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Multiple positive solutions for equations involving

critical Sobolev exponent in RN ∗

C. O. Alves

Abstract

This article concerns with the problem

−div(|∇u|m−2∇u) = λhuq + um
∗−1, in RN .

Using the Ekeland Variational Principle and the Mountain Pass Theorem,
we show the existence of λ∗ > 0 such that there are at least two non-
negative solutions for each λ in (0, λ∗).

1 Introduction

In this work, we study the existence of solutions for the problem

(P )

{
−∆mu = λhuq + um

∗−1, RN
u ≥ 0, u 6= 0, u ∈ D1,m(RN )

where ∆mu = div (|∇u|m−2∇u), λ > 0, N > m ≥ 2, m∗ = Nm/(N −m), 0 <
q < m−1, h is a nonnegative function with LΘ(RN ) with Θ = Nm

Nm−(q+1)(N−m) ,

and

D1,m(RN ) = {u ∈ Lm
∗

(RN ) |
∂u

∂xi
∈ Lm(RN )}

endowed with the norm ‖u‖ =
(∫
|∇u|m

)1/m
.

The case q = 0, m = 2 was studied by Tarantello [20], and a more general
case with m ≥ 2 by Cao, LI & Zhou [5]. In these two references, [5] and [20], it
is proved that (P) has multiple solutions. In the case m = 2, h ∈ Lp(RN ) with
p1 ≤ p ≤ p2 and 1 < q < 2∗ − 1, Pan [18] proved the existence of a positive
solution for (P). In the more general case, m ≥ 2, h ∈ LΘ(RN ), Gonçalves &
Alves [10] proved the existence of a positive solution for (P).
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By a solution to (P), we mean a function u ∈ D1,m(RN ), u ≥ 0 and u 6= 0
satisfying∫

|∇u|m−2∇u∇Φ = λ

∫
huqΦ +

∫
um
∗−1Φ, ∀Φ ∈ D1,m(RN ).

Hereafter,
∫
, D1,m, Lp and |.|p stand for

∫
RN , D1,m(RN ), Lp(RN ) and |.|Lp

respectively.

In the search of solutions we apply minimizing arguments to the energy
functional

I(u) =
1

m

∫
|∇u|m −

λ

q + 1

∫
h
(
u+
)q+1

−
1

m∗

∫ (
u+
)m∗

(1)

associated to (P), where u+(x) = max{u(x), 0}. Note that the condition h ∈ LΘ

implies that I ∈ C1
(
D1,m,R

)
.

To show the existence of at least two critical points of the energy functional,
we shall use the Ekeland Variational Principle [8], and the Mountain Pass Theo-
rem of Ambrosetti & Rabinowitz [2] without the Palais-Smale condition. Using
the Ekeland Variational Principle, we obtain a solution u1 with I(u1) < 0, and
by the Mountain Pass Theorem we prove the existence of a second solution u2

with I(u2) > 0. Techniques for finding the solutions u1 and u2 are borrowed
from Cao, Li & Zhou [5]. Then we combine these techniques with arguments
developed by Chabrowski [6], Noussair, Swanson & Jianfu [17], Jianfu & Xip-
ing [12], Azorero & Alonzo [9], Gonçalves & Alves [10] and Alves, Gonçalves &
Miyagaki [1] to obtain the following result

Theorem 1 There exists a constant λ∗ > 0, such that (P) has at least two
solutions, u1 and u2, satisfying

I(u1) < 0 < I(u2) ∀λ ∈ (0, λ∗) .

2 Preliminary Results

In this section we establish some results needed for the proof of Theorem 1.

Definition. A sequence {un} ⊂ D1,m is called a (PS)c sequence, if I(un)→ c
and I ′(un)→ 0.

Lemma 1 If {un} is a (PS)c sequence, then {un} is bounded, and {u+
n } is a

(PS)c sequence.
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Proof. Using the hypothesis that {un} is a (PS)c sequence, there exist no
and M > 0 such that

I(un)−
1

m∗
I ′(un)un ≤M + ‖un‖ ∀n ≥ no . (2)

Now, using (1) and the Hölder’s inequality, we have

I(un)−
1

m∗
I ′(un)un ≥

1

N
‖un‖

m
+ c1 ‖un‖

q+1
(3)

where c1 is a constant depending of N,m, q, ‖h‖Θ and Θ. It follows from (2)
and (3) that {un} is bounded. Now, we shall show that {u+

n } is a also (PS)c
sequence. Since {un} is bounded, the sequence u−n = un − u+

n is also bounded.
Then

I ′(un)u
−
n → 0

and we conclude that ∥∥u−n∥∥→ 0. (4)

From (4) we achieve that

‖un‖ =
∥∥u+

n

∥∥+ on(1). (5)

Therefore, by (4) and (5)

I(un) = I(u+
n ) + on(1)

and
I ′(un) = I ′(u+

n ) + on(1),

which consequently implies that {u+
n } is a (PS)c sequence. 2

From Lemma 1, it follows that any (PS)c sequence can be considered as a
sequence of nonnegative functions.

Lemma 2 If {un} is a (PS)c sequence with un ⇀ u in D1,m, then I ′(u) = 0,
and there exists a constant M > 0 depending of N,m, q, |h|Θ and Θ, such that

I(u) ≥ −MλΘ

Proof. If {un} is a (PS)c sequence with un ⇀ u, using arguments similar to
those found in [10], [12] and [17], we can obtain a subsequence, still denoted by
un, satisfying

un(x) → u(x) a.e. in RN (6)

∇un(x) → ∇u(x) a.e. in RN (7)

u(x) ≥ 0 a.e. in RN . (8)
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From (6), (7) and using the hypothesis that {un} is bounded in D1,m, we get

I ′(u) = 0 , (9)

which in implies I ′(u)u = 0, and

‖u‖m = λ

∫
huq+1 +

∫
um
∗

.

Consequently

I(u) = λ

(
1

m
−

1

q + 1

)∫
huq+1 +

1

N

∫
um
∗

.

Using Hölder and Young Inequalities, we obtain

I(u) ≥ −
1

N
|u|m

∗

m∗ −MλΘ +
1

N
|u|m

∗

m∗ = −MλΘ

where M = M(N,m, q,Θ, ‖h‖Θ). 2

For the remaining of this article, we will denote by S the best Sobolev
constant for the imbedding D1,m ↪→ Lm

∗
.

Lemma 3 Let {un} ⊂ D1,m be a (PS)c sequence with

c <
1

N
SN/m −MλΘ ,

where M > 0 is the constant given in Lemma 2. Then, there exists a subsequence
{unj} that converges strongly in D1,m.

Proof By Lemmas 1 and 2, there is a subsequence, still denoted by {un} and
a function u ∈ D1,m such that un ⇀ u. Let wn = un − u. Then by a lemma in
Brezis & Lieb [3], we have

‖wn‖
m

= ‖un‖
m − ‖u‖m + on(1) (10)

‖wn‖
m∗

m∗ = |un|
m∗

m∗ − |u|
m∗

m∗ + on(1) . (11)

Using the Lebesgue theorem (see Kavian [13]), it follows that∫
huq+1

n −→

∫
huq+1. (12)

From (10), (11) and (12), we obtain

‖wn‖
m = |wn|

m∗

m∗ + on(1) (13)

and
1

m
‖wn‖

m −
1

m∗
|wn|

m∗

m∗ = c− I(u) + on(1). (14)
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Using the hypothesis that {wn} is bounded in D1,m, there exists l ≥ 0 such that

‖wn‖
m → l ≥ 0. (15)

From (13) and (15), we have

|wn|
m∗

m∗ → l, (16)

and using the best Sobolev constant S and recalling that

‖wn‖
m ≥ S

(∫
|wn|

m∗
)m/m∗

, (17)

we deduce from (15), (16) and (17) that

l ≥ Slm/m
∗

. (18)

Now, we claim that l = 0. Indeed, if l > 0, from (18)

l ≥ SN/m . (19)

By (14), (15) and (16), we have

1

N
l = c− I(u). (20)

From (19), (20) and Lemma 2 we get

c ≥
1

N
SN/m −MλΘ ,

but this result contradicts the hypothesis. Thus, l = 0 and we conclude that

un → u in D1,m .

3 Existence of a first solution (Local Minimiza-

tion)

Theorem 2 There exists a constant λ∗1 > 0 such that for 0 < λ < λ∗1 Problem
(P) has a weak solution u1 with I(u1) < 0.

Proof. Using arguments similar to those developed in [5], we have

I(u) ≥

(
1

m
− ε

)
‖u‖m + o (‖u‖m)− C(ε)λm/(m−(q+1)) ,

where C(ε) is a constant depending on ε > 0. The last inequality implies that
for small ε, there exist constants γ, ρ and λ∗1 > 0 such that

I(u) ≥ γ > 0 , ‖u‖ = ρ , and 0 < λ < λ∗1 .
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Using the Ekeland Variational Principle, for the complete metric space Bρ(0)
with d(u, v) = ‖u− v‖, we can prove that there exists a (PS)γo sequence {un} ⊂
Bρ(0) with

γo = inf{I(u) | u ∈ Bρ(0)}.

Choosing a nonnegative function Φ ∈ D1,m\{0}, we have that I(tΦ) < 0 for
small t > 0 and consequently γo < 0.

Taking λ∗1 > 0, such that

0 <
1

N
SN/m −MλΘ ∀λ ∈ (0, λ∗1)

from Lemma 3, we obtain a subsequence {unj} ⊂ {un} and u1 ∈ D1,m, such
that

unj → u in D1,m .

Therefore,
I ′(u1) = 0 and I(u1) = γo < 0 ,

which completes this proof. 2

4 Existence of a second solution (Mountain Pass)

In this section, we shall use arguments similar to those explored by Cao, Li &
Zhou [5], Chabrowski [6], Noussair, Swanson & Jianfu [17], Jianfu & Xiping [12]
and Gonçalves & Alves [10] to obtain the following

Theorem 3 There exists a constant λ∗2 > 0 such that for 0 < λ < λ∗2 Problem
(P) has a weak solution u2 with I(u2) > 0.

Proof. By arguments found in [5] and [10], we can prove that there exists
δ1 > 0 such that for all λ ∈ (0, δ1), the functional I has the Mountain Pass
Geometry, that is:

(i) There exist positive constants r, ρ with I(u) ≥ r > 0 for ‖u‖ = ρ

(ii) There exists e ∈ D1,m with I(e) < 0 and ‖e‖ > ρ .

Then by [16], there exists a (PS)γ1 sequence {vn} with

γ1 = inf
g∈Γ

max
t∈[0,1]

I(g(t))

where
Γ = {g ∈ C([0, 1], D1,m) | g(0) = 0 and g(1) = e} .

Using the next claim, which is a variant of a result found in [5], we can complete
the proof of this theorem.
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Claim. There exists λ∗2 > 0 such that for the constant M given by Lemma 2,

0 < γ1 <
1

N
SN/m −MλΘ ∀λ ∈ (0, λ∗2) .

Assuming this claim, by Lemma 3 there exists a subsequence {vnj} ⊂ {vn}
and a function u2 ∈ D1,m such that vnj → u2. Therefore,

I ′(u2) = 0 and I(u2) = γ1 > 0 .

Which concludes the present proof. 2

Verification of the above claim. For x ∈ RN , let

Ψ(x) =

[
N
(
N−m
m−1

)m−1
](N−m)/m2

[
1 + |x|m/(m−1)

]
N−m
m

.

Then it is well known that (see [7] or [19])

‖Ψ‖m = |Ψ|m
∗

m∗ = SN/m . (21)

Let δ2 > 0 such that

1

N
SN/m −MλΘ > 0 ∀λ ∈ (0, δ2) .

Then from (1) and (21), we have

I(tΨ) ≤
tm

m
SN/m ,

and there exists to ∈ (0, 1) with

sup
0≤t≤to

I(tΨ) <
1

N
SN/m −MλΘ ∀λ ∈ (0, δ2) .

Moreover, from (1) and (21), we have

I(tΨ) =

(
tm

m
−
tm
∗

m∗

)
SN/m −

λtq+1

q + 1

∫
hΨq+1 ,

and remarking that (
tm

m
−
tm
∗

m∗

)
≤

1

N
∀t ≥ 0,

we obtain

I(tΨ) ≤
1

N
SN/m −

λtq+1

q + 1

∫
hΨq+1 ;
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therefore,

sup
t≥to

I(tΨ) ≤
1

N
SN/m −

λtq+1
0

q + 1

∫
hΨq+1.

Now, taking λ > 0 such that

−
λtq+1

0

q + 1

∫
hΨq+1 < −MλΘ

that is,

0 < λ <

(
tq+1
0

∫
hΨq+1

M(q + 1)

)1/(Θ−1)

= δ3

we deduce that

sup
t≥to

I(tΨ) <
1

N
SN/m −MλΘ ∀λ ∈ (0, δ3) .

Choosing λ∗2 = min{δ1, δ2, δ3}, we have

sup
t≥0

I(tΨ) <
1

N
SN/m −MλΘ ∀λ ∈ (0, λ∗2) .

and consequently

0 < γ1 <
1

N
SN/m −MλΘ ∀λ ∈ (0, λ∗2)

which proves the claim.

Proof of Theorem 1. Theorem 1 is an immediate consequence of Theorems 2
and 3.

Remark. Using Lemma 3 and the same arguments explored by Azorero &
Alonzo, in the case 0 < q < p [9], we can easily show that for small λ the
following problem has infinitely many solutions with negative energy levels.

(P )∗
−∆mu = λh |u|q−1

u+ |u|m
∗−2

u, in RN
u ∈ D1,m

This result is obtained using the concept and properties of genus, and working
with a truncation of the energy functional associated with (P )∗.
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