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Pressure conditions for the local regularity of

solutions of the Navier–Stokes equations ∗

Mike O’Leary

Abstract

We obtain a relationship between the integrability of the pressure gra-
dient and the the integrability of the velocity for local solutions of the
Navier–Stokes equations with finite energy. In particular, we show that
if the pressure gradient is sufficiently integrable, then the corresponding
velocity is locally bounded and smooth in the spatial variables. The result
is proven by using De Giorgi type estimates in Lweakp spaces.

1 Introduction and statement of results

One of the most important unresolved questions in the theory of the Navier–
Stokes equations is the local behavior of solutions in three spatial dimensions,
in particular, questions of their local regularity. This problem was studied by
Serrin [9], who showed that if the velocity is sufficiently integrable, then it is
locally bounded and smooth in the spatial variables. Indeed, let Ω ⊂ RN be an
open set, let T > 0, and set ΩT = Ω × (0, T ). Suppose that v ∈ V 2loc(ΩT ) =
L2,loc(0, T ;W

1
2,loc(Ω)) ∩L∞,loc(0, T ;L2,loc(Ω)) is a weak solution of the Navier–

Stokes system

vt −∆v + (v · ∇)v +∇p = 0 ,

divv = 0 .
(1)

Serrin showed that if v ∈ Lq,r(ΩT ) = Lr(0, T ;Lq(Ω)) for some q, r satisfying

N

q
+
2

r
< 1 (2)

then v is locally bounded and smooth in the spatial variables. Kahane [3] later
showed that this also implies that the velocity is locally analytic in the spatial
variables. The case where the inequality in (2) is replaced by an equality was
studied by Takahashi, [10].
In a sequence of papers including [5, 6, 7, 8], Scheffer adopted a differ-

ent approach. Rather than finding conditions which guaranteed regularity, he
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constructed solutions to initial and initial boundary value problems that were
partially regular; that is the Hausdorff dimension in space and time of the set
of possible singularities could be estimated from above. Caffarelli, Kohn and
Nirenberg in [2] extended these techniques to show that if ΩT ⊂ R3 × R and
v is a local suitable weak solution of (1), then the one–dimensional Hausdorff
measure in space and time of the set of possible singularities is zero. A suitable
weak solution is a pair of functions v ∈ V 2loc(ΩT ) and p ∈ L5/4,loc(ΩT ) that
satisfy (1) and a generalized energy inequality [2, Equation 2.5].

Since this partial regularity result requires some regularity of the pressure,
a natural question is the relationship between the regularity of the pressure and
the regularity of the velocity. The purpose of this paper is to examine this
relationship and to prove the following results.

Theorem 1 Let (v, p) be a local weak solution of the Navier–Stokes equations
in a domain ΩT ⊂ R3×R, and suppose that v ∈ V 2loc(ΩT ) and ∇p ∈ Lµ,loc(ΩT ).
Then v ∈ Lq,loc(ΩT ) for any q that satisfies

q <
5

5/µ− 2
, (3)

where 1 < µ ≤ 5
3 . Furthermore, if µ >

5
3 , then v is locally bounded and smooth

in the spatial variables.

This can be generalized to domains in an arbitrary number of spatial dimen-
sions in the following fashion.

Theorem 2 Let (v, p) be a local weak solution of the Navier–Stokes equations
in a domain ΩT ⊂ RN×R, and suppose that v ∈ V 2loc(ΩT ) and ∇p ∈ Lµ,loc(ΩT ).
Then v ∈ Lq,loc(ΩT ) for any q that satisfies

q <
N + 2

(N + 2)/µ− 2
, (4)

where 1 < µ ≤ N+2
3 . Furthermore, if µ >

N+2
3 , then v is locally bounded and

smooth in the spatial variables.

A consequence of these results is the fact that singularities of the velocity v
are only possible at singularities of the pressure gradient ∇p.

We point out that the norm ‖∇p‖L(N+2)/3(ΩT ) is dimensionless in the same
sense that the norms ‖v‖Lq,r(ΩT ) are dimensionless when N/q+2/r = 1. Indeed,
if v(x, t) and p(x, t) satisfy the Navier-Stokes equations (1) in a domain Ω ×
(0, T ), then the functions vλ(x, t) = λv(λx, λ

2t) and pλ(x, t) = λ
2p(λx, λ2t)

also satisfy (1) in the dilated domains Ω/λ× (0, T/λ2) for each λ > 0; however,
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the given norms of vλ and pλ are independent of λ. Indeed,

‖vλ‖Lq,r(Ω/λ×(0,T/λ2)) =



∫ T/λ2
0

(∫
Ω/λ

|λv(λx, λ2t)|q dx

)r/q
dt



1/r

=

{∫ T
0

(∫
Ω

λq|v(x, t)|q
dx

λN

)r/q
dt

λ2

}1/r

= λ1−(N/q+2/r)‖v‖Lq,r(ΩT ) = ‖v‖Lq,r(ΩT )

(5)

and

‖∇pλ‖L(N+2)/3(Ω/λ×(0,T/λ2))

=

{∫ T/λ2
0

∫
Ω/λ

|λ2 · λ∇p(λx, λ2t)|(N+2)/3dx dt

}3/(N+2)

=

{∫ T
0

∫
Ω

λN+2|∇p|(N+2)/3
dx

λN
dt

λ2

}3/(N+2)

= ‖∇p‖L(N+2)/3(ΩT ).

(6)

In this sense, Theorems 1 and 2 are analogues of the aforementioned result of
Serrin [9].

The basic idea of the proof is to use as a test function a smoothed and
cutoff variant of (vi∓k)ε±. Provided ε is sufficiently small, the nonlinear term is
integrable and we can remove the smoothing to obtain a local energy estimate.
From this we can obtain an estimate of meas[|vi| > k] and consequently of vi in
Lweakp,loc(ΩT ).

Recall the definitions of the spaces Lweakq (U); a measurable function f is an

element of Lweakq (U) if and only if

|f |Lweakq (U) ≡ sup
k>0
k
(
meas{x ∈ U : |f(x)| > k}

)1/q
<∞ . (7)

The quantity |f |Lweakq (U) is not a norm, but it is a quasi-norm. The inequality

|f |Lweakq (U) ≤ ‖f‖Lq(U) (8)

follows immediately from

kqmeas[|f | > k] ≤

∫
U
|f |q χ[|f | > k] dx ≤

∫
U
|f |q dx (9)

so that Lq(U) ⊂ Lweakq (U). However Lweakq (U) 6= Lq(U), as the function f(x) =

1/x satisfies f ∈ Lweak1 (0, 1), but f /∈ L1(0, 1). Finally, if q′ < q and U is
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bounded, then Lweakq (U) ⊂ Lq′(U); indeed

‖f‖q
′

Lq′(U)
= q′

∫ ∞
0

kq
′−1meas[|f | > k] dk

≤ q′measU + q′|f |q
Lweakq (U)

∫ ∞
1

kq
′−q−1 dk <∞.

(10)

For further details about the spaces Lweakq (U) see [1, Chp. 1] or [4, IX.4].

Once we have the the energy inequality, we can show that v ∈ Lβ,loc(ΩT )
implies vi ∈ Lweakα(β),loc for some α(β) and each i; consequently v ∈ Lq,loc(ΩT ) for

all q < α(β). Carefully iterating the process yields the result.

Remark: The techniques of this paper exploit the structure of the nonlinear
term and the fact that v is solenoidal; in particular these techniques fail for
non-solenoidal solutions of the more general system

ut −∆u+ (u · ∇)u = 0 . (11)

2 Proof of Theorem 1

For simplicity, suppose that ΩT ⊂ R3 × R, and let

QR = QR(xo, to) = BR(xo)× (to −R
2, to) ⊂ ΩT .

Let to−R2 < τ < to and define QτR = BR(xo)× (to−R
2, τ). Choose 0 < σ < 1,

and let ζ ∈ C∞(ΩT ) be a cutoff function so that ζ(x, t) = 1 if (x, t) ∈ QσR, so
that ζ(x, t) = 0 if either |x− xo| = R or t = to −R2, and so that |ζt|+ |∇ζ|2 ≤
Cσ,R. Further, let {Jη(x, t)}η>0 be a family of symmetric mollifying kernels in
space and time; given a function f(x, t), we shall denote the mollification (Jη∗f)
by fη

Let k > 0, ω > 0, and choose 0 < ε < 2
3 so small that

10
10−3ε ≤ µ. Suppose

that v ∈ V 2loc(ΩT ); recall the Sobolev embedding V
2
loc(ΩT ) ↪→ L10/3,loc(ΩT )

when ΩT ⊆ R3 × R. Fix i ∈ {1, 2, 3}, and consider the function

φi(x, t) =
{
[(viη(x, t)− k)+ + ω]

εζ2(x, t)
}
η
. (12)

If η is sufficiently small, φi is a valid test function; multiplying the ith component
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of the first of (1) and integrating over ΩT we obtain

0 =

∫∫
QτR

(
∂

∂t
viη

)
[(viη − k)+ + ω]

εζ2 dx dt

+

3∑
j=1

∫∫
QτR

(
∂

∂xj
viη

)
∂

∂xj

{
[(viη − k)+ + ω]

εζ2
}
dx dt

+

3∑
j=1

∫∫
QτR

[
vj
∂vi

∂xj

]
η

[(viη − k)+ + ω]
εζ2 dx dt

+

∫∫
QτR

∂pη

∂xi
[(viη − k)+ + ω]

εζ2 dx dt

= I1 + I2 + I3 + I4

for each fixed i.
To estimate I1, first let ω ↓ 0 so that

lim
ω↓0
I1 =

∫∫
QτR

{
∂

∂t
(viη − k)+

}
(viη − k)

ε
+ζ
2 dx dt

=
1

ε+ 1

∫∫
QτR

{
∂

∂t

[
(viη − k)

ε+1
+

]}
ζ2 dx dt

=
1

ε+ 1

∫
BR

(viη − k)+ζ
2
∣∣∣
t=τ
dx−

2

ε+ 1

∫∫
QτR

(viη − k)
ε+1
+ ζζt dx dt.

(13)

Then, sending η ↓ 0 we obtain for almost every τ

lim
η↓0
lim
ω↓0
I1 =

1

ε+ 1

∫
BR(xo)

(vi − k)ε+1+ ζ
2
∣∣∣
t=τ
dx

−
2

ε+ 1

∫∫
QτR

(vi − k)ε+1+ ζζt dx dt. (14)

To estimate the I2 term, first rewrite the integral as

I2 = ε

3∑
j=1

∫∫
QτR

{
∂

∂xj
[(viη − k)+ + ω]

}2
[(viη − k)+ + ω]

ε−1ζ2 dx dt

+ 2

3∑
j=1

∫∫
QτR

∂viη

∂xj
[(viη − k)+ + ω]

εζζxj dx dt

=
4ε

(ε+ 1)2

3∑
j=1

∫∫
QτR

{
∂

∂xi
[(viη − k)+ + ω]

ε+1
2

}2
ζ2 dx dt

+ 2

3∑
j=1

∫∫
QτR

∂vi

∂xj
[(viη − k)+ + ω]

εζζxj dx dt.

(15)
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Using Fatou’s lemma in the first term and the fact that ε ≤ 1 in the second, we
send ω ↓ 0 to obtain

lim inf
ω↓0

I2 ≥ Cε

∫∫
QτR

∣∣∣∇{(viη − k) ε+12+ }∣∣∣2 ζ2 dx dt
− 2

∫∫
QτR

|∇(viη − k)+| (v
i
η − k)

ε
+ζ |∇ζ| dx dt. (16)

Using Young’s inequality and Fatou’s lemma once more, we obtain

lim inf
η↓0

lim inf
ω↓0

I2 ≥ Cε

∫∫
QτR

∣∣∣∇{(vi − k) ε+12+ }∣∣∣2 ζ2 dx dt
− Cε

∫∫
QτR

(vi − k)ε+1+ |∇ζ|
2 dx dt. (17)

To estimate I3, note that because ε ≤ 2/3 the integral is uniformly bounded
and we can pass to the limit as ω ↓ 0 then as η ↓ 0 to obtain

lim
η↓0
lim
ω↓0
I3 =

3∑
j=1

∫∫
QτR

vj
∂vi

∂xj
(vi − k)ε+ζ

2 dx dt

=
1

ε+ 1

3∑
j=1

∫∫
QτR

vj
{
∂

∂xj
(vi − k)ε+1+

}
ζ2 dx dt.

(18)

Then, because v is solenoidal we can integrate by parts to obtain

lim
η↓0
lim
ω↓0
I3 =

−2

ε+ 1

3∑
j=1

∫∫
QτR

vj(vi − k)ε+1+ ζζxj dx dt. (19)

As for I4, we have

I4 =

∫∫
QτR

∂pη

∂xi

[
(viη − k)+ + ω

]ε
ζ2 dx dt (20)

so since ∇p ∈ Lµ,loc(ΩT ), |v| ∈ L10/3,loc(ΩT ) and
10
10−3ε ≤ µ, we can pass to the

limit, obtaining

lim
η↓0
lim
ω↓0
I4 =

∫∫
QτR

|∇p|(vi − k)ε+ζ
2 dx dt. (21)
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Combine these results and use the arbitrariness of τ to obtain

‖(vi − k)(ε+1)/2+ ζ‖2V 2(QR) = ess sup
to−R2<τ<to

∫
BR

∣∣∣(vi − k)(ε+1)/2+ ζ
∣∣∣2
∣∣∣∣∣
τ

dx

+

∫∫
QR

∣∣∣∇{(vi − k)(ε+1)/2+ ζ
}∣∣∣2 dx dt

≤ Cε,σ,R

∫∫
QR

(vi − k)ε+1+ dx dt

+ Cε,σ,R

∫∫
QR

|v|(vi − k)ε+1+ dx dt

+ Cε

∫∫
QR

|∇p|(vi − k)ε+ dx dt

(22)

which is our energy estimate.

The restriction ε ≤ 2
3 , needed to pass to the limit in I3 implies that

ε+1
2 < 1

so we can not use this inequality to directly prove strong Lq estimates. We can,
however, use this technique to prove a weak-Lq estimate. Indeed, estimate the
left side as follows.

‖(vi − k)(ε+1)/2+ ζ‖2V 2(QR) ≥ C‖(v
i − k)(ε+1)/2+ ‖2L10/3(QσR)

≥ C

{∫∫
QσR

(vi − k)5(ε+1)/3+ dx dt

}3/5

≥ Ckε+1
[
meas{(x, t) ∈ QσR : v

i(x, t) > 2k}
]3/5
.

(23)

Suppose that v ∈ Lβ,loc(ΩT ) for some β ≥ 10/3. We can then estimate the first
term on the right side of (22) as

∫∫
QR

(vi − k)ε+1+ dx dt ≤

(∫∫
QR

(vi − k)β+ dx dt

)(ε+1)/β (
meas[vi > k]

)1−(ε+1)/β

≤ ‖v‖ε+1
Lβ(QR)

{
|v|β
Lweakβ (QR)

1

kβ

}1−(ε+1)/β

≤ ‖v‖βLβ(QR)

(
1

k

)β−ε−1
.

(24)

Similarly,

∫∫
QR

|v|(vi − k)ε+1+ dx dt ≤ ‖v‖β
Lβ(QR)

(
1

k

)β−ε−2
. (25)
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Lastly∫∫
QR

|∇p|(vi − k)ε+ dx dt ≤

(∫∫
QR

|∇p|µ dx dt

)1/µ
×

(∫∫
QR

|v|β dx dt

)ε/β (
meas[vi > k]

)1−1/µ−ε/β

≤ ‖∇p‖Lµ(QR)‖v‖
ε
Lβ(QR)

(
|v|β
Lweakβ (QR)

1

kβ

)1−1/µ−ε/β

≤ ‖∇p‖Lµ(QR)‖v‖
β(1−1/µ)
Lβ(QR)

(
1

k

)β(1−1/µ)−ε
.

(26)

Combining these estimates, we find

meas{(x, t) ∈ QσR : v
i(x, t) > 2k} ≤ C‖v‖5β/3

Lβ(QR)

(
1

k

)5β/3

+C‖v‖5β/3Lβ(QR)

(
1

k

)5(β−1)/3
+C‖∇p‖5/3Lµ(QR)‖v‖

5β(1−1/µ)/3
Lβ(QR)

(
1

k

)5[β(1−1/µ)+1]/3
.

(27)

Repeating this process with test functions (vi + k)−, we obtain an estimate of
the form

|vi|Lweak
α(β)

(QσR) ≤ C(ε, β,R, σ, µ, ‖∇p‖Lµ(QR), ‖v‖Lβ(QR)) (28)

for each i, where

α(β) = min

{
5

3
(β − 1),

5

3

[
β

(
µ− 1

µ

)
+ 1

]}
. (29)

Thus v ∈ Lβ,loc(ΩT ) implies v ∈ Lq,loc(ΩT ) for every q < α(β).
Our result is proven by iteration. Since V 2loc(ΩT ) ↪→ L10/3,loc(ΩT ), set βo =

10
3 , and inductively define

βn+1 = α(βn) = min

{
5

3
(βn − 1),

5

3

[
βn

(
µ− 1

µ

)
+ 1

]}
. (30)

Now (28) implies that v ∈ Lq,loc(ΩT ) for every q < βn, for every n. Set

γ(β) = 5
3 (β − 1),

δ(β) = 5
3

[
β

(
µ− 1

µ

)
+ 1

]
.

If β ≥ 10
3 , then γ(β) ≥

7
6β. On the other hand, δ(β) ≥ β if and only if

β ≤
5

5/µ− 2
(31)
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so that the sequence β, δ(β), δ(δ(β)), . . . converges to 5
5/µ−2 independently of

the choice of β. Thus v ∈ Lq,loc(ΩT ) for all q <
5

5/µ−2 . If µ >
5
3 , we can choose

q > 5 and apply the regularity result of Serrin [9] which guarantees the local
boundedness and smoothness of v in the spatial variables.

Remark. Theorem 2, the general result in N spatial dimensions, is proven in
the same fashion as Theorem 1.
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