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ABSTRACT 

Population and land management relies on understanding population regulation 

and growth, which may be impacted by variation in carrying capacity (K) within and 

among populations. I fit linear Ricker growth models using Bayesian statistics to seven 

time series of population survey data of elk (Cervus elaphus). I explored the effects of 

variation in K among herds (i.e., populations) on temporal variation in the maximum 

intrinsic population growth rate (rmax) and strength of density dependence (β) within 

herds in a small part of the geographic range of the species. I also estimated stochastic 

fluctuations in abundance around K for each herd. My results indicate that rmax was 

similar among herds due to similar life history traits, while K and β varied among herds. 

Also, rmax and β varied temporally within herds. Variation in rmax is traditionally viewed 

as being generated from density-independent factors such as climatic variables, but the 

variation might also be generated from individual movement. I also found that herds with 

smaller K will have stronger density dependence (i.e., smaller β), higher temporal 

variation in β within herds, and less fluctuation in abundances around K. Population 

regulation and the rate of return to the equilibrium abundance is often understood in 

terms of β, but ecological populations are dynamic systems, and temporal variation in 

population growth parameters such as K and rmax may also influence regulation. 

Population growth models which accommodate variation both within and among herds in 

population growth parameters are necessary, even in mild climates, to fully understand 

population dynamics and manage populations. 
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I. ELK POPULATION DYNAMICS WHEN CARRYING CAPACITIES VARY 

WITHIN AND AMONG HERDS 

Introduction 

 Population regulation is a central concept in population dynamics and is often 

used in population management and conservation. Regulation of populations is driven by 

density-dependent factors, the strength of which should impact the time to return to an 

equilibrium abundance around which the population fluctuates (Lande et al. 2002). This 

results in a carrying capacity (K) which can be defined as a long-term stationary 

probability distribution of population abundance (May 1973, Chesson 1982, Dennis and 

Taper 1994, Turchin 1995). The effects of variation in K within and among populations 

on regulation have not been fully explored. For example, the factors influencing the 

dynamics of a population, such as the population growth rate, strength of density 

dependence (β), and stochastic temporal variation in population abundance, may vary 

depending on K (Lande et al. 2003). Consequently, estimating K, temporal variation in K, 

and fluctuations in abundances around K is critical for understanding population 

dynamics and regulation (Lande et al. 2003, Ahrestani et al. 2016).  

A Ricker model is commonly used to approximate population dynamics and 

estimate population growth parameters for species with slow life histories (Ricker 1954, 

Fowler 1981, Ferguson and Ponciano 2015). This model predicts a linear growth 

response such that the intrinsic population growth rate (r) will decrease in a linear fashion 

as abundance increases. The Ricker model can be written as the following discrete 

equation (Ricker 1954, Cook 1965): 
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 𝑁𝑡+1 = 𝛼𝑁𝑡𝑒
−𝛽𝑁𝑡 , [1] 

where 𝑁 is the population abundance, t is time, and 𝛼 is the maximum potential 

population growth rate when the population is not food limited. Although time series of 

population survey data from free ranging populations might indicate a non-linear 

relationship between abundance and growth rate (McCullough 1979, Fowler 1981), the 

simplicity and parsimony of the Ricker model make it an insightful approximating model 

(Polansky et al. 2009, Clark et al. 2010, Delean et al. 2013).  

The implications of using the Ricker model to understand process variance, or 

actual fluctuations in population abundance, have not been evaluated fully. Process 

variance is influenced by both demographic and environmental stochasticity, as per the 

following equation (Lande et al. 2003, Sæther et al. 2008):  

 𝜎𝑝
2 = 𝜎𝑒𝐷𝐷

2 + 𝜎𝑒𝐷𝐼
2 +

𝜎𝑑
2

𝑁
, [2] 

where 𝜎𝑝
2 is process variance, 𝜎𝑒𝐷𝐷

2  is density-dependent environmental variance, 𝜎𝑒𝐷𝐼
2  is 

density-independent environmental variance, and 𝜎𝑑
2 is demographic variance. 

Environmental variance stems from heterogeneous environmental changes. It includes 

density-dependent effects, which are biotic effects where the population growth rate 

depends on past or present abundance, and density-independent effects, which capture 

resource variation and abiotic conditions (Ahrestani et al. 2016). Demographic variance 

is random changes in demographic rates such as survival and fecundity.  

Most current applications of the Ricker model assume that density-independent 

effects, such as climatic variation, act on the maximum potential intrinsic growth rate 

(𝑟𝑚𝑎𝑥 = ln⁡(𝛼)) and N simultaneously (Ferguson and Ponciano 2015). As such, density-
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independent effects are often assumed to have an additive relationship between rmax and 

N, which can be expressed as a linear regression: 

 ln (
𝑁𝑡+1

𝑁𝑡
) = 𝑟𝑡 = ln(𝛼) + 𝛽𝑁𝑡 + 𝛾1𝑥1,𝑡 +⋯+ 𝛾𝑍𝑥𝑍,𝑡 + 𝜀, [3] 

where r is the intrinsic population growth rate, ln(𝛼) is the y-intercept (i.e., rmax), β is the 

slope, 𝑥1 and 𝑥𝑍 are values of density-independent explanatory variables that induce 

temporal variation in rmax, whose influence is estimated by 𝛾1 and 𝛾𝑍, and Ɛ is the 

residual variance, which is normally distributed. Thus, the additive model captures the 

effects of density-independent environmental factors through temporal variation in rmax, 

or changes in the y-intercept, but assumes no variation in β.  

The multiplicative model, on the other hand, incorporates density-dependent 

effects while assuming little to no influence of density-independent factors on population 

abundances. The multiplicative model approximates density-dependent effects by 

assuming a multiplicative relationship between 𝑟𝑚𝑎𝑥 and 𝑁, which can be written as the 

following linear regression: 

 ln (
𝑁𝑡+1

𝑁𝑡
) = 𝑟𝑡 = ln(𝛼) + 𝛽𝑁𝑡 + 𝛿1𝑥1,𝑡: 𝑁𝑡 +⋯+ 𝛿𝑍𝑥𝑍,𝑡: 𝑁𝑡 + 𝜀, [4] 

where the interaction between N and density-independent explanatory variables (i.e., 

𝑥1,𝑡: 𝑁𝑡 and 𝑥𝑍,𝑡: 𝑁𝑡) indicate density-independent effects augment β (i.e., the slope). 

Thus, the multiplicative model assumes that rmax will remain constant when K varies, and 

as such, the slope of the growth response, which estimates β, will vary when K varies.  

 In populations where density dependence can be detected, most have been 

explained by either the additive (i.e., temporal variation in rmax) or multiplicative (i.e., 

temporal variation in β) model (Ferguson and Ponciano 2015). However, it should be 

noted that natural population do not necessarily follow either framework. Indeed, it is 
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possible that population dynamics can be explained by no temporal variation in either 

parameter or by a combination of temporal variation in both parameters (Bell 1990, 

Underwood 2007).  

 The effect of variation in K among populations and temporal variation in K within 

populations on fluctuations in abundance around K have not been explored. The 

population dynamics of a species may vary spatially with resource quality and 

availability, but the population growth parameters are often estimated over a substantial 

part of a species’ geographic range (Turchin and Hanski 1997, Sæther et al. 2008, Street 

et al. 2015). Across the geographic range of a species, environmental heterogeneity tends 

to be large, and so is variation in K. Two studies, however, indicate considerable 

variation in K within a small part of the geographic range (Iijima and Ueno 2016, 

Weckerly 2017), so variation in β and process variance at this spatial scale seems 

plausible. Thus, an understanding of population dynamics within a smaller part of the 

geographic range of a species is needed to fully explore the implications of the Ricker 

model and its parameters.  

 I examined seven populations of elk (Cervus elaphus) inhabiting northern 

California and south-central Washington to explore the effect of variation in K among 

populations within the framework of the additive and multiplicative models. Among 

populations, I hypothesized that rmax would be similar due to populations of a species 

having similar life history traits, and that K and β would vary among populations. Within 

populations, I hypothesized that temporal variation will not be detected in either rmax or K 

due to the stable composition of habitats and mild climate. I also estimated the influence 

of demographic and environmental stochasticity within each population. I hypothesized 
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that in populations with smaller K, there will be less fluctuation in abundance around K 

due to strong density dependence. By exploring these hypotheses, my research assesses 

the influence of variation in K both among and within populations on their dynamics, 

regulation, and stability. These are important to fully understand, especially in the face of 

contemporary changes in the environment (May 1973, Ahrestani et al. 2016). Thus, my 

findings regarding the impacts of K and β on population regulation and fluctuations in 

abundances around K have implications for population and land management. 

Study Areas 

Time series of population survey data were used from nonmigratory elk 

populations in three different locations along the West Coast of the USA (Fig. 1). Five of 

the populations were in the Prairie Creek drainage (Davison), the Lower Redwood Creek 

drainage (Levee Soc), the Stone Lagoon area, the Gold Bluffs region, and the Bald Hills 

region of Redwood National and State Parks (RNSP), Humboldt County, California 

(41.2132°N, 124.0046°W). These populations occupy an area of about 380 km2. The 

climate in this region was mild, with cool summers and rainy winters. Annual 

precipitation was usually between 120 and 180 cm and most of the precipitation fell 

between October and April. Snow was rare since average winter temperatures rarely 

dropped below freezing and ranged from 3 to 5°C. Average summer temperatures ranged 

from 10 to 27°C, depending on the distance inland. Elk in RNSP were not legally hunted, 

and displayed strong social bonding between females, juveniles, and sub-adult males 

(Weckerly 2017).  

An elk population in the Point Reyes National Seashore inhabited part of the 

Point Reyes Peninsula in Marin County, California (38.0723°N, 122.8817°W). The elk 
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were restricted to an area of 10.52 km2 on the northern tip of the peninsula by a 3-m-tall 

fence. The climate of this study area was Mediterranean, with an average annual 

precipitation of 87 cm (Cobb 2010). Most of the precipitation fell from autumn to early 

spring. Temperatures averaged about 7°C in winter and 13°C in summer (Howell et al. 

2002, Cobb 2010).  

Another elk population was in the Arid Lands Ecology (ALE) Reserve and 

occupied a 300 km2 area within the U.S. Department of Energy’s Hanford Site, 

Washington (46.68778°N, 119.6292°W). The climate in this area was semi-arid with dry, 

hot summers and wet, moderately-cold winters. Average summer temperatures were 

around 20°C and average winter temperatures were around 5°C with an average annual 

precipitation of 16 cm, half of which fell in the winter as rain (Stone et al. 1983).  

Methods 

Population Surveys 

In RNSP, females, juveniles, and subadult males were often in the same group 

and tended to use open meadow habitat more frequently than adult males (Weckerly 

1998, Weckerly et al. 2001). These behavioral patterns likely explain why females, 

juveniles, and subadult males were sighted more frequently than adult males (Weckerly 

2017). Moreover, in size-dimorphic ungulates such as elk, recruitment was strongly 

correlated with female abundance and weakly correlated with male abundance 

(McCullough 1979, 2001, Weckerly 2017). In RNSP, the abundance of groups of 

females, juveniles, and subadult males drove the dynamics of the group and of adult 

males (Weckerly 2017). Therefore, for the RNSP populations, I used herd counts where a 
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herd was comprised of females, juveniles, and subadult males. I also used herd counts for 

the Point Reyes and ALE Reserve populations to remain consistent.  

Systematic herd surveys of elk were conducted during January from 1997 to 2019 

in RNSP. Surveys in the Davison meadows, the Levee Soc area, the Stone Lagoon area, 

the Gold Bluffs region, and the Bald Hills region were conducted by driving specified 

routes 4 to 10 times on different days throughout the month of January. The time series 

for these five herds ranged from 19 to 23 years of data. The elk were counted and 

classified by age and sex as adult males, subadult males, females, and juveniles. Females 

could not be visually differentiated into adult and subadult age categories (Weckerly et al. 

2001). The highest count of females, juveniles, and subadult males from the surveys 

conducted each year was used as an index of abundance of each herd since the detection 

probabilities were high both on an absolute basis (> 0.8) and relative to variation in 

detection probabilities (CVsighting = 0.05) (Johnson 2008, Weckerly 2017). For the Bald 

Hills herd, which is the only herd in RNSP where harvests occurred, I added hunter 

harvests to the highest count of each year to account for this source of mortality. These 

harvests occurred only when elk from the Bald Hills herd left RNSP. 

Elk population surveys were conducted at the Point Reyes National Seashore 

from 1982 to 2008. Weekly surveys were conducted after the mating season. Surveys 

were conducted on foot or horseback of female elk that were ear-tagged or had a collar 

containing radio telemetry (Gogan and Barrett 1987, Howell et al. 2002).  Individuals 

counted were classified as females, juveniles, subadult males, and adult males. Data were 

not available for the years 1984 to 1989 and 1993, so the time series included 20 years of 

data. I used the highest count in each year in my analyses. This herd was not hunted.  
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Elk population surveys in the ALE Reserve were conducted in winters after 

hunting and before parturition. From 1982 to 2000, biologists used aerial telemetry 

studies, in which they located all collared elk during each survey. For years in which 

multiple surveys were conducted, I used the highest count in each year as an index of 

abundance for that year (McCorquodale et al. 1988, Eberhardt et al. 1996). I omitted 

population survey data collected in 1982 from my analysis because unusually low 

population counts suggest that they may be exceptionally biased by observer error. I also 

excluded population survey data collected in 2000 and thereafter. A wildfire occurred in 

the summer of 2000 and burned practically all of the available vegetation in the ALE 

Reserve, which likely had an immediate effect of reducing available elk forage in the 

reserve and caused elk to spend more time outside of the ALE Reserve (Tiller et al. 2000, 

Anonymous 2002). In addition, the highest recorded number of elk (about 291) were 

harvested that year (Tiller et al. 2000). The change in available resources and relatively 

high hunter harvest in 2000 might have altered K and r of the ALE Reserve elk herd. 

Consequently, the time series included 17 years of data. For all years of data used, I 

added hunter harvests to the highest count of each year to account for this source of 

mortality. 

Ricker Growth Models 

I fit Ricker growth models to each of the time series to estimate population 

growth parameters as well as temporal variation in rmax and β. I estimated K as the x-

intercept of the Ricker growth model for each iteration to incorporate uncertainty 

associated with each model parameter. Notably, preliminary analyses showed that not 

accounting for observer error did not bias my results (see Appendix).  
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I used Bayesian statistics and Markov Chain Monte Carlo algorithms with 3 

chains, 150,000 iterations, a burn-in period of 75,000, an adaptation period of 75,000, and 

no thinning. I conducted these analyses in the RJAGS program in RStudio (R Version 

3.5.0, www.r-project.org, accessed 26 April 2018; JAGS Version 4.0.0, 

www.sourceforge.net, accessed 24 January 2018). Convergence among chains was 

determined by whether 𝑅̂ < 1.01 and visual checks of trace and density plots (Kery 

2010). I used uninformative priors for the y-intercept (i.e., rmax) and the slope (i.e., β) 

(Fig. 2). The estimate of rmax borrowed information among herds because this parameter 

should be similar among populations within a species (Street et al. 2015). Therefore, I 

modeled rmax for each herd (j) as a random effect following a normal distribution with 

𝜇𝑟𝑚𝑎𝑥
~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.001) and 𝜎𝑟𝑚𝑎𝑥

~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 100). To model temporal variation in 

rmax for each herd, I included an additive term which was also modeled following the 

normal distribution 𝛾𝑡,𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛾𝑗), where 𝜎𝛾𝑗~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 100). The estimate of 

β did not borrow information among herds because this parameter can vary widely 

among herds (Sæther et al. 2008). I modeled β for each herd (j) following the normal 

distribution 𝛽𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.001). I also modeled temporal variation in β for each herd 

with the normal distribution 𝛽𝛿𝑡,𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛽𝛿𝑗
, 𝜎𝛽𝛿𝑗

), where 𝜇𝛽𝛿𝑗
~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.001) 

and 𝜎𝛽𝛿𝑗
~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 100). Thus, there were four possible Ricker growth models for 

each herd; no temporal variation in rmax or β, represented by 

 𝑟𝑡,𝑗 = 𝑟𝑚𝑎𝑥𝑗
+ 𝛽𝑗𝑁𝑡,𝑗 + 𝜀𝑡,𝑗, [5] 

temporal variation in rmax,  

 𝑟𝑡,𝑗 = 𝑟𝑚𝑎𝑥𝑗
+ 𝛽𝑗𝑁𝑡,𝑗 + 𝛾𝑡,𝑗 + 𝜀𝑡,𝑗, [6] 
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temporal variation in β,  

 𝑟𝑡,𝑗 = 𝑟𝑚𝑎𝑥𝑗
+ 𝛽𝛿𝑡,𝑗𝑁𝑡,𝑗 + 𝜀𝑡,𝑗, [7] 

and temporal variation in both rmax and β,  

 𝑟𝑡,𝑗 = 𝑟𝑚𝑎𝑥𝑗
+ 𝛽𝛿𝑡,𝑗𝑁𝑡,𝑗 + 𝛾𝑡,𝑗 + 𝜀𝑡,𝑗, [8] 

where 𝑁𝑡,𝑗 was the observed population abundance of herd j in each year t. and 𝜀𝑡,𝑗 was 

modeled as 𝜀𝑡,𝑗~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,100). I fit each growth model to each time series while 

modeling all other time series with no temporal variation in rmax or β. The model with the 

lowest mean deviance by more than 2 was selected for each herd to determine if models 

with more parameters provided a better fit. (Peterson and Barajas 2018). 

Environmental and Demographic Stochasticity 

I estimated fluctuation in abundance which can be attributed to demographic and 

environmental stochasticity for herds with different K. The stochasticity model was 

outlined by Ferguson and Ponciano (2015); 

 𝑉𝑎𝑟𝑗(𝑁𝑡−1,𝑗) = 𝑉𝑎𝑟𝑑𝑒𝑚𝑗
(𝑁𝑡−1,𝑗) + 𝑉𝑎𝑟𝑟𝑚𝑎𝑥𝑗

(𝑁𝑡−1,𝑗) + 𝑉𝑎𝑟β𝑗(𝑁𝑡−1,𝑗), [9] 

where 𝑉𝑎𝑟𝑗(𝑁𝑡−1,𝑗) was total population stochasticity, 𝑉𝑎𝑟𝑑𝑒𝑚𝑗
(𝑁𝑡−1,𝑗) was population 

abundance fluctuation due to demographic stochasticity, 𝑉𝑎𝑟𝑟𝑚𝑎𝑥𝑗
(𝑁𝑡−1,𝑗) was 

population abundance fluctuation due to changes in 𝑟𝑚𝑎𝑥 (i.e., density-independent 

environmental stochasticity), and 𝑉𝑎𝑟β𝑗(𝑁𝑡−1, 𝑗) was population abundance fluctuation 

due to changes in β. The model assumes density-dependent survival following the Ricker 

model. Demographic stochasticity was calculated as follows; 

 𝑉𝑎𝑟𝑑𝑒𝑚𝑗
(𝑁𝑡−1,𝑗) = 𝛼𝑗𝑁𝑡−1,𝑗𝑒

−𝛽∆𝑗(𝑁𝑡−1,𝑗) (1 − 𝑒
−𝛽∆𝑗(𝑁𝑡−1,𝑗)) +

 𝜎𝑑𝑒𝑚𝑗

2 𝑁𝑡−1,𝑗𝑒
−2𝛽∆𝑗(𝑁𝑡−1,𝑗), [10] 
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where 𝜎𝑑𝑒𝑚𝑗

2  was assumed to be equal to α (Ferguson and Ponciano 2015). 

Environmental stochasticity due to changes in rmax, or the additive stochasticity, was 

calculated as follows; 

 𝑉𝑎𝑟𝑟𝑚𝑎𝑥𝑗
(𝑁𝑡−1,𝑗) = 𝜎𝛽∆𝑗

2 𝛼𝑗
2𝑁𝑡−1,𝑗

2 𝑒
−2𝛽∆𝑗(𝑁𝑡−1,𝑗), [11] 

and environmental stochasticity due to changes in β, or the multiplicative stochasticity, 

was calculated as follows; 

 𝑉𝑎𝑟𝛽𝑗(𝑁𝑡−1, 𝑗) = 𝜎𝛽∆𝑗
2 𝛼2𝑁𝑡−1,𝑗

2 (𝑁𝑡−1,𝑗)
2𝑒

−2𝛽∆𝑗(𝑁𝑡−1,𝑗). [12] 

Population growth parameters from the selected Ricker growth model for each herd were 

used in these equations to estimate each of these sources of stochasticity for each herd 

across abundances ranging from five to above K. The relative total population 

stochasticity was expressed as the total population stochasticity at K for each herd 

divided by that herd’s K.  

Results 

The growth models estimated the mean rmax among herds to be 0.231 (95% 

credible interval = [0.151, 0.345]), and the standard deviation of rmax among herds to be 

0.045 (0.002–0.223). The growth model with temporal variation in both rmax and β was 

selected for the five herds in RNSP (Table 1, Fig. 3). The growth model with temporal 

variation only in β was selected for the Point Reyes herd. Using the selected growth 

model for the ALE Reserve herd, I did not detect density dependence, so K could not be 

estimated (Table 2). Consequently, I omitted this herd from subsequent analyses.  

Density dependence was strongest in herds with smaller K and weakest in herds 

with larger K, and this relationship was non-linear (Fig. 4). Density dependence appeared 

to be much stronger in herds whose K < 100. Similarly, temporal variance in β was 
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greater in herds with smaller K than larger K, and this relationship was also non-linear 

(Fig. 5). Within herds, it appeared that a constant change in K affected temporal variation 

in density dependence in herds with smaller K more than herds with larger K. A positive, 

non-linear correlation was detected between β and the relative total stochasticity (Fig. 6), 

such that herds with smaller K experienced less fluctuation in abundances than herds with 

larger K. For the relative influence of demographic, density-dependent, and density-

independent sources of stochasticity, see Appendix (Fig. A2). 

Discussion  

Variation in K and β is an important consideration in population persistence, 

especially in the face of current environmental change (May 1973, Ahrestani et al. 2016). 

As I had expected, I found variation in K among herds within a small part of the species’ 

geographic range, but I also unexpectedly found variation in K within herds. As such, in 

order to fully understand population dynamics and regulation, parameters that can 

accommodate stochastic environments should be incorporated into models (May 1973, 

Fowler and Pease 2010). Assuming constant K is probably unrealistic even when 

environments seem to be mild and stable.  

Environmental heterogeneity and variation in K among populations is expected 

across a species’ geographic range, or from the interior to the boundary of the range 

(Sæther et al. 2008, Street et al. 2015). My findings, which were from herds with clear 

spatial boundaries, suggest that similar variation in K among herds can manifest within a 

small part of the species geographic range. Within RNSP, forage supply varies both 

across herd home ranges and temporally, which can affect K (Weckerly 2017). Also, 

social dynamics between herds can impact elk movement and K. For example, meadow 
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partitioning in RNSP is presumably enforced by social fences between herds, or when elk 

avoid interacting with unfamiliar individuals from other herds. This meadow partitioning 

can dictate the amount of forage available to each herd and, consequently, K and β 

(Weckerly 2017). 

Herds with smaller K had stronger density dependence, and this relationship was 

non-linear. Stronger density dependence in herds with smaller K then resulted in less 

stochastic fluctuations in abundance than herds with larger K. Strong direct (i.e., not 

lagged) density dependence was also shown to increase stability in several elk 

populations in the northern hemisphere (Ahrestani et al. 2016). Probably due to the non-

linear relationship between K and β, herds with smaller K also had higher temporal 

variation in β. In other words, for the same change in K over time, β will change more in 

a herd with smaller K than one with larger K.  

These findings have implications for population and land management. For 

example, increasing available resources, such as forage, for a herd will increase its K and 

decrease β, such that the population may experience more fluctuations, which reduces 

population stability. Changes in resource availability can occur by several means. For 

example, temporal variation in K likely occurred in the Davison herd when the land area 

available to the herd for foraging increased when cattle were removed from a meadow 

(Weckerly 2017, McGuire 2018). In contrast, the area available for foraging to the Point 

Reyes herd could not change because of a fence that restricted the herd to a limited area. 

Nonetheless, annual precipitation in Point Reyes was highly variable and was correlated 

with calf recruitment (Cobb 2010). Thus, variation in precipitation likely resulted in 

variation in the amount of forage available and, therefore, temporal variation in K. 
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Increasing available resources or introducing a population to a new range may even lead 

to an irruption and overshoot of a herd’s food supply (Forsyth and Caley 2006, Ricca et 

al. 2014, Starns et al. 2014, Weckerly 2017). My results suggest that populations with 

smaller K are more vulnerable to destabilizing dynamics. This is because a constant 

change in K should affect β and temporal variation in β more dramatically in herds with 

smaller K.  

While K and β varied among herds, the standard deviation of rmax among herds 

was small, suggesting that herds of the same species may have similar rmax. This finding 

is further supported by the overlap in 95% credible intervals of the estimates of rmax for 

each herd. This may be influenced by the random effect parameterization, which can pull 

point estimates towards the mean. However, this result is also expected because herds of 

the same species, when not limited by forage, should have similar life history traits such 

as age of first reproduction, litter size, and frequency of reproduction (Weckerly 2017). 

On the other hand, rmax varied temporally within some herds, which was an unexpected 

result. Temporal variation in rmax was detected in RNSP herds, but not in the Point Reyes 

herd, and the amount of temporal variation in rmax did not appear to be related to K. The 

within-herd temporal variation in rmax in RNSP herds was surprising considering that this 

study area had a stable habitat composition and mild climate. Furthermore, density-

dependent climatic factors did not influence juvenile recruitment in the Davison herd 

(Starns et al. 2014, Weckerly 2017). While density-independent factors are often 

described as climatic factors (Bowyer et al. 2014), they can in fact be a number of abiotic 

factors (Ahrestani et al. 2016), and can even include movement of individuals into or out 

of a population. Weckerly (2017) describes temporal variation in rmax due to immigration 
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in the Davison herd. The Davison meadows were grazed by cattle and unavailable to elk 

until 1991. Elk began using these meadows in 1991 when the cattle were removed, and 

by 1996, when population surveys began, herd abundance was such that immigration 

must have occurred to explain the enormously high estimate of rmax during that period 

(Weckerly 2017). In 2016, a new pasture, which had also previously been grazed by 

cattle and unavailable to elk, became accessible to the Davison herd (McGuire 2018). 

With the increase in forage, the herd grew in abundance, and rmax in this time period is 

lower than in the 1990s. These two estimates of rmax represents temporal variation in rmax 

in the Davison herd due to elk movement. 

Temporal variation in rmax in the Point Reyes herd, on the other hand, was not 

detected. This may be because this herd also experienced a relatively stable and mild 

climate, and the elk were restricted on the peninsula by a well-maintained fence. 

Consequently, individual immigration and emigration was unlikely in this herd (Howell 

et al. 2002, Cobb 2010). Therefore, neither climatic factors nor elk movement generated 

temporal variation in rmax in this herd. These findings can be used in population 

conservation and management. Populations which are restricted by a fence or are 

otherwise isolated from other conspecific populations should be expected to have less 

temporal variation in rmax because of no immigration or emigration occuring. 

Furthermore, estimating rmax may be a method to determine whether net immigration into 

a population is occurring by comparing the rmax estimate for the population in question to 

the expected rmax for the species.  

My interpretations depend on reliable estimates of population growth parameters. 

Estimates from the Ricker growth model appeared to be credible for the species and 
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preliminary analyses showed that not accounting for observer error in the Ricker growth 

models did not bias the parameter estimates by comparing them to a Ricker state-space 

model (see Appendix). Time series of population survey data almost always include 

observer error, which can bias inferences of population dynamics (de Valpine and 

Hastings 2002, Clark and Bjørnstad 2004, Delean et al. 2013). Bayesian state-space 

models are frequently used to separate observer error from process variance (de Valpine 

2003, Clark and Bjørnstad 2004, Sæther et al. 2008, Iijima and Ueno 2016, Robinson et 

al. 2017). Nonetheless, the similarity in parameter estimates between my state-space 

models and growth models indicate parameter estimates from the growth models might 

have little bias and that there was little to moderate observer error in the time series I 

analyzed. The small amount of observer error in these time series might be the result of 

several features in the time series. First, data were collected by ground surveys, which 

tend to have less observer error for ungulate populations than other survey methods 

(Ahrestani et al. 2013). Second, the length of time series of ungulate population survey 

data has been found to be negatively correlated with observer error (Ahrestani et al. 

2013), and the time series used in my analyses were all relatively long (17 to 23 years). 

Third, data from these time series were collected by experienced and trained observers 

over decades, which can reduce observer error (Ahrestani et al. 2013). In the RNSP 

herds, while there were multiple observers throughout the years, one observer was 

present for all population survey data collected (Weckerly 2017), which may result in 

lower observer error than data collected by multiple observers with little training (Dennis 

et al. 2006). Additionally, in four of the five RNSP herds, the elk were seemingly 

habituated to human presence, which decreased the distance between observers and elk, 
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and increased the ease of detecting elk (Weckerly 2017). Finally, the Point Reyes herd is 

a geographically closed population (Howell et al. 2002, Cobb 2010), and counts of 

geographically closed populations tend to be more precise and accurate (Ahrestani et al. 

2013). 

Variation in K and the consequences to population dynamics have usually been 

examined among populations (Sæther et al. 2008) or within populations (Fowler and 

Pease 2010). I simultaneously examined variation in K both within and among 

populations. As such, my findings add a dimension to understanding population 

regulation. Some of my findings reinforce what has been shown; variation in K among 

populations affected β and fluctuation in abundances around K. The added dimension of 

temporal variation in K within populations revealed that the amount of variability in β 

within a population is also affected by median K. Populations with small K can have 

greater variation in β, which has consequences for population stability. Furthermore, 

population regulation is often understood in terms of the rate of return to the equilibrium 

abundance (Lande et al. 2002), which is calculated using β. However, temporal variation 

in rmax might complicate this relationship between K, β, and regulation. Therefore, 

considering temporal variation in population growth parameters is necessary to 

understand population regulation.



 
 

 

1
8
 

Table 1. Mean deviance for each of the four possible Ricker growth models for each herd; no temporal variation in the maximum 

intrinsic population growth rate (rmax) or strength of density dependence (β), temporal variation in rmax, temporal variation in β, and 

temporal variation in both rmax and β. The asterisks denote the model with the lowest mean deviance by more than 2; this model was 

selected.  

Herd No temporal variation rmax temporal variation β temporal variation Both temporal variation 

Gold Bluffs -139.56 -167.13 -155.15 -175.23* 

Davison -139.56 -165.47 -149.14 -172.50* 

Levee Soc -139.56 -166.68 -155.80 -161.44* 

Stone Lagoon -139.56 -161.37 -158.96 -170.60* 

Bald Hills -139.56 -167.40 -152.88 -175.84* 

Point Reyes -139.56 -165.03 -186.04* -181.80 

ALE Reserve -139.56 -160.40* -139.67 -160.73 
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Table 2. Population growth parameter estimates by the selected Ricker growth model for each herd; median and 95% credible 

intervals. The maximum intrinsic population growth rate is rmax and strength of density dependence is β. The asterisks denote 95% 

credible intervals that overlap 0, i.e., β and K could not be estimated.  

Herd rmax 
rmax temporal 

variation 
β 

β temporal 

variation 
K 

Gold Bluffs 
0.235 

[0.114, 0.418] 

0.128 

[0.006, 0.282] 

-0.01110 

[-0.01934, -0.00407] 

0.00483 

[0.00026, 0.01198] 

22 

[14, 39] 

Davison 
0.219 

[0.054, 0.349] 

0.120 

[0.009, 0.235] 

-0.00538 

[-0.00943, -0.00083] 

0.00161 

[0.00008, 0.00562] 

40 

[24, 82] 

Levee Soc 
0.237 

[0.114, 0.459] 

0.082 

[0.003, 0.171] 

-0.00479 

[-0.00933, -0.00188] 

0.00108 

[0.00003, 0.00328] 

50 

[38, 74] 

Stone Lagoon 
0.246 

[0.142, 0.494] 

0.059 

[0.003, 0.138] 

-0.00474 

[-0.00895, -0.00262] 

0.00096 

[0.00005, 0.00234] 

53 

[42, 67] 

Bald Hills 
0.235 

[0.144, 0.354] 

0.072 

[0.004, 0.163] 

-0.00089 

[-0.00147, -0.00038] 

0.00035 

[0.00002, 0.00076] 

268 

[198, 453] 

Point Reyes 
0.221 

[0.162, 0.305] 
- 

-0.00058 

[-0.00097, 0.00021] 

0.00047 

[0.00004, 0.00078] 

386 

[262, 883] 

ALE Reserve 
0.212 

[0.121, 0.290] 

0.088 

[0.005, 0.173] 

-0.00007* 

[-0.00043, 0.00029] 
- 

942* 

[-17181, 18106] 
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Figure 1. Map of study areas; Arid Lands Ecology (ALE) Reserve, southern part of 

Redwood National and State Parks, and Tomales Point Elk Reserve in Point Reyes 

National Seashore.   
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Figure 2. Diagram of parameters and priors for the Ricker growth models; with no 

temporal variation in either maximum intrinsic population growth rate (rmax) or strength 

of density dependence (β) (A), and with temporal variation in both rmax and strength of 

density dependence (B).  
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Figure 3. The fitted Ricker growth models for six elk herds; Gold Bluff (A), Davison (B), Levee Soc (C), Stone Lagoon (D), Bald 

Hills (E), and Point Reyes (F). The grey shaded areas represent temporal variation in the selected for each herd; in maximum intrinsic 

population growth rate (rmax) and the strength of density dependence (β) (A-E) or only in β (F).  The x-intercept represents the carrying 

capacity (K).
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Figure 4. Strength of density dependence (β) and carrying capacity (K) for six elk herds. Letter designations are the same as in Figure 

1. A smaller value of β indicates stronger density dependence. The estimated regression was 𝑑𝑒𝑛𝑠𝑖𝑡𝑦⁡𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 =
−0.2417

𝐾
+

0.00008 (R2 = 0.9938, P < 0.001). Error bars represent 95% credible intervals for K and β.  
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Figure 5. Temporal variation in strength of density dependence (β) and carrying capacity (K) for six elk herds. Letter designations are 

the same as in Figure 1. The estimated regression was 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙⁡𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛⁡𝑖𝑛⁡𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ⁡𝑜𝑓⁡𝑑𝑒𝑛𝑠𝑖𝑡𝑦⁡𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 =
0.099

𝐾
−

0.00036 (R2 = 0.8732, P = 0.006). Error bars represent 95% credible intervals for K and temporal variation in β.  
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Figure 6. Strength of density dependence (β) and relative total stochasticity for six elk herds. Letter designations are the same as in 

Figure 1. A value for β further from zero indicates stronger density dependence. The estimated regression was 𝛽 =

−0.0293

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒⁡𝑡𝑜𝑡𝑎𝑙⁡𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
+ 0.0034 (R2 = 0.8764, P = 0.006). Error bars represent 95% credible intervals for β. My calculation of the 

relative total variance did not include an estimate of variance.   
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APPENDIX SECTION 

State-Space Model Methods 

Since the Ricker growth models described in this paper do not account for 

observer error, I used hierarchical models in a state-space formulation to distinguish 

observer error (i.e., measurement and sampling errors) from process variance in herd 

counts (de Valpine and Hastings 2002, de Valpine 2003, Clark and Bjørnstad 2004). I 

then compared the results of the growth models with the state-space model to verify that 

observer error was not biasing my results. I modeled observer error using a Poisson 

distribution such that 𝑁𝑜𝑖𝑗
~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑒𝑖𝑗

), where 𝑁𝑜𝑖𝑗
 is the count in year i from the 

survey of herd j and 𝑁𝑒𝑖𝑗
 is the estimated true abundance from year i of herd j. I selected 

the Poisson distribution since larger herds tend to increase the probability of double-

counting individuals or missing individuals that were obscured by other animals, 

vegetation, or terrain (Weckerly 2017).  

I fit the Ricker model using Bayesian statistics and Markov Chain Monte Carlo 

algorithms with three chains, 150,000 iterations, a burn-in period of 75,000, an adaptation 

period of 75,000, and no thinning. Convergence among chains was determined by 

whether 𝑅̂ < 1.01 and visual checks of trace and density plots (Kery 2010). I used 

uninformative priors for rmax and K. I modeled rmax for each herd as a random effect 

following the normal distribution 𝑟𝑚𝑎𝑥~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑟𝑚𝑎𝑥
, 𝜎𝑟𝑚𝑎𝑥

), where 

𝜇𝑟𝑚𝑎𝑥
~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.001) and 𝜎𝑟𝑚𝑎𝑥

~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 100). I modeled K using a gamma 

distribution (shape = 0.01, rate = 0.01). When estimating the models, I drew the 

population abundance in the first year from a Poisson distribution with stochasticity 

included, such that 𝑁𝑒1𝑗
~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) and 𝜆 = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑁𝑜1𝑗

− 5,𝑁𝑜1𝑗
+ 5)⁡ where 
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𝑁𝑒1𝑗
 was the estimated abundance in the first year of herd j and 𝑁𝑜1𝑗

 was the count for the 

first year of herd j. If 𝑁𝑜1𝑗
− 5 < 1, it was rounded to 1. I used this initial abundance of 

each herd to estimate abundance in year i (𝑁𝑒𝑖𝑗
) for the next 𝑛𝑗  years, where 𝑛𝑗  is the 

number of years of population survey data for herd j, using the Ricker model.  

State-Space Model Results 

The state-space model estimated the mean rmax among herds to be 0.228 (95% 

credible interval = [0.094, 0.332]), and the standard deviation of rmax among herds to be 

0.068 (95% CI = [0.003, 0.279]). For parameter estimates, see Table A1. 

The 95% credible intervals of parameters estimated by the Ricker growth models 

(Table 1) and the Ricker state-space model (Appendix, Table A1) overlapped. This 

finding indicates that the results of the growth models were similar to the results of fitting 

the state-space models, which distinguished observer error from process variance. 

Furthermore, the 95% credible intervals of each of the abundance estimates of the Ricker 

state-space model overlapped the abundance survey data, except one year for the Bald 

Hills herd and two years in the Point Reyes (Appendix, Fig. A1). Thus, because the state-

space model was in agreement with the data and the growth models were in agreement 

with the state-space model, the growth model estimates were likely to be little biased by 

observer error.  

 

  



 
 

28 

 

Table A1. Estimates (median) and 95% credible intervals of the maximum intrinsic 

population growth rate (rmax) and carrying capacity (K) by the state-space model for each 

herd.  

Herd rmax K 

Gold Bluffs 
0.230 

[0.015, 0.425] 

22 

[11, 40] 

Davison 
0.194 

[-0.025, 0.319] 

44 

[13, 113] 

Levee Soc 
0.223 

[-0.007, 0.427] 

51 

[24, 94] 

Stone Lagoon 
0.242 

[0.028, 0.513] 

53 

[33, 70] 

Bald Hills 
0.205 

[0.122, 0.273] 

266 

[229, 336] 

Point Reyes 
0.245 

[0.176, 0.320] 

367 

[318, 447] 

ALE Reserve 
0.257 

[0.209, 0.311] 

991 

[747, 1401] 
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Figure A1. Population survey data (stars) and estimates of abundance from the Ricker 

model (circles) for seven elk herds; Gold Bluff (A), Davison (B), Levee Soc (C), Stone 

Lagoon (D), Bald Hills (E), Point Reyes (F), and ALE Reserve (G). Error bars represent 

the 95% credible intervals for each abundance estimate.
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ENVIRONMENTAL AND DEMOGRAPHIC STOCHASTICITY RESULTS 

 

Figure A2. Predicted demographic variation (𝑣𝑎𝑟𝑑𝑒𝑚) (solid), variation due to changes in strength of density dependence (𝑣𝑎𝑟𝛽) 

(dashed), and variation due to changes in rmax (𝑑𝑒𝑚𝑟𝑚𝑎𝑥
) (dotted) for six elk herds. Letter designations are the same as in Figure 1. 

The vertical line represents the estimated carrying capacity (K) of each herd.   
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