (Neis 

and Zielstra 2014; Neis and Zipf 2012; Estima and Painho 2013; Fan et al. 2014; Haklay 

and Weber 2008; Corcoran and Mooney 2013; Helbich et al. 2010; Mooney and 

Corcoran 2012b; Haklay 2010b; Budhathoki and Haythornthwaite 2013; Mooney, 

Corcoran, and Winstanley 2010; Mooney and Corcoran 2011; Haklay et al. 2010; 

Mooney, Corcoran, and Ciepluch 2013; Stephens 2013). 

This study aims to complement and contribute to this body of research on 
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Volunteered Geographic Information in general and OpenStreetMap in particular by 

analyzing three aspects of OpenStreetMap geographic data. The first aspect considers the 

contributors to OSM by building a typology of contributors and analyzing the 

contribution quality through the lens of this typology. This part of the study develops the 

Activity-Context-Geography model of VGI contribution which uses three aspect 

dimensions of VGI contributions: the Activity (the amount and frequency of content 

creation, modification and deletion); Context (the technological and social circumstances 

that support a contribution); and Geography (the spatial dimensions of a contributor’s 

pattern). Using the complete OpenStreetMap dataset from 2005 to 2013 for the forty-

eight contiguous United States and the District of Columbia, the study creates twenty 

clusters of contributors and examines the differences in positional accuracy of the 

contributors against two datasets of public school locations in Texas and California. The 

second part of the study considers the questions of where mapping occurs by evaluating 

the spatial variability of OSM contributions and comparing mapping activity against 

population and socioeconomic variables in the US. The third part of the study considers 

the choices that OSM contributors make through the types of features that are most 

commonly mapped in different locations. Understanding the types of contributors, their 

differences in quality, the spatial variability in mapping activity, and their choices in 

types of features to provide data will provide insight into the credibility of users, the 

trustworthiness of their contribution, and where there are gaps in mapping activity and 

feature representation. 
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Dissertation Organization 

Chapter two is an exploration of the background of the material and a review of 

pertinent literature. Chapter three lays out the conceptual framework on which this 

dissertation is based including the development of the Activity-Context-Geography 

(ACG) Model, discusses the methods of mapping in OpenStreetMap, and presents the 

research motivations, research questions and research objectives. Chapter four provides a 

discussion of the data sources, study areas, the method employed to classify OSM 

contributors using the ACG Model, the method to determine accuracy of the ACG Model 

groups, and the statistical methods employed to examine the spatial relationship between 

mapping activity and population. Chapter five presents the results of the ACG Model 

classification and statistical analyses of OpenStreetMap data quality. It also reports on the 

results of the research questions about where OpenStreetMap mapping occurs and what 

types of features are mapped. Chapter six provides a discussion of the results and places 

them in the context of the previous literature. Chapter seven provides a concluding 

summary of the dissertation and discusses possible future research topics that may follow 

this dissertation. All figures and tables in the dissertation are within the text near where 

they are first mentioned. 

 

  



 

4 

CHAPTER II. BACKGROUND AND LITERATURE REVIEW 

The Emergence of Volunteered Geographic Information 

In his argument for the creation of Geographic Information Science (GIScience) 

as a discipline, Michael Goodchild discusses how geographic information (also called 

spatial data) is unique. “What distinguishes spatial data is the fact that the spatial key is 

based on two continuous dimensions” (Goodchild 1992, 2). Geographic information (GI) 

is a digital representation of real geographic phenomena. How best to represent GI “is of 

such importance that one might go so far as to argue that the greatest challenge in 

GIScience is to find ways of building useful representations of the infinitely complex 

world around us in the almost absurdly limited, discrete digital environment of a 

computer” (Goodchild 1995, 1–2).  

In addition to the problem of representation, geographic information poses other 

challenges. It requires a system capable of map projections to enable conversion between 

two-dimensional data and three-dimensional data. Goodchild argues that spatial data 

exhibits spatial dependence where nearby locations will tend to exhibit similar properties 

(Goodchild 1992). Spatial data requires analytical techniques different from other types 

of data. In other words, spatial data is special. 

Traditionally, collecting, creating, storing, and using GI has required extensive 

technical resources and abilities. Collecting geographic information may require survey 

teams, global positioning systems (GPS), aerial data collection, or satellites. Even before 

the rise of Geographic Information Systems (GISystems), map data (non-digital GI) was 

collected and controlled by local, regional, and national governments (state agencies). A 

few large corporations might alone or in partnership with government agencies collect 
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GI, but the capability remained out of reach for the average citizen (Goodchild 2007c). 

In the first decade of the 21st century, technological and social changes would 

begin a revolution in how GI is created.  First, the advent of Web 2.0 technologies 

allowed greater participation from users to contribute to websites without expert 

knowledge (O’Reilly 2005). User-generated content is a pillar of ‘Web 2.0’, a model 

developed by Tim O’Reilly as interactive, social, distributed, scalable, and collaborative 

internet websites as opposed to static, author-driven, single-source websites (O’Reilly 

2005). Web 2.0 is the internet of blogs, “mash-ups”, and APIs (Application Programming 

Interfaces) which allow users to interact and contribute content, feedback, and 

commentary to websites (Chow 2008). Second, global positioning and locational devices 

became more affordable and ubiquitous (Turner 2006). Third, ubiquitous mobile 

computing allowed for quick and easy access to the Internet (Schuurman 2009). Fourth, a 

trend toward social and collaborative Internet projects provided the technical capability 

and social will necessary to enable citizen science and collaborative mapping projects 

using non-specialists computer users (Haklay, Singleton, and Parker 2008). 

Researchers in geography have expanded on the Web 2.0 concept. Neogeography 

(Turner 2006) refers to advancement of web technologies to enable novice geographers 

and cartographers to create geographic information and maps without expert knowledge 

(Goodchild 2009b). ‘DigiPlace’ refers to the combination of virtual and physical spaces 

that are combined into one lived experience (Zook and Graham 2007). The GeoWeb 

refers to the geospatial world wide web, or the ability of websites to produce, distribute, 

and foster the creation of GI (Haklay, Singleton, and Parker 2008). 

Michael Goodchild coined the term Volunteered Geographic Information (VGI) 
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as a special case of user-generated content primarily found on the Internet (Goodchild 

2007a). The main distinction between VGI and other types of GI is that VGI is not 

produced by institutions or government agencies but by citizens attempting to share 

geographic knowledge (Elwood 2008). VGI may take many forms (further discussed in 

the next section), including having been used for collaborative mapping projects 

(Coleman, Georgiadou, and Labonte 2009; Hall et al. 2010), disaster response 

(Goodchild and Glennon 2010; Liu and Palen 2010; Roche, Propeck-Zimmermann, and 

Mericskay 2011), social networking (Newsam 2010; Stefanidis, Crooks, and 

Radzikowski 2011), urban management and planning (Song and Sun 2010; Madej et al. 

2012; Knudsen and Kahlia 2012), citizen science (Tulloch 2008; Connors, Lei, and Kelly 

2012), outdoor recreation (Parker, May, and Mitchell 2013) and farming (Kagoyire and 

de By 2012). 

The research consensus on VGI is that it exhibits the following properties: 

 VGI is produced by citizens, not institutions or state agencies (Goodchild 

2007a; Elwood 2008; Goodchild 2007b); 

 VGI is crowdsourced information from many contributors (Elwood, 

Goodchild, and Sui 2012; Haklay, Singleton, and Parker 2008); 

 VGI is producing extremely large volumes of data (Sui, Goodchild, and 

Elwood 2013); 

 VGI may take many forms, including citizen science projects (Tulloch 

2008; Haklay 2010a), collaborative mapping efforts (Haklay, Singleton, 

and Parker 2008), or social networking communications (Graham, Hale, 

and Gaffney 2014; Stefanidis, Crooks, and Radzikowski 2011; Taylor, 
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Tsou, and Leitner 2013).  

Types of VGI 

What does it mean to be “volunteered” geographic information? The act of 

volunteering suggests a knowing effort of good will on the part of the contributor, but 

some GI may not be considered knowingly given by the contributor. Therefore, how 

voluntary the data is could be considered a gradient (Harvey 2013). “An individual who’s 

use of a toll road is recorded is not volunteering geographic information” (Elwood, 

Goodchild, and Sui 2012, 575). Francis Harvey (2013) breaks VGI into two categories, 

VGI (opt-in participation such as OpenStreetMap or geocaching) and Contributed 

Geographic Information (opt-out). The microblogging platform Twitter, for example, 

originally included location information with an update (“tweet”) by default (opt-out); it 

has since changed the policy to require contributors to choose to include location 

information (opt-in). Contributed geographic information (CGI) would be crowdsourced 

data gathered, for example, from cell phone tracking or RFID-equipped card tracking. In 

reported cases, software malfunctions or intentionally programmed software have tracked 

cell phone use and location information. In these cases, a cell phone’s user’s location was 

recorded and tracked in large detail. Research using CGI data is problematic as the data 

may be incomplete and ethically wrong to use personal information without consent. 

Locational privacy is a new and complex issue in the United States and some question the 

use of this data by the government or telephone companies for surveillance (Kar, 

Crowsey, and Zale 2013; Crampton 2010). 

VGI has similarities to Participatory Geographic Information Science (PGIS) 

which has a longer history of research in the literature. PGIS (often Public PGIS or 
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PPGIS) projects use informed citizenry with local knowledge and GIS technology to 

solve a particular problem, often with the aim of empowering citizens (Tulloch 2008). 

PGIS has been used in water use planning (Nyerges et al. 2006), urban planning (Elwood 

2002; Leitner et al. 2002), and environmental monitoring and decision making (Tulloch 

2008; Young and Gilmore 2013; Balram, Dragićević, and Feick 2009). PGIS differs from 

VGI, however, in the scope of the user/contributor community and the level of 

involvement of the user/contributor in the project. PGIS projects look at local issues 

important to the community and stakeholders with participants at different levels (citizen, 

administrator, land owner, governmental authority). VGI projects, on the other hand, tend 

to have little or no hierarchy in theory with little difference between contributors. PGIS 

projects often require some interaction with GIS software or similar analogs in order to 

enable the decision making process. VGI, on the other hand, generally requires limited, if 

any, interaction with GIS technologies and not much more than placing points or drawing 

lines. 

Volunteered Geographic Information (VGI) can be defined as user-generated 

content (UGC) contributed online that provides location information. VGI, as a special 

form of UGC, is limited to online content (Goodchild 2007a). The GI part of VGI may be 

topological vector structures or photo imagery, but it can also be latitude and longitude 

pairs or descriptive text. To follow Harvey’s distinction between VGI and Contributed 

Geographic Information (Harvey 2013), VGI should not be coercively obtained; at a 

minimum, contributors should have the option to “opt-out” of contributing. For example, 

to geotag status updates in Twitter, the user must enable that feature. 

Perhaps the best way to illustrate the properties of VGI is to compare them with 
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traditional, authoritative GI collected by government agencies, military groups, and 

private agencies. Agencies that produced traditional GI used procedures to control quality 

during the acquisition and compilation of geospatial data and procedures to document 

quality and methods in the form of metadata (Goodchild and Li 2012). VGI sources 

typically have little metadata, or when they do, data quality is not a concern. Instead, 

crowd-sourcing (aka, “the wisdom of crowds”) is used as a technique to ensure quality 

and converge on truth (Raymond 2001). Table 1 explores the differences between VGI 

and traditional authoritative GI sources from government agencies, the military and 

corporations. 

Table 1. Differences between VGI and Traditional Authoritative GI. 

Topic Volunteered GI Traditional Authoritative GI 

Data Type Vector, raster, text, lat/long, 

imagery 

Typically vector or raster 

Metadata Usually some type of 

accompanying metadata 

Typically standardized; for 

U.S. federal agencies, 

following FGDC standards 

Quality Control Crowd-source error detection 

and fixes 

Usually defined by the project 

Access for Use Often free with little or no 

restrictions in use 

Varies by agency and type; 

corporate data is licensed and 

generally expensive; military 

data is typically confidential 

 



 

10 

Table 2. A typology of VGI Project Types. 

VGI Project Type Description Example Sites 

Citizen Science 

Projects 

Users with little or no formal scientific 

training contribute location and other data for 

a project with a scientific goal. eBird, for 

example, allows users to contribute location, 

time, and species siting data for birds 

worldwide. 

eBird.org, 

lowwater.org 

Collaborative 

Mapping Projects 

Users contribute geographic and attribute data 

with the intent to map the results. Wikimapia, 

for example, has users who outline or 

pinpoint features on aerial imagery and 

describe the features. 

Wikimapia, 

OpenStreetMap 

Social Media 

Data 

Social media data that includes location 

information either within the text or as 

metadata to a contribution may be considered 

VGI. These can include photos with 

embedded location data, “check-ins” by users 

at stores and restaurants, and tags of locations 

in status updates.  

Facebook, 

Foursquare, 

Twitter 

 

The VGI project type most similar to PGIS are citizen science projects. In Table 

2, a typology of the VGI projects is detailed based on Goodchild’s original article on VGI 

(Goodchild 2007c). Citizen science projects use the distributed efforts of individuals to 
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collect data, process data, or solve tasks. Citizen science projects using geographic 

information have a long history, going back to at least the annual Christmas bird count of 

the Audubon society begun in 1900. Survey maps in Britain in the 1930s and 1940s were 

carried out by schoolchildren and teachers (Elwood, Goodchild, and Sui 2012). Citizen 

science projects in the digital age include the SETI@Home project and Folding@Home, 

both of which used the distributed resources of home computers to help process and 

analyze data (Anderson et al. 2002). Citizen science projects that collect VGI include the 

Audubon Society and Cornell Lab of Ornithology eBird.org1 site, the University of 

California oak disease mapping site2, the University of California at Davis California 

Roadkill Observation System (CROS)3, and the Low Water Crossing mapping site4 of 

central Texas (Parr and Scholz 2015). Each of these sites allows contributors to submit 

location (either by submitting latitude and longitude of a point, indicating on a map, or 

submitting through a mobile device), a description of the feature, and optionally an 

accompanying photograph.  

A benefit of citizen science projects is their potential to fill in the gaps in local 

knowledge at a lower cost than not using citizens (Connors, Lei, and Kelly 2012). Since 

the participant may not be formally trained, the ability to use a website or smartphone 

                                                 

 

 

 

1 http://ebird.org/content/ebird/ 
2 http://www.oakmapper.org/ 
3 http://www.wildlifecrossing.net/california/ 
4 http://www.lowwater.org 

 

http://ebird.org/content/ebird/
http://www.oakmapper.org/
http://www.wildlifecrossing.net/california/
http://www.lowwater.org/
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application is critical. Sites should be designed to be simple but ensure data quality 

(Newman et al. 2010).  The reliability of the GI produced is a concern, as with all VGI 

(Harris 2012; Flanagin and Metzger 2008). The training, knowledge and ability of the 

contributor is key to the quality of the resulting information (Goodchild 2007a).  

Citizen science blurs the distinction between a ‘citizen’ and a ‘scientist’ (Haklay 

2010a). The concept of citizen science assumes a difference between the professionally-

trained scientist and the lay-person which is a distinction that has arisen in the past two 

centuries (Crampton 2010). Citizen science projects require different levels of 

participation and engagement from their contributors. Haklay (2013) identifies four levels 

of participation. Level one uses ‘citizens as sensors’ (Goodchild 2007a) or volunteers 

their computers. Level two requires citizens to become data interpreters and volunteer 

thinking skills. Level three (‘participatory science’) requires participation in problem 

definition and data collection. Level four, which Haklay refers to as ‘Extreme Citizen 

Science’ (Haklay 2013), uses citizens to define the problem, collect data, and analyze for 

a solution. 

Collaborative mapping projects represent a second type of VGI. Like citizen 

science projects, collaborative mapping projects collect and share data using the local 

knowledge of data producers to crowdsource GI. The difference, however, is the level of 

participation required, purpose and use of the GI collected. Collaborative mapping 

requires only the volunteering of information – the lowest level in Haklay’s citizen 

science participation ranking (Haklay 2013). The purpose of a collaborative mapping 

project is to create a complete spatial dataset, generally on a theme. At the time of 

writing, many mapping projects are in progress at differing stages of maturity. Projects 
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include Wikimapia5, Google Map Maker6, OpenStreetMap7 and its many offshoots (maps 

for cycling8, topography9, navigation10, mountain biking11, and aviation12). 

Collaborative mapping projects using VGI began as a way to fill in map data that 

was not available freely or easily from state agencies or institutions (Coleman 2013; 

Haklay, Singleton, and Parker 2008). State agencies including the U.S. Geological 

Survey, U.S. Census and National Weather Service are now users of collaborative 

mapping project data or running VGI projects of their own (Devillers, Bégin, and 

Vandecasteele 2012; Coleman 2013). In times of crisis, mapping groups have been quick 

to respond to needs including the 2010 Haitian earthquake and the 2013 Colorado 

floods13 (Liu and Palen 2010; Zook et al. 2010). Despite these benefits, questions remain 

to the quality of the map data, liability, and usefulness of the data compared to 

authoritative sources (Mooney et al. 2011; Flanagin and Metzger 2008; Goodchild 

2009b). For more discussion on the issues of VGI, see the section Research Issues in 

VGI. 

Collaborative mapping and other VGI projects use the technology of Web 2.0. 

Map mashups combining information from different websites began with Paul 

                                                 

 

 

 

5 http://www.wikimapia.org 
6 http://www.google.com/mapmaker 
7 http://www.openstreetmap.org 
8 http://www.opencyclemap.org 
9 http://www.opentopomap.org 
10 http://www.openseamap.org 
11 http://www.openmtbmap.org 
12 http://www.openaviationmap.org 
13 https://lists.openstreetmap.org/pipermail/talk-us/2013-September/011789.html 

http://www.wikimapia.org/
http://www.google.com/mapmaker
http://www.openstreetmap.org/
http://www.opencyclemap.org/
http://www.opentopomap.org/
http://www.openseamap.org/
http://www.openmtbmap.org/
http://www.openaviationmap.org/
https://lists.openstreetmap.org/pipermail/talk-us/2013-September/011789.html
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Rademacher’s desire to find affordable housing in San Francisco in 2004. Using 

information from Craigslist and the newly released Google Maps, Rademacher created a 

map showing apartments by rent that would update automatically from Craigslist.14 

Currently, the GeoWeb uses a variety of different technologies. These include on-line 

mapping tools from industry (Google Maps15, Google Earth16, Bing Maps17, Yahoo! 

Maps18), visualization tools (OpenLayers19), spatially-enabled databases (PostGIS), 

communication protocols (Web Feature Service, tile servers, Web Mapping Service) and 

a suite of new data standards (GeoRSS, GeoXML, GeoJSON, Keyhole Markup 

Language) from the Open Geospatial Consortium (OGC) (Haklay, Singleton, and Parker 

2008). The glue that enables all of these different technologies to work together is the 

Application Programming Interface (API), a set of standards that each technology uses to 

be able to communicate through a standardized programming language (Java, Javascript, 

perl, PHP, Python, or C) (Chow 2008). The API enables Information Communications 

Technologies (ICTs) to share data in a fast and automated fashion between sites. 

This ability to share information from a large number of users from multiple sites 

has given rise to social networking. Social networks are ICTs (websites and mobile 

device applications) that allow users to share updates, photos, messages, news articles, 

                                                 

 

 

 

14 http://www.housingmap.com 
15 http://maps.google.com 
16 http://earth.google.com 
17 http://www.bing.com/maps/ 
18 http://maps.yahoo.com/ 
19 http://openlayers.org/ 

http://www.housingmap.com/
http://maps.google.com/
http://earth.google.com/
http://www.bing.com/maps/
http://maps.yahoo.com/
http://openlayers.org/
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web links, and game technologies across multiple platforms centered on a web portal. A 

2914 US Census report found that nearly 75% of US households have some form of 

Internet access (File and Ryan 2014). While not ubiquitous, social media does have a 

large number of users. Sites include Facebook20, Twitter21, Weibo22, MySpace23, 

Instagram24, Google Plus25, Pinterest26, LinkedIn27 and many others. Facebook alone has 

one billion users – one out of every eight people living on the earth at of 2015. 

Sharing is the heart of social networking, and sharing location information is a 

natural extension. Shared location information in social media represents a third type of 

VGI. Most social networking sites provide for opt-in location sharing and some sites 

(Fourquare) are built around location sharing. Facebook, Yahoo, Yelp Swarm, and 

Foursquare, etc., allow users to ‘check-in’, indicating their location to their shared users. 

Twitter tweets may include location information called geotags. Location information can 

also come from information in context of the shared data from language or technical 

codes (Crampton et al. 2013; Takhteyev, Gruzd, and Wellman 2011; Hardy 2008). 

Shared location information in social media sites is notably different in the 

purpose of the data and the participation level of the contributor from other types of VGI. 

                                                 

 

 

 

20 http://www.facebook.com 
21 http://www.twitter.com 
22 http://www.weibo.com 
23 http://www.myspace.com 
24 http://www.instagram.com 
25 http://plus.google.com 
26 http://www.pinterest.com 
27 http://www.linkedin.com 

 

http://www.facebook.com/
http://www.twitter.com/
http://www.weibo.com/
http://www.myspace.com/
http://www.instagram.com/
http://plus.google.com/
http://www.pinterest.com/
http://www.linkedin.com/


 

16 

In some cases, contributors may be unaware that they are sharing location data. Privacy 

concerns also lead to security concerns (Elwood 2008; Kar, Crowsey, and Zale 2013; 

Elwood and Leszczynski 2011). Understanding GI, however, can lead to greater concern 

for privacy (Mathews et al. 2012). While the primary purpose of shared location 

information is to inform a social network, corporations and state agencies have also used 

this data to target advertisements, track behavior patterns, and monitor associations 

(Crampton 2009; Elwood and Leszczynski 2011). Despite these issues, socially shared 

location information has provided insights into the spread of disease (Cook et al. 2011), 

understanding collaborative authorship (Hardy, Frew, and Goodchild 2012; Hardy 2008), 

following the diffusion of ideas and social memes (Crampton et al. 2013; Graham, Hale, 

and Gaffney 2014), and better understanding the social connections online (Takhteyev, 

Gruzd, and Wellman 2011). 

Note that within VGI, social media websites, citizen science projects, and 

collaborative mapping projects are not mutually exclusive. OpenStreetMap, for example, 

has registered users who can communicate with each other and share information, and it 

uses a social system to create the structure of its database. Likewise, a citizen science 

project can involve mapping or could have a social media aspect including sharing photos 

or commenting on contributed information. All of VGI is UGC – that is, User-Generated 

Content is online content and all of VGI falls into this category; yet citizen science 

projects and collaborative mapping projects have existed before the Internet came into 

prominence. Some social media information may be sponsored or used as advertisements 

which fall outside of the UGC definition. Participatory GIS (PGIS) has some overlap 

with the traits of VGI, collaborative mapping and citizen science (depending on the 
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project and goals of a PGIS project).  

Research Issues in VGI 

The National Research Council Committee on the Strategic Directions for the 

Geographical Sciences in the Next Decade identified the following three questions as the 

key research questions for VGI: 

 “What are the characteristics of the producers of VGI and how should we 

evaluate the content and quality of what they have produced?” (NRC 

2010, 108) 

 “In what ways does participation in VGI have the unintended effect of 

increasing the digital divide?” (NRC 2010, 109) 

 “What and where are the most significant threats to human privacy as 

presented by emerging geographical technologies and how can we design 

technologies to provide protection?” (NRC 2010, 110) 

These questions form the basis of research topics in VGI, and the first question is 

central to the objectives of this thesis. Expanding on these issues, research in VGI from 

2007-2015 has proved fruitful. Research areas include the motivations of contributors, 

the accuracy of VGI, how to trust VGI data, access and the digital divide in VGI, the 

changes in approaches to mapping, the relationship of VGI to other authoritative data, 

and social issues of participation such as the role of gender in exclusionary mapping 

practices. These issues are discussed in this section. 

Traditionally, modern mapping required an advanced skillset and expensive 

equipment. As previously discussed, Web 2.0 technologies blur the distinction between 

consumer and producer and between novice and expert. The availability of technology 
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and growth of well-educated individuals has promoted the increase in interest in citizen 

science and collaborative mapping projects (Haklay 2013) The characteristics of VGI 

contributors such as level of training, interest, and motivation will help to explain how to 

evaluate the quality of their contributions. OpenStreetMap collaborators suggest a range 

of motivations. A contributor may have an idealistic of a free, open map or an anti-

national mapping agency viewpoint. OpenStreetMap’s creator, Steve Coast, suggest that 

participating in VGI projects is “addictive” as a contributor becomes part of a community 

(Haklay and Weber 2008, 16). 

Coleman et al categorize VGI contributors into five classes: neophyte, interested 

amateur, expert amateur, expert professional, and expert authority (Coleman, 

Georgiadou, and Labonte 2009). A neophyte contributor would have little knowledge but 

some interest on a subject, whereas an expert would have training, and an authority 

would have practiced a field and established him/herself as an authority. Coleman et al 

also develop a set of motivating factors around VGI which could be altruistic, socially 

motivated, motivated by a pride of place or malevolent. Budhathoki and Haythornthwaite 

expand on the list presented by Coleman et al with a list of intrinsically and extrinsically 

motivating factors (Budhathoki and Haythornthwaite 2013). Intrinsic motivational factors 

include a unique ethos, learning, personal enrichment, self-actualization, self-expression, 

self-image, fun, recreation, instrumentality, self-efficacy, meeting a need, the freedom to 

express, and altruism (Budhathoki and Haythornthwaite 2013, 558). Extrinsic 

motivational factors include career, social relations, the goal of the project, community, 

identity, reputation, monetary return, reciprocity, system trust, networking, and 

sociopolitical motivations (Budhathoki and Haythornthwaite 2013, 558). They also 
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suggest that motivation may be tied to the level of commitment required, whether 

lightweight or heavyweight, to the project. In a 2009 survey of OpenStreetMap 

contributors (n=459), Budhathoki and Hawthornthwite found the highest motivations 

were the success of the OpenStreetMap community, the goals of the project, altruism, and 

usefulness of local knowledge. Very active contributors also consider the goals of open 

access data and career goals as motivators (Budhathoki and Haythornthwaite 2013).   

While a contributor’s motivation may explain why they produce VGI, how can a 

user determine if the data is trustworthy? Trust can refer to information credibility, where 

the GI itself is shown to be trustworthy, or it can refer to source credibility, where the 

contributor is known to provide reliable GI. Map data produced by state agencies and 

corporations puts the name of the institution on the data as a marker of trust and a clear 

point of liability. Whether VGI data can be trusted and who is liable for misinformation 

were questions from the outset of research on VGI (Goodchild 2007b). One possibility 

would be to include revision information within the dataset to show users where hot spots 

of change have occurred (Trame and Keßler 2010). Keßler expands on this idea of 

revision history to indicate levels of trust. If, as Haklay found, that more edits produce 

better accuracy, then the more edits that a feature has would indicate a more trustworthy 

feature (Haklay et al. 2010). Putting this idea into practice by field testing the positional 

accuracy of heavily edited features, only a weak positive correlation was found (Keßler 

and Anton de Groot 2013). Whether the general public is aware of any specific credibility 

issue with online geographic information is uncertain (Mathews et al. 2012). 

Collaborative mapping has been hailed as the “democratization of cartography” 

(Crampton 2010, 37). Neogeography exchanges the expertise of cartographers, 
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mapmakers, and National Mapping Agencies (NMAs) with the distributed knowledge of 

citizens. The process of mapping is now as much of interest as the map itself (Crampton 

2009). “To ask about the map and the mapping process is, then also to ask about the 

systems of social beliefs and practices that give rise to the mapping project” (Pickles 

2004, 76). Collaborative mapping is a social process and is subject to the same biases and 

problems as society at large. Rather than being inclusive, the inequalities already present 

in society could be recreated in VGI (Elwood 2008). In a 2012 survey of online GeoWeb 

users, men were significantly more likely to have used OpenStreetMap than women. In 

particular the process of mapping may exclude minority groups and minority opinions. In 

an online discussion forum for OpenStreetMap, editors debated the labeling categories 

among different types of men’s sexual entertainment facilities, but disregarded the 

differences among categories of schools for children (Stephens 2013).  

Part of the issue with exclusion in the social construction of VGI may be related 

to issues of access and the digital divide. The digital divide may refer to the lack of 

computer skills, a lack of computers or network equipment, a lack of digital experience, 

or a lack of access (van Dijk and Hacker 2003). For example, having a smartphone may 

provide some Internet access, but it does not provide a full experience to gather skills in 

word processing or spreadsheet software. The digital divide may occur for possible 

contributors of VGI (who lack access to effectively contribute), for VGI users who 

cannot access the data, and in the geographic unevenness of VGI representation. Europe 

and North American have ten to seventy times more representation in VGI. VGI 

representation is lacking where it is needed most in Africa, Asia, and South America 

(Sui, Goodchild, and Elwood 2013). 
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OpenStreetMap 

Frustrated by the restrictions of use, lack of updates, and lack of coverage of 

geospatial data from National Mapping Agencies, Steve Coast began the OpenStreetMap 

project in July 2004 as an effort to create a free map of the world (Ramm, Topf, and 

Chilton 2011). The term “free” here refers both to its zero cost and the right to use the 

information for any purpose (Stallman 2002). Its creation was inspired by the online 

encyclopedia Wikipedia. As with Wikipedia, anyone can add, change, or delete 

information in the OpenStreetMap dataset. Here, the mapping data rather than the map 

itself is the product of interest. As of 2013, there are over one half million contributors to 

the OpenStreetMap project and its data covers every country. 

The analogy of OpenStreetMap to Wikipedia is an imperfect one. Both 

OpenStreetMap and Wikipedia maintain a voluntary board of editors, and procedures are 

agreed upon by consensus within the contributor community (Reagle 2010). 

OpenStreetMap requires a steeper learning curve to add information and to use it (Ramm, 

Topf, and Chilton 2011). Both Wikipedia and OpenStreetMap are social constructs for 

knowledge gathering and subject to the problems that exhibit biases against minorities 

(Stephens 2012; Reagle 2010). OpenStreetMap uses a collaboratively-authored wiki to 

document its structure – the same software used by Wikipedia and authored by the 

Mediawiki foundation. Unlike Wikipedia, only registered users can edit OpenStreetMap 
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(Haklay and Weber 2008). 

Vandalism, which OpenStreetMap defines as “intentionally ignoring the 

consensus norms of the OpenStreetMap community”28, is a problem on both 

OpenStreetMap and Wikipedia. Each has taken a social and technological approach to 

combat vandals: vandals are excluded from the discussion and editor process (a “virtual 

ban”), and robots (scripts and programs) check the databases for problem signs and flag 

the data in question. In Wikipedia, a page being vandalized may lead to that page being 

locked. In OpenStreetMap, one vandal introduced a fake town in an agricultural setting. 

Figure 1 shows a screenshot of a fake town in OSM – an example of vandalism in the 

data. 

 

                                                 

 

 

 

28 http://wiki.openstreetmap.org/wiki/Vandalism 

http://wiki.openstreetmap.org/wiki/Vandalism
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Figure 1. A screenshot of a fake town in OpenStreetMap. (Used under the Creative 

Commons license from http://wiki.openstreetmap.org/wiki/File:West_Harrisburg.jpg) 

 

OpenStreetMap refers to multiple social and technical platforms. There is the 

database which houses the current working data and communicates with the website and 

API Server. There is the data itself, which is made of four primitive elements: nodes 

(points and nodes), ways (lines and areas), relations (multilines, multipoints, and 

multiareas) and tags (attribute data for each of the primitive elements). A series of servers 

housed in London and replicated around the world maintain the data. There is the API 

which allows a large variety of editors and viewers to authenticate and communicate with 

the central database. Finally, there is the community of authors, editors, and developers 

working on the data, map display, and software that enables OpenStreetMap. 

Unlike government agencies, OpenStreetMap does not enforce any limitations on 

how spatial features are annotated in the database although some automated scripts 
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written by contributors do process and “clean” data (Haklay and Weber 2008).  

As of April 2015, OpenStreetMap has over five hundred thousand contributors, 

although only five percent of these contribute in a meaningful way. Seventy-one percent 

of contributors are based in Europe, and another twelve percent are based in North 

America. There are over 150 million features represented in the OpenStreetMap dataset 

(Neis and Zipf 2012). 

 

Spatial Data Quality 

Understanding contributors’ motivations and characteristics may lead to a better 

understanding how to evaluate the quality of VGI. Van Oort (2006) proposes seven 

aspects of spatial data quality to consider: 

 Lineage – the history of a geographic dataset; 

 Positional accuracy – accuracy of coordinate values; 

 Attribute accuracy – the accuracy of all variables that are not positional or 

temporal; 

 Logical consistency – the agreement of relationships between variables; 

 Completeness – “a measure of the absence of data and the presence of 

excess data” (van Oort 2006, 23). This can refer to how much of the 

known features are represented in the data set; 

 Usage, purpose and constraints – information to assist the user in 

understanding the quality of the dataset; 

 Temporal Quality – the validity and accuracy of time measurements (van 

Oort 2006). 
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VGI projects may not adhere to the same rigid standards that traditional 

authoritative GI sources use in collecting data. A study comparing the positional accuracy 

and completeness in the OpenStreetMap road network of England found that while the 

data was not as complete or accurate as the British Ordinance Survey data, when the 

contributor was diligent the accuracy was within tolerances (Haklay 2010b). 

Completeness of data continued to improve over time. Haklay also found that an increase 

in contributors in an area improved positional accuracy. In other words, the palimpsetic 

nature of VGI (where data is constantly overwritten) should improve the positional 

accuracy (Haklay et al. 2010). A followup study using the French road network for 

comparison evaluated OpenStreetMap’s GI with all of van Oort’s spatial data quality 

variables. The study found that the lack of standards in gathering data, different processes 

of capture, and different data sources inhibited the quality of the data in each of the seven 

categories (Girres and Touya 2010). In 2012, a revised analysis method found that the 

OpenStreetMap road network positional accuracy and thematic accuracy was “very 

good” and approaching the Ordinance Survey quality (Koukoletsos, Haklay, and Ellul 

2012). 

Before VGI and the GeoWeb, geographic data creation was largely the domain of 

government agencies or large corporations (Goodchild 2007b). Organizations use data 

collection standards reported in the metadata to provide insight for the user of the data 

into its quality assurance (Goodchild 2002). Spatial data errors are often related to 

uncertainty in the data. Uncertainty may occur through error, vagueness in the data, or 

ambiguity in the definition of a feature (Fisher 1999). Error is the difference between a 

value in a database and its true value. Vagueness occurs when a range of possible values 



 

26 

are correct or exist in a fuzzy set. For example, a person with no hair is considered bald, 

but is a person with one hair? (Fisher 1999, 197). A single Boolean answer “yes” or “no” 

may not fit in this scenario. Ambiguity occurs out of non-specificity, or an imprecise 

definition of the phenomenon being described. Ambiguity may occur when different 

classification schemes use the same labels to refer to different degrees of a feature set’s 

properties. 

The Federal Geographic Data Committee (FGDC) is a government interagency 

that promotes the development, use, sharing, and dissemination of geographic 

information for the United States (Federal Geographic Data Committee 2015). In addition 

to promoting the National Spatial Data Infrastructure for sharing geographic information, 

the group also publishes standards for content, data transfer, positional accuracy, and 

metadata frameworks. These types of standards are largely missing from VGI data 

sources. When data quality is an issue with VGI, it uses crowd-sourcing to improve data 

quality (Haklay et al. 2010).  

VGI presents new challenges in assessing spatial data quality. As the provenance 

and data collection methods will likely be unknown, other methods must be used to test 

the data for error (Haklay 2010b). VGI data creation does not use any of the quality 

controls that traditional GI use, nor does it report traditional error estimations. The most 

common model for quality control is crowd-sourcing corrections. More frequent changes 

may indicate higher quality (Haklay et al. 2010). Unlike other forms of GI, the context of 

VGI is critical to understanding its quality (Elwood, Goodchild, and Sui 2012). VGI 

contribution often includes context in the form of blog entries, wiki entries, photographs, 

and tweets and generally lacks formal metadata. This context may present clues to the 
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quality of the data.  

 

“Big Data” Methods and Geographic Information 

The rapid increase of available online data including VGI, point-of-sale data, 

location-aware technologies, and geosensor networks has been labeled the exaflood or 

data avalanche (Miller 2010). It’s estimated that from 2012 to 2020 there will be an 

increase of fifty times the annual amount of data produced (Sui, Goodchild, and Elwood 

2013). Colloquially, this rise in the amount of data produced and the methods associated 

with producing meaningful results from the data are called “big data” (Crampton et al. 

2013).  

“Big data” is defined by three features, commonly known as the 3V’s: volume, 

velocity, and variety (Laney 2001; Beyer and Laney 2012). The volume of data is 

extremely large, although what constitutes large has been a changing value over time. 

The velocity of data refers to the frequency at which new data is produced. The variety of 

data refers to the different formats generated such as twitter geotags, Google Maps KML 

files, and embedded latitude-longitude coordinate data. 

The generating of new methods to extract meaningful results from “big data” is 

currently becoming an areas of interest from the government, big business, and the 

academic research community (Executive Office of the President 2012; Lohr 2012). Big 

data is not without its critics, however, and using “big data” methods effectively may yet 

require expertise in the subject and a fine understanding of the data (Graham 2012; 

Snijders, Matzat, and Reips 2012).  

Methods in “big data” are an extension of methods in knowledge discovery, often 
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called Knowledge Discovery in Database (KDD). “Big data” methods must extend KDD 

to handle the volume, velocity, and variety of data that is being produced. KDD is a set of 

techniques to find interesting patterns in massive databases that can be understood by 

humans and valid for generalization (Miller and Han 2009). The process of KDD 

involves: 

 Data selection; 

 Data pre-processing, or removing “noise” from the data and duplicate 

records as well as handling missing data; 

 Data reduction and projection, or reducing the dimensionality of the data; 

 Data mining, or finding patterns in the data; 

 Interpreting and reporting, which involves evaluating and reporting any 

findings (Miller 2010, 189). 

Data mining refers to a range of tasks and techniques to process the data. These 

tasks include: clustering, classification, association, deviations, trends, and 

generalizations. Clustering involves grouping data together without preset classes, which 

classification uses training data to prefer a particular set. Association tasks find 

relationships among data objects. Deviation tasks look for outlier or unusual data. 

Trending, which attempts to quantify the data, and generalization tasks look for a 

compact description of the data (Miller and Han 2009; Mennis and Guo 2009). Using 

KDD to explore, analyze, and visualize geographic data has been well established (Ester, 

Kriegel, and Xu 1995; Ballatore, Bertolotto, and Wilson 2013; MacEachren et al. 1999; 

Han, Cai, and Cercone 1992; Gahegan et al. 2001). 

Whereas data mining and KDD techniques might sit on a single server, “big data” 
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methods require multiple computers to store, process, and visualize results given the size 

of the datasets (Lohr 2012). Tasks commonly include presorting the data into groups and 

then resducing the data using MapReduce or Hadoop programming techniques (White 

2012). To perform these tasks, programmers must turn to cloud computing, a distributed 

computer model where computing is viewed as a service (Yang et al. 2011). Data, 

analysis engines, and visualizations may all be distributed on different machines spanning 

the globe. Cloud computing is possible due to fast communications speeds and large 

servers that can store many virtual computers. Because of this distribution, data and 

processing demands can be allocated on an ‘as-needed’ basis, which enables better 

performance costs in servers. Data can be centralized in a few large server rooms and 

decentralized across the globe at the same time. The capability of cloud computing for 

geographic ‘big data’ has yet to be fully realized (Goodchild 2009a). 

 

Conclusion 

In a short span of less than ten years since Michael Goodchild coined the phrase 

“Volunteered Geographic Information,” (Goodchild 2007a) research interest in the topic 

has remained relatively high. The results have included a special issue of the journal 

GeoJournal (Elwood 2008), a pre-conference at the 2011 Annual Association of 

American Geographers Meeting in Seattle, Washington, an edited volume 

Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in 

Theory and Practice (Sui, Goodchild, and Elwood 2013), and numerous journal articles, 

dissertations, and specialty sessions at conferences such as ACM SIGSPATIAL and 

GEOCROWD, the ESRI User Conference, and other GIS research conferences. 
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OpenStreetMap, as a subtopic of VGI, has also been a keen topic for both researchers and 

the general public. In addition to yearly “mapathon” events where OSM enthusiasts meet 

to map out areas and an annual “State of the Map” conference for the OSM community, 

there are at least twenty active OSM community groups in the United States alone. Three 

books have been published on OSM: OpenStreetMap (Bennett 2010), OpenStreetMap: 

Using and Enhancing the Free Map of the World (Ramm, Topf, and Chilton 2011), and 

the edited research volume OpenStreetMap in GIScience (Jokar Arsanjani et al. 2015). 

Despite the interest from researchers and the wider community, several key 

questions regarding the OpenStreetMap project remain which may inform the work of 

VGI research as a larger topic. Much of the work has looked at data quality issues (such 

as positional accuracy) in the data (Goodchild and Li 2012; Haklay et al. 2010; Girres 

and Touya 2010), and some work has looked at types of contributors (Budhathoki and 

Haythornthwaite 2012; Coleman, Georgiadou, and Labonte 2009), to date, there has not 

been an effort to tie the two together. Coleman et al and Budhathoki and Haythornwaite 

both use motivation as the lens of categorizing VGI contributors. Assessing motivation 

requires evaluating the motives of each individual contributor which would be nearly 

impossible for a contributor base as large as OpenStreetMap’s. Using methods 

considering the in situ characteristics of the contributor inherent in the dataset should 

provide an insight into all contributors in the dataset. 

A second area of concern with OpenStreetMap is the completeness of the dataset 

and the choices that contributors make when decided to produce data. Stephens (2013) 

has discusses how the social forces and the role of gender in OpenStreetMap. Men make 

up a majority of OpenStreetMap contributors and editors, and this reflects a bias in how 
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place is presented within the dataset. Hecht and Stephens (2014) found that urban biases 

give metropolitan areas larger footprints in VGI on a per capita basis. The biases 

reflected in the data are the consequences of the choices that contributors make when 

creating, editing, and deleting data. These choices may include how to represent features, 

what areas are of interest to map, and how attribute data is codified. Unlike the FGDC 

standards for accuracy and metadata, a project like OpenStreetMap relies on social 

consensus and a network of editors to ensure data quality, and these formal and informal 

decisions can have consequences on the types of features represented and the 

completeness of the data. As OpenStreetMap evolves towards being a viable product for 

use in government and corporate institutions, the positional and attribute accuracy, 

consistency, and completeness of the data should be topics keen to researchers. 
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CHAPTER III. RESEARCH MOTIVATIONS, GOALS AND OBJECTIVES 

Research Motivations 

Place of This Project in Geography 

Of the four traditions of Geography (the Spatial Tradition; the Area Studies 

Tradition; the Earth Science Tradition; and the Man-Land Tradition) identified by 

Pattison (1990), mapping (according to Pattison) falls squarely within the Spatial 

Tradition. This tradition includes the broader outlook of spatial analysis, the nature of 

distance and location, geometry, and measurement.  

I would argue that much of what constitutes recent advances in digital 

cartography, online mapmaking, and the programmatic functions that enable websites and 

applications that support Volunteered Geographic Information projects have fallen 

outside of the realm of Geography and into Computer Science and Software Engineering. 

Yet, fundamental to collaborative mapping and many spatial citizen science projects 

(and, to a lesser degree, social media location data) is a fundamental (and perhaps new) 

way that individuals interact with the world around them. The rise of ‘user-centered 

design’ in web and mobile cartography provides greater access to spatial information to 

users while at the same time demanding fewer map-reading skills (Tsou 2011). For those 

with access to digital technology, geographic information is ubiquitous, easy to find, and 

much easier to produce.  

Software engineers at companies like Google may continue to determine the best 

practices in data storage for spatial data and user interfaces for mapping. Geography 

should play a key role in the questions of how society determines how to represent space, 

the geography of how VGI reflects our mapping needs, the issues of data quality, and 
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understanding how social processes impact VGI. New developments such as embedded, 

wearable technology, heads-up mapping displays in cars, virtual mapping in glasses, and 

3D displays will, if and when they occur, continue to redefine the role between map, 

mapmaker, and mapreader. If technology is a lens through which humanity experiences 

the world, then the discipline of Geography should be a clear filter to understand how the 

technology changes our interaction with the world, and how the technology reflects the 

world back to us. 

In that spirit, this research aims to understand how the mapmaker (in this case, the 

OSM contributor) reflects the world that they see through their contributions by 

analyzing the different types of contributors, considering how mapping activity is related 

to population and other characteristics of the spaces where mapping occurs, and by 

further elaborating on the process of VGI contribution. 

Place of This Project in the Literature 

As discussed in the Conclusion section of Chapter 2, both VGI and OSM have 

been active research topics within the past few years. In VGI research, topics ranged from 

applications of VGI projects, what constitutes VGI, and issues concerning privacy, 

access, and, later, social use and biases within VGI. For much of this time, research 

focused on the data quality of OpenStreetMap data, technical methods to quantify use and 

users, and applications for OSM data.  

This research will address several topics not previously addressed in detail in the 

VGI or OSM literature. The first is to propose a model to build a typology of OSM (or 

any VGI project) contributors based on the users’ contributions within the dataset 

compared to other contributors. The model should determine clusters of contributors 
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based on their contributions. This model is called the Activity-Context-Geography 

(ACG) Model, and it is described in detail in the next chapter. Researchers have 

developed typologies of contributors in VGI and OSM, but none have used the data itself 

to develop these typologies (Coleman, Georgiadou, and Labonte 2009; Budhathoki and 

Haythornthwaite 2012). 

The second topic addressed in this research is to evaluate the ACG Model against 

an external dataset to test if clusters of contributors within the ACG Model have different 

data quality outcomes. The usefulness of the AGC Model may be determined by its 

ability to detect meaningful differences between clusters of contributors. The model 

should predict differences in positional accuracy between groups. Data quality is a lasting 

concern in OSM research (Haklay 2010b; Girres and Touya 2010), but comparing the 

quality of different groups contribution has not occurred to date.  

The third topic addressed in this research considers the spatial patterns of the 

mapping activity from the contributors. Mapping activity in OSM involves a set of 

choices for each contributor that are reflected in the data produced. These choices include 

what areas to map, what types of features to map, how to represent these features 

spatially and thematically. This research intends to expand on work looking at the biases 

in the VGI contribution process (Stephens 2013; Hecht and Stephens 2014; Crutcher and 

Zook 2009).  

 

Research Goals and Objectives 

In this section, I list the three goals of the dissertation as they relate to the topics 

discussed in the section above. Each goal has one or more objectives which help to define 
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the research questions in the Research Methods section. After each goal, I expand on its 

rationale as a topic of research. 

 

Research Goal 1 

The first research goal is to better understand the types of VGI contributors 

through the patterns of OSM data and its context by building a model of contributor 

types.  

Objective of this goal: 

1. Develop and implement the Activity-Context-Geography Model of VGI 

Contribution to identify contributor clusters. 

Rationale 

With over one million registered data contributors, OSM has become one of the 

most popular collaborative mapping sites (Neis and Zipf 2012). Steve Coast began the 

project in 2004 with an aim to build a free-to-use, worldwide map dataset (Haklay & 

Weber, 2008; Ramm et. al, 2011). OSM is created and maintained by volunteers who 

often band together through mapping parties to fill-in local gaps in geographic data or 

correct errors (Haklay et al., 2008). Volunteers also fill in data gaps in remote countries 

that have restricted, expensive or non-existent map data. Although Europeans make up 

more than 70% of OSM data contributors (Neis and Zipf 2012), OSM has a true 

international scale and much of the work is created remotely (Haklay & Weber, 2008). 

OSM’s data formats are unrestrictive, so that users can contribute any discrete object as 

map data, and any user (including automated programs) can edit or delete other people’s 

data. Volunteer editors check modified data using automated and semi-automated 
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programs. Ownership of the data is retained by the contributor under the Open Data 

Commons Open Database License.  

If the type of contributor and quality of contribution is a general concern for VGI, 

then it has become a key concern for OpenStreetMap in particular. OSM has generated 

exceptional interest from data users, the media, corporations, and researchers (Haklay et. 

al, 2010; Horita et. al, 2013; Neis & Zipf, 2012; Ramm et al., 2011). In times of 

humanitarian crisis including the 2010 Haitian earthquake and the 2013 Typhoon Haiyan 

in the Philippines, OSM has provided infrastructure support, and volunteers have used the 

OSM platform to update map information for disaster relief (Zook et al. 2010; Neis and 

Zielstra 2014). Corporations and government agencies like Apple (Schutzberg 2012) and 

the U.S. Census Bureau (Forrest 2010) are incorporating OSM data in their products or 

using OSM to verify their data.  

It has been suggested that the quality of Wikipedia articles are believe to be 

closely tied to the type of contributor that writes or edits the article (Anthony, Smith, and 

Williamson 2009; Liu and Ram 2009). OSM, like Wikipedia, is a UGC site with a high 

degree of openness and a wide spectrum of participation. If the type of contributor in 

Wikipedia is related to the quality of their contribution, it may also be the case with 

OSM.  Therefore, establishing a contributor typology and determining its relationship to 

data quality is an important research area that this dissertation explores. Previous 

attempts to build typologies in VGI include Coleman et al (2009), who grouped VGI data 

contributors into five categories based on their knowledge and experience: neophyte, 

interested amateur, expert amateur, expert professional, and expert authority. Others have 

built conceptual models for evaluating contributors based on the complex interactions 
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within the OSM dataset itself (Rehrl et al. 2013). This research builds a typology of 

contributors from the internal data of the OSM dataset using the Activity-Context-

Geography Model. 

 

Research Goal 2 

The second research goal is to provide a method for understanding the spatial data 

quality of VGI contributors through the model of contributor types. 

Objective of this goal: 

1. Statistically analyze the differences in contributor data quality 

(specifically, positional accuracy). 

Rationale 

Because of the unrestrictive license and global dataset, the OpenStreetMap project 

has gained widespread use beyond the hobbyist community and into the governmental 

and corporate world. Companies such as Apple and Foursquare have integrated OSM into 

their map products (Duncan 2012). The U.S. Census uses OSM data to verify their own 

data sources (Forrest 2010). More companies (including ESRI) are using OSM’s prepared 

map tiles to display underlying digital map information.  

OpenStreetMap has also been a crucial resource in humanitarian projects where 

mapping locations of distress and trouble in a timely fashion are crucial. In Haiti after the 
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devastating 2010 earthquake, OSM provided the infrastructure for a team of volunteers to 

map areas in need of help quickly (Zook et al. 2010). A Humanitarian OSM Team was 

formed after the earthquake to respond to locations in need. Recently, they were involved 

in mapping the West Africa Ebola epidemic.29  

The increasing use of OSM data raises the scrutiny of its credibility and, in 

particular, its data quality (Girres & Touya, 2010; Haklay, 2010; Mondzech & Sester, 

2011; Mooney et. al, 2010; Neis & Zipf, 2012). Generally, credibility may be related to 

artefacts present in the dataset. Repeated edits of a feature by multiple contributors may 

suggest attempts to create more accurate data, and could be an indirect indicator for 

possible data quality (Trame and Keßler 2010). Proximity to other features edited later 

may suggest acceptance of the first feature (Keßler and Anton de Groot 2013). Previous 

studies on OSM data quality have examined the accuracy of its linear features (Girres and 

Touya 2010), the completeness of its dataset (Koukoletsos et. al, 2012), and the number 

of volunteers necessary to map a location (Haklay et al., 2010). An increase in the 

number of contributors covering an area improves the positional accuracy of OSM data 

for the area (Haklay et al., 2010). Furthermore, the overall accuracy of the OSM dataset 

has improved over time (Haklay, 2010). This research examines the data quality of OSM 

through the clusters of contributors in the Activity-Context-Geography Model. 

 

                                                 

 

 

 

29 http://hot.openstreetmap.org/ 
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Research Goal 3 

The third research goal is to develop a model of OSM contribution and examine 

the choices that contributors make when producing VGI in OSM. The spatial variations 

in how these choices impact the OSM dataset are examined. 

Objectives of this goal: 

1. Statistically analyze the relationship between population, socioeconomic 

characteristics, and mapping activity in OSM. 

2. Compare the differences in mapping activity at different geographic 

scales. 

3. List the most commonly mapped feature types. 

Rationale 

In 2011, the OSM data for Germany was considered “completed” (Neis, Zielstra, 

and Zipf 2011). This was declared because the turn-by-turn road network and directions 

were comparable to the data from Tom Tom, a commercial data vendor. OSM is more 

than simply a road network, however, and it includes a variety of data including natural, 

man-made, and administrative (ie, county boundaries) features. Contributors have added 

hiking paths, trees, restaurants, and entire towns which outlines of buildings detailed. 

While there may be no upper limit on the number of features worth mapping in an 

area, there is a geographic unevenness to the “completeness” of the OSM dataset. This is 

in large part due to the choices that contributors make when adding data to OSM. 

Previous studies have found that OSM users exhibit a gender bias (Stephens 2013) and a 

per capita urban bias (Hecht and Stephens 2014). As contributors make choices in how to 

contribute, other biases may appear that present spatially. In the Choices of an OSM 
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Contributor section in the next chapter, I elaborate on how these choices may impact the 

quality, consistency, and completeness of the OSM data. Understanding how these 

choices present data spatially should clue OSM contributors on where data quality or 

consistency issues are present and where more mapping needs to be focused. 
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CHAPTER IV. THEORETICAL FRAMEWORK OF THE RESEARCH 

Theories of Volunteered Geographic Information 

Conceptual Models of VGI 

A conceptual framework is a set of broad ideas and theories from the related 

fields of inquiry used to structure (“scaffold”) a project and assist in communicating its 

findings (Smyth 2004). The framework here builds on previous conceptual frameworks 

from Budhathoki (Budhathoki 2010), Jankowski and Nyerges (Jankowski and Nyerges 

2001), and Nedović-Budić and Pinto (Nedovic-Budic and Pinto 1999). 

To date, there are few conceptual frameworks directly related to VGI, but VGI 

research is informed by closely related fields. The Enhanced Adaptive Structuration 

Theory (EAST) builds on group decision support research to describe spatial decision 

support systems (SDSS) (Jankowski and Nyerges 2001). SDSS and its related field 

Public Participatory GIS (PPGIS) use GIS as a tool to make group spatial decisions such 

as where to place a park or how to manage water resources. SDSS/PPGIS have some 

similarities to VGI production in that there are usually multiple contributors with 

different types of motivation, skillsets, and interests. The EAST framework partitions the 

SDSS process into convening constructs, process constructs, and outcome constructs. The 

framework recognizes the importance of the structure of GIS software, the character of 

the participants, and the sources of structure (Jankowski and Nyerges 2001). A more 

general framework outlines the relation between interorganizational GIS users (Nedovic-

Budic and Pinto 1999). Here, the context is placed before the motivation which drives the 

process enabling collaborative GIS work. 

Budhathoki has developed a framework around the motivations of VGI 
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contributors (Budhathoki 2010). The key to the VGI process is motivation, which is the 

lens through which action takes place. Motivation is a key to understanding 

crowdsourcing projects such as OpenStreetMap or Wikipedia (Benkler and Nissenbaum 

2006). Budhathoki is specifically addressing VGI as a collective project. Therefore, he 

argues, “motivation is a necessary, but not sufficient for the production of knowledge 

commons in cyberspace” (Budhathoki 2010, 33). The “action and interaction arena” 

considers how contributors interact, cooperate, creates rules and norms, and decide to 

produce VGI. The output has geospatial and non-geospatial components. Figure 2 

displays Budhathoki’s conceptual, motivation-based approach to VGI contribution from 

his 2010 dissertation. 

 

Figure 2. A conceptual framework of the motivations of VGI contributors. (From 

Budhathoki 2010). 

 

Despite the viewpoint that motivation is the lens to understanding VGI 

production, it has been shown that motivation is not a necessary condition for creating 
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VGI (Harvey 2013). Applications may record location information without consent 

(“volunteering”) or cameras may embed geographic coordinates automatically without 

any participation in the role of the contributor. Therefore, motivation is but one aspect of 

a contributor’s construct. 

Budhathoki is also only considering a certain type of VGI, namely VGI projects 

that are creating collective knowledge (Budhathoki 2010). VGI may come from a variety 

of projects from location sharing applications, social networking, shared images and 

photography, Wikipedia entries, collaborative mapping sites, and citizen science projects 

(Goodchild 2007c).  

 

The Activity-Context-Geography Model 

Motivation has been used to study VGI contributors, but motivation is difficult to 

assess directly from someone’s data contribution. In order to group VGI data 

contributors, Rehrl et al (2013) consider the Actions (i.e., create, modify, delete) of 

contributor and the Domains (or geographic feature sets) of contribution, but they failed 

to consider the context in which one’s data action takes place. Context is considered as a 

part of the Motivation arena by Budhathoki (2010). I propose a VGI participation model 

by considering three aspects of data contributors (Activity, Context, and Geography) to 

construct the Activity-Context-Geography (ACG) model of VGI Contribution. 

The Activity aspect refers to the types and quantity of data contributions that 

produce VGI. This includes operations such as adding, editing, and deleting map and 

attribute data. It can also reflect the intensity of a contributor’s data production. In the 

case of a citizen science project such as eBird.org, it may include the number of birds 
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sited by a contributor, the number of species overall, and the number of birds and species 

sited per birding event. In the case of a social networking site like Foursquare, it may 

include the number of check-ins, the number of locations, the number of check-ins per 

day, the number of business types frequented per contributor. 

The Context aspect concerns the technological and social (“techno-social”) 

circumstances that enable a contributor’s contribution. The variables associated with the 

Context aspect include variables that relate to the contributor but do not produce VGI. 

These include how long a contributor has been a member of the VGI platform, how well-

connected a contributor is in the platform’s network, and if and how a contributor records 

his/her contribution activities. In the realm of OSM, this is related to details around the 

diaries and other annotations that contributors keep on the website which can be 

measured by variables including the number of diary or annotation entries, the word 

count, and the frequency of entries. In the case of a citizen science project, it may relate 

to similar diary variables. In the case of a social networking site, it could include the 

number of social network connections the contributor has or how frequently a contributor 

logs in or comments on other’s entries. 

The Geography aspect consists of the geographic components of the VGI data 

produced. VGI is unique from other forms of UGC in that it represents spatial patterns 

that reflect back to the ground. In some sense, the Geography aspect represents a view 

that a contributor has of the world, and it reflects the spatial interests or experience of a 

contributor. For the OSM dataset, I have chosen to represent the Geography aspect by the 

number of nodes per line or polygon feature, and the areal extent of features. Similar 

variables could be used for citizen science or social networking VGI. 
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The ACG model views contributors through their online persona. When personal 

data (motivation, training, experience) are typically unavailable for VGI data 

contributors, the ACG model can be used to examine contributors based on these three 

aspects. A VGI data contributor can fall on any point along the spectrum of any one of 

the three aspects. For example, a contributor with high Activity and low Geography 

variables may indicate a contributor with a strong connection to a relatively small area. 

The Geography aspect is not analogous to spatial extent, but spatial extent does have a 

strong impact on the Geography aspect variable. A higher Context aspect than other 

contributors may indicate a contributor with a stronger commitment to the VGI platform 

– an OSM power user or a social network user with many ties. This study is laid out to 

examine how effective the ACG model is to describe the different types of VGI data 

contributors, and if these different data contributors show different qualities in their VGI 

contribution. Figure 3 shows an example scatterplot of contributors plotted against the 

three dimensions of Activity, Context, and Geography. A complete list and description of 

the variables used in each aspect are included in Table 7, Table 8, and Table 9. 

 

Figure 3. Example 3D Scatterplot of the ACG Model. 
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Mapping Activity in OpenStreetMap 

OpenStreetMap, despite the name, is not a map, nor is it strictly a set of street 

data. Due to the open nature of the dataset, any spatial feature that can be designated as a 

point or a series or related nodes attached with attribute information can be stored in the 

OpenStreetMap database. OpenStreetMap, then, is not a map, but it is a world-wide, 

constantly-evolving set of spatial data that is designed to be easy to create and free to 

use(Haklay 2010b). While street and transportation network data roughly accounts for 

54% of U.S. features in the dataset as of February 2013, contributors to OSM have added 

pharmacies and restaurants, hiking and bike paths, athletic fields and school grounds, 

political boundaries, rivers and streams, and even individual trees. I define mapping 

activity in OSM as the process of collecting, converting, modifying or deleting physical 

(trees, roads, buildings) and non-physical (political boundaries, thematic boundaries) 

entities into digital data represented as discrete features. Continuous features (eg, fields, 

rasters, elevation data) are not natively supported in OpenStreetMap. 

The process by which data is collected varies. Originally, the creators OSM 

intended for hobbyists to “walk, hike, bike, or drive, recording their tracks using GPS 

devices. These recordings are then meticulously redrawn on a computer screen” (Ramm, 

Topf, and Chilton 2011, 3; Lin 2011). In practice, there are three methods that OSM data 

is collected. Using Global Positioning System (GPS) receivers in stand-alone units, in 

phones, or other devices, contributors can collect latitude and longitude coordinates or 

trace paths which are then loaded into features using an OSM data editor. Indeed, OSM 

has turned the sometimes dreary activity of field data collection into a social event 
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through regular mapping parties where OSM enthusiasts meet and map. Some 

contributors may mark this data as “field work” or “survey” data (Mooney and Corcoran 

2012b). Contributors may take image data from Web Mapping Service tiles, orthophotos, 

or other sources and trace features using a mouse and computer screen in an OSM editor. 

OSM editors customarily add the image source (Bing Maps, Google Maps, etc) when 

adding data on screen. Both of these methods of generating map information may be 

considered “local knowledge” or “place knowledge” if the contributor has a connection to 

that location. Indeed, based on the attribute data in the OSM database, contributors 

attribute source information to “local/place knowledge” as often as they site GPS-created 

data. Figure 4 shows a comparison between GPS point traces of local buildings in 

Burlington, Vermont, and the (on-screen) traced buildings.  

 

Figure 4. GPS Trace of Buildings in Burlington, VT (OpenStreetMap) 

 

A third method of creating features in OSM is to import a dataset from another 

source. This could include a direct import of data, although importing restricted data is 

forbidden in the OSM terms of use. Contributors have added unrestricted datasets from 
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the U.S. Census and the U.S. Geographic Names Information System. The U.S. road 

network, rail network, water bodies, city boundary and place information was initially 

loaded from the U.S. Census TIGER files between August 2007 and January 2008. 

Loading data from a third-party could also include geocoding addresses in a third-party 

geocoding source.  

Each of these three data source types can introduce errors into the OSM project. 

GPS data can have positional errors if the unit is not calibrated correctly or sensitive 

enough. It can be difficult to interpret the attribute information of buildings or landscapes 

from an aerial photo correctly. Cartographers have a long history of using map data from 

previous map sources. As recently as 2012, Sandy Island in the Pacific Ocean was shown 

to be a nonexistent island that had probably been produced by a mapping error and then 

propagated into multiple data sources when copied (BBC 2012). This begs the question – 

do different data source types exhibit differing spatial patterns of mapping?  

To complicate matters, OSM is a heavily edited dataset. In the U.S. dataset used 

in this analysis, one feature had 289 distinct versions. Overall, 53% of the features in the 

datasets are revisions of previous features. Generally, a heavily edited feature suggests 

higher data quality in VGI, but more research needs to be done (Haklay et al. 2010; 

Mooney and Corcoran 2012a). Each revision of a feature may involve a separate data 

source. A feature initially loaded from a third-party data source could be verified using 

GPS trace data and then updated to match aerial imagery. Each revision may include a 

chaining effect of multiple data sources. 

Table 3 shows a typology of data sources in OpenStreetMap. The asterisk (*) 

indicates that a contributor may verify Type B and C data on site. Mapping activity in 
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OSM can be categorized into these three data sources: A) data collected in field, B) data 

generated by tracing features on screen, and C) data imported from third-party sources. 

Of the three types, it is conceivable that each could be verified by field data collection or 

survey, but only Type A: Data collected in the field is certain to have had the physical 

presence of the data contributor with GPS. In this study, if a feature has multiple data 

source types, if one is GPS, then it is counted in Type A. If a feature has sources from 

aerial photos and imported data, it is counted in Type B. The reason for the hierarchical 

process is twofold: if a feature is noted as having multiple sources, it is unknown which 

information is derived from which source type. For the purposes of this project, data 

collected in field by an individual is considered primary as opposed to data collected 

from other means. In this study, Type A data was an order of magnitude smaller than 

other data source types. 

 

Table 3. A Typology of Data Sources in OpenStreetMap. An * indicates that a 

contributor may verify Type B and C data on site. 

Data Source Types Contributor verified 

information on site 

Data initially created by 

contributor 

A. Data collected in the 

field 

Yes Yes 

B. Data generated by 

tracing features on screen 

No* Yes 

C. Data imported from 

third-party sources 

No* No 
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Table 4 lists the count of features from different data source types in 

OpenStreetMap. Data sources are determined by attribute tags within the dataset, 

including a key attribute tag ‘source.’ 

 

Table 4. Count of features in OpenStreetMap from Different Data Source Types 

Data Source Type Count of Features Percentage of Total 

Features 

All Features 27,133,894 100% 

A: Data collected in field 384,081 1.4% 

B: Data generated on screen 1,127,589 4.2% 

C: Data imported 14,907,457 54.9% 

Unknown data source 10,714,767 39.4% 

 

The results of Table 3 reflect the nature of OpenStreetMap in the United States. 

The federal government in the US publishes most of its geospatial data without copyright 

restriction. This is different than other developed countries, where the percentage of Type 

C (imported) data would likely be much smaller compared to all data. 

The goal of a project like OpenStreetMap is to provide a free and growing set of 

spatial data and maps. As the process of mapping is continuous, how can one identify 

when an area is ‘completed’? In 2011, the OpenStreetMap data for Germany was 

considered finished when comparing the road network in OSM to the road network in 

TomTom (Neis, Zielstra, and Zipf 2011). TomTom’s data is privately sourced. Of course, 
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OSM is not limited to a road network. In some cases, features down to individual houses 

and structures have been included in OSM (see Figure 5). In Pascagoula, Mississippi, the 

level of detail includes building numbers. This level of detail would be useful for routing 

and geocoding, which is a potential future use for OSM. 

 

 

Figure 5. OpenStreetMap tile image of Pascagoula, MS. (OpenStreetMap) 

 

What can be considered a “well-mapped” area in OSM? From the start of the 

OSM project, Germany has been one of the most active countries. In the United States, 

OSM participation is more varied geographically. There are some areas that have 

extremely detailed data (see Figure 5). If the goal of OSM is to have data this detailed, 

then we can identify these levels of detail and compare other areas accordingly. Even if 

there is not an end goal for the level of detail, using the concept of a “well-mapped” area 

may help to identify areas that need attention. 

To match the definition from Neis, Zielstra and Zipf (2011), a “well-mapped” 

area, therefore should have a complete road network and turn-by-turn information for 
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drivers. This definition appears to match the original intention of OpenStreetMap as a 

road network dataset. OpenStreetMap, however, is more than simply a road network. Its 

dataset includes building outlines, walking paths, accessibility data, physical features like 

swamps and forests, coastlines, and even trees. A turn-by-turn road network for OSM as 

a definition of “well-mapped” should be a minimum. There may be no upper limit on the 

amount of detail that can be mapped in an area. 

 

 

Figure 6. A Conceptual Model of Paths to Contribution in OSM. 

 

Figure 6 presents a conceptual model and summary of the three Types of 

Contribution discussed in this section. Type A data is added by collecting information on 

the ground with GPS and follows the green line on the left. Type B data is added by 
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editing aerial imagery (usually under license from Bing) using an OSM editing tool like 

Osmosis or JOSM and follows a pink line. Some GPS data may also be edited or aligned 

using an OSM editing tool and aerial imagery before being uploaded into the database. 

Type C data is processed and brought in from a third party dataset and follows the orange 

line. In all cases, data can be edited or deleted from the database. 

 

Choices of an OSM Contributor 

The choice of how to contribute data into OSM is only one of the many choices 

that a contributor must decide. Contributors must decide what geographic areas they want 

to contribute to; what types of features they want to map; whether to create new features 

or edit existing ones; how those features should be represented (point, line, polygon); 

what attributes and descriptions of the features should be included; what level of 

accuracy is important (if it is a concern at all); whether to contribute with a group such as 

an OSM mapping party, a mapathon event or alone; whether to contribute all of their data 

as one changeset (a group of edits) or in separate changesets; which feature types to use 

for each feature; which and how much metadata to include; and which of the standards 

that OSM has set out to follow (if they are aware of them). Table 5 lists these choices in 

detail. 
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Table 5. Choices of the OpenStreetMap Contributor. 

Choice Question Example Choice Answer 

What geographic areas should be mapped? I will map in downtown Littleton, 

Colorado. 

Should new features be added, or should 

existing ones be edited? 

I will map businesses in the downtown 

main street. 

Should GPS (Type A), aerial imagery tracing 

(Type B), or third-party data (Type C) be the 

source of new data? 

I will walk the street and collect GPS 

points and then correct them using 

aerial imagery in JOSM. 

How should features be represented (point, 

line, polygon)? 

Businesses will be represented as point 

features. 

What level of accuracy is needed? I will place the point anyway 

overlaying the structure of the 

building. 

Should data be added through a mapping 

party or other event or alone? 

I will work with the Denver OSM 

group. 

Should data be contributed as one large 

changeset or several separate changesets? 

I will contribute all of today’s data as 

one changeset. 

What feature types (amenities) should be 

used to label features? 

I will add a few “restaurant”s, a “café”, 

and a “post office” feature. 

Which standards from the OSM website 

should be followed? 

I will use the prescribed list of 

amenities on the OSM website. 
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For other spatial data agencies, many of these questions would be codified and 

answered long before data collection began. A government survey and data collection 

team would employ standards and training to ensure data capture consistency and 

quality.30 The data may also be checked and verified during when added into a spatial 

data repository or infrastructure. Who controls the data, processes, and edits the data will 

be strictly controlled. OSM allows the contributor as much flexibility as they want when 

creating or editing data with the provision that a critical mass of editors will correct errors 

that may arise in the data. Certainly, some locations in OSM have a high degree of detail 

and accuracy (see Figure 4 and Figure 5). The key to understanding the accuracy and 

completeness of OSM data, then, is to understand the process of how contributors add, 

edit, and delete data and how they decide to address the choices made during the process. 

At each step, the choices that a contributor makes have an impact on the data. By 

choosing which geographic locations to map, other locations may be left out. There may 

be, for example, a bias towards geographic locations where people with more money (to 

purchase GPS equipment and computers), more free time (to enable mapping activity), 

more access (easier to reach over harder to reach), or are more frequently visited. 

Choosing to add a building as a point rather than a polygon may make the building more 

difficult to find or detect. The suggested list of amenities in OSM31 lists “kindergarten,” 

“university” and “school” but not “day care,” “vocational school”, “high school” or 

                                                 

 

 

 

30 https://www.fgdc.gov/standards/standards_publications/, accessed April 12, 2015. 
31 http://wiki.openstreetmap.org/wiki/Map_Features, accessed April 12, 2015. 
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“elementary school.” Interestingly, there are two separate categories for “library” and 

“public_bookcase” – a public bookcase being an outdoor library where anyone can leave 

or take a book. Of course, a contributor can create a new category, but it may not be 

recognized by OSM’s tile-building software. These tiles are used by many online groups 

to display background mapping information.  

If these choices in adding data to OpenStreetMap impact the data, they are also 

unevenly spatially represented in the data itself. Using the data in OSM and looking for 

differences in accuracy, attribute consistency, participation in OSM groups, and how 

mapping is related to the local population and socioeconomic characteristics of a region 

should present an idea of where mapping is incomplete and which areas require more 

attention in data collection than others. 
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CHAPTER V. DATA AND METHODS 

Study Area 

For this research, the analysis is limited to the contiguous forty-eight states and 

the District of Columbia of the United States of America. The primary reason for using 

the U.S. is that it is a large and diverse country. The U.S. Census data provides a 

consistent dataset with which to compare the OpenStreetMap data and eliminates most 

language problems in comparing tags and values related to the OpenStreetMap dataset. 

The Census provides data at multiple scales.  

 

Data Sources 

There are seven secondary data sources for this project: 

 The 2010 U.S. Census (American Community Survey 5-year summary 

file) for socioeconomic data including geographic boundary data. 

 The complete dataset of OpenStreetMap entries (including additions, 

deletes, and changes) from 2006 to 2013. 

 The archive of OpenStreetMap email discussion lists. 

 The OpenStreetMap user wiki. 

 The state of Texas 2013 Department of Education school shapefile. 

 The state of California 2012 Excel spreadsheet with latitude and longitude 

of school locations. 

 

Data Processing 

To answer the questions in the objective, I begin with the complete 2005-2013 
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OpenStreetMap dataset (including all changes) for the forty-eight contiguous states and 

the District of Columbia and the 2010 U.S. Census data. The 2010 U.S. Census data was 

chosen as it is a central dataset during the 2005-2013 timeframe. Every feature in the U.S. 

dataset for OpenStreetMap that fell completely within one of four U.S. Census geography 

types (block group, county, place, and core-based statistical areas) was counted. 

Choosing features that only fell within a Census area does eliminate some features that 

may overlap a County or Place, but it solves two problems: it eliminate 

overrepresentation; and it greatly simplifies the processing of the data. Choosing to 

represent the amount of a “partial feature” that fell within a given Census geometry 

required extensive computing power; a simple “within” lookup provides a simpler but 

still meaningful solution. A block group is a set of blocks, generally comprising a small 

neighborhood, and is the smallest statistical unit in the U.S. Census that includes 

socioeconomic data such as median household income. Counties are state-created 

administrative units. Census designated places are cities, towns, villages, or similar 

distinct jurisdictions. Core-based statistical areas (CBSAs) are defined by the U.S. Office 

of Management and Budget as adjacent areas with over 10,000 people that are 

economically linked. CBSAs replace the prior Metropolitan Statistical Area definitions. 

Block groups and counties cover every space in the forty-eight states and District of 

Columbia; CBSAs and places do not. CBSAs largely overlap with urban areas, although 

not strictly. Using multiple geographic scales for analysis is a potential way to recognize 

the effects of the Modifiable Areal Unit Problem, or MAUP, which will be discussed 

further in the Results. For the computation of population change, the American 

Community Survey 2000-2005 and 2010-2012 from the U.S. Census were tabulated to 
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compute county-level population change. 

OpenStreetMap data is formatted in XML (eXtensible Markup Language). This 

file was processed using perl scripts to divide the data into different feature types (points, 

lines, polygons). Features were loaded into a Postgresql/PostGIS spatial database, which 

was used for storing both the spatial features of OSM and the Census. Because of the size 

of the dataset (over one hundred gigabytes of data), some analyses required using the 

parallel processing power of the Amazon Elastic Compute Cloud (EC2). This allowed 

faster processing but required more testing and verification. For most analysis, the 

statistical language R was used to create graphs and perform statistical calculations. 

The complete OSM dataset including all accessible edits and changes were 

extracted from www.openstreetmap.org. All OSM data for this area from the beginning 

of OSM in 2004 until February of 2013 were included in the analyses. A total of 20,752 

OSM contributors were included in this study.  

To process the large amount of data from OSM, the eXtensible-Markup-Language 

OSM dataset was processed using MapReduce and the Amazon Elastic Compute Cluster 

(EC2). The MapReduce technique is a parallel computing model that breaks data into 

key-value pairs and then processes them based on key. Using contributor IDs as the keys, 

the OSM data were processed to derive values for individual variables for each 

contributor. This parallel processing greatly sped up the analysis as adding more data did 

not require recomputing the entire analysis. 

Some data from the OpenStreetMap set was excluded from the analysis. Line and 

polygon features that did not include a valid topology were excluded. These may include 

features that had overlapped themselves without a node, or if a polygon did not close 
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back into the initial starting node. 

Line and polygon features that did not fall completely within a Census boundary 

were not considered in the analysis of OpenStreetMap features compared to 

socioeconomic data. This was done for two reasons: it was unclear how to count lines and 

polygons that fell into multiple areas. Counting them twice would result in over-counting. 

Counting them based on the length or area that fell into a Census geographical area was 

also problematic, largely for programmatic reasons. This likely produced a bias against 

contributors who worked on long or large features. Many of these features, however, 

were likely imports from Census data. It should also be noted that both Census place and 

CBSA geographies do not encompass the entire United States area. Table 6 shows the 

total features for each Census geography. 
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Table 6. Count of features completely within each Census geography from OSM. 

Geometry OSM Points (% 

of total) 

OSM Lines (% of 

total) 

OSM Polygons 

(% of total) 

OSM Features within 48 

contiguous states 

10,834,448 

(100%) 

15,030,286 

(100%) 

665,226 (100%) 

OSM features within 

Census Block groups 

10,782,928 

(99.5%) 

3,646,207 (24.3%) 621,328 (93.4%) 

OSM features within 

Census Places 

7,957,525 

(73.4%) 

10,512,908 

(69.9%) 

634,678 (95.4%) 

OSM features within 

Census Counties 

10,825,039 

(99.9%) 

14,452,885 

(96.2%) 

629,284 (94.6%) 

OSM features within 

Census CBSAs 

8,932,608 

(82.4%) 

 12,052,312 

(80.2%) 

590,355 (88.7%) 

 

The Activity-Context-Geography Model 

Putting the ACG Model in Practice 

Putting the ACG Model into practice begins with identifying variables related to 

each aspect and computing the variables for each contributor. For OSM, this means 

identifying the per-user variables relevant to the Activity, Context, and Geography 

aspects. The complete list of variables is included in Table 7, Table 8, and Table 9. For 

the Activity aspect, variables include the actions by a data contributor to create, modify, 

and delete features and their attributes. Features are individual spatial objects and are 

commonly represented as points, lines, or polygons. Other objects in OSM include 
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changesets, which are groups of related edits by one data contributor over a short period 

of time, and relations, which are logically related spatial objects. For example, a 

multipolygon object has two physically distinct but logically related parts (i.e. the state of 

Michigan) and would be brought together as a relation. Activity also includes action on 

attribute information, which in OSM involves key-value pairs known as tags. Key-value 

pairs may include attribute descriptors such as key="name”, value=”Main Street”; 

key=”amenity”, value=”school”; or key=”path”, value=”bike route.” OSM was designed 

to be as simple as possible, and therefore there are no logical restrictions on creating tags 

within the database. To measure the Activity aspect, I count the total number of keys, the 

total number of values, and the number of different types of keys per data contributor. 

The Activity aspect also measures a data contributor’s overall OSM data activity patterns, 

including the total number of days that a contributor is actively editing the database and 

the average number of contributions per day. There are thirty-four variables in the 

Activity aspect. Table 7 lists the variables in the Activity aspect with a description. 
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Table 7. Description of per-contributor variables used from the Activity Aspect. 

Type Per-Contributor Variables Description 

Activity Count of points (created) Number of point features created per user. 

Activity Count of lines (created) Number of line features created. 

Activity Count of polygons (created) Number of polygon features created. 

Activity Count of points (modified) Number of point features modified (but not deleted). 

Activity Count of lines (modified) Number of line features modified (but not deleted). 

Activity Count of polygons (modified) Number of polygon features modified (but not deleted). 

Activity Count of keys in point features Number of total attribute rows in point features. 

Activity Count of keys in line features Number of total attribute rows in line features. 

Activity Count of keys in polygon features Number of total attribute rows in polygon features. 

Activity Count of key types in point features Count of types of attributes in point features. 

Activity Count of key types in line features Count of types of attributes in line features. 

Activity Count of key types in polygon features Count of types of attributes in polygon features. 

Activity Count of value types in point features Count of different values in attributes in point features. 

Activity Count of value types in line features Count of different values in attributes in point features. 

Activity 

Count of value types in polygon 

features Count of different values in attributes in point features. 

Activity Count of changesets Count of changesets, or groups of changes at one time. 

Activity Count of relations (created) Number of relations (groups of related features) created. 

Activity Count of relations (modified) Number of relations (groups of related features) modified. 

Activity Count of keys in changesets Number of total attribute rows in changesets. 

Activity 

Count of days actively editing point 

features 

Number of days that point features were created, modified, or 

deleted. 

Activity 

Count of days actively editing line 

features 

Number of days that line features were created, modified, or 

deleted. 

Activity 

Count of days actively editing 

polygon features 

Number of days that polygon features were created, modified, 

or deleted. 

Activity Count of days editing changesets Number of days that changesets were created or deleted. 

Activity Count of days editing relations 

Number of days that relations were created, modified, or 

deleted. 

Activity Points edited per day 

Average number of point features edited (created, modified, or 

deleted) per day that the contributor was active. 

Activity Lines edited per day 

Average number of line features edited (created, modified, or 

deleted) per day that the contributor was active. 

Activity Polygons edited per day 

Average number of polygon features edited (created, modified, 

or deleted) per day that the contributor was active. 

Activity Changesets edited per day 

Average number of changesets edited (created, or deleted) per 

day that the contributor was active. 

Activity Relations edited per day 

Average number of relations edited (created, modified, or 

deleted) per day that the contributor was active. 

Activity Count of points (deleted) Number of point features deleted. 

Activity Count of lines (deleted) Number of line features deleted. 

Activity Count of polygons (deleted) Number of polygon features deleted. 

Activity Count of changesets (deleted) Number of changesets deleted. 

Activity Count of relations (deleted) Number of relations deleted. 
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The Context aspect reflects the circumstances and actions that support a 

contributor’s effort in producing VGI. These variables do not produce spatial features, 

but they may indicate the social and technological relationship between the contributor 

and the VGI platform and community. The Context variables are extracted through the 

OSM infrastructure including the OSM website. There are six variables in the Context 

aspect, such as the number of days since joining OSM, the word-count of an online diary 

that a contributor maintains, and the word-count of a contributor’s comments on the 

features within the OSM dataset. High values for the context variables (above 1.5 

standard deviations over the scaled average mean) may suggest contributors who are 

more vested or socially connected within the OSM community. There are six variables in 

the Context aspect. Table 8 lists the variables in the Context aspect with a description of 

each. 

 

Table 8. Description of per-contributor variables used from the Context Aspect. 

Type Per-Contributor Variables Description 

Context Days since contributor joined OSM 

Number of days before March 1, 2013 that the contributor 

joined OSM. 

Context 

Avg. word count in comments of 

point feat. 

The mean word count in comments of point features that 

have comments. 

Context 

Avg. word count in comments of line 

feat. 

The mean word count in comments of line features that have 

comments. 

Context 

Avg. word count in comments of 

polygon feat. 

The mean word count in comments of polygon features that 

have comments. 

Context 

Avg. word count in comments of 

changesets 

The mean word count in comments of changesets that have 

comments. 

Context 

Avg. word count in comments of 

relations 

The mean word count in comments of relations that have 

comments. 

Context Count of words in online diary 

Word-count of entries in the online user diaries at 

http://www.openstreetmap.org/diary 

 

The Geography aspect in the ACG model refers to the geographic extent, 

precision, and distribution of the features that have been acted upon by a data contributor. 
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This aspect represents the spatial nature of data contribution, and in the case of OSM, it is 

a quantitative description of the map data contributed. Example variables in the 

Geography aspect include the areal extent of the objects contributed by a contributor, and 

the average number of nodes used in creating lines and polygons. A smaller value (less 

than 1.5 standard deviations below the scaled mean) may indicate a specific focus on a 

particular region, while a larger value may indicate a wide area of interest. There are 

seven variables in the Geography aspect. Table 9 lists the variables in the Geography 

aspect with a description of each. 

 

Table 9. Description of per-contributor variables used from the Geography Aspect. 

Type Per-Contributor Variables Description 

Geography Areal extent of point features (km2) Areal extent of all of the contributor's point features. 

Geography Areal extent of line features (km2) Areal extent of all of the contributor's line features. 

Geography 

Areal extent of polygon features 

(km2) Areal extent of all of the contributor's polygon features. 

Geography Avg. nodes per line feature 

The average number of nodes that a contributor used to 

create/modify line features. 

Geography Avg. nodes per polygon features 

The average number of nodes that a contributor used to 

create/modify polygon features. 

 

A total of forty-six variables were generated for each OSM data contributor 

following the ACG model. However, highly positively skewed data distribution 

dominates the OSM dataset for the forty-eight states. Ninety percent of the data 

contribution was made by 120 out of 20,752 users, or 0.5% of the contributors; 39.5% of 

the contributors had created, edited, or deleted five features or fewer. Of the forty-six 

variables, thirty-four belong to the Activity aspect, seven belong to the Context aspect, 

and five belong to the Geography aspect. Using Principal Component Analysis, I reduced 
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the variables to eight Activity components, four Context components, and two 

Geography components. For each aspect, the components were averaged together to form 

three aspect variables (Activity, Context, Geography) for each contributor. The process of 

averaging the data does reduce the explanatory power of the variables, but it allows the 

ACG Model to produce a three-dimensional representation of aspects for each 

contributor. For each contributor, the model produces one value for their Activity aspect, 

one value for their Context aspect, and one variable for their Geography aspect. Each data 

contributor can potentially be described as a point in a three-dimensional graph of the 

AGC Model. 

Calculating areal extent was derived by the bounding box of a contributor’s 

features, with separate values for point, line, and polygon features. The motivation behind 

using the bounding box of all features was to encompass the spread of contributions by 

an OSM user. This does introduce the potential to over represent contributors who 

produce a few features spread over a large area, but it does yield information regarding 

the spatial distribution of a contributor’s input. 

The variables average number of nodes per line and average number of nodes per 

polygon provide insight into a contributor’s sophistication with GIS and the types of 

features that they choose to measure. Presumably, natural features such as hiking paths, 

rivers, and coastlines would have more nodes in a given area compared to man-made 

features. The average line had 18.4 nodes with a standard deviation of 45.3. The average 

polygon had 20.6 nodes with a standard deviation of 124.1. 

Establishing Data Contributor Typology 

Devising a method to identify clusters of contributors presents a challenge as 
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there are a small number of contributors who make an extremely large number of 

contributions. Traditional hierarchical clustering and k-means clusters both proved 

problematic as the small number of extreme cases are less similar to any other feature 

than themselves and tend to be grouped individually. A test run of hierarchical clustering 

on the raw data revealed several clusters with only one member. Since these extreme data 

contributors make important data contributions, dropping these cases is not an option. A 

second attempt to cluster contributors used a pseudolog transformation of the data. This 

led to reasonably-sized clusters, but some contributors with large aspect values were 

grouped with those with more moderate aspect values. 

After a number of trials, standard deviation proved to be effective to reflect the 

distributions of the three aspect measures for the data contributors. An outlier in an aspect 

(Activity, Context, and Geography) is defined as being 1.5 standard deviations away 

from the mean. Using the outlier approach, there are potentially twenty-seven groups of 

OSM data contributors as each contributor may be a high outlier, not an outlier, or low 

outlier in each of the three aspects. Using an upper case to represent a high outlier, a 

lower case for a non-outlier, and a square-bracket letter represent a low-outlier, the 

groups can be labeled as acg, ac[g], acG, a[c]g, etc. This grouping scheme classifies 

OSM data contributors based on their measures in the three ACG aspects.  

Note that the ACG model was established to grasp data contributors’ 

characteristics that may be connected to their creditability and data quality. The next 

logical step is to examine if the grouping results are related to the contributors’ data 

quality. 

 



 

68 

Assessing Data Quality 

The quality of OSM data, in particular the positional accuracy, needs to be 

examined across the different groups of data contributors. Two government datasets were 

used as reference data. The first dataset is the 2011 public school location data obtained 

from the Texas Education Agency (TEA). It contains 8,360 school locations. The second 

dataset is the 2013 public school location data obtained from California Department of 

Education (CDOE) contains 11,234 schools. Both datasets contain point features. 

To identify entries of schools from the OSM dataset, point objects with the word 

“School” in the title or keyed as a ‘school’ (usually with the key-value 

“amenity”=”school”) were extracted. A total of 14,288 point entries in California and 

11,123 point entries in Texas were identified from OSM. The OSM dataset has more 

entries than the state government school datasets because OSM includes multiple 

versions of the same school, historical schools, religious schools, and commercial schools 

(e.g., ‘yoga school’) that are not administered by the state agencies. 

To match schools between OSM and the reference data from TEA or CDOE, the 

Levenshtein distance between OSM attributed names and the names in the TEA/CDOE 

datasets. The Levenshtein distance measures the minimum number of changes necessary 

to match one string to a second string. For example, the word “pear” and the word “beat” 

have a Levenshtein distance of two as two letters would be changed to match the former 

to the latter. The Levenshtein ratio is computed as one minus the ratio of the Levenshtein 

length to the length of the longest name from two strings. This results in a value between 

zero and one on the similarity between a school name from OSM and one from the 

government data. A Levenshtein ratio of zero represents no similarity, while a value of 1 
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represents a perfect match. A school record from OSM is considered matching a record 

from the TEA or CDOE data when they have the highest Levenshtein ratio among all 

candidate matches, when the Levenshterin ratio is greater than 0.6, and when they are 

have a distance less than 1,340 meters apart. A preliminary data processing revealed that 

the closest mismatch of two schools from OSM school entries and TEA/CDOE records 

with exact same name are 1,340 meters apart (i.e. California Elementary in West Covina 

and California Elementary in Hacienda la Puente). Therefore, 1,340 meters is chosen to 

be the maximum possible distance between matching schools in the OSM and state 

agency datasets. A total of 10,744 matching schools were identified between OSM entries 

and government school data. 

The positional accuracy of OSM school data can be assessed by the errors in 

school location data. The error in positional accuracy is calculated as the distance 

between an OSM school location and the corresponding TEA/CDOE school location. For 

the purpose of this report, the locations of the schools given by the state agencies are 

considered accurate. This was verified by some spot checking on schools through 

mapping against aerial photographs. Schools in this study are points, while school 

grounds will have a polygonal shape. This presents a possible false report of an error for 

small values of distance between the datasets.  It is important to note that many OSM 

school locations were imported from GNIS (the U.S. Geographic Names Information 
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Systems) in the summer of 200932. To better understand the role of secondary sources of 

data and their impact on OSM data quality, the positional accuracy was compared for the 

school datasets with and without secondary data. After excluding the secondary sourced 

OSM school entries, a total of 2,394 schools were left in the OSM dataset that were 

matched the schools in the TEA or CDOE dataset. 

One-way analysis of variance (ANOVA) and a Tukey post-hoc test were 

performed to compare the positional accuracy of the OSM school entries across the 

different types of VGI contributors. The one-way ANOVA test was conducted for all the 

OSM school entries that matched a record in the government dataset and for only those 

OSM school entries that were generated by OSM data contributors as primary data and 

matched a record in the government dataset. 

 

The Geographic Distribution of OpenStreetMap 

Mapping Activity and Population 

At a basic level, it’s conceivable that mapping in an area is related to the 

population of that area. In urban areas, where population concentrations are higher, there 

may be more entities (restaurants, public buildings, roads, etc) considered worth 

mapping. Of course, man-made entities are only one type of feature to be mapped. 

Natural features and non-physical entities (ie, political borders) may also be mapped. 

                                                 

 

 

 

32 http://wiki.openstreetmap.org/wiki/USGS_GNIS. 
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Increased population in an area also means that there are potentially more map 

contributors in that area either because of ease of access or sheer numbers.  

If there is a significant positive relationship between mapping activity and 

population, this may suggest that mapping interest and “mappable” entities of interest are 

spread uniformly in the population. A strong correlation between population and features 

in OSM would also suggest where areas require more mapping activity when the ratio of 

entities to population is lower than the national average. This would be a convenient way 

to identify areas that require attention.  

I use Pearson’s product-moment correlation coefficient to compare the total 2010 

population in each of the four Census geographies (block group, CBSA, county, and 

place) with the number of OSM features within that area, and the features from data 

sources Type A, B, and C (as in Table 3).  

The hypothesis is that there is a linear relationship between the 2010 population 

size of a Census geographic area and the number of OSM features within that same area. 

Rejection of the hypothesis would suggest no relationship between population size and 

the coverage of ISM for a geographic area. A correlation coefficient of 0.7 or above with 

a significant level of α < 0.05 would suggest a significant and strong relationship between 

the two. 

Mapping Activity and Socioeconomic Characteristics 

Mapping interest and ability may not be distributed evenly within the U.S. 

population. There are technological barriers to mapping for OpenStreetMap. A 

contributor needs a device (phone, GPS, computer) to input information; some level of 

education or training in mapping or using computers; the free time to spend on mapping 
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pursuits; and some motivation or interest in the material. In the case of pursuing field 

work, personal safety may also be a concern, and there may be questions of equal access 

for different populations. 

In a survey of 426 OpenStreetMap contributors at a London gathering, Haklay 

and Budhathoki (2010) found that 96% were male (compared to 3% female), 32% were 

between the ages 20-30, 32% were between 31-40, and 22% were between 41-50. Of that 

group, 78% had a college degree. In an online survey of 641 readers of the academic 

mapping collective site floating sheep33, Stephens (2013) found that male respondents 

were more than four times as likely to have used OSM and five times as likely to have 

contributed to OSM as female respondents. In the same survey, male and female 

respondents were equally likely to have used or contributed to Google Maps. In this 

survey, a majority of respondents who used OpenStreetMap (79.9%) were under 40 years 

old, and a majority (77.1%) had a college degree. 

OpenStreetMap, then, tends to have contributors that are male, young, and 

educated. It may also be possible that these contributors have relatively higher incomes if 

they can afford computers and GPS devices to work with OpenStreetMap. To determine a 

relationship between OpenStreetMap and potential contributors in an area, I will perform 

a principal components regression using the following 2010 U.S. Census variables and 

the OSM feature count in each of the two U.S. Census geographies (i.e., CBSA, and 

                                                 

 

 

 

33 http://www.floatingsheep.org 
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county): 

 Persons with a Bachelor’s Degree or higher (BS); 

 Total Men (MEN); 

 Total Women (WOMEN); 

 Median Household Income (INC); 

 Population age 25 to 54 (A25_54); 

 Count of homeowners (HOWN); 

 Count of persons whose primary transit to work is car (TCAR); 

 Count of persons whose primary transit to work is public transit (bus, 

train) (TPUB); 

 Count of persons whose primary transit to work is walking (TWLK). 

I use principal components regression (PCR) to compare the above 

socioeconomic variables in the two Census geographies (CBSA and county) with the 

number of features within that area. The hypothesis states that there is a functional 

relationship between the magnitude of OSM mapping activities in a geographic area and 

the principal components of the socioeconomic-socioeconomic characteristics of that 

area. The magnitude of mapping in an area is measured as the total number of OSM 

mapping features.  To understand how the different types of data sources are related to 

the socio-socioeconomic variables, a PCR model is also attempted for each data source 

type (A, B, and C). An R2 above .70 suggests a model that provides a strong explanation 

of the relationship between the independent and dependent variables. 

Principal components regression is a technique used for constructing explanatory 

models when there are multiple factors that are highly collinear with the independent 
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variables. The technique uses principal components analysis (PCA) to extract factors in 

orthogonal directions along the dataset. Each factor represents a combination of the 

original variables and explains some amount (i.e., 50%) of the correlation in the data. In 

order to reduce the dataset, the largest factors that account for over ninety percent of the 

correlation are including while other factors are removed. These factors are then used as 

the independent variables in an ordinary least squares linear regression.  

Mapping Activity and Spatial Clustering 

The previous tests have examined the spatial relationship between the persons in 

an area being mapped, but what are the spatial patterns within the OSM dataset itself? 

Mapping contributors in OSM are not bound to only map within one county or one 

neighborhood. Indeed, an active contributor or mapping community may impact any of 

the places or counties surrounding their preferred areas. This activity may result in a high 

degree of spatial autocorrelation. Spatial autocorrelation is a measure of the degree with 

which spatial features tend to cluster or be dispersed in space.  

I will calculate a Moran’s I statistic for spatial autocorrelation at the county level 

for feature density (features-per-square-mile) for each data source type (all features, types 

A, B, C). Feature density, rather than feature count, is preferred since counties have 

vastly different areas within the US. The null hypothesis is that there is no spatial 

autocorrelation in the distribution of OSM mapping features in the 48 states of the U.S. 

when examined at the county level. 

If the z-score of the Moran’s I falls within two standard deviations, or between -

1.96 and 1.96 of the mean (α < 0.05), the null hypothesis is accepted. In addition to the 

Moran’s I test, I will generate a Getis-Ord Gi* hot-spot map to identify which counties 
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have high spatial autocorrelation when OSM features are grouped by the different data 

source types (all features, A, B, C, and A+B). 

Mapping Activity and OSM Community Participation 

Feature density, particularly the density of features that were generated from GPS 

or screen tracing, should indicate a high-level of OSM participation. I will identify the 

twenty metro areas in the U.S. that have the highest and lowest feature density. This list 

will be compared with the number of active contributors on the email lists of the major 

OSM groups in the U.S. These figures were derived from meetup.com’s list of 

OpenStreetMap regional groups.34 These lists are voluntary groups which hold scheduled 

meetings specifically for OpenStreetMap or include OpenStreetMap as a key interest of 

the group. The areas with highest feature density are examined in detail. 

I will use a Spearman’s rho rank correlation test to examine the rank of feature 

density in OSM and the rank of contributors in the OSM email lists in those areas. For 

this test, the hypothesis is that the OSM feature density in a geographic area is related to 

the number of the OSM data contributors in that area. A correlation coefficient of 0.7 or 

above with a significant level of α < 0.05 would suggest the existence of such a 

relationship. 

Mapping Activity and Feature Type Choices 

Using the 2005-2013 OSM dataset, point, line, and polygon features that represent 

                                                 

 

 

 

34 http://openstreetmap.meetup.com/, accessed March 15, 2015 

http://openstreetmap.meetup.com/
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entities are extracted and mapped at the county and CBSA area level. These features 

represent the most commonly mapped entity types in these geographies. The data was 

collected by summing all features with amenities in each county and CBSA geography 

and then counting the feature types (amenity) that had the highest representation in an 

area. For example, “parking”, “restaurant”, and “school” may be common feature types.  

The OSM website lists the feature types that they consider standard and use to 

create tile maps. These tiles provide the background map imagery for many online sites, 

so having a feature type follow the OSM guidelines is important in representing features 

of a place. A place that has a very high occurrence of an uncommon feature type may 

indicate an area that is not well mapped or does not have the most common feature types. 
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CHAPTER VI. RESULTS 

The Activity-Context-Geography Model 

Typology of VGI Data Contributors 

Applying Principal Components Analysis (PCA) on the forty-six variables that 

measure the three aspects of ACG revealed that eight factors were found to reflect 89.4% 

of the covariance for the Activity aspect. The variables ‘count_new_lines’ (the number of 

new line features created per contributor), ‘count_new_polygons’ (the number of new 

polygon features created per contributor), and ‘count_keys_values’ (the number of 

different key-value combinations in the attributes of the features) explain the greatest 

variance in the Activity aspect. Table 10 shows the factor loadings of the variables and 

the eight components in the Activity aspect. 
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Table 10. Factor loadings of variables in the Activity aspect. Numbers in parenthesis 

indicate percentage of variance explained. 

Activity aspect variable 

PC1 

(32.4%) 

PC2 

(21.0%) 

PC3 

(11.1%) 

PC4 

(6.8%) 

PC5 

(6.1%) 

PC6 

(4.8%) 

PC7 

(4.1%) 

PC8 

(3.1%) 

count_new_points 0.06 0.16 0.36 -0.08 0.10 -0.23 0.28 -0.09 

count_new_lines 0.29 -0.11 -0.02 0.04 -0.03 0.06 -0.03 0.00 

count_new_polygons 0.29 -0.07 0.01 -0.01 0.03 -0.02 0.03 0.00 

count_changed_points 0.01 0.05 0.16 0.07 -0.09 0.11 -0.23 0.68 

count_changed_lines 0.06 0.22 -0.07 -0.21 -0.24 0.06 -0.02 -0.01 

count_changed_polygons 0.08 0.19 0.05 -0.23 0.20 -0.25 0.17 0.01 

count_keys_points 0.02 0.08 0.46 0.12 -0.13 0.14 -0.09 -0.19 

count_keys_lines 0.29 -0.09 -0.02 0.03 -0.05 0.06 -0.03 0.00 

count_keys_polygons 0.29 -0.07 0.01 -0.01 0.02 -0.02 0.04 0.00 

count_k_types_points 0.02 0.08 0.46 0.12 -0.13 0.14 -0.09 -0.19 

count_k_types_lines 0.29 -0.09 -0.02 0.03 -0.05 0.06 -0.03 0.00 

count_k_types_polygons 0.29 -0.07 0.01 -0.01 0.02 -0.02 0.04 0.00 

count_v_types_points 0.02 0.08 0.46 0.12 -0.13 0.14 -0.09 -0.19 

count_v_types_lines 0.29 -0.09 -0.02 0.03 -0.05 0.06 -0.03 0.00 

count_v_types_polygons 0.29 -0.07 0.01 -0.01 0.02 -0.02 0.04 0.00 

count_changesets 0.05 0.22 -0.13 0.46 0.01 0.01 0.20 0.00 

count_new_relations 0.05 0.22 -0.06 -0.16 -0.36 -0.06 0.22 0.00 

count_changed_relations 0.05 0.22 -0.12 -0.18 -0.43 0.09 0.04 -0.01 

count_keys_changesets 0.04 0.23 -0.13 0.46 0.01 -0.01 0.17 0.00 

active_days_points 0.08 0.29 -0.03 -0.11 0.23 0.09 -0.27 0.00 

active_days_lines 0.08 0.30 -0.04 -0.10 0.21 0.10 -0.26 -0.01 

active_days_polygons 0.10 0.29 0.00 -0.14 0.24 0.02 -0.18 -0.01 

active_days_changesets 0.08 0.31 -0.05 0.02 0.22 0.10 -0.19 -0.01 

active_days_relations 0.07 0.32 -0.10 0.01 0.03 0.12 -0.07 0.00 

points_per_day 0.01 0.04 0.24 0.06 -0.08 -0.07 0.04 0.63 

lines_per_day 0.28 -0.10 -0.02 0.05 -0.05 0.01 -0.06 0.00 

polygons_per_day 0.11 -0.03 0.00 0.02 -0.02 -0.11 -0.10 -0.03 

changesets_per_day 0.01 0.03 -0.02 0.18 -0.16 -0.53 -0.36 -0.07 

relations_per_day 0.01 0.05 -0.02 0.10 -0.21 -0.55 -0.36 -0.07 

count_deleted_points 0.06 0.15 0.22 -0.14 0.18 -0.33 0.36 0.13 

count_deleted_lines 0.29 -0.09 -0.02 0.02 -0.05 0.06 -0.03 0.00 

count_deleted_polygons 0.28 0.01 0.04 -0.08 0.10 -0.12 0.10 0.00 

count_deleted_changesets 0.05 0.22 -0.13 0.46 0.01 0.01 0.20 0.00 

count_deleted_relations 0.05 0.24 -0.10 -0.19 -0.43 0.04 0.11 -0.01 

 

Four variables described 65.2% of the Context aspect. The variables 
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‘avg_word_count_comment_polygon’, ‘avg_word_count_point’, and 

‘avg_word_count_line’ explained the greatest Context variance. These variables report 

the average word count in the optional comment section per feature per respective 

contributor. These are not attributes of an OSM feature but rather suggested by the OSM 

editors as a method for data contributors to explain their choices when adding, editing, or 

removing features. A contributor who is an active commenter represents someone 

familiar with the OSM ethos and infrastructure, and therefore would have a higher 

measurement for Context aspect. Table 11 shows the factor loadings of the variables in 

the Context aspect. 

 

Table 11. Factor loadings of variables in the Context aspect. Numbers in parenthesis 

indicate percentage of variance explained. 

Context Aspect Variables 

PC1 

(18.6%) 

PC2 

(17.1%) 

PC3 

(15.3%) 

PC4 

(14.2%) 

days_since_join 0.32 -0.63 0.02 0.01 

avg_word_count_comments_point 0.53 0.24 0.35 0.08 

avg_word_count_comments_line 0.44 0.15 -0.48 0.06 

avg_word_count_comments_polygon 0.57 0.27 0.26 0.05 

avg_word_count_comments_changeset -0.20 0.66 -0.05 -0.27 

avg_word_count_comments_relation 0.18 0.05 -0.76 0.07 

count_words_online_diary 0.17 -0.14 -0.03 -0.95 

 

Two variables described 71.7% of the variance in the Geography aspect. The 

variables ‘areal_extent_lines’ and ‘areal_extent_polygons’ explained the greatest 

variance in the Geography aspect. Each of these variables represent the extent for all of 

the features a contributor has made. The values reflect the geographic extent that a 

contributor has mapped. Table 12 shows the factor loadings of the variables in the 

Geography aspect. 
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Table 12. Factor loadings of variables in the Geography aspect. Numbers in parenthesis 

indicate percentage of variance explained. 

Geography aspect variables 

PC1 

(48.2%) 

PC2 

(23.5%) 

area_extent_points 0.56 0.10 

area_extent_lines 0.58 0.05 

area_extent_polygons 0.57 0.10 

avg_nodes_per_line 0.10 -0.70 

avg_nodes_per_polygon 0.10 -0.70 

 

The PCA generated scores for each of the three aspects were then used to classify 

the OSM data contributors. A high outlier score is one that is 1.5 standard deviations 

above the mean. A low outlier score is 1.5 standard deviations below the mean. OSM 

data contributors were also grouped into clusters based on being a low outlier, a high 

outlier, or not an outlier for each of the three ACG aspects. A total of twenty clusters 

emerged (Table 13). For the OSM dataset, 39.9% of the contributors had outlier 

characteristics in one or more aspect. The largest group was S1 (i.e. group acg) with 

11,273 (54.3%) contributors; as would be expected, this is a no-outlier cluster in all three 

aspects. The smallest groups each had one contributor, including S6 (group a[c]G) 

indicating a Low Context and a High Geography aspect and S18 (group A[c]g) which 

indicates a high Activity aspect and a low Context aspect. 

Table 13 shows the contributors per cluster type (n=20,752). “Low” represents 

low outliers (see text for explanation); “High” represents high outliers. A "-" represents a 

nonoutlier.  The contributors account for OpenStreetMap data within the contiguous 

United States from the inception of OpenStreetMap until February, 2013.  Combinations 

of aspect values not represented had no contributors. 
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Table 13. Contributors per Cluster Type. 

Group ID Key Contributors 

(% of Total) 

Activity 

Aspect 

Context 

Aspect 

Geography 

Aspect 

S1 acg 11,273 (54.3%) - - - 
S2 ac[g] 3,722 (17.9%) - - Low 

S3 acG 1,688 (8.1%) - - High 

S4 a[c]g 50 (0.2%) - Low - 

S5 a[c][g] 33 (0.2%) - Low Low 

S6 a[c]G 1 (0.0%) - Low High 

S7 aCg 33 (0.2%) - High - 

S8 aC[g] 8 (0.0%) - High Low 

S9 aCG 46 (0.2%) - High High 

S10 [a]cg 386 (1.9%) Low - - 

S11 [a]c[g] 32 (0.2%) Low - Low 

S12 [a]cG 554 (2.7%) Low - High 

S13 [a][c]g 2 (0.0%) Low Low - 

S14 [a]Cg 4 (0.0%) Low High - 

S15 [a]CG 32 (0.2%) Low High High 

S16 Acg 1,599 (7.7%) High - - 

S17 AcG 1,184 (5.7%) High - High 

S18 A[c]g 1 (0.0%) High Low - 

S19 ACg 15 (0.1%) High High - 

S20 ACG 89 (0.4%) High High High 

 

Figure 7 shows a 3D plot with the average aspect variables for each cluster as the 

center of a circle where the diameter proportionally represents the number of contributors 

in that cluster.  The aspect variables have been converted to z-scores for readability.  The 

cluster ACG, which has outliers in each of the three aspects, is not shown for readability. 

Each cluster circle is centered on its average Activity, Context, and Geography aspect 

variables adjusted to a standardized z-score. The diameter of each circle corresponds to 

the number of contributors in each cluster. Cluster ACG is not shown. An upper-case 

letter indicates high-outlier aspect variables. An aspect in square brackets (ie, [a]) 

represents a low-outlier aspect variable. Lower-case letters represent aspect variables that 
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are not outliers. Table 14 reports the average number of features created, modified, and 

deleted in each of the 20 clusters. 

 

 

Figure 7. A scatterplot of OSM clusters of contributors. 
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Table 14. The average number of features created, modified, and deleted for each 

contributor type. 

Group ID Key Avg. Features 

Created 

Avg. Features 

Modified 

Avg. Features 

Deleted 

S1 acg 6.5 4.3 6.0 

S2 ac[g] 0.8 0.3 0.4 

S3 acG 44.5 54.4 72.5 

S4 a[c]g 3.5 2.2 1.8 

S5 a[c][g] 0.7 0.3 0.2 

S6 a[c]G 1.0 1.0 2.0 

S7 aCg 2.6 3.8 4.6 

S8 aC[g] 0.6 0.4 1.0 

S9 aCG 36.7 46.7 63.9 

S10 [a]cg 435.3 27.3 408.3 

S11 [a]c[g] 1.6 7.2 8.2 

S12 [a]cG 8844.9 849.2 9299.0 

S13 [a][c]g 10.5 3.0 13.5 

S14 [a]Cg 44.3 28.8 53.5 

S15 [a]CG 9197.9 1701.4 10564.4 

S16 Acg 191.8 65.0 235.2 

S17 AcG 11378.7 2312.4 8611.7 

S18 A[c]g 4.0 14.0 8.0 

S19 ACg 94.3 173.6 250.6 

S20 ACG 29109.1 18607.7 35032.5 

 

Data Quality and Positional Accuracy 

For the 10,744 matching schools between the OSM dataset and the government 

datasets, a one-way analysis of variance (ANOVA) was run in two combinations: all 

matching schools grouped using the contributor type (S1 through S20); and all matching 

schools excluding any secondary data uploaded to OSM grouped by the contributor type 

(S1 through S20). For the analyses, groups S4, S5, S6, S7, S8, S9, S11, S13, S14, S18, 



 

84 

and S19 did not contribute any school data; these data contributors and their OSM 

contributions were excluded from the positional accuracy analyses.  

Table 15 shows the mean distance and count of school features by Outlier cluster 

groups. Clusters without matching features in the dataset (S4, S5, S6, S7, S8, S9, S11, 

S13, S14, S18, and S19) have been omitted from the analysis. An asterix (*) indicates a 

p-value which is significant at or below the 0.5 level. 

 

Table 15. The mean distance and count of school features by outlier cluster groups. 

  

Positional Error for All School Features 

(Error < 1340 meters, n=10774)  

Positional Error with Imported Features 

Removed (Error < 1340 meters, n=2394) 

  One-way ANOVA F=2.2713*  One-way ANOVA F=2.3914* 

Group 

ID 

Key 

Features 

Mean 

Error 

(m) SD Min Max 

 

Features 

Mean 

Error 

(m) SD Min Max 

S1 acg 431 169.2 218.4 0.8 1302.7 

 

429 169.1 218.7 0.8 1302.7 

S2 ac[g] 26 130.7 147.7 3.9 611.2 

 

26 130.7 147.7 3.4 611.2 

S3 acG 172 198.0 253.7 3.9 1334.8 

 

171 198.9 254.1 4.0 1334.8 

S10 [a]cg 39 168.1 138.5 8.6 622.4 

 

39 168.1 138.6 8.6 622.4 

S12 [a]cG 394 146.6 173.9 1.7 1323.1 

 

393 146.8 174.1 1.7 1323.1 

S15 [a]CG 31 88.5 91.2 0.4 502.0 

 

31 88.5 91.2 0.4 502.0 

S16 Acg 69 145.2 140.4 4.2 593.5 

 

69 145.2 140.4 4.2 593.5 

S17 AcG 732 145.1 195.5 1.4 1245.3 

 

729 145.4 195.8 1.4 1245.3 

S20 ACG 8880 153.6 191.2 0.6 1333.1 

 

507 143.7 181.1 0.6 1288.0 

 

Table 16 shows the results of several one-way ANOVA tests. Each test is 

performed with features grouped within their outlier status within the aspect (High 

Outlier (H), Low Outlier (L), Not an Outlier (N)). A single asterisk (*) indicates a p-value 

which is significant at or below the 0.5 level. Double asterisks (**) indicates a p-value 
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which is significant at or below the .1 level. Note that in the data used for the positional 

accuracy testing, there were no contributors in the non-outlier Activity aspect nor in the 

low Context aspect who contributed school locations. 

 

Table 16. One-way ANOVA results for each aspect grouped by outlier. 

  

Positional Error for All School Features 

(Error < 1340 meters, n=10774)  

Positional Error with Imported Features 

Removed (Error < 1340 meters, n=2394) 

  One-way ANOVA  One-way ANOVA 

Aspect 

Outlier 

Group Features 

Mean 

Error 

(m) SD F 

p-

value 

 

Features 

Mean 

Error 

(m) SD F 

p-

value 

Activity 
H 9681 152.9 191.1 

2.1 .146 
 

1305 144.7 187.5 
4.8 .028* 

L 1093 162.3 204.0 

 

1089 162.5 204.3 

             

Context 
H 8911 153.4 190.9 

0.3 .588 
 

538 140.5 177.6 
3.1 .078** 

N 1863 156.1 200.0 

 

1856 156.4 200.3 

             

Geography 

H 10209 153.3 192.0 

1.3 .281 
 

1831 149.3 193.0 

1.7 .195 
L 26 130.7 147.7 

 

26 130.7 147.7 

N 539 166.0 205.0 

 

537 165.9 205.3 

 

 

The Geographic Distribution of OpenStreetMap 

Mapping Activity and Population 

In Table 17, the results of the Pearson product-moment correlation between the 

2010 U.S. Census population in four geographies and the number of features that fall 

within those geographies are shown. In addition to all features in each area, data source 

types A (data imported from GPS), B (data traced on screen), and C (data imported from 
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third-party source) are included in the analysis. Correlations marked with double asterisks 

(**) are significant below the 0.01 level. Only two correlations, between county and 

CBSA geographies and type A data source features, were not significant.  

Three correlations met the criteria for strongly correlated results. The correlations 

between county geographies and CBSA with type C (imported) data source features, and 

the correlation between CBSA geographies and all features were above the .7 correlation 

cut-off. 
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Table 17. Results of Pearson correlation between mapping activity and population. 

U.S. Census 

2010 

geographic 

area  

Count (in 

analysis) 

Avg. 

Population 

(2010 U.S. 

Census) 

Avg. Number of 

Features (OSM 

2005-2013) 

Correlation 

with the 

number of 

features in area 

Correlation with 

the count of 

Type A features 

in area (1.4% of 

all features) 

Correlation with 

the count of Type 

B features in area 

(4.1% of all 

features) 

Correlation with the 

count of Type C 

features in area (54.9% 

of all features) 

Block group 216331 1395.7 181.0 .043** .007** .019** .059** 

County 3109 97118.2 8727.5 .517** .017 .187** .719** 

Place 52756 7278.3 446.7 .483** .016** .101** .643** 

CBSA 933 302972.0 23124.6 .719** .019 .108** .843** 

8
7
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Mapping Activity and Socioeconomic Characteristics 

Mapping activity for features that fall completely within counties and Core-Based 

Statistical Areas (CBSA) is tested using Principal Components Regression (PCR) with 

the socioeconomic variables taken from the 2010 American Community Survey / U.S. 

Census. Figure 8 (county level) and Figure 9 (CBSA level) show scatterplots between the 

independent variables in the regression analysis. The variables are listed diagonally. 

 

 

Figure 8. Scatterplots of the independent variables (county level). 
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Figure 9. Scatterplots of the independent variables (CBSA level). 

 

 Table 18 shows the distributions (mean, min, max, standard deviation) of the 

variables used in the analysis at the County level.  Table 19 presents the correlations 

between the independent variables in the analysis at the county level. The variables MEN 

and WOMEN are highly correlated, as are BS, A25_54, HOWN, and TCAR. Table 20 

shows the relationship between the socio-socioeconomic variables and the four 

components that were derived from a Principal Components Analysis (PCA) for the 

County level. These four components account for 97.4% of the total variance in the 

dataset. Table 21 reports the results of four PCRs between the independent variables 

listed above the following dependent variables: the count of all features at county level; 

the count of features of Type A (features loaded from GPS) at county level; the count of 

features of Type B (features traced on screen) at county level; and the count of features of 
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Type C (features imported from other data sources) at county level. Features of unknown 

data source were included in “All Features” but not included in either Type A, B, or C. A 

single asterisk (*) indicates significance at .05 or below. Double asterisks (**) indicates 

significance at .01 or below. Note that Type A (GPS) features are not significantly 

explained by the PCR. Of the three source types, Type A appear to have a pattern that is 

least explained by socioeconomic data. 

 

Table 18. Distribution of Variables in PCA (County level). 

Variable Mean Min Max SD 

BS 18502.39 15 1332186 48485.53 

MEN 38.65 21.4 60.4 4.98 

WOMEN 41.15 21.1 62.6 4.90 

INC 44106.45 19351 115574 11439.00 

A25_54 40478.09 35 4292605 134846.52 

HOWN 24337.93 10 1552091 64335.25 

TCAR 38421.50 29 3671019 118365.05 

TPUB 2196.42 0 641106 21788.96 

TWLK 1255.63 0 176569 5615.90 
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Table 19. Correlations between independent variables (county level). 

 BS MEN WOMEN INC A25_54 HOWN TCAR TPUB 

MEN -.176        

WOMEN -.178 .921       

INC .260 -.089 -.160      

A25_54 .975 -.181 -.188 .270     

HOWN .974 -.183 -.189 .320 .970    

TCAR .959 -.189 -.196 .291 .981 .979   

TPUB .601 -.081 -.082 .124 .607 .504 .448  

TWLK .742 -.145 -.152 .194 .776 .694 .664 .866 

 

 

Table 20. Relationship between independent variables and the Principal Components 

(county level). 

Variable Component 1 

(57.3% of 

variance) 

Component 2 

(20.3% of 

variance) 

Component 3 

(10.9% of 

variance) 

Component 4 

(8.9% of 

variance) 

BS .425 .077 -.053 .190 

MEN -.125 .688 -.122 -.034 

WOMEN -.129 .690 -.062 .026 

INC .150 -.076 -.746 -.639 

A25_54 .430 .074 -.046 .171 

HOWN .419 .059 -.169 .232 

TCAR .413 .050 -.184 .304 

TPUB .307 .129 .491 -.516 

TWLK .372 .099 .341 -.334 
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Table 21. Principal Components Regression results for County features. 

PCR Coefficients All Features Type A Features Type B Features Type C Features 

INTERCEPT  8727.53** 123.54 362.7 4794.9** 

COMPONENT 1 5602.3** 53.32 965.6** 2645.1** 

COMPONENT 2 -63.76 -48.11 164.6 99.7 

COMPONENT 3 -3759.49** -77.52 -469.6* -1774.4** 

COMPONENT 4 3388.29** -113.77 1155.6** 1788.5** 

R2 .281** .000 .035** .556** 

F-statistic 305.2 .861 28.24 972.1 

Number of 

Observations 

3109 3109 3109 3109 

 

Table 22 shows the distributions (mean, min, max, standard deviation) of the 

variables used in the analysis at the CBSA level. Table 23 shows the relationship between 

the socio-socioeconomic variables and the three components that were derived from a 

Principal Components Analysis (PCA) for the County level. These three components 

account for 93.8% of the total variance in the dataset. Table 24 reports the make-up of the 

components that resulted in the PCA between the socioeconomic variables at the CBSA 

level. Table 25 reports the results of four Principal Components Regressions between the 

independent variables listed above the following dependent variables: the count of all 

features at CBSA level; the count of features of Type A (features loaded from GPS) at 

CBSA level; the count of features of Type B (features traced on screen) at CBSA level; 

and the count of features of Type C (features imported from other data sources) at CBSA 

level. Features of unknown data source were not included. A single asterisk (*) indicates 

significance at .05 or below. Double asterisks (**) indicates significance at .01 or below.  
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Table 22. Distribution of Variables in PCA (CBSA level). 

Variables Mean Min Max SD 

BS 56204.5 1288 3405436 173018.04 

MEN 36.4 23.8 59.7 4.39 

WOMEN 39.1 22.4 62.6 4.54 

INC 44598.9 22881 103643 8844.56 

A25_54 126936.1 4314 8146832 446372.22 

HOWN 74976.4 2350 3609384 222458.72 

TCAR 120419.1 3396 4993657 367155.80 

TPUB 7280.2 0 2642480 91389.11 

TWLK 3894.4 29 533170 20356.96 

 

Table 23. Correlations between independent variables (CBSA level). 

 BS MEN WOMEN INC A25_54 HOWN TCAR TPUB 

MEN -.041        

WOMEN -.052 .966       

INC .309 .056 -.015      

A25_54 .985 -.068 -.081 .326     

HOWN .985 -.055 -.069 .349 .985    

TCAR .960 -.077 -.092 .355 .982 .985   

TPUB .798 -.017 -.018 .166 .775 .718 .646  

TWLK .701 -.045 -.050 .257 .019 .850 .800 .965 
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Table 24. Relationship between independent variables and the Principal Components 

(CBSA level). 

Variable Component 1  

(61.7% of variance) 

Component 2  

(21.8% of variance) 

Component 3  

(10.3% of variance) 

BS .419 -.026 .042 

MEN -.034 .706 -.012 

WOMEN -.040 -.703 .063 

INC .157 -.058 -.934 

A25_54 .419 -.005 .011 

HOWN .413 -.014 -.039 

TCAR .403 .005 -.079 

TPUB .358 -.044 .288 

TWLK .400 -.027 .178 

 

 

 

 

Table 25. Principal Components Regression results for CBSA features. 

PCR Coefficients All Features Type A Features Type B Features Type C Features 

INTERCEPT 23124.6** 411.3 1172.8 12535.1** 

COMPONENT 1 17872.0** 104.1 961.7** 9065.7** 

COMPONENT 2 1293.7 10.5 501.9 358.0 

COMPONENT 3 -8215.9 -543.8 -1737.0* -4543.3** 

     

R2 .531** .003 .014** .708** 

F-statistic 350 .983 4.5 749.3 

Number of 

Observations 

933 933 933 933 
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Figure 10. Distribution of the first three components with the variables of analysis. 

(CBSA level). 

 

Figure 10 above shows the relationship between the variables of analysis and the 

first three components (dimensions) of the PCA. The variables MEN and WOMEN are 

highly correlated and therefore appear closely together. The variables HOWN, TCAR, 
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A25_54, and BS are closely related and also appear closely together. INC is unique 

compared to the other variables.  

The following graphs (Figure 11, Figure 12, Figure 13, and Figure 14) display the 

fit of the comparison of responses in the Principal Components Regression for the 

predicted values and the original feature counts (all features, Type A features, Type B 

features, and Type C features) at the county level.  

 

 

Figure 11. The comparison of responses between the predicted results of the Principal 

Components Regression and the original count of all features at the county level. 
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Figure 12. The comparison of responses between the predicted results of the Principal 

Components Regression and the original count of Type A features at the county level. 

 

Figure 13. The comparison of responses between the predicted results of the Principal 

Components Regression and the original count of Type B features at the county level. 
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Figure 14. The comparison of responses between the predicted results of the Principal 

Components Regression and the original count of Type C features at the county level. 

 

The following graphs (Figure 15, Figure 16, Figure 17, and Figure 18) display the 

fit of the comparison of responses in the Principal Components Regression for the 

predicted values and the original feature counts (all features, Type A features, Type B 

features, and Type C features) at the core-based statistical area (CBSA) level.  
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Figure 15. The comparison of responses between the predicted results of the Principal 

Components Regression and the original count of all features at the CBSA level. 

 

Figure 16. The comparison of responses between the predicted results of the Principal 

Components Regression and the original count of Type A features at the CBSA level. 
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Figure 17. The comparison of responses between the predicted results of the Principal 

Components Regression and the original count of Type B features at the CBSA level. 

 

Figure 18. The comparison of responses between the predicted results of the Principal 

Components Regression and the original count of Type C features at the CBSA level. 
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Mapping Activity and Spatial Clustering 

At the county level, a Moran’s I index for spatial autocorrelation was run for all 

features, features of data source Type A (GPS created features), features of data source 

Type B (features traced from imagery), and features of data source Type C (features from 

a third-party data source). 

Table 26 shows the results of the Morans I test for spatial autocorrelation at the 

county level. For three of the set of features (all features, Type B & C features), the 

results were significant below the .05 cutoff. Of these three, all are positively spatially 

correlated indicating a degree of clustering. Adjacent neighbors (including both edge and 

vertex neighbors) where used as the spatial relationships between features for grouping 

neighbors for the spatial autocorrelation test.  

 

Table 26. Results of Moran’s I Test for Spatial Autocorrelation at the county level. 

Set of Features Moran’s I Z-Score p-value 

All Features .282** 28.834 0 

Type A features -.0002 .1823 .855 

Type B features .0277** 5.448 0 

Type C features .295** 29.407 0 

 

Figure 19 shows four quantile maps of the density of features (per square mile) in 

each of 3109 counties in the US. The top-left map shows the quantiles of feature density 

for all features in OSM. The top-right map shows quantiles of feature density for Type A 

(GPS-traced) features. The bottom-left map shows quantiles of feature density for Type B 
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(traced from photos) features. The bottom-right map show quantiles of feature density for 

Type C (imported from other sources) features 

Figure 20 shows four hot-spot (Getis-Ord Gi*) maps of feature density at the 

county level. The top-left map shows the hot-spot locations for all features within each 

county. The top-right map shows the hot-spot locations for features of Type A (GPS 

traces) within each county. The bottom-left map shows the hot-spot locations for features 

of Type B (photo traces) within each county. The bottom-right map shows the hot-spot 

locations for features of Type C (imported) within each county. 
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Figure 19. Density of Features at the County Level. 

1
0
3
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Figure 20. Hot Spot Maps of Feature Density at County Level. 
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Mapping Activity and OSM Community Participation 

The twenty metropolitan CBSAs defined in the 2010 U.S. Census with the highest 

mapping activity (feature) density within their areas are shown in Table 27. The density 

in square kilometers is shown with the 2010 population and the total number of features 

in OSM (2005-2013). Table 28 shows the lowest twenty metro areas in feature density. 
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Table 27. Metro areas with highest density of mapping activity. 

CBSA Metro Name Mapping Features 

per km2 

Features in 

OSM 

Mapping 

Features per 

capita 

Population 

(2010) 

Pascagoula, MS 123.5 444,864 2.8 159,143 

Burlington, VT 97.1 335,608 1602.9 209.381 

San Diego, CA 78.6 828,466 .27 3,022,460 

Santa Cruz, CA 62.2 107,326 .42 256,901 

Harrisburg, PA 55.8 236,486 .44 541,758 

Reading, PA 48.8 110,399 .27 407,310 

San Jose, CA 39.7 302,189 .17 1,793,888 

San Francisco, CA 34.0 312,151 .07 4,244,889 

Tampa Bay, FL 33.3 271,489 .10 2,745,350 

Trenton, NJ 32.8 17.446 .00 364,445 

New York, NY 32.4 689,549 .04 18,700,715 

Fayetteville, AR 27.9 239,550 .54 445,626 

Allentown, PA 25.9 94,009 .02 5,911,638 

Philadelphia, PA 27.1 302,024 .05 5,911,638 

Durham-Chapel Hill, 

NC 

25.9 108,276 .22 488,508 

Gulfport-Biloxi, MS 25.4 118,633 .49 241,122 

Washington, DC 25.4 350,629 .06 5,416,691 

Los Angeles, CA 25.4 334,924 .03 12,723,781 

Boston, MA 24.8 256,529 .06 4,489,250 

San Luis Obispo, CA 23.6 196,822 .74 265,577 
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Table 28. Metro areas with lowest density of mapping activity. 

CBSA Metro Name Mapping Features 

per km2 

Features in 

OSM 

Mapping Features 

per capita 

Population 

(2010) 

Yuma, AZ .466 5966 31.9 190,526 

El Centro, CA .720 7512 22.4 168,052 

Rapid City, SD .726 10435 11.8 123,078 

Flagstaff, AZ .844 36290 3.6 131,824 

Lake Havasu City, 

AZ 

1.03 31947 6.2 199,177 

Billings, MT 1.09 11782 13.1 154,044 

Lewiston, ID 1.10 3778 15.9 60,249 

Cheyenne, WY 1.12 6848 13.0 89,221 

Casper, WY 1.15 14200 5.2 73,520 

Lake Charles, LA 1.16 8238 23.8 196,414 

Wenatchee, WA 1.17 13141 8.2 108,155 

Greeley, CO 1.23 11311 21.5 242,860 

Prescott, AZ 1.27 23817 8.8 209,260 

Visalia, CA 1.34 14929 28.8 429,404 

Yakima, WA 1.39 13802 17.1 236,542 

Bangor, ME 1.40 11488 13.3 152,934 

Amarillo, TX 1.52 12947 18.9 245,177 

Pueblo, CO 1.57 8626 18.1 156,244 

Boise, ID 1.59 43010 13.9 598,730 

Kennewick, WA 1.61 11221 21.2 238,406 
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Table 29 displays the metro areas with active OSM mapping clubs. The number 

of members in the club (as posted on their meetup.com website 35) is shown. A Spearman 

correlation by ranks returns a .55 correlation between the number of members in the local 

OSM club and the feature density when excluding areas with no or an unknown number 

of mappers. The density of features of Type A (GPS traces), Type B (screen traces), and 

Type C (imported data) have Spearman correlations of .50, .46, and .46 with the number 

of members in OSM clubs, respectively. 

  

                                                 

 

 

 

35 http://meetup.com, accessed March 1, 2015 

http://meetup.com/
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Table 29. Metro Areas with OSM Mapping Clubs. 

CBSA Metro Name Features 

per km2 

Population 

(2010) 

No. of 

Contributors in 

OSM database 

(2005-2013) 

No. of 

Members of 

OSM Club 

(2015) 

Rank in Metro 

Areas of Mapping 

Activity (Feature 

Density 

San Francisco, CA 39.7 4,244,889 1674 430 8 

Tampa Bay, FL 34.0 2,745,350 542 106 9 

Philadelphia, PA 27.1 5,911,638 1178 170 14 

Los Angeles, CA 25.4 12,723,781 1497 184 18 

Boston, MA 24.9 4,489,250 1210 312 19 

Baltimore, MD 22.5 2,683,160 605 79 21 

Portland, OR 20.1 2,170,801 842 37   23 

Detroit, MI 17.4 4,345,978 465 98 27 

Seattle, WA 15.1 3,356,089 1288 309 37 

Atlanta, GA 10.0 5,125,113 803 148 63 

Oklahoma City, OK 9.95 1,218,920 251 31 64 

Miami, FL 9.26 5,478,869 528 55 76 

Austin, TX 7.35 1,627,571 574 193 108 

Denver, CO 6.54 2,464,415 898 240 128 

Phoenix, AZ 5.68 4,080,707 579 679 154 

Portland, ME 5.49 513,139 210 25 162 

Louisville, KY 5.17 1,261,825 212 39 171 

Salt Lake City, UT 4.81 1,090,848 416 72 181 

San Antonio, TX 4.69 2,057,782 383 16 186 

Bend, OR 2.14 154,568 124 53 315 
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A Spearman correlation by ranks returns a .72 correlation between the number of 

mappers in an area and the feature density. The density of features of Type A (GPS 

traces), Type B (screen traces), and Type C (imported data) have Spearman correlations 

of .64, .62, and .71 with the number of members in OSM clubs, respectively. The 

correlation between number of members of an OSM club and the number of contributors 

in the same area is .83. 

Metro areas (the 383 largest CBSAs) with OSM mapping clubs had four times the 

number of features mapped on average (174,583.1) than areas without mapping clubs 

(40,662.9). However, these metro areas had a lower rate of mapping per capita (.051 per 

person in areas with OSM mapping clubs compared to .075 per person in areas without 

OSM mapping clubs).  

Mapping Activity and Feature Type Choices 

Figure 21 is a map showing the most frequently mapped entity types per metro 

area in the U.S. using point features. Table 30 lists the details of the count of point feature 

representations at the metro level. Figure 22 is a map showing the most frequently 

mapped entity types per metro area in the U.S. using line features. Table 31 lists the 

details of the count of line feature representations at the metro level. Figure 23 is a map 

showing the most frequently mapped entity types per metro area in the U.S. using 

polygon features. Table 32 lists the details of the count of polygon feature representations 

at the metro level. In the case where an entity type is “Not Defined”, it means that the 

most common feature in that area does not have an “amenity” tag defined. All tags in 

OpenStreetMap are optional. One such area was Abilene, Texas – as of February 2013, it 

had no polygons within its Census area that had amenity tags.  
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Table 30. Most Frequent Entities Mapped in Metro Areas (Point Features). 

Entity Type Count of Metro Areas with this Type as Most Frequent 

Place of Worship 254 

School 84 

Parking 6 

Restaurant 5 

Bicycle Parking 4 

Grave Yard 3 

Fire Hydrant 2 

Fuel 2 

Fire Station 1 

Library 1 

Post Office 1 
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Table 31. Most frequent entities mapped in metro areas (Line features). 

Entity Type Count of Metro Areas with this Type as Most Frequent 

Parking 138 

Not Defined 135 

School 37 

University 30 

College 6 

Place of Worship 5 

Grave Yard 3 

Hospital 2 

Public Building 2 

Bank 1 

Casino 1 

Library 1 

Marketplace 1 

Theatre 1 
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Table 32. Most frequent entities mapped in metro areas (Polygon features). 

Entity Type Count of Metro Areas with this Type as Most Frequent 

Parking 181 

None Defined 90 

University 25 

School 22 

Fast Food 10 

Place of Worship 6 

College 5 

Restaurant 4 

Bank 3 

Grave Yard 2 

Library 2 

Post Office 2 

Swimming Pool 2 

 



 

114 

 

Figure 21. Map of Most Common Entities Mapped in Each Metro Area (Point Features). 
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Figure 22. Most frequently mapped entities by metro area (Line features). 
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Figure 23. Most frequently mapped entities by metro area (Polygon features). 
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Figure 24 is a map showing the most frequently mapped entity types per county in 

the U.S. using point features. Table 33 lists the details of the count of point feature 

representations at the county level. Figure 25 is a map showing the most frequently 

mapped entity types per county in the U.S. using polygon features.  

 

Table 33. Most frequent entities mapped in counties (Point features). 

Entity Types Count of Counties with this Type as Most Frequent 

Place of Worship 2031 

School 536 

Grave Yard 335 

Parking 77 

Post Office 73 

Restaurant 11 

Fuel 9 

Fire Station 7 

Fire Hydrant 6 

Bicycle Parking 5 

Library 4 

Toilets 4 

Townhall 3 
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Figure 24. Most frequently mapped entities by county (Point features). 
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Figure 25. Most frequently mapped entities by county (Polygon features). 
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Table 34 lists the details of the count of polygon feature representations at the 

county level. 

 

Table 34. Most frequent entities mapped in counties (Polygon features). 

Entity Types Count of Counties with This Type as Most Frequent 

None Defined 2348 

Parking 440 

School 85 

University 43 

Fast Food 31 

Place of Worship 18 

Grave Yard 16 

Restaurant 16 

Public Building 14 

College 12 

Fuel 8 

Hospital 8 

Post Office 8 

Bank 6 

Library 6 

Pharmacy 6 

Fire Station 5 

Swimming Pool 5 

Toilets 6 

Airport 4 

Bench 4 

Café 3 

Shelter 2 

Theatre 2 

Townhall 2 
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CHAPTER VII. DISCUSSION OF RESULTS 

The Activity-Context-Geography Model 

Typology of VGI Contributors 

This classification scheme for data contributors seems reflects how the 

contributors interact with OSM. Many of the 89 contributors in the high outlier group in 

all three aspects (Cluster S20, ACG) are robot account contributors who use automated 

scripts to batch-process data to conform to standards or upload data from other sources. 

Most contributors, however, fall into a cluster exhibiting no extreme aspect values 

(Clusters S1, acg). The data contributors in Cluster S1 made very few feature 

contributions in OSM and, after an initial interest, most did not become long-term or 

persistent contributors. The average contributor in the S1 cluster created 6.5 new features 

while the average contributor in S20 contributed 29,109 new features. The other clusters 

of high data contribution are S17 (AcG), S15 ([a]CG), and S12 ([a]cG). 

To highlight an example from the variables used in the analysis, when comparing 

the values of the avg_nodes_per_line and avg_nodes_per_polygon variables, the values 

in the high outlier were an order of magnitude greater on average than the values in the 

not-an-outlier category. For details, see Table 35. 

 

 

 

 

 

 



 

122 

Table 35. Results for the average nodes per line and polygon between outlier groups. 

Geography aspect Average avg nodes per 

line 

Average avg nodes per 

polygon 

High outlier 31.3 31.5 

Non-outlier 7.1 1.7 

Low outlier 0 0 

 

Previous efforts to categorize VGI contributors have considered different aspects 

of their contribution, motivations, and abilities (Coleman, Georgiadou, and Labonte 

2009; Budhathoki and Haythornthwaite 2012). How does the ACG Model results of 

groups of contributors compare to earlier efforts? Considering the scale “Neophyte”, 

“Interested Amateur”, “Expert Amateur”, “Expert Professional”, and “Expert Authority”, 

which of the ACG Model groups compare? A Neophyte is defined as having little or no 

experience, and therefore would have a low Activity or Context aspect ([a]cg, [a][c]g, or 

a[c]g). Interest amateur, where most of the OSM contributors would be, should align to 

acg – no outliers in any aspect.  

The three expert categories – Amateur, Professional, and Authority – may not 

align as well to the ACG Model. The Expert Amateur, which is “familiar with the 

strengths and weaknesses of “ OSM (Coleman, Georgiadou, and Labonte 2009, 7), may 

be Acg or ACg. The Expert Professional has experience with GPS and mapping, which 

may show up in the Geography aspect (acG, AcG). The Expert Authority is a specialist in 

the field, which may align with ACG. The ACG and AcG clusters, however, appears to be 

robot contributors, or automated programs that check and correct data. They are also the 
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realm of contributors who import large amounts of data from other sources. 

Budhathoki (2010, 8), aligns VGI participation in two dimensions: use-production 

as one dimension, and expert-amateur. This may also inform the clusters of the ACG 

Model. Registered users with little or no contribution may appear in the low or non-

outlier form of the Activity aspect. Certainly the 33 aCg contributors who had a high 

Context but were not high in Activity or Geography are well connected to the OSM 

process – these may indicate Expert Users (as opposed to Expert Producers). Expert 

Producers may be indicated by the ACG group. Amateur Producers may be indicated by 

the Acg group.  

Data Quality and Positional Accuracy 

The one-way ANOVA results were significant at the 0.05 level for both the test of 

positional error for all school features and the test for positional error of only imported 

features compared against the contributor clusters. This suggests that there is a significant 

difference in data quality (in particular, positional accuracy) across the different clusters 

of OSM data contributors. This quality difference is observable for all of the OSM school 

entries in Texas and California as well as for only those school entries made as primary 

data contributions by the OSM contributors. The group S15 ([a]CG) with a low Activity 

aspect and high Context and Geography aspects had the lowest mean positional error in 

both tests. The group S3 (acG) with a high Geography aspect had the highest mean 

positional error in both tests.  

Nearly all of the features imported from other sources were created by the group 

S20 (ACG). Of the 8,380 matching school features in the OSM dataset identified as being 

imported from a secondary source, 8,373 (94%) of these were features created by cluster 
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S20 (ACG). Removing the features imported from other datasets lowered the mean 

positional error for cluster S20 by 6.5%. 

To better understand how each aspect affects positional accuracy, there is no 

significant difference in explaining the accuracy when considering all the OSM schools 

that matched the government datasets. If the OSM schools from secondary sources are 

removed, there is a significant difference among the outlier groups in the Activity and 

Context aspects. High outliers in the Activity aspect have positional accuracy than those 

in the Low outlier group. In the Context aspect, matches within the High outlier group 

have a lower positional error than those that are not an outlier. It is clear that the inclusion 

of secondary sources has a large impact in data quality within the dataset. It also appears 

that in the Activity and Context aspects, contributors with more contributions and/or are 

better connected to the context of OSM have lower errors in positional accuracy. 

 

The Geographic Distribution of OpenStreetMap 

Mapping Activity and Population 

At the county level and CBSA level, there is a strong, positive relationship 

between the number of features mapped in an area and the population of that area. At the 

block group and place level, this correlation was not strong. This may be partly due to the 

modifiable areal unit problem which is discussed later in this section. At the block group 

level, there should be a large disparity of “mappable features” from block group to block 

group, and this disparity may not related back to population. A block group of six or 

seven suburban blocks of ranch-houses, for example, would have a higher population 

than a block group of retail features, yet a block group of retail features would have more 
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“mappable” features than a suburban block group. This assumes that retail businesses, 

restaurants, and the like are preferred as entities over residential structures. While there is 

ample evidence of mapping residential structures in OSM, it is likely there is a clear 

preference towards mapping public infrastructure, commercial businesses, and 

recreational entities, although this would be an interesting area of study. 

Mapping activity created from GPS data (Type A) and on-screen traces of aerial 

photos (Type B) was not strongly correlated with population. There may be several 

explanations for this. The amount of data of Type A is very small compared, and there 

are not enough contributors using GPS to cover enough area of the United States. Even 

with the plethora of cheap, GPS-enabled devices on the market, the accuracy needed on a 

phone and the skill needed to turn that data into accurate map information may be too 

much for most contributors.  

The strong correlation between population and OSM features in urban areas 

suggests that there may be a ratio, or range of ratios, that fit to a “well-mapped” area. 

Other factors that may determine how many entities for mapping in an area include 

population change, urban density, natural features, and economic activity.  

Mapping Activity and Socioeconomic Characteristics 

The socioeconomic variables BS (having a Bachelor’s Degree), A25_54 (ages 25-

54), HOWN (homeownership) and TCAR (using a car as a primary means to get to work) 

have a high degree of multicollinearity. The variables MEN and WOMEN are also highly 

correlated. This weakens a linear regression analysis and introduces error, so I used 

Principal Components Regression to model the relationship between the independent 

variables and the OSM feature counts. The first consideration is that a model have a 
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reasonable correlation of coefficient, or R2 explanatory power. If R2 satisfies the 

minimum requirement, then the strength of coefficients is compared (Table 21 and Table 

25).  

For both the Census county and Census CBSA regressions (Table 21 and Table 

25), Type A features (data collected by GPS) and Type B features (data created by 

tracing digital images) did not explain the relationship between the socioeconomic 

variables examined in the study and the count of OSM features (R2 < .05). For both the 

Census county and Census CBSA regressions, Type C features (from third-party sources) 

had a large R2 values (.560 and .708), respectively. The Census county and CBSA 

regressions for all features also had larger R2 values than the Type A or Type B features 

but below the minimum set out as explanatory (.281 and .531, respectively).  

Examining the PCR for Type C features further at the County level, the largest 

positive relationship for the county level was for Component 1 and Component 4, and 

Component 3 had a negative relationship. Component 1 is closely related to the variables 

BS, A25_54, HOWN, and TCAR; Component 3 is strongly negatively related to INC. 

Component 4 is negatively related to INC and TPUB. The variables MEN and WOMEN 

do not appear to impact this relationship. The highly correlated variables BS, A25_54, 

HOWN, and TCAR appear to explain the relationship best. A similar pattern exists for all 

features.  

For Type C features in the PCR at the CBSA level (Table 25), Component 1 is 

significantly positively related while Component 3 is significantly negatively related to 

the model. Similar to the County level PCR, Component 1 is most related to the BS, 

A25_54, HOWN, TCAR, and TPUB variables. Component 3 is highly negatively related 
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to the INC variable. This suggests that INC (median household income) is strongly 

related, but independently from the other variables, to the mapping process. Usually, 

income would be considered highly correlated with education. It may be that, at least for 

OSM mapping, holding a Bachelor’s degree (BS) is not the best choice for representative 

variable for education. 

All features, which includes Types A, B, and C, at the CBSA level exhibit a 

similar pattern, although not as strong as the Type C features. This suggests that the 

relationships between features and socio-socioeconomic variables is largely an impact of 

the features pulled from 3rd party sources. In the United States, much of this data is from 

the U.S. Census TIGER data. The effect in OpenStreetMap may be a residual effect from 

the imported TIGER files, and it may not reflect the efforts of mappers in OSM. 

Overall, the results of the PCR suggest that there is not a strong relationship 

between socioeconomic variables for features that were created using GPS (Type A) or 

by tracing remote images or aerial photography (Type B). This may make sense for Type 

B features – these features can be created from most computers at a remote distance. 

Indeed, an OpenStreetMap extension called Maproulette36 allows authenticated OSM 

contributors to access a random location and verify, modify, and/or edit OSM data from 

anywhere in the world. For Type A features, however, the regression results suggest that 

there is not a relationship between the location of OSM features and the socioeconomic 

                                                 

 

 

 

36 http://www.maproulette.org, accessed March 15, 2015. 

http://www.maproulette.org/
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variables of that area. This makes sense for two possible reasons – first, the number of 

OSM contributors is small enough that it does not represent the population as a whole, 

and second, the types of features that are of interest to map are not distributed evenly. 

Looking at the distribution of Type A and Type B feature types may be a topic for more 

research. I discuss the types of features that are mapped in more detail later in this 

chapter. 

Mapping Activity and Spatial Clustering 

From the results of the Morans I, two of the contribution types (Type B and Type 

C) and all of the features are clustered at a national scale. Mapping the quantiles of 

activity for each data source type (Figure 19) does show some interesting details. GPS 

traces appear to be most common on the coast and in the western national parks – that is, 

vacation spots.  

The hot-spot map of Getis-Ord Gi* (Figure 20) suggests the locations of some 

outlier hot-spots of activity. Chittenden County, VT (seat: Burlington) is an outlier of 

Type A (GPS) activity. In fact, it is the only county where Type A data is higher than 

Type C (imported) data.  At the local level, mapping activity is spatially autocorrelated 

around Los Angeles, San Francisco, and Seattle for Type B (on-screen trace) data sources 

feature density. 

Mapping Activity and OSM Community Participation 

Table 27 lists the highest density of mapping activity at the metro (CBSA) level, 

and two areas stand out at outliers: Pascagoula, Mississippi, and Burlington, Vermont. 

Upon inspection of the data, these communities have a small (less than five) number of 

contributors who have contributed a large (outlier) number of features to the dataset. In 
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general, OSM contribution is highly skewed – a small number of contributors account for 

most of the contributions. In smaller communities, this can have a dramatic effect on how 

“well-mapped” an area becomes. Clearly, a small group of contributors can have a huge 

influence in the quantity of map data in an area. 

Beyond these two outliers are a series of large, urban cities many of which have 

active OSM groups (Table 29). These cities have a feature density between 23 and 78 

features-per-square-kilometers. Table 28 indicates the areas with little mapping activity. 

These areas are smaller and may not have enough interest to dedicate to mapping activity. 

There is a moderate correlation between the size of OSM clubs and the density of 

mapping activity, but a strong correlation between the number of members in an OSM 

club and the number of contributors in that same area. The social aspect of OSM may 

drive the contribution of data in these areas. The communities that can support OSM 

mapping clubs may generate more mapping activity through mapping parties and 

mapathons. It should be noted that some metro areas might have OSM mapping clubs 

that are not affiliated with the OSM website and therefore have not been included in the 

study. Only clubs on the website had a count of contributors available. 

Between these three tables, this suggests that there may be a “sweet spot” of 

feature density that could indicate a “well-mapped” area. The phrase “well-mapped” is 

highly subjective, and mapping is a continuous process. There is no fixed answer to what 

a well-mapped place would look like, yet a low density of mapping activity should 

indicate areas that need more attention in OSM.  

Mapping Activity and Feature Type Choices 

Table 30, Table 31, Table 32, Table 33, and Table 34 list the most common types 
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of features (ie, school, restaurant) identified and mapped in County and CBSA 

geographic areas in the United States. “Parking” features, “school” and “university” 

features, “restaurants,” “fast food,” and “place of worship” feature types appear 

commonly throughout the lists. Interestingly, some locations have “grave yard” as the 

most common feature type. Others have “swimming pool,” “library”, or “post office” – 

features which one might expect would occur less regularly on the landscape compared to 

“parking,” “schools,” or “restaurants.” 

One of the areas that lists “post office” as the most common feature type is the 

metro area of Duluth, Minnesota. Examining the details of the city further, it’s clear that 

some features (trails, roads, transportation), very few building features have been 

imported or delineated in the data. This is a space that has a low OSM footprint. A quick 

Yellow Pages query found 357 restaurants in Duluth, outnumbering post offices by a 

wide margin. This suggests that looking at the prevalent feature types in an area should 

highlight areas with missing map data when infrequent feature types appear in the higher 

ranks of feature type frequency in OSM.  

Putting OSM Activity in Place: A Tale of Four Cities 

The results and maps tell an interesting story regarding the spatial distribution of 

OSM activity. To further elaborate on this, I will examine the activity in three cities: 

Burlington, VT; San Francisco, CA; and Yuma, AZ. 
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Figure 26. OpenStreetMap.org screenshot of Burlington, Vermont (from July 7, 2015).  

 

Burlington, VT and Yuma, AZ are nearly identical in size and population. 

Burlington, as of the 2010 Census has 209,381 people; Yuma has 190,526 people. Both 

are within 50 miles of an international border. Economically, Burlington is a college 

town while Yuma is dominated by a military base and retirement community. In theory, 

both college students and retirees may have the time and skillset to produce OSM data. 

Yet Burlington has over 300,000 features in the OSM dataset while Yuma has a little 

over 6,000. Digging a little deeper in the data shows that Yuma has had 105 contributors 

while Burlington has had 175. While Burlington has more contributors, seventy 
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contributors should not automatically account for a 50-fold difference in features. 

 

 

Figure 27. OpenStreetMap.org screen shot of Yuma, AZ (accessed July 7, 2015). 

 

Indeed, seventy contributors is not the difference between Burlington and Yuma – 

one contributor is. The user vtcraghead (B. Morris) has contributed over 300,000 features 

to the Burlington area (where he resides) and is listed as one of the top 50 contributors in 

the US37, while the contributors with the most features in Yuma has barely over 200. A 

second contributor in Burlington has over 4000 features. There is a similar pattern in 

some other outlier communities. Pascagoula, MS has one user with over 425,000 

                                                 

 

 

 

37 http://openstreetmap.us/2013/04/special-invitation-to-top-mappers/, accessed July 7, 2015. 

http://openstreetmap.us/2013/04/special-invitation-to-top-mappers/
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features, easily accounting for 99% of the data in the area. This user is also a top 50 

contributors to the US. Yuma doesn’t appear to have a local, passionate contributor as 

these other communities do. 

The San Francisco-Oakland-Fremont metro area, wealthy, well-educated and 

attached at the hip to Silicon Valley, should be a natural hotbed of OSM activity. San 

Francisco does have a high average of activity compared to some other large US cities, 

and it has a large number of contributors. One contributor has over 20,000 features, while 

the next has over 8000. San Francisco also has an active OSM community group, with 

over 400 members. Unfortunately, it hasn’t been possible to tie the OSM email list 

members to activity, but the indications suggest that there is a strong community with 

over 100 contributors who have each contributed 100 features. If Yuma is an area with 

low interest, and Burlington is an area with one dedicated user, then San Francisco 

represents an area with widespread interest. New York, Portland, and Denver also appear 

to follow these patterns. None of the contributors in San Francisco were in the top 50 of 

contributors to the US. 

 

Some Suggestions Behind the Motivation of Contributors 

The ACG Model is not designed to examine motivation. Previous work has 

examined this in depth (Budhathoki and Haythornthwaite 2012; Coleman, Georgiadou, 

and Labonte 2009; Stephens 2013). Using the results of the data, we can make two 

general findings about consistent (eg, over 100 features) contributors to OSM. The first is 

that one contributor in an area can have a large impact. This is clearly the case in some 

smaller communities that have a large number of contributors. This also explains why 
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socioeconomic variables mean little in relation to OSM activity. These contributors may 

be motivated by any number of factors (competition with other contributors, pride of 

place), but the correlation to the socioeconomic factors is weak. Elaborating further, the 

user vtcraghead, who contributes a large amount in Burlington, Vermont, is the head 

cartographer at a company that provides reports and data (including spatial data). This is 

someone who clearly has an expertise with GIS and perhaps a financial motivation to 

have good data. In some cases, contributing to OSM may be a financial benefit for the 

individual contributing. They can add and use data without the need for investing in a 

large data infrastructure. 

The second finding is more subtle and perhaps rarer: that a well-developed 

community can build and contribute to a robust dataset. Several tech-savvy cities (San 

Francisco, Austin, Denver) have strong OSM communities that meet regularly and have 

discussions online. Community is a factor that drives the open source model (Raymond 

2001), but in practice, it can be difficult to build and maintain – otherwise, every 

community would have a strong OSM presence. 

 

Limitations of the Study 

There are some caveats in the reported study. First, the size of the school campus 

may impact the positional accuracy assessment. The positional error is calculated as the 

distance between an OSM school point data and the matched point in government data. 

However, there is no standard throughout these two datasets regarding how a point is 

place on a school campus to represent the school. Furthermore, despite precautionary 

measures to identify and match schools between datasets, there is a possibility that a 
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school from the OSM dataset is incorrectly matched with one from the government data.  

While the ACG Model attempts to organize contributors based on Activity, 

Context, and Geography, the aspect of Time, or how contributor’s behavior patterns may 

change, is largely ignored. Several variables used to create the Activity context (features 

per day) and the Context aspect (length of time in OSM) do involve time. A modified 

model that works to encompass Time as an aspect (perhaps called GACT?) may explain 

how patterns of change occur both spatially and temporally. 

The study is limited by the unavailability of detailed per-contributor 

socioeconomic information. This study was an attempt to view data trends over a large 

area, and previous studies (Haklay and Budhathoki 2010; Stephens 2013) have been 

limited to less than a thousand people. A study that considers both the socioeconomics 

and spatial contribution of activity of contributors may shed light on more details about 

the relationship between background and contribution to OSM. 

The large size of the dataset in the study has required extensive use of the 

Amazon Elastic Compute Cloud (Amazon EC2) to store, process, and analyze the data. 

This allowed faster analysis and mapping of results, but it also required an extended 

amount of time for testing and verification. 

The flexibility of the OpenStreetMap data format does not require any metadata 

from the contributor to provide details about data collection methods, time, provenance, 

or other information that would be useful to help gauge the quality of the information. 

Nearly 40% of the features in the dataset provided no information on how the data was 

collected. This impacts the analysis as the consideration on the method of data collection 

is central to the meaning of mapping activity in OSM. 
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The Modifiable Areal Unit Problem (MAUP) 

The Census level geographies present a common problem in GIS analyses: the 

modifiable areal unit problem (Fotheringham and Wong 1991). The results of analysis 

are sensitive to the aggregation of information at different scales and units of analysis. 

Larger aggregates tend to produce higher correlations. To alleviate this, results from four 

geographic levels have been shown. Block groups, for the reasons discussed earlier, are 

too small and varied to related population details and mapping activity. Places (cities, 

towns, villages, etc) are varied in size, population, and density which limits how the 

mapping activity in these locations may present itself. Even so, additional, detailed work 

at a larger scale should be done to avoid some of the problems of the sensitivity to the 

MAUP.  
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CHAPTER VIII. CONCLUSION 

Outcomes of Research Goals and Objectives 

In this section, I summarize the outcomes of the research as it relates to the 

research goals spelled out in Chapter 3. This discussion is followed by some suggestions 

for future directions that the research may take. 

Research Goal 1 Outcomes 

The first research goal was to better understand the types of VGI contributors 

through the patterns of OSM data and its context by building a model of contributor 

types. The objective of this goal was to develop and implement the Activity-Context-

Geography Model of VGI Contribution to identify contributor clusters. 

With the growing presence of pervasive location acquisition technologies (Lu and 

Liu 2012), the data volume of VGI is growing drastically. However, it remains a 

challenge to assess the quality of VGI data (Flanagin and Metzger 2008). An ACG Model 

is proposed as a tool to define and group data contributors. Using the variables suggested 

by Activity, Context, and Geography arenas, twenty groups of VGI contributors to 

OpenStreetMap (OSM) were identified. The grouping of OSM contributors by the 

Activity, Context and Geography aspects into low, non-, and high outliers produces a 

new way to consider VGI contributors based on the data associated with their online 

presence.  

This model is designed for any VGI endeavor. A study using the AGC Model to 

characterize Twitter users was presented at the International Conference on Location-

based Social Media in 2015 (Parr and Lu 2015). The AGC Model could also be used to 

examine contributions from geographic citizen science projects like eBird.org or the 
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Central Texas Low Water Crossing project (lowwater.org). The AGC Model can be used 

to examine and characterize contributors’ patterns in a VGI project. 

Research Goal 2 Outcomes 

The second research goal was to provide a method for understanding the spatial 

data quality of VGI contributors through the model of contributor types. The objective of 

this goal was to statistically analyze the differences in contributor data quality 

(specifically, positional accuracy). For this research goal, government datasets about 

public schools’ locations were used as reference data to the OSM school location data for 

Texas and California. The positional accuracy of the school data in OSM was found to be 

significantly different across the different groups of data contributors by the ACG model. 

Examining the association between the creators of VGI and their data quality, this 

research is among the first to try to connect VGI data quality to the type of data 

contributor. 

The outcome of this research suggests that the AGC Model may be useful beyond 

simply characterizing VGI contributors. Based on the data quality findings, the model 

may explain patterns of differences in data quality of contributions. 

Research Goal 3 Outcomes 

The third research goal was to develop a model of OSM contribution and examine 

the choices that contributors make when producing VGI in OSM. The spatial variations 

in how these choices impact the OSM dataset were examined. The objectives of this goal 

were to statistically analyze the relationship between population, socioeconomic 

characteristics, and mapping activity in OSM; to compare the differences in mapping 

activity at different geographic scales, and to list the most commonly mapped feature 
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types. 

This study presented an exploratory analysis of the spatial relationship of 

OpenStreetMap data by examining the process and choices that OSM contributors make 

during the contribution process. The set of features was pulled from the complete 2005-

2013 OSM dataset in the forty-eight contiguous states and the District of Columbia. 

Using tags within the data, features were sorted into three types: GPS traces (A), aerial 

photo traces (B), and data imported from other sources (C). Mapping activity was 

correlated with population which found that at some levels, mapping activity is strongly 

correlated with population. Using Morans I and Getis-Ord Gi* hot spot analysis, the 

spatial distribution of mapping activity identified outliers of mapping activity. Identifying 

the twenty highest and lowest metro areas with feature density identified a potential range 

of ratios that may indicate a “well-mapped” area. Correlating the number of members in 

OSM mapping groups with the number of contributors in their local metro area found a 

.83 correlation that these groups have a positive relationship. More mappers may lead to a 

higher number of features, although it may be related to population dynamics, as having 

an OSM mapping club did not produce a higher feature density than metro areas without 

an OSM mapping club. 

The story of OpenStreetMap is one of a social process that uses mapping parties 

to collect and load information from GPS traces and on-screen aerial photo edits (Ramm, 

Topf, and Chilton 2011). In spite of this story, in the United States at least, most of the 

data comes from third-party sources. This may have had the unintended effect of 

lowering the participation of contributors in the United States; in other countries where 

spatial data is not freely available, generating and using data not available elsewhere is a 
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strong motivation (Haklay and Budhathoki 2010). This study does find, however, that 

overall, the urban areas that have active OSM groups have higher feature density than 

other areas. This suggests that a feature density of above 23 features per square kilometer 

may be a “sweet spot” indicating a well-mapped area Table 27. Looking at the feature 

density may also indicate areas that need more attention (Table 28).  

 

Future Research 

For future studies, a map of trust may be constructed based on the outcome from 

this study. Such a map would identify potentially less credible information. For the data 

contributors that belong to a contributor group that may tend to create relatively low 

quality VGI data, a map of their data contribution can be labeled as a baseline, calling for 

data the requires focused validation or a re-check. Of course, assigning the traits of a 

group to any individual data contributor is subject to Ecological Fallacy; so it should be 

with caution not to single out any data contributor. 

Another direction for future studies would be to examine the other aspects of data 

quality as they relate to the AGC Model. The Federal Geographic Data Committee 

(FGDC) defines five aspects for geographic data quality, namely positional accuracy, 

attribute accuracy, completeness, logical consistency, and lineage. It is worthy further 

efforts to investigate the possible connection between these aspects of data accuracy with 

data contributor.  

Future research should consider detailed analysis of areas of to explore in more 

detail what the extent of a “well-mapped” area would look like. As OSM provides per-

user information of activity, context, and geography, another possible avenue of research 
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would be to use Markov Chain analysis to determine the probability of mapping activity 

and then model it using Agent-Based Modeling. Mapping is a continuous process in 

OSM, so areas that have even a smaller level of mapping activity will eventually have 

higher feature density than other areas. Identifying the areas that lack detail should be 

used to provide feedback on where to map next; this would also identify areas that may 

have quality or accuracy issues which is a crucial concern for the longevity of OSM 

(Ramm, Topf, and Chilton 2011; Mooney, Corcoran, and Winstanley 2010; Lin 2011; 

Haklay 2010b). 
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