
	

UNDERSTANDING THE IMPACT OF HYBRID PROGRAMMING

ON SOFTWARE ENERGY EFFICIENCY

by

Donna LaKomski, B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
August 2016

Committee Members:

Ziliang Zong, Chair

Tongdan Jin, Co-Chair

Martin Burtscher

	

COPYRIGHT

by

Donna LaKomski

2016

	

FAIR USE AND AUTHOR'S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations
from this material are allowed with proper acknowledgement. Use of this material for
financial gain without the author's express written permission is not allowed.

Duplicate Permission

As the copyright holder of this work I, Donna LaKomski, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

iv	

ACKNOWLEDGEMENTS

 This thesis would not have been possible without my advisor Ziliang Zong. He

has been instrumental in giving guidance and direction for the work done in this thesis. I

would like to especially thank him for his patience.

 I would also like to thank Tongdan Jin for his support, valuable feedback, and

encouragement, and Martin Burtscher for sparking my interest in parallel computing.

 Lastly, I want to thank my husband Greg LaKomski for his patience and support.

I cherish his love and encouragement.

v	

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS... iv

LIST OF TABLES... viii

LIST OF FIGURES ...x

LIST OF ABBREVIATIONS... xii

ABSTRACT... xiii

CHAPTER

 1. INTRODUCTION ...1

 2. RELATED WORK ..6

 3. EXPERIMENTAL PLATFORM ..9

 4. GUIDELINES TO CREATING HYBRID CODE..12

 4.1 CPU and Xeon Phi ...12

 4.1.1 R Language and MKL ..12

 4.1.2 C++ and MKL...13

 4.1.3 C++ and OpenMP ...15

 4.2 CPU and GPU..17

 4.2.1 C++ and CUDA ..17

 4.2.2 C++ and OpenCL..19

 4.3 Dividing the Work ...20

 5. RESULTS AND ANALYSIS..22

vi	

 5.1 Application Descriptions ...22

 5.1.1 Matrix Multiplication..22

 5.1.2 Fractal ...23

 5.1.3 Breadth-first Search (BFS) ...23

 5.2 CPU and Xeon Phi Energy and Execution Time Results25

 5.2.1 R Matrix Multiplication ..25

 5.2.2 C++ Matrix Multiplication..29

 5.2.3 C++ Fractal ...31

 5.2.4 C++ Breadth-first Search (BFS) ...34

 5.3 CPU and GPU Energy and Execution Time Results39

 5.3.1 C++ and CUDA Matrix Multiplication39

 5.3.2 C++ and CUDA Fractal ..43

 5.3.3 C++ and CUDA Breadth-first Search (BFS)47

 5.3.4 C++ and OpenCL Matrix Multiplication50

 5.3.5 C++ and OpenCL Fractal..53

 5.3.6 C++ and OpenCL Breadth-first Search (BFS)......................56

 5.4 Summary of Optimal Performance and Energy Points........................59

 6. PREDICTING OPTIMAL HYBRID WORKLOAD DISTRIBUTION60

 6.1 Hybrid Code Running on CPU and Xeon Phi63

 6.2 Hybrid Code Running on CPU and GPU ..67

 7. CONCLUSION..70

vii	

 7.1 Contribution ...70

 7.2 Future Work ...71

LITERATURE CITED ..72

viii	

LIST OF TABLES

Table Page

3.1 Experimental platform parameters...11

5.1 R matrix multiplication ..26

5.2 C++ matrix multiplication with CPU and Xeon Phi..29

5.3 C++ Fractal with CPU and Xeon Phi...32

5.4 C++ Breadth-first search with CPU and Xeon Phi with 1M35

5.5 C++ Breadth-first search with CPU and Xeon Phi with16M36

5.6 C++ matrix multiplication with CPU and GPU (gcc)..39

5.7 C++ matrix multiplication with CPU and GPU (icc) ..40

5.8 Fractal with CPU and GPU (gcc)...43

5.9 Fractal with CPU and GPU (icc) ...44

5.10 Breadth-first search with CPU and GPU ...47

5.11 Matrix multiplication C++ and OpenCL ...50

5.12 Fractal C++ and OpenCL...53

5.13 Breadth-first search C++ and OpenCL ..56

5.14 Summary of optimal points..59

6.1 Parameters used for prediction...61

6.2 CPU and Xeon Phi partitions...64

6.3 CPU and Xeon Phi measured parameters ..66

6.4 CPU and Xeon Phi measured and predicted optimal performance and energy...........66

ix	

6.5 CPU and GPU measrued parameters ...68

6.6 CPU and GPU measured and predicated optimal performance and energy69

x	

LIST OF FIGURES

Figure Page

1.1 Wasted CPU energy...2

4.1 C++ MKL example..14

4.2 CPU and Xeon Phi OpenMP code division ...16

4.3 C++ and CUDA code division...18

4.4 C++ and CUDA wrapper code division...19

4.5 C++ and OpenCL wrapper code division ..20

4.6 Full row partition ...21

5.1 R matrix multiplication runtime...27

5.2 R matrix multiplication energy ..28

5.3 CPU and Xeon Phi C++ matrix multiplication runtime ..30

5.4 CPU and Xeon Phi C++ matrix multiplication energy ..31

5.5 CPU and Xeon Phi C++ fractal runtime ..33

5.6 CPU and Xeon Phi C++ fractal energy..34

5.7 CPU and Xeon Phi C++ BFS runtime ...37

5.8 CPU and Xeon Phi C++ BFS energy...38

5.9 CPU and GPU matrix multiplication with icc, gcc runtime ..41

5.10 CPU and GPU matrix multiplication with icc, gcc energy..42

5.11 CPU and GPU fractal with icc, gcc runtime ..45

5.12 CPU and GPU fractal with icc, gcc energy..46

xi	

5.13 CPU and GPU BFS runtime ..48

5.14 CPU and GPU BFS energy ..49

5.15 C++ and OpenCL matrix multiplication runtime ..51

5.16 C++ and OpenCL matrix multiplication energy ..52

5.17 C++ and OpenCL fractal runtime ..54

5.18 C++ and OpenCL fractal energy..55

5.19 C++ and OpenCL BFS runtime ...57

5.20 C++ and OpenCL BFS energy...58

xii	

LIST OF ABBREVIATIONS

Abbreviation Description

J Joules

sec second(s)

xiii	

ABSTRACT

 High performance computing systems today are heterogeneous in nature with

multiple CPUs and accelerators/coprocessors in each computing node. The majority of

today's programs only utilize single computing components (e.g. a CPU, GPU or Xeon

Phi) while leaving other components idle (e.g. waiting for the results to be calculated).

This may not be optimal for either performance or energy efficiency. Hybrid computing

can solve this problem. Employing multiple device types can create more computing

power on the platform, but can also create unexpected and unintended issues and

challenges due to potential complex interactions of software and hardware. This thesis

investigates the impact of hybrid computing on the performance and energy-efficiency of

parallel applications, provides a guideline for hybrid work division, and develops a model

to predict optimal performance or energy-efficiency.

	 1	

1. INTRODUCTION

 As tools for measuring power and energy of heterogeneous computing systems

and parallel applications become available, the importance of measuring the energy

efficiency of applications becomes both practical and paramount. For computer systems,

the benefits of lower energy usage due to more multi-device-use applications include

smaller-sized and lighter weight systems, and longer battery life. For high performance

computing systems and data centers, hybrid computing can offer better energy efficiency,

resulting in more computing performance per joule, lower energy and cooling costs.

 A common practice today is to utilize the offload programming model (i.e.

parallelize the code to it for execution). The major problem of this programming model

is that the CPU remains idle, wasting computation cycles and energy, while waiting for

the Xeon Phi or GPU to complete its work. For example, Figure 1.1 shows the

percentage of CPU wasted energy for the applications without hybrid use from this thesis.

The three sets of bars correspond to a CPU and coprocessor, CPU and GPU using

CUDA, and CPU and GPU using OpenCL. Each set contains the applications: matrix

multiplication (MM), fractal (F), breadth-first search (BFS), two different input graph

sizes of 1 million nodes (1M) and 16 million nodes (16M) for breadth-first search, and

where applicable two different compiling options Intel compiler (icc) and GNU compiler

(gcc). The leftmost set of red bars show the CPU wastes from 15% to 20% of the total

application energy while waiting for a Xeon Phi to complete the calculations. The set of

pink bars display the percentage of energy the CPU wastes for the CPU and GPU (C++

and CUDA) calculations. The CPU in the fractal and breadth-first search applications

	 2	

Figure 1.1: Wasted CPU energy

wastes upwards of 43% of the total energy. The rightmost set of bars display the wasted

CPU energy for the C++ and OpenCL versions of the applications. The hybrid

programming model can remedy this problem by partitioning the work to the CPU and

the accelerator.

 Unfortunately, few applications and very little research [1] have taken advantage

of workload partitioning of hybrid computing to improve energy efficiency. Thus, it is

important to explore how to reduce the energy consumption of heterogeneous computer

systems and applications by enabling hybrid computation.

 The bulk of current research has focused on performance of single CPU, GPU or

Xeon Phi. Yet many current high performance and likely most future high-end computing

systems will be heterogeneous with multiple CPUs and accelerators in one node. For

example, four of today's top ten supercomputers are heterogeneous [2]. For the top ten

on the Green 500 list [3], all are heterogeneous. Utilization data from one of the

MM F 1M 16M gcc icc gcc icc 1M 16MMM F 1M 16M
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f T
ot

al
 E

ne
rg

y

Application

Wasted CPU Energy

Xeon Phi

BFS
MM

Fractal BFS

OpenCL

BFS

	 3	

heterogeneous systems, Stampede, show that the majority of applications use an

individual computing component [4]. These systems provide an enormous opportunity

for hybrid computing and improved energy efficiency.

 Prior research looked at parameters such as memory use, memory transfer, and

message passing, improved load balancing and compiler optimizations as methods for

performance improvement. When energy efficiency is discussed, it is often inferred with

performance. As more software is being coded to take advantage of hardware of

heterogeneous systems, little research has been conducted on the energy efficiency of

programming for hybrid software implementation. Hybrid computing systems offer an

opportunity to take advantage of the available processors for better performance and

energy efficiency.

 In most cases of hybrid computing, the CPU consumes energy while waiting for

the accelerator, to complete the task. To yield a more energy efficient solution, workload

can be partitioned between the CPU and an accelerator. Without a model to base a

prediction upon, partitioning the workload may performed with an exhaustive search,

which can be time and energy consuming. This thesis aims to provide a model to predict

workload partitioning for optimal performance or energy efficiency.

 For development of the predict model for optimal partitioning, software

applications were adapted and included an adjustable range of workload partitions to a

CPU and to an accelerating device such as a Xeon Phi or GPU. This approach generates

differing workloads and data points that are used to study the impact of workload

partitioning on energy efficiency and performance.

	 4	

 In addition to the applications, a model-based prediction method for partitioning

workload is proposed. This method uses measured data and predicts a suitable partition

for the hybrid application. By doing so, the model copes with the sensitivity of the

platform to the application, to the problem size, to the data transfer latencies, and to the

drivers and compilers. By modeling the performance, energy and throughput, it predicts

the optimal workload partitioning.

 The workload partitioning prediction is then compared with the measured

performance and energy parameters to validate accuracy. The results show that

partitioning improves application performance and energy efficiency. The optimal

partitioning point for energy and performance are correctly predicted in more than 90%

of the cases, with various workloads, accelerators, and applications.

 In order to further assist hybrid application development, this thesis also provides

a guideline for creating a hybrid program from parallel applications. Most parallel

applications that have already been compiled and executed on an Intel CPU can be

readily adapted for hybrid use with a Xeon Phi. However, for use with a CPU and a

GPU, both parallel applications for the CPU and GPU must already exist in order to

combine and yield a hybrid application.

 The main contributions of this thesis are: (1) a number of hybrid applications are

developed to benchmark workload partitions, (2) a detailed guideline is provided on

writing hybrid applications for CPU and GPU or CPU and Xeon Phi, and (3) a model is

proposed to accurately predict the optimal workload partition between CPU and GPU or

CPU and Xeon Phi for best performance or energy efficiency.

	 5	

 The rest of this thesis is organized as follows. Chapter 2 discusses background

related work. Chapter 3 covers the experimental platform. Guidelines for developing

hybrid code from parallel code can be found in Chapter 4. Chapter 5 includes application

descriptions and results for the applications. Chapter 6 discusses and provides a model

for predicting hybrid workload partitions. Finally, Chapter 7 concludes and offers

direction for future work.

	 6	

2. RELATED WORK

 Traditionally, prior research has focused on energy and performance of

homogeneous multicore CPU systems. More recently, some research and studies have

addressed performance, with the added benefit of energy reduction on a homogeneous

GPU system. Others have studied performance of workloads for heterogeneous CPU and

GPU systems. Similarly for the Xeon Phi, few have studied and researched performance

and energy efficiency of this accelerator. This chapter discusses pertinent work and

research associated with performance and energy of CPUs, GPUs, and Xeon Phi.

 Liu et al. [5] developed and provided a method to track processor idle times and

adjusts the frequency of other processors to provide power savings without reducing

performance. However, the technique uses a barrier, creating overhead due to waiting

and consuming power. Ge et al. [6] developed an algorithm that relies on past statics,

and then adjusts the CPU frequency to reduce energy. This method accounts for neither

future workloads nor energy-consuming peak workloads. Hsu and Feng [7] have shown

that CPU energy usage can be reduced with DVFS. Pallipadi and Starikovskiy [8]

proposed to use the on demand governor in the Linux kernel to adjust CPU frequency

based upon utilization thereby reducing energy use. Much attention has been given to

CPU performance and energy of applications in papers published by Hsu and Kremer [9],

Barroso and Holzle [10]. Vhdat et al. [11] direct their attention to energy efficiency in

operating systems. Lee and Zomaya [12] offer scheduling algorithms for multiprocessor

computer systems for the benefit for energy and performance. While the algorithm is

applicable to multiprocessors, this paper and others listed prior only consider CPUs.

	 7	

 A number of previous studies presented the performance and energy consumption

of homogeneous GPU usage. For example, Hong and Kim [13] propose to throttle a

number of GPU cores to reduce energy consumption, which requires characterization of

the GPU by micro-benchmarks. Collange et al. [14] found that memory access patterns

and bandwidth can play a role in both energy use and performance in GPUs. Although

useful in tuning and optimizing GPU code, it directs it attention only to the GPU.

Similiarly, Che et al [15] discusses optimizing memory performance and hence, over all

performance, by overlapping memory accesses with PCI-E transfers. Bailey et al. [16]

proposes a model using kernel clustering and multivariate linear regressions to improve

performance. Wu et al. [17] uses energy aware compiler optimizations. And Song et al.

[18] applies machine learning to the performance and energy efficiency of GPU

programs, employing only models and not the on-chip power sensor. However, only

heterogeneous GPU applications were considered in these papers.

 Few studies have been reported for performance improvement by splitting tasks in

heterogeneous CPU-GPU systems. Luk et al. [19] proposed a scheme to minimize

execution time based on computational task distribution to the GPU and CPU. In the

same realm, Dean and Ghemawat [20] studied workload division based on the

MapReduce Framework. In a variation, Ravis et al. [21] proposed to partition data

dynamically to the CPU and GPU cores to improve performance. Che et al. [22]

suggested splitting workload between CPU and GPU to improve performance with the

GPU frequencies set to their peak level. While their work provided a wealth of

heterogeneous applications, none provide hybrid application of a CPU and GPU nor do

they scale to larger problem sizes. A proposed system by Scogland et al. [23] divide the

	 8	

work between the CPU and GPU based upon the characteristics of the workload. Gee et

al. [1] provide an energy and performance models for hybrid workload division to the

GPU based upon both advertised and measured parameters. These studies address only

CPU-GPU systems and not a comprehensive model for CPU's, GPUs and Xeon Phi's

 With the recent release of the Xeon Phi, the studies on addressing energy usage

and optimization of Xeon Phi are limited. Fang et al. [24] provided an empirical

evaluation of the Xeon Phi, discussing cores, memory, and interconnects in the context of

performance and peripherally energy. Lawson et al. [25] evaluated and recommended

specific thread affinities to improve performance, thereby reducing energy usage. Wood

et al. [26] characterized energy and power usage of various applications running on Xeon

Phi. Lorenzo et al. [27] studied energy and power implications of thread numbers on

Xeon Phi and Yao al. [28] proposed an instruction level energy model for the Xeon Phi.

Li et al. [29] characterized performance and energy efficiency tradeoffs of HPC

applications running on Xeon Phi.

 While much work and effort in characterizing and modeling energy and

performance has supported on CPU-GPU heterogeneous systems and on homogeneous

systems, little work has compared energy and performance on heterogeneous systems

with hybrid use of CPUs and accelerators. This thesis may be the first to attempt to

explore the benefits of hybrid computing and offer a prediction model, which predicts

workload partitions for optimal performance or optimal energy efficiency for both CPU

and GPU and CPU and Xeon Phi systems.

	 9	

3. EXPERIMENTAL PLATFORM

 All experiments were performed on a node of the Marcher System, which is an

NSF funded power measurable, high performance-computing platform [30]. Each node in

the system has a dual 8-core Xeon Sandy Bridge E5-2670 processor, a Xeon Phi, and

NVIDIA Tesla K20 GPU.

 The Xeon Phi, used to accelerate parallel computing, was chosen due to many

factors: its prevalence in HPC platforms; a higher degree of parallelism with respect to a

CPU; and a single code model with an Intel CPU, facilitating code reuse and design. The

Xeon Phi in our system has 61 cores with one reserved for the operating system, yielding

60 cores for parallel applications. It has a maximum computational performance of one

TFLOPS and a maximum memory bandwidth of 352 GB/s [31]. The Xeon Phi is found in

Tianhe-2 (Milky Way 2), ranked first on the Top500 List and Stampede, which was

ranked tenth as of June 2016 [1].

 The K20 has 2688 compute cores, operates at the default rate of 705 MHZ with a

peak performance of 1.17 TFLOPS, and interacts with the parallel computing

application-programming interface CUDA and OpenCL. The K20 and similar NVIDIA

GPUs are popular in HPC systems. The parameters for the GPU, Xeon Phi and CPU are

listed in Table 1.

 For all of the measurements, the power data is collected directly with the

following interfaces: the CPU Power is collected via the RAPL [32] interface, the Xeon

Phi power via the Intel micsmc interface [33], and the GPU power via the NVIDIA smi

 interface [34]. Please refer to the papers published by Burtscher et al. [35] and Wood et

al. [26] for detailed power measurement of K20 and Xeon Phi on the Marcher system.

	 10	

The Marcher system generates files of power readings for the CPU, GPU, and Xeon Phi.

These power readings record the real time power use of all three components (CPU,

Xeon Phi, and GPU). The energy of each component is calculated as the accumulated

products of execution time and profiled instantaneous power. For total energy, the CPU

energy and the GPU or Xeon Phi energy are combined. The power readings of other

system components such as the DRAM and disks are not included as they remain

unchanged most of the time when running the Matrix Multiplication, Fractal, and

Breadth-first Search codes.

	 11	

Table 3.1: Experimental platform parameters

 CPU Coprocessor GPU
Host/Device Intel E5 -2670 Xeon Phi NVIDIA K20
Number of Cores 16 60 2688
Nominal Frequency 2.6 GHz 1.05 GHz 705MHz
DVFS Enabled no not available no
Memory Size 32 GB 8 GB 5 GB
Threading API OpenMP OpenMP CUDA 7.0

Peak Performance 332 GFLOPS 1 TFLOPS 1.17 TFLOPS
(double precision)

Thermal Design
Power

115 W 245 W 235 W

Memory Bandwidth 51.2 GB/s 352 GB/s 208 GB/s
Compiler gcc, (icc) icc nvcc

Compiler Version 4.4.7 20120313 (Red
Hat 4.4.7-16)

13.1.3
20130607

7.0, V7.0.27

Operating System CentOS 6.5

	 12	

4. GUIDELINES TO CREATING HYBRID CODE

4.1 CPU and Xeon Phi

Parallelized OpenMP code compiled with the Intel compiler and which already runs on

the CPU represents a good candidate for hybrid use on the CPU and Xeon Phi

coprocessor. Typical applications include computational heavy code with sequentially

accessed array data structures

 There are two methodologies for hybridizing code for the CPU and Xeon Phi.

The first uses the Intel Math Kernel Libraries (MKL) [36] that implements efficient and

effective routines for math functions such as matrix multiplication. The MKL provides

the ease of using a built in function, but not all functions are available. The second

method is to hybridize OpenMP sections to the Xeon Phi. While this method requires

considerable software time investment, most functions that have been parallelized with

OpenMP can be changed to CPU and Xeon Phi hybrid implementation. Both methods

can provide performance speedup and improve energy efficiency.

4.1.1 R Language and MKL

 For the R scripting language, some of the functions such as matrix multiplication

or matrix transposition have MKL implementation, refer to [37]. The MKL must be

enabled via variables as follows:

 export MKL_MIC_ENABLE=1

 export OMP_NUM_THREADS=16

 export MIC_OMP_NUM_THREADS=240

 export MKL_HOST_WORKDIVISION=0.1

	 13	

 export OFFLOAD_REPORT=2

 For some of the functions, the work division is fixed and pre-determined. This

value is dependent upon application and workload. In that case, the export

MKL_HOST_WORKDIVISION command will have no effect.

4.1.2 C++ and MKL

 In order to use the MKL libraries, the application must first be identified and

memory allocated specifically. The library reference guide includes listing of available

functions [36]. The compiler directive #include"mkl.h" must be used at the beginning of

the file. For memory allocation, instead of using malloc, the memory allocation

command must be mkl_malloc and memory set on 64-bit boundary, and to free the

allocation, the command is mkl_free(). Using the algorithm from Predicting Workload

Distribution, calculate the percentage of workload on the CPU for either optimal

performance or optimal energy efficiency.

 To enable workload split, set the environment variables as listed in the previous

section. The offload report options allows for verification of the CPU and Xeon Phi

workload. The workload division can be adjusted with the

MKL_HOST_WORKDIVISION command with the above example sending 10% of the

workload to the CPU and 90% to the Xeon Phi. Figure 4.1 shows an example of MKL

matrix multiplication.

%(!

Figure 4.1: C++ MKL example

!"!#$%&'((#)'*#+&

,#-.("&/01&

0&2&3,#-.("&/4!5(6!'((#)378888/9:;"#<3,#-.("4=&>?41&

)#!@:("$&,:$")*A"&<#$&B'CD&E"$+"(&F:.$'$%&

G:+)(-,"&H!5(IDJ&

!"!#$%&,"'((#)'*#+&

!5(6<$""3041&

!'C$:K&!-(*@(:)'*#+&<-+)*#+&)'((&3LMNBB4&

).('96,O"!!3P.('9Q#RB'S#$=&P.('9T#U$'+9=&P.('9T#U$'+9=&V&

&&&&&&&&&&&&&&&&!=&+=&5=&'(@D'=&0=&5=&W=&+=&."C'=&P=&+41&

NK'!@("9&

	 15	

4.1.3 C++ and OpenMP

 An additional method to partition the workload between a CPU and Xeon Phi

within the program is to use OpenMP. Assuming that the parallel code has already been

successfully compiled with the Intel compiler, icc, add omp_set_nested(1) before any

OpenMP code. Next, add the code to divide the work between the CPU and Xeon Phi

and shown in the Figure 4.2. The variable used to hold the thread number information,

thread_Id must be private. As a good programming practice, defining which variables

are private or shared can allow for predictable operation.

 In the CPU and Xeon Phi code sections, the omp_parallel_for or omp_parallel

can be used to further divide the work to the cores. For the Xeon Phi, offloading occurs

with the compiler directive #pragma offload target(mic:0) Refer to Intel offload

resources for specifics on use of in, out, or inout options. However, each data transfer to

the Xeon Phi will have allocation.

 Because the Xeon Phi cores can support 4 threads to hide latency, the number of

threads should be allocated as follows: numberThreads = (numberCores -1) x 4 and set

an environmental variable with export

MIC_KMP_AFFINITY=explicit,granularity=fine,proclist=[1-239:1], for 60 cores. One

core should remain free to run the Linux operating system.

 Set the environment variable OFFLOAD_REPORT =2 to allow for verification of

Xeon Phi transfer.

%*!

Figure 4.2: CPU and Xeon Phi OpenMP code division

!"#$#%&'()*)+$,,$
,,$-'.!""!".$/0$"'12".$
34&(.5($/54$4(&(66'6$"758#%&'()19:;$4&!<(#'9#%&'()*);$
$ =$
$ #%&'()*)$>$/548.'#8#%&'()8"759;+$

!09#%&'()*)$>>?;=$
$ @'/"$A%!$B/)'$
C$

!0$9#%&'()*D$>>$E;=$
$ BAF$G/)'$
C$

$ C$,,$'")$/0$"'12".$

A&
/.

&(
5

$H
6/

I
$

	 17	

4.2 CPU and GPU

 The GPU has the capability to run two different kernel languages, CUDA and

OpenCL. CUDA was created by NVIDIA, executing only on their GPUs. However,

OpenCL is an open source language for parallel programming and executes on many

CPUs and accelerators. Both languages were used to provide kernel programming for

the GPU.

4.2.1 C++ and CUDA

 For C++ and CUDA applications, there are two options to modify code for hybrid

operation on with the CPU and GPU. The first option is to combine all code, the GPU

kernel and CPU OpenMP code, into one file. While against the modern convention of

modularity and abstraction, this approach can yield shorter execution times and more

straightforward compilation and linking.

 Assuming that both the GPU kernel and the CPU OpenMP parallelized code has

been written, trouble shot and run separately, one can combine the two codes into one

file, by adding the omp_set_nested(1) before any of OpenMP code. This allows the

program flow to split between the CPU and GPU. Then add the code to divide the work

between the CPU and GPU as shown in Figure 4.3. The threadID variable, which must

be set to private, collects the thread number, and is used to split the work.

%,!

Figure 4.3: C++ and CUDA code division

After the code for hybrid operation has been added, the code can be compiled using the

NVIDIA compiler (nvcc).

The second option for C++ and CUDA is to compile the codes separately, then

link the object files together, creating an executable. The code to divide the work must

reside in the CPU C++ portion of the code and must have visibility to the GPU kernel.

Typically, visibility to CUDA code is implemented with a wrapper function that is

declared but not defined in the C++ file. Combining and mixing CUDA and C++ code

can be exasperating, tutorials have addressed this such as the one from Oak Ridge

National Laboratory [40]. The code to divide the work is shown in Figure 4.4.

�������������������

�����������������

�����������������������

��

� ��

� ���������������������������������

������������������

� ���������

��

��������������������

� ���������

��

� �������������������

�
��

�
��

�
��

��
�

�

%-!

Figure 4.4: C++ and CUDA wrapper code division

4.2.2 C++ and OpenCL

While OpenCL enables task and data partitioning, one of the most straight

forward ways is to use OpenMP in a similar method as used previously, shown in Figure

4.5. OpenMP has the advantage of allowing the programmers to specify which variables

are shared or not shared. Although future work can compare and contrast different

division methods and code, this thesis needs a consistent method to constrain the

research. Thus, wrapping the kernel code allows for modularity in OpenCL.

�������������������

���

�����������������������

��

� ��

� ���������������������������������

������������������

� ������������������

��

��������������������

� ������������

��

� �������������������

�
��
�
��
�
��
��
�
�

&.!

Figure 4.5: C++ and OpenCL wrapper code division

4.3 Dividing the Work

How to divide the work between the CPU and Xeon Phi or GPU depends upon

the application. Task division makes sense when there are varying tasks with some

suited for the CPU and others suited for the GPU or Xeon Phi. Data parallelism works

when both do the same task, refer to An Introduction to Parallel Programming by

Pacheco [41] for additional details.

The data should be partitioned by full rows, which allows for optimal memory

access and ease of work division as shown in Figure 4.6.

�������������������

���

�����������������������

��

� ��

� ���������������������������������

������������������

� ���������������������

��

��������������������

� ������������

��

� �������������������

�
��
�
��
�
��
��
�
�

&%!

Figure 4.6: Full row partition

For example, the matrix multiplication work division code divides the A matrix, but not

the B matrix. Thus, Figure 4.6 represents the division for matrix A.

����

��������

����

��������

	 22	

5. RESULTS AND ANALYSIS

 This section presents the performance and energy results of the hybrid

applications running on either the CPU and GPU pair or the CPU and Xeon Phi pair. For

each of the workload partitions, the effective execution time is the longest of the two

times of the CPU and Xeon Phi or CPU and GPU. In hybrid applications, the CPU must

be active with at least one thread operational to receive data or signals from the

accelerator in order to conclude the calculations and finalize the tasks. In some cases the

CPU may finish first, then wait for accelerator to finish. In others, the GPU or Xeon Phi

may complete its workload before the CPU does. In either case, the CPU remains active

for the entire application.

 All code was compiled with the -O2 optimization flag.

 The data was taken every 10% with exceptions noted in the results. The results

listed are an averaged over three trials.

 The optimal performance point is defined as workload division percentage with

the shortest execution time. The optimal energy point is defined as the workload

percentage of task splitting with the least amount of energy consumed.

5.1 Application Descriptions

5.1.1 Matrix Multiplication

 Matrix multiplication was chosen because is it a widely used benchmark in

scientific computing. For these tests, two randomly filled 10,000 square matrices are

multiplied together to yield a 10,000 x 10,000 matrix. The number of calculations per

each of the 10,000 final elements is 10,000 multiplications plus 9,999 additions. This

	 23	

provides approximately 2,000,000,000,000 operations. Work division between the CPU

and GPU or Xeon Phi is partitioned in full rows.

5.1.2 Fractal

 Fractal is a computationally intensive application requiring minimal memory use.

The fractal algorithm is important is that it can achieve high image compression ratios

while retaining a high quality image. As implemented, the size is 20,000 by 20,000,

provides 1,329,000,000 calculations and yields workable execution times.

5.1.3 Breadth-first Search (BFS)

 Breath-first search is a graph traversal algorithm, searching each neighbor node

for a specific value. It starts at the root node, visiting each node at that level before

progressing to the next level. BFS is an important algorithm in that it is used to solve

many problems such as finding a shortest path between two nodes, or cities. However,

the algorithm as implemented from the Rodinia [22] does not search a tree structure for a

specific value, but starts at the root node and visits each node throughout the entire

structure to the very last node. The code for the application was modified for hybrid

operation. The input graph data structures consist of an ordered list of nodes, numbered

edges, and edges. This is essentially a linear array simulating a tree structure. These

arrays allow for shared access amongst the threads enhancing parallel operation. In order

to provide a non-computationally intensive algorithm and to further evaluation the

proposed model, this BFS application has been modified to be data transfer intensive.

The results are reset after completing the search to allow transfer and search again. In

doing so, this requires the data to be transferred to and from the Xeon Phi each time. The

	 24	

modified algorithm changes a one-time data transfer application by transferring data up to

100 times between the host and device, completing 100 times total searches.

 The two input graph data text files sizes are 1,000,000 nodes with 5,999,950

edges and 16,777,216 nodes with 100,675,408 edges. The file is read only once and is

stored for successive searches.

	 25	

5.2 CPU and Xeon Phi Energy and Execution Time Results

5.2.1 R Matrix Multiplication

 The R scripting language is an open source, popular, statistical computing and

graphing language, which runs on a wide variety of platforms. R matrix multiplication

application was chosen because it enables the Math Kernel Library that uses parallel

matrix multiplication with an adjustable workload distribution. While the R package

downloaded from a CRAN mirror [37] only provides serial implementation, an open

source version with parallel version is available from Revolution Analytics [38]. This

version implements some of the parallel MKL features. The environment variables were

set to enable a range of workload distributions from CPU = 100% to CPU = 0%.

 The R matrix multiplication application was adapted from an R benchmark

originally from Splus Benchmark Test V.2 by Stephan Steinhaus and contains

adaptations by Philippe Grosjean, Douglas Bates, and Simon Urbanek. The matrices are

setup as 10,000 by 10,000 normal distributed floats about 0.0 with a mean of 1.0. The

number of CPU OpenMP threads is set to 16, and the number of Xeon Phi OpenMP

threads is set to 240.

 Performance and energy results of R matrix multiply are tabulated in Table 5.1

and graphed in Figures 5.1 and 5.2. Both optimal performance and energy points occur

in a range of workload distributions between CPU = 0% and 60. However, the workload

distribution of CPU = 35% also represents a second optimal point in that the difference in

executions times and energies are both less than 0.5%.

	 26	

Table 5.1: R matrix multiplication

R Matrix Multiplication

CPU % Total
Execution
Time (sec)

CPU Energy
(J)

Xeon Phi Energy
(J)

Total Energy
(J)

100 33.56 3388 224 3612
90 30.976 2823 766 3589

80 29.445 2572 821 3393
70 28.77 2397 639 3036
60 27.342 2264 844 3108
50 27.028 2084 784 2868
45 26.6 1976 712 2688
40 26.639 1988 861 2849
35 26.338 1815 824 2639
30 26.879 1774 882 2656
25 26.953 1733 1008 2741
20 27.462 1648 1047 2695
15 26.62 1572 1111 2683
10 27.325 1508 1102 2610
5 26.765 1449 1191 2640
0 26.214 1388 1242 2630

	 27	

Figure 5.1: R matrix multiplication runtime

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

CPU Percentage

R
un

tim
e

(s
ec

)

R Matrix Multiplication Runtime

Runtime

	 28	

Figure 5.2: R matrix multiplication energy

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

CPU Percentage

En
er

gy
 (J

ou
le

s)

R Matrix Multiplication Energy

CPU
Xeon Phi
Total

	 29	

5.2.2 C++ Matrix Multiplication

 Performance and energy results for the C++ matrix multiplication application are

provided in Table 5.2 and Figures 5.3 and 5.4. The optimal performance point at CPU =

40%. The optimal energy point is at CPU = 0%. For this application on the CPU and

Xeon Phi, the optimal performance and energy points do not coincide.

Table 5.2: C++ matrix multiplication with CPU and Xeon Phi

C++ Matrix Multiplication with CPU and Xeon Phi

CPU %
CPU

Execution
time (sec)

CPU
Energy

(J)

PHI
Execution
time (sec)

PHI
Energy

(J)

Effective
Execution
time (sec)

Total
Energy

(J)
100 42.59 7918 0 0 42.59 7918
90 37.00 6909 7.49 1151 37.00 8090
80 35.74 6395 9.59 1539 35.74 7935
70 29.84 5670 11.41 1859 29.84 7529
60 25.00 4798 13.76 2327 25.00 7126
50 21.12 3956 16.52 2939 21.12 6896
40 17.69 3356 18.57 3297 18.57 6564
30 12.79 2873 20.96 3692 20.96 6566
20 8.62 2412 23.14 4207 23.14 6620
10 4.38 1991 25.31 4623 25.31 6614
0 0 1429 26.99 4795 26.99 6224

	 30	

Figure 5.3: CPU and Xeon Phi C++ matrix multiplication runtime

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

CPU Percentage

R
u

n
ti

m
e

 (
S

e
c

o
n

d
s

)

MM CPU and Xeon Phi Runtimes

CPU Runtime

Xeon Phi Runtime

Effective Runtime

	 31	

Figure 5.4: CPU and Xeon Phi C++ matrix multiplication energy

5.2.3 C++ Fractal

 The execution time and energy data is provided in Table 5.3 and graphed in

Figures 5.5 and 5.6. The optimal performance point is where the CPU = 30% with the

optimal energy point at CPU = 40%. For this application on the Xeon Phi, the optimal

points do not coincide.

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

CPU Percentage

E
n

e
rg

y
 (

J
o

u
le

s
)

MM CPU and Xeon Phi Energy

CPU Energy

Xeon Phi Energy

Total Energy

	 32	

Table 5.3: C++ Fractal with CPU and Xeon Phi

C++ Fractal with CPU and Xeon Phi

CPU%
CPU

Execution
time (sec)

CPU
Energy

(J)

PHI
Execution
time (sec)

PHI
Energy

(J)

Effective
Execution
time (sec)

Total
Energy

(J)
100 47.39 6613 0 0 47.39 6613
90 42.57 6159 5.84 962 42.57 7121
80 39.45 5477 6.66 1115 39.45 6592
70 35.48 4912 10.19 1650 35.48 6562
60 32.13 4480 10.47 1738 32.13 6218
50 29.50 4007 12.61 2067 29.50 6074
40 26.13 3603 15.36 2419 26.13 6022
30 20.61 2895 19.83 3222 20.61 6117
20 13.36 2470 24.11 3894 24.11 6364
10 6.12 2104 27.32 4447 27.32 6551
0 0 1692 30.49 5029 30.49 6721

	 33	

Figure 5.5: CPU and Xeon Phi C++ fractal runtime

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

CPU Percentage

R
un

tim
e

(S
ec

on
ds

)

Fractal CPU and Xeon Phi Runtimes

CPU Runtime
Xeon Phi Runtime
Effective Runtime

	 34	

Figure 5.6: CPU and Xeon Phi C++ fractal energy

5.2.4 C++ Breadth-first Search (BFS)

 Performance and energy data for BFS on the CPU and Xeon Phi for 1 million

nodes is shown in Table 5.4 and for 16 million nodes in Table 5.5. The graphed data is

shown in Figures 5.7 and 5.8. Data points were taken every 10%. However, upon

additional testing, the optimal performance point for 1 million nodes is CPU = 86%. The

optimal energy point is CPU = 100%. For the larger size is when the optimal

performance point occurs when CPU = 60% and the optimal energy point when CPU =

100%. An additional performance point was selected at 86%, which provided the best

runtime of 3.57 seconds.

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

CPU Percentage

E
n

e
rg

y
 (

J
o

u
le

s
)

Fractal CPU and Xeon Phi Energy

CPU Energy

Xeon Phi Energy

Total Energy

	 35	

Table 5.4: C++ Breadth-first search with CPU and Xeon Phi with 1M

C++ BFS with CPU and Xeon Phi 1M

CPU
%

CPU
time
(sec)

CPU
Energy

(J)

MIC
time
(sec)

MIC
Energy

(J)

Execution
time (sec)

Total Energy
(J)

100 3.71 530 0 0 3.714 530
90 3.62 471 3.09 285 3.623 756
80 3.31 463 4.167 350 4.167 813
70 3.10 467 5.267 480 5.267 947
60 2.83 514 6.287 607 6.287 1121
50 2.58 558 7.412 761 7.412 1319
40 2.34 577 8.472 891 8.472 1468
30 2.08 622 9.685 1050 9.685 1672
20 1.82 652 10.698 1188 10.698 1840
10 1.58 691 11.768 1341 11.768 2032
0 1.31 700 12.843 1453 12.843 2153

	 36	

Table 5.5: C++ Breadth-first search with CPU and Xeon Phi with 16M

C++ BFS with CPU and Xeon Phi 16M

CPU
%

CPU
time
(sec)

CPU
Energy

(J)

MIC
time
(sec)

MIC
Energy

(J)

Execution
time (sec)

Total Energy
(J)

100 112.8 15014 0 0 112.8 15014
90 103.8 12928 38.34 2706 103.8 15634
80 94.3 11631 51.03 4766 94.3 16397
70 85.6 11140 63.79 6331 85.6 17471
60 76.07 9253 76.57 10300 76.6 17363
50 66.64 8558 89.23 10451 89.2 19009
40 58.38 7851 101.6 11168 101.6 20022
30 49.46 5747 114.5 12171 114.5 21743
20 40.26 8676 127.6 15287 127.6 23963
10 31.49 8449 140.2 16995 140.2 25444
0 22.47 8285 152.9 18944 152.9 27299

	 37	

Figure 5.7: CPU and Xeon Phi C++ BFS runtime

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

CPU Percentage

R
un

tim
e

(s
ec

)

BFS CPU and Xeon Phi Runtime

CPU 1M
CPU 16M
Xeon Phi 1M
Xeon Phi 16M
effective 1M
effective 16M

	 38	

Figure 5.8: CPU and Xeon Phi C++ BFS energy

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 104

CPU Percentage

En
er

gy
 (J

ou
le

s)

BFS CPU and Xeon Phi Energy

CPU 1M
CPU 16M
Xeon Phi 1M
Xeon Phi 16M
effective 1M
effective 16M

	 39	

5.3 CPU and GPU Execution Time and Energy Results

5.3.1 C++ and CUDA Matrix Multiplication

 The same code for the matrix multiplication algorithm was compiled with both

the Intel compiler (icc) and GNU Compiler Collection (gcc). For both applications, both

optimal performance and energy points coincide at CPU = 0%. At CPU = 100%, the icc

compiler provides 2.3 speedup with an approximately 65% energy savings. The data is

tabulated in Tables 5.6 and 5.7 and graphed in Figures 5.9 and 5.10.

Table 5.6: C++ matrix multiplication with CPU and GPU (gcc)

Matrix Multiplication with CPU and GPU (gcc)

CPU %
CPU

Execution
time (sec)

CPU
Energy

(J)

GPU
Execution

time
(sec)

GPU
Energy

(J)

Effective
Execution

time
(sec)

Total
Energy

(J)

100 100.98 15606 0 0 100.98 15606
90 88.55 13749 0.33 16 88.55 13765
80 77.00 12021 0.36 19 77.00 12040
70 66.37 10700 0.39 21 66.37 10720
60 56.47 8972 0.46 25 56.47 8997
50 48.77 7535 0.51 27 48.77 7562
40 36 6175 0.60 30 36 6207
30 27.88 4704 0.62 33 27.88 4737
20 18.74 3177 0.64 34 18.74 3210
10 9.65 2038 0.69 37 9.651 2075
0 2.30 475 0.78 41 2.38 516

	 40	

Table 5.7: C++ matrix multiplication with CPU and GPU (icc)

Matrix Multiplication with CPU and GPU (icc)

CPU%

CPU
Execution

time
(sec)

CPU
Energy

(J)

GPU
Execution
time (sec)

GPU
Energy

(J)

Effective
Execution
time (sec)

Total
Energy

(J)

100 43.62 7937 0 0 43.62 7937
90 37.88 6919 0.33 16 37.88 6935
80 36.51 6406 0.36 19 36.51 6425
70 29.78 5662 0.39 21 29.78 5683
60 25.79 4821 0.46 25 25.79 4846
50 21.38 4017 0.51 27 21.38 4044
40 17.89 3378 0.60 32 17.89 3410
30 12.79 3899 0.625 33 12.79 2932
20 8.82 2459 0.64 34 8.82 2493
10 4.55 2012 0.69 37 4.55 2049
0 1.75 465 0.78 41 1.75 506

	 41	

Figure 5.9: CPU and GPU matrix multiplication with icc, gcc runtime

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

CPU Percentage

R
u

n
ti

m
e

 (
S

e
c

o
n

d
s

)

Matrix Multiplication CPU (gcc,icc) and GPU Runtimes

CPU(gcc) Runtime

CPU(icc) Runtime

GPU(gcc) Runtime

GPU(icc) Runtime

Effective(gcc) Runtime

Effective(icc) Runtime

	 42	

Figure 5:10: CPU and GPU matrix multiplication with icc, gcc energy

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

16000

CPU Percentage

E
n

e
rg

y
 (

J
o

u
le

s
)

Matrix Multiplication CPU (gcc,icc) and GPU Energy

CPU(gcc) Energy

CPU(icc) Energy

GPU(gcc) Energy

GPU(icc) Energy

Effective(gcc) Energy

Effective(icc) Energy

	 43	

5.3.2 C++ and CUDA Fractal

 As with matrix multiplication application, this application was compiled with the

two compilers gcc and icc. The optimal performance and energy points for both of the

compiler choices are the same at CPU = 0%. However, at all other CPU workload

distribution percentages, icc provides better execution times resulting less energy used.

The data for the gcc compiler are tabulated in Table 5.8 and the icc compiler in Table 5.9.

The results are graphed in Figures 5.11 and 5.12.

Table 5:8 Fractal with CPU and GPU (gcc)

Fractal with CPU and GPU (gcc)

CPU%

CPU
Execution

time
(sec)

CPU
Energy

(J)

GPU
Execution

time
(sec)

GPU
Energy

(J)

Effective
Execution

time
(sec)

Total
Energy

(J)

100 55.74 8211 0 0 55.74 8211
90 50.21 7432 0.23 15 50.21 7447
80 46.52 7190 0.33 15 46.52 7205
70 41.62 6129 0.27 15 41.62 6144
60 38.07 5943 0.28 15 38.07 5958
50 35.03 5367 0.27 15 35.03 5383
40 31.05 4799 0.35 18.8 31.05 4807
30 24.73 3568 0.40 21.5 24.73 3589
20 16.51 2364 0.48 25.9 16.51 2390
10 8.31 1165 0.55 27.0 8.31 1192
0 2.01 123 0.59 32.4 2.01 155.4

	 44	

Table 5.9: Fractal with CPU and GPU (icc)

Fractal with CPU and GPU (icc)

CPU %

CPU
Execution

time
(sec)

CPU
Energy

(J)

GPU
Execution

time
(sec)

GPU
Energy

(J)

Effective
Execution

time
(sec)

Total
Energy

(J)

100 47.45 6653 0 0 47.45 6653
90 42.65 6025 0.23 15.0 42.65 6040
80 39.27 5724 0.33 15.0 39.27 5739
70 35.39 5204 0.26 15.1 35.39 5219
60 32.16 4539 0.28 15.0 32.16 4553
50 29.48 4166 0.27 15.0 29.48 4180
40 26.07 3712 0.35 18.3 26.07 3730
30 20.56 2934 0.40 20.8 20.56 2924
20 13.30 1946 0.48 25.9 12.13 1971
10 6.12 967 0.55 30.1 6.12 997
0 1.96 158 0.59 32.4 1.96 190

	 45	

Figure 5.11: CPU and GPU fractal with icc, gcc runtime

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

CPU Percentage

R
u

n
ti

m
e
 (

S
e
c
o

n
d

s
)

Fractal (gcc,icc) CPU and GPU Runtimes

CPU(gcc) Runtime

CPU(icc) Runtime

GPU(gcc) Runtime

GPU(icc) Runtime

Effective(gcc) Runtime

Effective(icc) Runtime

	 46	

Figure 5.12: CPU and GPU fractal with icc, gcc energy

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

CPU Percentage

E
n

e
rg

y
 (

J
o

u
le

s
)

Fractal (gcc,icc) CPU and GPU Energy

CPU(gcc) Energy

CPU(icc) Energy

GPU(gcc) Energy

GPU(icc) Energy

Effective(gcc) Energy

Effective(icc) Energy

	 47	

5.3.3 C++ and CUDA Breadth-first Search

 The results for the two input file sizes of the applications are tabulated in Table

5.10 and graphed in Figures 5.13 and 5.14. For the smaller data size, optimal

performance and energy points are similar, but not the same. They are CPU = 50% and

60%, respectively. For the larger data size, both the optimal performance and energy

points coincide at CPU = 30%.

Table 5.10: Breadth-first search with CPU and GPU

BFS with CPU and GPU
CPU % 1M Time (sec) 1M Energy (J) 16M Time (sec) 16M Energy (J)

100 5.844 380 95.533 8789
90 5.297 406 99.857 9912
80 5.083 409 91.004 9493
70 4.067 405 83.482 8867
60 4.036 368 74.657 8378
50 3.932 377 67.473 7883
40 4.24 413 59.129 7359
30 4.55 402 51.079 6495
20 4.606 386 54.016 6701
10 4.801 415 59.062 6803
0 5.152 460 63.355 8102

	 48	

Figure 5.13: CPU and GPU BFS runtime

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

CPU Percentage

R
un

tim
e

(s
ec

)

BFS CPU and GPU Runtime

1M
16M

	 49	

Figure 5.14: CPU and GPU BFS energy

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

CPU Percentage

En
er

gy
 (J

ou
le

s)

BFS CPU and GPU Energy

1M
16M

	 50	

5.3.4 C++ and OpenCL Matrix Multiplication

 The results for the OpenCL version of the matrix multiplication are shown in

Table 5.11 and graphed in Figures 5.15 and 5.16. Both optimal performance and energy

points are when the work distributed to the CPU is 20%.

Table 5.11: Matrix multiplication C++ and OpenCL

Matrix multiplication C++ and OpenCL

CPU%

CPU
Execution

time
(sec)

CPU
Energy

(J)

GPU
Execution

time
(sec)

GPU
Energy

(J)

Effective
Execution

time
(sec)

Total
Energy

(J)

100 104.73 16118 0 0 104.73 16118
90 94.68 14292 0.06 5.5 94.68 14297
80 82.55 12291 0.44 23.97 82.55 12315
70 69.70 10963 1.45 91.97 69.70 11055
60 59.98 9189 3.41 265.55 59.98 9454
50 53.44 7749 6.63 592 53.44 8341
40 40.81 6406 11.42 1081 40.81 7487
30 32.57 5013 18.10 1771 29.26 6784
20 21.88 3271 26.95 2694 26.95 5965
10 12.87 2219 38.48 3884 38.48 6103
0 5.27 681 52.78 5388 52.78 6069

	 51	

Figure 5.15: C++ and OpenCL matrix multiplication runtime

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

CPU Percentage

R
u

n
ti

m
e

 (
S

e
c

o
n

d
s

)

MM OpenCL CPU and GPU Runtimes

CPU Runtime

GPU Runtime

Effective Runtime

	 52	

Figure 5.16: C++ and OpenCL matrix multiplication Energy

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

CPU Percentage

E
n

e
rg

y
 (

J
o

u
le

s
)

MM OpenCL CPU and GPU Energy

CPU Energy

GPU Energy

Total Energy

	 53	

5.3.5 C++ and OpenCL Fractal

 The results are tabulated in Table 5.12 and graphed in Figures 5.17 and 5.18. The

optimal performance is when CPU = 20% and optimal energy is when CPU = 0%.

Table 5.12: Fractal C++ and OpenCL

Fractal C++ and OpenCL

CPU%

CPU
Execution

time
(sec)

CPU
Energy

(J)

GPU
Execution

time
(sec)

GPU
Energy

(J)

Effective
Execution

time
(sec)

Total
Energy

(J)

100 56.85 8383 0 0 56.85 8383
90 51.21 7580 0.05 5.12 51.21 7585
80 47.65 7331 0.38 20.8 47.65 7352
70 42.68 6269 1.17 74.2 42.68 6343
60 38.99 6085 2.51 191 38.99 6276
50 35.87 5463 4.86 396 35.87 5859
40 31.61 4909 8.11 649 31.61 5558
30 25.20 3628 11.76 920 25.20 4548
20 16.75 2413 16.44 1342 16.75 3755
10 7.42 1182 19.43 1981 19.43 3163
0 2.04 124 24.80 2521 24.80 2645

	 54	

Figure 5.17: C++ and OpenCL fractal runtime

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

CPU Percentage

R
u

n
ti

m
e

 (
S

e
c

o
n

d
s

)

Fractal OpenCL CPU and GPU Runtimes

CPU Runtime

GPU Runtime

Effective Runtime

	 55	

Figure 5.18: C++ and OpenCL fractal energy

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

CPU Percentage

E
n

e
rg

y
 (

J
o

u
le

s
)

Fractal OpenCL CPU and GPU Energy

CPU Energy

GPU Energy

Total Energy

	 56	

5.3.6 C++ and OpenCL Breadth-first search (BFS)

 For the smaller data set size, optimal performance point is when CPU = 10% and

optimal energy point is when CPU = 0%. For the larger one, both performance and

energy points are when CPU = 0%. The results are shown in Table 5.13 and graphed in

Figures 5.19 and 5.20.

Table 5.13: Breadth-first search C++ and OpenCL

BFS C++ and OpenCL
CPU % 1M Time (sec) 1M Energy (J) 16M Time (sec) 16M Energy (J)

100 5.979 546 142.75 11984
90 5.512 505 104.31 11398
80 5.064 479 94.84 10482
70 4.663 442 86.82 9595
60 4.278 416 77.93 8554
50 3.781 348 69.85 7811
40 3.285 341 61.77 6906
30 3.107 312 53.72 6008
20 3.098 274 45.16 5162
10 3.043 258 36.67 4352
0 3.425 248 29.31 3080

	 57	

Figure 5.19: C++ and OpenCL BFS runtime

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

CPU Percentage

Ru
nt

im
e

(s
ec

)

BFS OpenCL CPU and GPU Runtime

1M
16M

	 58	

Figure 5.20: C++ and OpenCL BFS energy

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

CPU Percentage

En
er

gy
 (J

ou
le

s)

BFS OpenCL CPU and GPU Energy

1M
16M

	 59	

5.4 Summary of Optimal Performance and Energy Points

 A summary of the optimal performance and energy efficiency results from the

previous sections for the applications is provided in Table 5.14.

Table 5.14: Summary of optimal points

Summary of Optimal Points

Application Accelerator Performance Energy

R Matrix

Multiplication

Xeon Phi 30:70 0:100
Matrix

Multiplication

Xeon Phi	 40:60 40:60
Fractal Xeon Phi	 30:70 50:50
BFS 1M Xeon Phi	 86:14 100:0
BFS 16M Xeon Phi	 60:40 100:0
MM gcc GPU 0:100 0:100
MM icc GPU	 0:100 0:100
Fractal gcc GPU	 0:100 0:100
Fractal icc GPU	 0:100 0:100
BFS 1M GPU	 50:50 60:40
BFS 16M GPU	 30:70 30:70
MM OpenCL GPU	 20:80 0:100
Fractal OpenCL GPU	 20:80 0:100
BFS 1M OpenCL GPU	 30:70 0:100
BFS 16M OpenCL GPU	 0:100 0:100

	 60	

6. PREDICTING OPTIMAL HYBRID WORKLOAD DISTRIBUTION

 Predicting optimal workload partitions can eliminate the exhaustive search which

tests all different combinations to arrive at an optimal distribution. With matrix

multiplication, fractal and breadth-first search hybrid applications, this chapter attempts

to model and predict workload partitions for optimal performance and optimal energy

based upon measured parameters.

 A hybrid application can be modeled with five unique regions: 1) pre-

computation, 2) CPU computation, 3) Xeon Phi or GPU computation, 4) CPU waiting for

Xeon Phi or GPU, and 5) post-computation regions. The pre-computation region

includes allocation or initialization of memory such as allocation and initialization of

matrices used in matrix multiplication, or reading data from as reading the nodes and

edges in BFS, or user input. The CPU is active in this time while the GPU and Xeon Phi

have yet to be activated. The CPU computation region is when CPU performs the

calculations associated with hybrid workload distribution. The GPU or Xeon Phi are

active in the GPU or Xeon Phi computation region, which in general occurs at the same

time as the CPU computation region. If the CPU completes it work allocated during the

CPU computation region, it will wait for the GPU or Xeon Phi to finish. This region is

the CPU wait region. The post-computation region occurs after the hybrid calculations

are complete. Memory is de-allocated or reset for another computation, and files are

closed are included in this region. The CPU is active in this region while the GPU or

Xeon Phi is not.

	 61	

 The parameters associated with these distinct regions are time, average power,

energy, work, and rate. These parameters are used in prediction of optimal workload

partitions and are listed in Table 6.1.

Table 6.1: Parameters used for predictions

 Units Parameter Description

€

TC CPU computation time

€

TX Xeon Phi computation time

€

TG GPU computation time

€

Tpre pre-computation time

€

Tpost post-computation time

Time seconds

€

Twait CPU waiting time

€

EC CPU computation energy

€

EX Xeon Phi computation energy

€

EG GPU computation energy

€

Epre pre-computation energy

Energy Joules

€

Epost post-computation energy

€

W All hybrid work

€

WC CPU work

€

WX Xeon Phi work

€

WG GPU work

€

Wpre pre-computation work

Work 109
calculations
per second

€

Wpost post-computation work

€

PC CPU computation power

€

PX Xeon Phi computation power

€

Pwait power consumed by CPU while
waiting for GPU or Xeon Phi

€

Ppre pre-computation power

Power Watts

€

Ppost post-computation power

€

RC CPU computation rate

€

RG GPU computation rate Rate 109
calculations
per second

€

RX Xeon Phi computation rate

	 62	

 Application time is the total time the application executes on the computing

system. It is the sum of the pre- and post- computation times plus the longer of the Xeon

Phi/GPU or CPU computation time and described with the following equation:

€

Application Time = Tpre +max TC ,TX orTG() +Tpost

 The application energy can be described similarly. The energy of the pre- and

post- computation regions, the CPU computation energy, the energy of the CPU wait

region if applicable, and energy of the Xeon Phi or GPU are summed together to give the

total energy. This is the total energy the application consumes.

€

Application Energy = Epre + EC + EX or EG() + Ewait + Epost

 Power is the average power of the region and is the energy of the region divided

by the time for that region. Each region has an associated average power.

€

Power =
Energy
Time

Similar to time and energy, the application work can be described as the sum of the pre-

and post-computation, the CPU computation plus the Xeon Phi or GPU computation

work. The CPU does no work during the CPU wait region.

€

Application Work =Wpre +WC + WX orWG() +Wpost

 With the exception of the CPU wait region, each region has a rate of work. Rate

of work is work divided by time.

€

R =
W
T

 For the application, the pre- and post-computation regions remain constant while

the CPU, GPU or Xeon Phi computation regions vary based on the selected partition.

Thus, in predicting and modeling, the parameters pre- and post-computation regions may

	 63	

be discarded from the calculations of the optimal work partitions. Thus, the

measurements of application power, time, energy and work must account for all the

regions to accurately predict optimal performance or energy partitions.

6.1 Hybrid Code Running on CPU and Xeon Phi

 Hybrid computation is a subset of the entire application. Thus, the time in the

hybrid computation time does not include pre- or post- computation time, but just the

maximum of either the CPU or Xeon Phi computation times.

€

Hybrid time = max TC ,TX()

The data transfer to the Xeon Phi is included in the Xeon Phi computation time. Optimal

performance occurs when the time periods of the two processors overlap exactly, when

the Xeon Phi computation time equals CPU computation time.

€

TC = TX

 The sum of the CPU work and Xeon Phi work is the total hybrid work. This can

be described by the following equation:

€

W =WC +WX .

Work divided by time yields rate. Rate describes the computation rate of the CPU or

Xeon Phi and is dependent on hardware, software, memory and cache use, and data

transfer. The rate of the CPU and Xeon Phi is given by the two following equations,

respectively.

€

RC =
WC

TC

€

RX =
WX

TX

	 64	

Using the previous equations, optimal performance for the CPU and Xeon Phi are related

by the following equation.

€

WX

RX
=
WC

RC .

Because work of the CPU and work of the Xeon Phi are related to the total work, they

can be described by the two following equations respectively.

€

WC = αW

€

WX = 1−α()W

€

where α :α ∈ 0 :1[]

Combining the previous equations yields the computational mapping for optimal

performance is as follows:

€

W 1−α()
RX

=
αW
RC

€

α perf =
RC

RX + RC

€

where α perf represents optimal performance partiton.

 For optimal performance, the partition depends upon the measured rates of the

CPU and Xeon Phi.

Table 6.2: CPU and Xeon Phi partitions

Parameter Description

€

α CPU partition

€

α perf Optimal CPU partition for performance

	 65	

 The optimal energy partition is defined by the minimum energy expended by the

application. Because the pre- and post- computation energies remain fixed as the hybrid

work is partition, those energy parameters may be discarded when calculating optimal

energy. Optimal energy can be related by the following equation:

€

Optimal Energy = min E α :α ∈ 0 :1[]() = EC + EX +max Ewait ,0()

 While the CPU waiting energy cannot be negative, it is included to derive the next

equation. Consequently, to determine the optimal energy distribution, only the CPU and

Xeon Phi computational energies and the CPU waiting energy effect the calculation. In

substituting the equations above, the optimal energy is given with the following equation:

€

min E α :α ∈ 0 :1[]() =
α⋅ PC
RC

+
1−α()⋅ PX

RX

+max 1−α
RX

−
α
RC

,0
⎛

⎝
⎜

⎞

⎠
⎟ ⋅ Pwait

 The CPU waiting power, CPU rate and computation power, Xeon Phi rate and

computation power were measured for the applications and are listed in Table 6.3.

	 66	

Table 6.3: CPU and Xeon Phi measured parameters

 CPU Xeon Phi

€

Pwait

€

RC

€

PC

€

RX

€

PX
R MM 47.3 150.3 170 322.5 196.5
MM 55.5 46.96 185.9 74.10 177.7

Fractal 55.5 28.9 139.3 43.6 154
BFS

1M

54.9 179.6 182 38.7 126.2
BFS

16M

53 5.12 153 3.55 141

 Performance and energy optimal points were calculated and predicted from the

measured parameters. They are shown in Table 6.4 with very good agreement between

measured and predicated. While data was taken every 10%, BFS with 1M nodes was

tested at additional workload distributions to determine the optimal performance point of

86%.

Table 6.4: CPU and Xeon Phi measured and predicted optimal performance and energy

Predicted and Measured Hybrid CPU + Xeon Phi Optimal

 Performance Energy

 Measured Predicted Measured Predicted
R Matrix

Multiplication

30:70 32:68 0:100 0:100
Matrix

Multiplication

40:60 39:61 40:60 38:62
Fractal 30:70 39:61 50:50 40:60
BFS 1M 86:14 82:18 100:0 100:0
BFS 16M 60:40 60:40 100:0 100:0

	 67	

 For matrix multiplication in the R scripting language, a second optimal

performance point exists at 0:100, representing a difference of just 0.3%

6.2 Hybrid Code Running on CPU and GPU

 The CPU and GPU follow similarly for work partition prediction. The optimal

performance is given as follows:

€

α perf =
RC

RG + RC

And the optimal energy for the CPU and GPU workload partition is given below:

€

min E α :α ∈ 0 :1[]() =
α⋅ PC
RC

+
1−α()⋅ PG

RG

+max 1−α()
RG

−
α
RC

,0
⎛

⎝
⎜

⎞

⎠
⎟ ⋅ Pwait

The measure parameters for the applications were tallied and are listed in Table 6.5.

	 68	

Table 6.5: CPU and GPU measured parameters

CPU and GPU Measured Model Parameters
 CPU GPU

€

Pwait

€

RC

€

PC

€

RG

€

PG

MM gcc 206.5 19.8 154.5 864 52.5
MM icc 261 45.8 181.9 1014 52.5

Fractal gcc 61.1 23.8 147.3 661 54.9
Fractal icc 80.6 28.0 140.2 678 54.9
BFS 1M 57.9 97.6 126 45 115
BFS 16M 72.3 6.23 102.6 11.0 92.9

MM OpenCL 31.8 19.1 153.8 37.9 102.1

Fractal
OpenCL 45.3 23.4 147.4 53.5 101.6

BFS 1M
OpenCL 42.3 95.3 75.8 208 30.0

BFS 16M
OpenCL 44 3.8 76.9 67.8 55.3

 The measured parameters were then used the model to predict the optimal

partition for performance and energy and are listed in Table 6.6. The granularity for

these measurements is 10%.

	 69	

Table 6.6: CPU and GPU measured and predicted optimal performance and energy

CPU and GPU Optimal

 Performance Energy

 Measured Predicted Measured Predicted

MM gcc 0:100 3:97 0:100 2:98

MM icc 0:100 4:96 0:100 4:96

Fractal gcc 0:100 3:97 0:100 2:98

Fractal icc 0:100 3:97 0:100 2:98

BFS 1M 50:50 46:54 60:40 46:54

BFS 16M 30:70 36:64 30:70 36:64

MM OpenCL 20:80 33:67 0:100 2:98

Fractal OpenCL 20:80 30:70 0:100 2:98

BFS 1M
OpenCL 30:70 31:69 0:100 2:98

BFS 16M
OpenCL 0:100 5:95 0:100 2:98

 The performance in the ranges between 10% and 30% CPU present at most a 2%

difference and yield a range of minimal runtimes. In general, there is very good

agreement between predicted and measured.

	 70	

7. CONCLUSION

 This section summarizes the contributions and work done in this thesis, and

provides recommendations for work in the future

7.1 Contribution

 Historically, it has been difficult to predict the best performance and energy

efficiency operating points of hybrid applications. For this thesis, applications are

developed to enable measurement of hybrid performance and energy efficiency over the

entire range of workload distributions. From the results, for many cases, the optimal

performance and optimal energy operating points do not coincide. And for these

applications, the selection of the workload distribution for either the optimal performance

or energy is not obvious. Thus, this thesis presents prediction methodologies for optimal

performance or optimal energy operating points for these sample applications, which can

likely be extended to other applications. The prediction equations not only extend to the

CPU and GPU but also CPU and Xeon Phi combinations for a variety of sample

applications. In addition, the methodology accurately predicts the CPU and Xeon Phi

workload division in an R scripting language application using an entirely different

workload division technique, the environment variables. The optimal hybrid

performance operating point may benefit other R applications, which typically run with

multiple hours long execution time, providing a execution time performance and allowing

larger data sets to be run. In addition, power data from the on-chip power monitoring of

the CPU and accelerators and measured performance data can be applied to the equations

to provide accurate predictions.

	 71	

 Many times, programs can be rather difficult to adapt to hybrid use. This thesis

presents a general guideline on adapting already-parallel applications to hybrid use of a

CPU and Xeon Phi or CPU and GPU. These methods provide guidelines and workload

division examples. In addition, for the R scripting language, this thesis provides the

information on open source R language enabled to use MKL and a detailed list of

environment variables that allow parallel and hybrid use.

7.2 Future Work

 In this work, I presented a method to predict workload division for hybrid

applications, enabling optimal energy or performance predictions. There are many

directions to extend this work. First, verify and confirm predictions with other

applications. Although the applications cover computational intensive applications and a

data intensive transfer application, there are many other applications for which the

prediction methodology can be verified. Second, because the measurements on these

applications were performed on a node on a single system, measurement on other

platforms using other CPUs and other GPUs, and next generation of Xeon Phi. Third,

the applications can be optimized for more efficient memory accesses, execution time or

energy, thread affinity and hyperthreading. All of these can tweak the optimal points.

High transfer rates between CPU and Xeon Phi or GPU can be optimized. And finally, a

software enabled machine learning to automatically sample, measure and provide optimal

hybrid distribution for performance or energy can be added to programs. This would

automate the steps done in this thesis to create a very quick, efficient, application.

	 72	

LITERATURE CITED

[1] R. Gee, X. Feng, M. Burtscher, Z. Zong, "Performance and Energy Aware

Coorperative Hybrid Computing", in Proceedings of the 11th ACM Conference on

Computing Frontiers, May 2014.

[2] top500.org. Accessed June 2016.

[3] green500.org. Accessed June 2016.

[4] http://glennklockwood.blogspot.com/2013/09/intels-xeon-phi-uptake-measured-

from.html. Accessed June 2016.

[5] C. Liu, A. Sivasubramaniam, M. Kandemir, M.J. Irwin, “Exploiting Barriers to

Optimize Power Consumption of CMPs,” in Proceedings of the IEEE 19th International

Parallel and Distributed Processing Symposium, p. 5a, 2005.

[6] R. Ge, X. Feng, W.-c. Feng, K.W. Cameron, “Cpu miser: A Performance-directed,

Run-time System for Power-aware Clusters,” in International Conference on Parallel

Processing (ICPP), p. 18, IEEE, 2007.

[7] C. -h. Hsu, W. -c. Feng. “A Power-aware Run-time System for High Performance

Computing,” in Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, p.

1. IEEE Computer Society, 2005.

[8] V.Pallipadi, A. Starikovskiy, “The Ondemand Governor,” in Proceedings of the Linux

Symposium, vol. 2, pp. 223-238, July 2006.

[9] C. -H. Hsu, U. Kremer, “The design, implementation and evaluation of a compiler

algorithm for CPU energy reduction,” in ACM SIGPLAN Notices, vol. 38, no. 5, pp. 38-

48. ACM 2003.

	 73	

[10] L. A. Barroso, U. Holzle. “The case for energy-proportional computing,” IEEE

Computer vol. 40, no. 12, pp. 33-37, 2007.

[11] A. Vhdat, A. Lebeck. C. S. Ellis. “Every joule is precise: The case for revisiting

operating system design for energy efficiency,” in Proceedings of the 9th workshop on

ACM SIGOPS European Workshop: beyond the PC: new challenges for the operating

system, pp. 31-36, ACM 2000.

[12] Y.C. Lee and A.Y. Zomaya. "Energy Conscious Scheduling for Distributed

Computing Systems under Different Operating Conditions", in IEEE Transactions on

Parallel and Distributed Systems, vol. 22, issue 8, pp. 1374-1381, December 2010.

[13] S.Hong and H. Kim. “An Integrated GPU power and Performance Model,” in

Proceedings of the 37th Annual International Symposium Computer Architecture, vol.

38, no. 3, pp. 280-289, 2010.

[14] S. Collange, D. Defour, A. Tisserand, “Power Consumption of GPUs from a

Software Perspective,” in 9th International Conference on Computational Science, pp.

922-931, 2009.

[15] S. Che, J.W. Sheaffer, K. Skadron, "Dymaxion: optimizing memory access petterns

for heterogeneous systems", in Proceedings of the ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis (SC), November

2011.

[16] P. Bailey, D.K. Lowenthal, V. Ravi, B. Rountree, M. Schulz, B.R. de Supinski,

“Adaptive Configuration Selection for Power-Constrained Heterogeneous Systems,” in

Parallel Processing (ICPP) 2014 43rd International Conference, pp. 371-380. IEEE,

2014.

	 74	

[17] Q. Wu, M. Martonosi, D.W. Clark, V.J. Reddi, D. Connors, Y. Wu, J. Lee, D.

Brooks, “A Dynamic Compilation Framework for Controlling Microprocessor Energy

and Performance,” in Proceedings of the 38th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 271-282, Nov. 2005.

[18] S. Song, C. -Y. Su, B. Rountree, K.W. Cameron, “A Simplified and Accurate Model

of Power-Performance Efficiency on Emergent GPU Architectures,” IEEE 27th

International Symposium on Parallel And Distributed Processing (IPDPS), pp. 20-24,

May 2013.

[19] C.-K.Luk, S. Hong, H.Kim. “Qilin: exploiting parallelism on heterogeneous

multiprocessors with adaptive mapping,” in Proceedings of the 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 42, pp. 45-55, 2009.

[20] J.Dean and S. Ghemawat. “MapReduce,” Communications of the ACM, vol. 51, p.

107, Jan. 2008.

[21] V.T. Ravi, W. Ma, D. Chiu, G. Agrawal. “Compiler and Rutime Support for

Enabling Generalized Reduction Computations on Heterogeneous Parallel

Configurations,” in Proceedings of the 24th ACM International Conference on

Supercomputing (ICS), pp. 137-146, 2010.

[22] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S.-H. Lee, K. Skadron,

“Rodinia: A Benchmark Suite for Heterogeneous Computing,” In Proceedings of the

IEEE International Symposium on Workload Characteriztion (IISWC), pp. 44-54, Oct.

2009.

	 75	

[23] T. Scogland, B. Rountree, W. -c. Feng, B. de Supinski, “Heterogeneous Task

Scheduling for Accelerated OpenMP,” in Proceedings of the IEEE 26th International

Parallel Distributed Processing Symposium, pp. 144- 155, May 2012.

[24] J. Fang, A.L. Varbanescu, H. Sips, L. Zhang, Y. Che, C. Xu, "An Empirical Study of

Intel Xeon Phi", in arXiv preprint arXiv:1310.5842vs [cs.DC] 20 Dec 2013.

[25] G. Lawson, M. Sosonkina, U. Shen, “Energy Evaluation for the Applications with

Different Thread Affinities on the Intel Xeon Phi,” in 2014 International Symposium on

Computer Architecture and High Performance Computing workshop (SBAC-PADW), pp.

54-59, Oct 2014.

[26] J. Wood, Z.L. Zong, Q.J. Gu. “Energy and Power Characterization of Parallel

Programs Running on Intel Xeon Phi,” in Proceedings of the Workshop on Parallel

Programming Models and Systems Software for High-End Computing (P2S2), in

conjunction with ICPP 14, pp. 265- 272, Minneappolis, MN, Sept. 2014.

[27] O.G. Lorenzo, T.F. Pena, J.C. Cabaleiro, J. C. Picel, F.F. Rivera, D.S. Nikolopoulos,

“Power and Energy Implications of the Number of Threads Used on the Intel Xeon Phi.

Multicore and GPU Programming,” Paper presented at Second Congress of GPU

Programming, Caceres, Spain, pp. 1-8, 2015.

[28] Y. Shao, D. Brooks, “Energy Characterization and Instruction Level Energy Model

of Intel’s Xeon Phi Processor,” in Proceedings of 2013 International Symposium on Low

Power Electronics Design, pp. 389- 394, 2013.

	 76	

[29] B. Li, H.-C. Chang, S. Song, C. Su, T. Meyer, J. Mooring, K. Cameron, “The

Power-Performance Tradeoffs of the Intel Xeon Phi on HPC Applications,” 2014 IEEE

International Parallel and Distributed Processing Symposium Workshop, pp. 1448-1456,

2014.

[30] http://nsf.gov/awardsearch/showAward?AWD ID=1305359

[31] “Intel Xeon Phi Coprocessor System Software Developers Guide,”

http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-

phi-coprocessor-system-software-developers-guide.pdf. Accessed July 2014.

[32] “Intel RAPL,” https://01.org/blogs/tlcounts/2014/running-average- power-limit-?-

rapl. Accessed June 11, 2015.

[33] “Intel Xeon Phi coprocessor Power management Configuration: Using the micsmc

command-line Interface,” https://software.intel.com/en- us/blogs/2014/01/31/intel-phi-

coprocessor-power-management- configuration-using-the-micsmc-command. Accessed

July 9, 2014.

[34] https://developer.nvidia.com/nvidia-system-management-interface. Accessed

November 2014.

[35] M. Burtscher, I. Zecena, Z. L. Zong, “Measuring GPU Power with the K20 Built-in

Sensor,” in Proceedings of the 7th Workshop on General Purpose Processing Using

GPUs (GPGPU 7), in conjunction with ASPLOS 14, Salt Lake City, Mar. 2014.

[36] https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation.

Accessed April 2016.

[37] https://www.r-project.org. Accessed January 2016.

[38] http://www.revolutionanalytics.com. Accessed January 2016.

	 77	

[39] J. Shen, A.L. Varbanescu, P. Zou, Y. Lu, H. Sips, "Improving Performance by

Matching Imbalanced Workloads with Heterogeneous Platforms", in Proceedings of the

28th ACM International Conference on Supercomputing, ICS 2014, pp. 241-250.

[40] https://www.olcf.ornl.gov/tutorials/compiling-mixed-gpu-and-cpu-code/. Accessed

April 2016.

[41] An Introduction to Parallel Programming, Peter Pacheco, ISBN-13: 978-

0123742605

