HOMOGENIZATION OF LINEARIZED ELASTICITY SYSTEMS
WITH TRACTION CONDITION IN PERFORATED DOMAINS

MOHAMED EL HAJJI

Abstract. In this paper, we study the asymptotic behavior of the linearized
elasticity system with nonhomogeneous traction condition in perforated
domains. To do that, we use the H^0_ε-convergence introduced by M. El Hajji in
[4] which generalizes - in the case of the linearized elasticity system - the notion
of H^0-convergence introduced by M. Briane, A. Damlamian and P. Donato in
[1]. We give then some examples to illustrate this result.

1. Introduction

The notion of H^0_ε-convergence was introduced by M. El Hajji in [4] for the
study of the asymptotic behavior of the linearized elasticity system with homoge-
neous traction condition in perforated domains. It translates the notion of H^0-
convergence introduced by M. Briane, A. Damlamian and P. Donato in [1] for the
study of the diffusion system problem with homogeneous Neumann condition in
perforated domains which generalizes in the case of perforated domains the H-
convergence introduced by F. Murat and L. Tartar in [13], and the G-convergence
for the symmetric operator introduced by S. Spagnolo in [14].

This paper is devoted to giving an application of the H^0_ε-convergence to study
the asymptotic behavior of the linearized elasticity system with nonhomogeneous
traction condition in perforated domains by using the convergence of a distribution
defined from data on the boundaries of the holes. This result is the analogue for the
linearized elasticity of Theorem 1 given by P. Donato and M. El Hajji in [3] as an
application of the H^0_ε-convergence to the study of the nonhomogeneous Neumann
problem.

In Section 2, we recall the definition of H^0_ε-convergence introducing a definition
of e-admissible set similar to that given by M. Briane, A. Damlamian and P. Donato
convergence. In Section 3, we introduce the linearized elasticity problem and we
give the main result. We establish then the proof making use of some preliminary
results. In Section 4, we give some applications of this result - first for the case
of periodic perforated domains by holes of size $r_\varepsilon = \varepsilon$ where we use the results
given by F. Lene in [11] and D. Cioranescu and P. Donato in [2]. Then we apply
the results of section 3 and those of C. Georgelin in [8] and S. Kaizu in [10] when

1991 Mathematics Subject Classification. 73C02, 35B27, 37B27, 35J55, 35J67.
Key words and phrases. Homogenization, Elasticity, H^0_ε-convergence, Double periodicity.
©1999 Southwest Texas State University and University of North Texas.
r_\varepsilon \ll \varepsilon$. Finally, we apply section 3 to the case of a perforated domain with double periodicity (introduced by T. Levy in [12]) using the results given by M. El Hajji in [9] and P. Donato and M. El Hajji in [3].

2. Recall of H^0_ε-convergence

In this section, we recall the definition of H^0_ε-convergence introduced in [4]. First let us introduce the following notations.

Let Ω be a bounded open subset of \mathbb{R}^N, ε the general term of a positive sequence, and c different positive constants independent of ε. We introduce the following sets:

- $\mathcal{M}_s = \{\text{symmetric linear operators } l : \mathbb{R}^N \to \mathbb{R}^{N^2}\}$,
- $\mathcal{L}(\mathcal{M}_s) = \{\text{linear operators } p : \mathcal{M}_s \to \mathcal{M}_s\}$,
- $\mathcal{L}_s(\mathcal{M}_s) = \{\text{symmetric operators } p \in \mathcal{L}(\mathcal{M}_s)\}$,
- $\mathcal{M}_\varepsilon(\alpha, \beta; \Omega) = \{A \in L^\infty(\Omega, \mathcal{L}_s(\mathcal{M}_s)), A(x) \xi \cdot \xi \geq \alpha |\xi|^2, A^{-1}(x) \xi \cdot \xi \geq \beta |\xi|^2, \forall \xi \in \mathcal{L}_s(\mathcal{M}_s), x \ a.e. \in \Omega\}$.

In what follows, we use the Einstein summation convention, that is, we sum over repeated indices. We denote by $e(\cdot)$ the symmetric tensor of elasticity defined by

$$e(u) = (e_{ij}(u))_{ij} \quad \text{where} \quad e_{ij} = \frac{1}{2} \left\{ \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right\}.$$

We denote by S_ε a compact subset of Ω. We denote the perforated domain by $\Omega_\varepsilon = \Omega \setminus S_\varepsilon$. We denote by χ_ε the characteristic function of Ω_ε and we set

$$V_\varepsilon = \left\{ v \in [H^1(\Omega_\varepsilon)]^N, \ v|_{\partial \Omega} = 0 \right\},$$

which equipped with the H^1-norm forms a Hilbert space.

Definition 1 (e-admissible set). The set S_ε is said to be admissible (in Ω) for the linearized elasticity if

every function in $L^\infty(\Omega)$ weak * of χ_ε is positive almost everywhere in Ω, \quad (2)

and for each ε there is an extension operator P_ε from V_ε to $H^1_0(\Omega)^N$ and there exists a real positive C such that

1) $P_\varepsilon \in \mathcal{L}(V_\varepsilon, [H^1_0(\Omega)]^N)$,

2) $(P_\varepsilon v)|_{\partial \Omega} = v, \ \forall v \in V_\varepsilon$, \quad (3)

3) $\|e(P_\varepsilon v)\|_{(L^2(\Omega)^N)^N} \leq C\|e(v)\|_{(L^2(\Omega)^N)^N}, \ \forall v \in V_\varepsilon$.

Remark 1. 1) As an example of an e-admissible set, one can consider the case of a periodic function on a perforated domain by holes of size ε or r_ε (see F. Leme [11] and C. Georgelin [8]). One can consider also a perforated domain with double periodicity introduced by T. Levy in [12] (see also M. El Hajji [9]).

2) Observe that if S_ε is admissible in the sense of definition 1, then we have a Korn inequality in Ω_ε independent of ε, i.e.,

$$\|\nabla v\|_{(L^2(\Omega_\varepsilon))^N} \leq C(\Omega)\|e(v)\|_{(L^2(\Omega))^N}, \ \forall v \in V_\varepsilon.$$

Indeed, from the Korn inequality in Ω and (3 iii) one has

$$\|\nabla v\|_{(L^2(\Omega_\varepsilon))^N} \leq \|\nabla (P_\varepsilon v)\|_{(L^2(\Omega))^N},$$

$$\leq C(\Omega)\|e(v)\|_{(L^2(\Omega))^N}, \ \forall v \in V_\varepsilon.$$
To give the definition of H^0_e-convergence, we introduce the adjoint operator P^*_e of P_e defined from $[H^{-1}(\Omega)]^N$ to V'_e by
\[
\langle P^*_e f, v \rangle_{V'_e, V_e} = \langle f, P_e v \rangle_{[H^{-1}(\Omega)]^N, [H^1_0(\Omega)]^N}
\]

\[
= \sum_{i=1}^{N} \langle f_i, (P_e v)_i \rangle_{H^{-1}(\Omega), H^1_0(\Omega)}, \quad \forall v \in V'_e.
\]

Definition 2. Let $A^e \in M_e(\alpha, \beta; \Omega)$ and S_e be e-admissible in Ω. One says that the pair (A^e, S_e) H^0_e-converges to A^0 (in the sense of the linearized elasticity) and we denote this $(A^e, S_e) \rightarrow H^0_e A^0$ if for each function f in $[H^{-1}(\Omega)]^N$, the solution u^e of
\[
- \text{div}(A^e e(u^e)) = P^*_e f \quad \text{in } \Omega_e,
\]
\[
(A^e(x)e(u^e)) \cdot n = 0 \quad \text{on } \partial S_e,
\]
\[
u^e = 0 \quad \text{on } \partial \Omega,
\]
satisfies
\[
P_e u^e \rightharpoonup u \quad \text{weakly in } [H^1_0(\Omega)]^N,
\]
\[
A^e e(u^e) \rightharpoonup A^0 e(u) \quad \text{weakly in } (L^2(\Omega))^N^2,
\]
where u is the solution of the problem
\[
- \text{div}(A^0 e(u)) = f \quad \text{in } \Omega,
\]
\[
u = 0 \quad \text{on } \partial \Omega,
\]
and \bar{v} is the extension by zero to Ω of the function v defined in Ω_e.

Remark 2. 1) If S_e is empty, the H^0_e-convergence reduces to the notion of H-convergence in elasticity introduced by G.A. Francfort and F. Murat in [7].

2) The system (4) is equivalent to the system
\[
- \frac{\partial}{\partial y_j} \sigma^e_{ij}(u^e) = (P^*_e f)_i \quad \text{in } \Omega_e
\]
\[
\sigma^e_{ij}(u^e) \cdot n_j = 0 \quad \text{on } \partial S_e,
\]
\[
u^e = 0 \quad \text{on } \partial \Omega,
\]
where $\sigma^e_{ij}(u^e) = A^e_{ijkh} e_{kh}(u^e)$, $A^e = (A^e_{ijkh})$, and whose variational formulation is written as: Find $u^e \in V_e$ such that
\[
\int_{\Omega_e} \sigma^e_{ij}(u^e) e_{ij}(v) dx = \langle P^*_e f, v \rangle_{V'_e, V_e}.
\]
We can rewrite this problem in the form: Find $u^e \in V_e$ such that
\[
\int_{\Omega_e} A^e e(u^e) e(v) dx = \langle P^*_e f, v \rangle_{V'_e, V_e}.
\]
Some examples will be given in section 4, when we apply the main result of this paper.

3. The main result

In this section, we establish a property of the H^0_e-convergence, and apply it to the study of the asymptotic behavior of the linearized elasticity system with non-homogeneous traction condition. This result is analogous to the linearized elasticity of Theorem 1 in [9] given as an application of the H^0_e-convergence to the study of
Then we consider the linearized elasticity system

\[-\text{div} (A^{\varepsilon} e(u^{\varepsilon})) = 0 \quad \text{in} \; \Omega, \]

\[(A^{\varepsilon}(x)e(u^{\varepsilon})) \cdot n = g^{\varepsilon} \quad \text{on} \; \partial \Omega, \]

\[u^{\varepsilon} = 0 \quad \text{on} \; \partial \Omega, \]

where

\[g^{\varepsilon} \in [H^{-1/2}(\partial \Omega)]^N. \]

It is well known that (8) has a unique solution. Our aim is to study the asymptotic behavior of the solution \(u^{\varepsilon} \) as \(\varepsilon \) approaches zero. To do that, we introduce a vectorial distribution \(\nu_{g}^{\varepsilon} \) defined in \(\Omega \) by

\[\langle \nu_{g}^{\varepsilon}, \varphi \rangle_{[H^{-1}(\Omega)]^N, [H_0^1(\Omega)]^N} = \langle g^{\varepsilon}, \varphi \rangle_{[H^{-1/2}(\partial \Omega)]^N, [H^{1/2}(\partial \Omega)]^N}, \quad \forall \varphi \in [H_0^1(\Omega)]^N. \]

It is easy to check that this defines \(\nu_{g}^{\varepsilon} \) as an element of \([H^{-1}(\Omega)]^N\), and if \(\nu_{g}^{\varepsilon} \in [L^2(\Omega)]^N \), we deduce from the Riesz Theorem that \(\nu_{g}^{\varepsilon} \) is a measure. The following theorem shows that the convergence of \(u^{\varepsilon} \) can be deduced from the \(H_{v}^{0} \)-convergence of \((A^{\varepsilon}, S_{\varepsilon}) \) and the convergence of \(\nu_{g}^{\varepsilon} \) in \([H^{-1}(\Omega)]^N\).

Theorem 1. Let \(\{u^{\varepsilon}\} \) be the sequence of the solutions of (8). Suppose that (7) is satisfied and that

\[i) \quad (A^{\varepsilon}, S_{\varepsilon}) \rightharpoonup^{H_{0}^{0}} A^{0}, \]

\[ii) \; \text{there exists} \; \nu \in [H^{-1}(\Omega)]^N \; \text{such that} \; \nu_{g}^{\varepsilon} \rightharpoonup \nu \; \text{strongly in} \; [H^{-1}(\Omega)]^N. \]

Then

\[i) \quad P_{\varepsilon} u^{\varepsilon} \rightharpoonup u \; \text{weakly in} \; [H_{0}^{1}(\Omega)]^N, \]

\[ii) \quad A^{\varepsilon} e(u^{\varepsilon}) \rightharpoonup A^{0} e(u) \; \text{weakly in} \; (L^2(\Omega))^N, \]

where \(u \) is the solution of the problem

\[-\text{div} (A^{0} e(u)) = \nu \quad \text{in} \; \Omega, \]

\[u = 0 \quad \text{on} \; \partial \Omega. \]

Proof. Observe first, by using (3 ii) and (10), that

\[\langle g^{\varepsilon}, v \rangle_{[H^{-1/2}(\partial \Omega)]^N, [H^{1/2}(\partial \Omega)]^N} = \langle \nu_{g}^{\varepsilon}, P_{\varepsilon} v \rangle_{[H^{-1}(\Omega)]^N, [H_0^1(\Omega)]^N}, \quad \forall v \in V_{\varepsilon}. \]

Hence, problem (8) is equivalent to the problem

\[-\text{div} (A^{\varepsilon} e(u^{\varepsilon})) = P_{\varepsilon} \nu_{g}^{\varepsilon} \quad \text{in} \; \Omega, \]

\[(A^{\varepsilon}(x)e(u^{\varepsilon})) \cdot n = 0 \quad \text{on} \; \partial \Omega, \]

\[u^{\varepsilon} = 0 \quad \text{on} \; \partial \Omega, \]

since both of the two systems have the variational formulation: Find \(u^{\varepsilon} \in V_{\varepsilon} \) such that

\[\int_{\Omega} A^{\varepsilon} e(u^{\varepsilon})e(v)dx = \langle \nu_{g}^{\varepsilon}, P_{\varepsilon} v \rangle_{V_{\varepsilon}'}, V_{\varepsilon}, \quad \forall v \in V_{\varepsilon}. \]
Let us show that there exist c independent of ε such that
\[\| P_\varepsilon u^\varepsilon \|_{H^1_0(\Omega)}^N \leq c. \] (15)

By taking u^ε as a test function in the variational formulation of (14) one obtains
\[\int_{\Omega_\varepsilon} A^\varepsilon e(u^\varepsilon) e(v) dx = \langle \nu^\varepsilon_g, P_\varepsilon u^\varepsilon \rangle_{V_\varepsilon', V_\varepsilon}. \]

From (3 iii) and the fact that $A^\varepsilon \in M_c(\alpha, \beta, \Omega)$ one deduces that
\[\| e(P_\varepsilon u^\varepsilon) \|_{L^2(\Omega)}^N \leq C \int_{\Omega_\varepsilon} e(u^\varepsilon) e(u^\varepsilon) dx \]
\[\leq C \int_{\Omega_\varepsilon} A^\varepsilon e(u^\varepsilon) e(u^\varepsilon) dx \]
\[\leq c \| \nu^\varepsilon_g \|_{H^{-1}(\Omega)}^N \| e(P_\varepsilon u^\varepsilon) \|_{L^2(\Omega)}^N. \]

Hence (15) gives (11 ii). One may deduce (up to a subsequence) that
\[P_\varepsilon u^\varepsilon \rightharpoonup u^* \quad \text{weakly in } [H^1_0(\Omega)]^N. \] (16)

Consider now the solution v^ε of the problem
\[- \text{div} (A^\varepsilon e(v^\varepsilon)) = P_\varepsilon^* \nu \quad \text{in } \Omega_\varepsilon, \]
\[(A^\varepsilon(x)e(v^\varepsilon)) \cdot n = 0 \quad \text{on } \partial S_\varepsilon, \]
\[v^\varepsilon = 0 \quad \text{on } \partial \Omega. \] (17)

From (11 i), one deduces that
\[i) \quad P_\varepsilon v^\varepsilon \rightharpoonup v \quad \text{weakly in } [H^1_0(\Omega)]^N, \]
\[ii) \quad A^\varepsilon \e(v^\varepsilon) \rightharpoonup A^0 e(v) \quad \text{weakly in } (L^2(\Omega))^N, \] (18)

where v is the solution to (13).

On the other hand, $w^\varepsilon = u^\varepsilon - v^\varepsilon$ is the solution to
\[- \text{div} (A^\varepsilon e(w^\varepsilon)) = P_\varepsilon^* (\nu^\varepsilon_g - \nu) \quad \text{in } \Omega_\varepsilon, \]
\[(A^\varepsilon(x)e(w^\varepsilon)) \cdot n = 0 \quad \text{on } \partial S_\varepsilon, \]
\[w^\varepsilon = 0 \quad \text{on } \partial \Omega. \] (19)

By choosing w^ε as a test function in the variational formulation of (19) and (3) and the fact that $A^\varepsilon \in M_c(\alpha, \beta, \Omega)$, one has
\[\| (P_\varepsilon w^\varepsilon) \|_{L^2(\Omega)}^N \leq C \| e(w^\varepsilon) \|_{L^2(\Omega)}^N \]
\[\leq C \int_{\Omega_\varepsilon} A^\varepsilon e(w^\varepsilon) e(w^\varepsilon) dx \]
\[= c \| \nu^\varepsilon_g - \nu, P_\varepsilon w^\varepsilon \|_{H^{-1}(\Omega)}^N \| e(P_\varepsilon w^\varepsilon) \|_{H^1_0(\Omega)}^N. \]

Since $P_\varepsilon w^\varepsilon$ is bounded in $[H^1_0(\Omega)]^N$, one deduces from (12 ii) that
\[\langle \nu^\varepsilon_g - \nu, P_\varepsilon w^\varepsilon \rangle_{H^{-1}(\Omega)}^N \| e(P_\varepsilon w^\varepsilon) \|_{H^1_0(\Omega)}^N \to 0, \]
which implies that
\[P_\varepsilon w^\varepsilon \rightharpoonup 0 \quad \text{strongly in } [H^1_0(\Omega)]^N. \] (20)

This, with (18) proves that in (16) one has $u^* = u$.

Finally, one deduces from (20) and the fact that $A^\varepsilon \in M_c(\alpha, \beta, \Omega)$ that
\[\| A^\varepsilon e(w^\varepsilon) \|_{L^2(\Omega)}^N \leq c \| e(w^\varepsilon) \|_{L^2(\Omega)}^N \leq c \| e(P_\varepsilon w^\varepsilon) \|_{L^2(\Omega)}^N \to 0. \]
With the convergence (18 ii), it follows then that (12 ii) holds.

Remark 3. As in the case of Theorem 1 of [9], from the linearity of the equation and the definition of the H^0_e-convergence, the choice of an nonhomogeneous right-hand side of the equation (8) is not restrictive.

4. Some applications of the main result

The case of a periodic perforated domain. Let $Y = [0, l_1] \times \ldots \times [0, l_N]$ be the representative cell, S an open set of Y with smooth boundary ∂S such that $\overline{S} \subset Y$. Let r_ε be the general term of a positive sequence which converge to zero and satisfying $r_\varepsilon \leq \varepsilon$. One denote by $\tau(r_\varepsilon \overline{S})$ the set of all the translated of $r_\varepsilon \overline{S}$ of the form $(\varepsilon k_l + r_\varepsilon \overline{S})$, $k \in \mathbb{Z}^N, k_l = (k_l 1, \ldots, k_l N)$. It represents the holes in \mathbb{R}^N.

One suppose that the holes $\tau(r_\varepsilon \overline{S})$ do not intersect the boundary $\partial \Omega$. If S_ε design the holes contained in Ω, it follows that

S_ε is a finite union of the holes, i.e $S_\varepsilon = \cup_{k \in K} r_\varepsilon (k_l + \overline{S})$.

Set $\Omega_\varepsilon = \Omega \setminus \Sigma_\varepsilon$, by this construction, Ω_ε is a periodic perforated domain by holes of size r_ε (see Figure 1).

We propose to study the asymptotic behavior of the solution v_ε of the system

$$-\text{div} (A_\varepsilon e(v_\varepsilon)) = 0 \quad \text{in } \Omega_\varepsilon,$$

$$(A_\varepsilon(x)e(v_\varepsilon)) \cdot n = h_\varepsilon \quad \text{on } \partial S_\varepsilon,$$

$$v_\varepsilon = 0 \quad \text{on } \partial \Omega,$$

where

$$h_\varepsilon(x) = h(\frac{x}{\varepsilon}), \ h \in [L^2(\partial \Omega)]^N \quad \text{Y-periodic.}$$

We suppose that

$$\lim_{\varepsilon \to 0} \frac{\varepsilon^N}{r_\varepsilon} = 0,$$

and that $A_\varepsilon = (a_{ij,kh})$ satisfies

$$a_{ij,kh}(x) = a_{ij,kh}(\frac{x}{\varepsilon}), \ a_{ij,kh} \in M_c(\alpha, \beta; Y^*).$$

In this case of a periodic perforated domain, the homogenization of system (21) has been studied by F. Lene in [11] for the case $r_\varepsilon = \varepsilon$, and C. Georgelin in [8] for the case $r_\varepsilon \ll \varepsilon$. The results obtained allow us to deduce that

$$(A_\varepsilon, S_\varepsilon) \rightarrow H^0_e A^0,$$
where $A^0 = (a^0_{ijkh})$ is defined by
\[
A^0_{ijkh} = \frac{1}{|Y|} \int_{Y \setminus S} A_{ijkh}(\chi^{kh} - P^{kh})e_{ij}(\chi_{ij} - P^{ij}) dy,
\]
where P^{ij} is the vector all of whose components are equal to zero except the i^{th} one, i.e., $(P^{ij})_k = y_j \delta_{ki}$, and for all $k, h = 1, \ldots, N$, $\chi^{kh} \in [H^1(Y \setminus S)]^N$ Y-periodic, and is a solution to
\[
- \text{div}(Ae(\chi^{kh} - P^{kh})) = 0 \quad \text{in} \quad Y \setminus S,
\]
\[
(Ae(\chi^{kh} - P^{kh})) \cdot n = 0 \quad \text{on} \quad \partial S,
\]
if $r_\varepsilon = \varepsilon$ and
\[
A^0_{ijkh} = \frac{1}{|Y|} \int_{Y} a_{ijkh}e_{kh}(\chi^{kh} - P^{kh})e_{ij}(\chi_{ij} - P^{ij}) dy,
\]
where P^{ij} is the vector all of whose components are equal to zero except the i^{th} one which is equal to y_j, i.e., $(P^{ij})_k = y_j \delta_{ki}$, and for any $k, h = 1, \ldots, N$, $\chi^{kh} \in [H^1(Y)]^N$ Y-periodic is a solution to
\[
- \text{div}(Ae(\chi^{kh} - P^{kh})) = 0 \quad \text{in} \quad Y,
\]
if $r_\varepsilon \ll \varepsilon$.

On the other hand, from the results obtain by D. Cioranescu and P. Donato in [2] for the case $r_\varepsilon = \varepsilon$, and S. Kaizu in [10] for the case $r_\varepsilon \ll \varepsilon$, we can deduce the following lemma.

Lemma 1 ([2], [10]). Let ν_0^ε be defined by (10). We suppose that (23) is satisfied and that the reference hole S is star-shaped if $r_\varepsilon \ll \varepsilon$. Then
\[
\frac{\varepsilon^N}{r_\varepsilon^{N-1}} \nu_0^\varepsilon \rightharpoonup \nu \quad \text{in} \quad H^{-1}(\Omega) \quad \text{strongly},
\]
with
\[
\langle \nu, v \rangle_{H^{-1}(\Omega), H_0^1(\Omega)} = I_h \int_{\Omega} v \, dx \quad \forall v \in H_0^1(\Omega),
\]
and $I_h = \frac{1}{|S|} \int_{\partial S} h \, ds$.

 Consequently, we can apply Theorem 1 to $u^\varepsilon = \varepsilon^N v^\varepsilon / r_\varepsilon^{N-1}$ and $g^\varepsilon = \varepsilon^N h^\varepsilon / r_\varepsilon^{N-1}$ to obtain the following theorem.

Theorem 2. Let v^ε be a solution of (21). Suppose that (22) and (23) are satisfied and that S is star-shaped if $r_\varepsilon \ll \varepsilon$. Then there exists P_ε an extension operator satisfying (3) such that
\[
P_\varepsilon \left(\frac{\varepsilon^N}{r_\varepsilon^{N-1}} v^\varepsilon \right) \rightharpoonup v^0 \quad \text{weakly in} \quad [H_0^1(\Omega)]^N,
\]
\[
A^\varepsilon e\left(\frac{\varepsilon^N}{r_\varepsilon^{N-1}} v^\varepsilon \right) \rightharpoonup A^0 e(v^0) \quad \text{weakly in} \quad (L^2(\Omega))^2,
\]
where v^0 is the solution to
\[
- \text{div} \left(A^0 e(v^0) \right) = \nu \quad \text{in} \quad \Omega,
\]
\[
v^0 = 0 \quad \text{on} \quad \partial \Omega,
\]
with ν defined by (29).
4.1. The case of a perforated domain with double periodicity. We consider the perforated domain Ω_ε defined as $\Omega_\varepsilon = \Omega \setminus S_\varepsilon$, where S_ε is a set with a double periodicity defined below. We adopt here the geometrical framework introduced in [5] and [6].

Assume that Y and Z are two fixed reference cells, $Y =]0, y^0_o[\times\ldots\times]0, y^o_N[,$ $Z =]0, z^0_o[\times\ldots\times]0, z^o_N[.$ (31)

We set $y^0 = (y^0_1, \ldots, y^0_N), z^0 = (z^0_1, \ldots, z^0_N).$ (32)

Let $F \subset Y$ and $S \subset Z$ be two closed subsets with smooth boundaries and nonempty interiors.

Suppose that r_ε and ε are the general term of two positive sequences such that $r_\varepsilon < \varepsilon$ and

$$\lim_{\varepsilon \to 0} \frac{r_\varepsilon}{\varepsilon} = 0.$$ (33)

We assume that for each $\varepsilon > 0$ there exists a fine $K_\varepsilon \subset Z^N$, such that

$$\bigcup_{k \in K_\varepsilon} \frac{r_\varepsilon}{\varepsilon} (Z + k z^0) = Y,$$ (34)

and that

$$(\partial F) \cap (\bigcup_{k \in K_\varepsilon} \frac{r_\varepsilon}{\varepsilon} (S + k z^0)) = \emptyset.$$ This means that for any ε the sets Y and $Y \setminus F$ are exactly covered by a finite number of translated cells of $\frac{r_\varepsilon}{\varepsilon}Z$ and $\frac{r_\varepsilon}{\varepsilon}S$ respectively. Denote

$$S^\varepsilon_Y = (Y \setminus F) \cap (\bigcup_{k \in K_\varepsilon} \frac{r_\varepsilon}{\varepsilon} (S + k z^0))$$

and $Y_\varepsilon = Y \setminus S^\varepsilon_Y$. From (34) it follows that there exist a finite set $K'_\varepsilon \subset Z^N$ such that

$$S^\varepsilon_Y = \bigcup_{k \in K'_\varepsilon} \frac{r_\varepsilon}{\varepsilon} (S + k z^0).$$

Hence S^ε_Y is a subset of $Y \setminus F$ of closed sets ("inclusions") periodically distributed with periodicity $r_\varepsilon/\varepsilon$ and of the same size as the period (see Figure 2).

We also assume that for each $\varepsilon > 0$, there exists a finite set $H_\varepsilon \subset Z^N$ such that

$$\bigcup_{h \in Z^N} \varepsilon(S^\varepsilon_Y + hy^0) \cap \Omega = \bigcup_{h \in H_\varepsilon} \varepsilon(S^\varepsilon_Y + hy^0)$$

and we set

$$S_\varepsilon = \bigcup_{h \in H_\varepsilon} \varepsilon(S^\varepsilon_Y + hy^0).$$
\[\varepsilon Y_\varepsilon \quad r_\varepsilon (S + hy^0) \quad r_\varepsilon (Z + hy^0) \]

\[\varepsilon F \]

Figure 3. The perforated domain \(\Omega_\varepsilon \)

Hence, \(\forall \varepsilon > 0 \), \(\Omega \) and \(\Omega_\varepsilon \) are exactly covered by a finite number of translated cells of \(\varepsilon Y_\varepsilon \) and \(\varepsilon S_Y^\varepsilon \) respectively. Consequently, the structure of \(\Omega_\varepsilon \) presents a double periodicity (\(\varepsilon \) and \(r_\varepsilon \)). The zones in which the inclusions are concentrated are \(\varepsilon \)-periodic and of size \(\varepsilon \). The inclusions in each zone are \(r_\varepsilon \)-periodic and of size \(r_\varepsilon \) (see Figure 3).

Our aim is to apply Theorem 1 to this case of double periodicity with a matrix \(A^\varepsilon = (a^\varepsilon_{ijkh}) \) defined in (21) and satisfying

\[a^\varepsilon_{ijkh}(x) = a_{ijkh}(\frac{x}{\varepsilon}, \frac{x}{r_\varepsilon}) \]

\[i) \quad a_{ijkh} \quad Y \times Z \quad \text{is \(\varepsilon \)-periodic} \]

\[ii) \quad a_{ijkh} \in L^\infty(Z, C^0(Y)) \quad \text{or} \quad a_{ijkh} \in L^\infty(Y, C^0(Z)) \]

\[iii) \quad a_{ijkh} = a_{ijkh} = a_{ijkh} \]

\[iv) \quad \exists \alpha > 0 \quad \text{s.t.} \quad a_{ijkh}(y, z) e_{kh} e_{ij} \geq \alpha e_{ij} e_{ij}, \quad \text{a.e.} \quad (y, z) \in Y \times Z \]

for any symmetric tensor \(e_{ij} \), and \(h^\varepsilon \) is defined by

\[h_\varepsilon = (F^\varepsilon \circ Q^\varepsilon) h, \quad h_\varepsilon \in H^{-1/2}(\partial S^\varepsilon) \]

where \(h \) is \(Z \)-periodic, \(h \in H^{-1/2}(\partial S) \), and

\[\langle h, 1 \rangle_{H^{-1/2}(\partial S), H^{1/2}(\partial S)} \neq 0. \]

The operator \(Q^\varepsilon \in \mathcal{L}(H^{-1/2}(\partial S), H^{-1/2}(\partial S^\varepsilon)) \) is defined by

\[\langle Q^\varepsilon z, u \rangle_{H^{-1/2}(\partial S^\varepsilon), H^{1/2}(\partial S^\varepsilon)} = \sum_{k \in K_\varepsilon} \left(\frac{r_\varepsilon}{\varepsilon} \right)^{N-1} z, v \circ \sigma_{x}^{-1} H^{-1/2}(\partial S + k_\varepsilon), H^{1/2}(\partial S + k_\varepsilon), \]

and the operator \(F^\varepsilon \in \mathcal{L}(H^{-1/2}(\partial S^\varepsilon), H^{-1/2}(\partial S^\varepsilon)) \) is defined by

\[\langle F^\varepsilon u, \phi \rangle_{H^{-1/2}(\partial S^\varepsilon), H^{1/2}(\partial S^\varepsilon)} = \sum_{h \in H_{\varepsilon}} \langle h, \phi \circ \tau_{\varepsilon}^{-1} \rangle_{H^{-1/2}(\partial S^\varepsilon + h_\varepsilon), H^{1/2}(\partial S^\varepsilon + h_\varepsilon)}, \]

where \(\sigma_{\varepsilon} \) and \(\tau_{\varepsilon} \) are the homotheties

\[\sigma_{\varepsilon}: x \rightarrow \frac{x}{r_\varepsilon}, \quad \tau_{\varepsilon}: x \rightarrow \frac{x}{\varepsilon}. \]

From the result obtained in [9], we deduce that

\[(A^\varepsilon, S_\varepsilon) \rightharpoonup_{H^0} A^0, \]
where $A^0 = (a^0_{ijkh})$ is defined as follows: set
\[
d_{ijkh}(y, z) = \left(\chi_F(y) + \chi_{Y \setminus F}(y)\chi_{Z \setminus S}(z)\right) a_{ijkh}(y, z),
\]
and for $l, m = 1, \ldots, N$, let $R^m = (R^m_k)_{k=1}^N$ be the vector defined by
\[
R^m_k = z_m \delta_{kl}.
\]
We denote by $\chi^{lm} = \chi^{lm}(y, \cdot)$ the unique function in $[H^1(Z \setminus S)]^N$ Z-periodic which is a solution to
\[
-\frac{\partial}{\partial z_j} [d_{ijkh} e^z_{kh}(R^m - \chi^{lm})] = 0 \quad \text{in } Z \setminus S,
\]
\[
d_{ijkh} e^z_{kh}(R^m - \chi^{lm}) \cdot n_j = 0 \quad \text{on } \partial S.
\]
We set
\[
q_{ijkh} = \frac{1}{|Z|} \int_{Z \setminus S} d_{ijrs} e^z_{rs}(R^{kh} - \chi^{kh}) dz.
\]
Let $P^m = (P^m_k)_{k=1}^N$ be the vector defined by $P^m_k = y_m \delta_{kl}$, and let β^{lm} in $[H^1(F)]^N$ Y-periodic, which is a solution to
\[
-\frac{\partial}{\partial y_j} [q_{ijkh} e^y_{kh}(P^m - \beta^{lm})] = 0 \quad \text{in } F,
\]
\[
q_{ijkh} e^y_{kh}(P^m - \beta^{lm}) \cdot n_j = 0 \quad \text{on } \partial F \setminus \partial Y.
\]
We define the homogenization coefficients by
\[
a^0_{ijkh} = \frac{1}{|Y|} \int_Y q_{ijrs} e^y_{rs}(P^{kh} - \beta^{kh}) dy,
\]
where $y = (y_i)_{i=1}^N$ and $z = (z_j)_{j=1}^N$.

Observe that the coefficients (a^0_{ijkh}) are obtained by applying the homogenization process twice (see the classical methods of homogenization introduced by F. Murat and L. Tartar in [13] and S. Spagnolo in [14]). Indeed, first starting with the tensor (d_{ijkh}) and homogenizing with respect to Z, we obtain the tensor (q_{ijkh}). Then starting with (q_{ijkh}) and homogenizing with respect to Y, we obtain the tensor (a^0_{ijkh}).

On the other hand, using the results obtain by P. Donato and M. El Hajji in [4], we obtain

Lemma 2. Let ν^ε_k be defined by (10), suppose that $\langle h, 1 \rangle_{H^{-1/2}(\partial S), H^{1/2}(\partial S)} \neq 0$, and that (33) is satisfied. Then
\[
r^\varepsilon \nu^\varepsilon_k \rightarrow \nu \quad \text{strongly in } H^{-1}(\Omega),
\]
where ν is given by
\[
\langle \nu, \phi \rangle_{H^{-1}(\Omega), H^{1}_0(\Omega)} = \gamma I_h \int_\Omega \phi dx \quad \forall \phi \in H^1_0(\Omega),
\]
with
\[
\gamma = \left(\frac{|Y||Z|}{|Y - F|} - |S| \right)^{-1}, \quad I_h = \langle h, 1 \rangle_{H^{-1/2}(\partial S), H^{1/2}(\partial S)},
\]
and θ is defined by
\[
\theta = \frac{|F|}{|Y|} + \frac{|Y \setminus F|}{|Y|} \frac{|Z \setminus S|}{|Z|}.
\]
Hence, we can apply Theorem 1 to $u^\varepsilon = r^\varepsilon \nu^\varepsilon$ and obtain
Theorem 3. Let \(v^\varepsilon \) be the solution of (21). Then there exists \(P_\varepsilon \) an extension operator satisfying (3) such that
\[
P_\varepsilon (r_\varepsilon v^\varepsilon) \rightharpoonup u^0 \quad \text{weakly in } [H^1_0(\Omega)]^N,
\]
\[
A^\varepsilon e(r_\varepsilon v^\varepsilon) \rightharpoonup A^0 e(u^0) \quad \text{weakly in } (L^2(\Omega))^N^2,
\]
where \(v^0 \) is the solution of the problem
\[
-\text{div} \left(A^0 e(v^0) \right) = \nu \quad \text{in } \Omega,
\]
\[
v^0 = 0 \quad \text{on } \partial \Omega,
\]
where \(A^0 = (a^{0}_{ijkh}) \) is given by (43)-(45), and \(\nu \) defined by (46), (47).

Acknowledgments. It is a pleasure for the author to acknowledge his indebtedness to Patrizia Donato for her help and friendly suggestions throughout this work.

References

Mohamed El Hajji
Université de Rouen, UFR des Sciences
UPRES-A 60 85 (LABO DE MATH.)
76821 Mont Saint Aignan, France
E-mail address: Mohamed.Elhajji@univ-rouen.fr