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CHAPTERI 

INTRODUCTION 

1.1 OBJECTIVES 

In 1917 Albert Einstein applied his newly developed theory of general relativity to the 

universe. In order to provide a model for a static universe he added a cosmological 

constant A to his equation. This constant was equivalent to a pressure, which balanced 

the attractive force of gravity. When Edwin Hubble discovered that the universe was 

expanding, Einstein retracted the cosmological constant and considered it his greatest 

theoretical mistake. 

Quantum field theory predicts a large zero-point electromagnetic energy density for 

the vacuum. This vacuum energy has properties similar to a cosmological constant. The 

zero-point energy of the vacuum has also been experimentally verified by the Casimir 

effect. Since the vacuum possesses a zero-point energy, this energy should produce 

gravitational effects. However, no such effects have ever been observed. The discrepancy 

between theory and observation is 120 orders of magnitude and serve as the basis for the 

cosmological constant problem. 

In this thesis an equation for the zero-point energy density of the electromagnetic 

vacuum will be derived and its magnitude will be determined. Also, assuming that the 

zero-point energy of the vacuum exists, the equation for the Casimir effect will be 

derived. 
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This will be followed by a brief description of the experiment, which verifies the Casimir 

effect and thus confirms the existence of the zero-point energy density of the vacuum. 

The gravitational energy density of the solar system will be calculated and compared 

with the vacuum energy density to demonstrate the discrepancy of 120 orders of 

magnitude. The cosmological constant problem will then be discussed along with the 

experiments which are presently being carried out to measure its value. 

1.2 NATURAL UNITS 

In particle physics and quantum field theory natural units are used to simplify 

computations. 1 In this system of units .action and velocity are the fundamental 

dimensions. Planck's constant h is the unit of action and the velocity of light c is the unit 

of velocity. We then have h = c = 1. Also, in natural units ( since E = mc2) many 

quantities have the dimension of mass and this is usually expressed in units of Mev. 

Another advantage of using this system is that e. = 1 which implies thatµ. = 1. This 

allows Maxwell's equations to be written in their simplest form. 

1.JVECTORS 

Vectors will be represented either by bold-faced upper or lower case letters and the 

complex conjugate of a vector will be represented by a letter with an asterisk. So if A 

represents a vector then A* represents its complex conjugate and A represents the 

derivative of A with respect to time. 



1.4VACUUM 

The vacuum refers to the ground state or the state of lowest energy of a quantum 

system, which is void of normal material. 

1.5 HARMONIC OSCILLATOR 

In this section a comparison will be made between the harmonic oscillator and the 

electromagnetic radiation energy density. It will be shown that both equations have the 

same form and must therefore have the same solutions. This result will then be used to 

calculate the energy density of the electromagnetic vacuum. 

The Hamiltonian for a one-dimensional harmonic oscillator is given by2•3 

H ={ m(dx/dt)2 + m(wx)2} / 2 = p2 / 2m + m(wx)2 / 2, (1.1) 

and has an energy spectrum of 

E = (n + 1 / 2 ) w, (1.2) 

with a zero-point energy given by 

E=ro/2. (1.3) 

For the two-dimensional isotropic harmonic oscillator with coordinate x and y, we have 

3 



H = [m{(dx/dt)2 + (dy/dt)2 }+ mal{x2 + y2}] / 2. (1.4) 

Introducing the complex number z = x + iy gives 

H = {m(dzldt)(dz*/dt)+ malzz*} / 2 

= Pz Pz* / 2m + malzz* I 2. (1.5) 

The zero-point energy of the two-dimensional harmonic oscillator is the sum of the 

zero-point energies of two individual one-dimensional harmonic oscillators. Thus 

E = ro / 2 + ro / 2 = ro. (1.6) 

1.6 ELECTROMAGNETIC RADIATION ENERGY DENSITY 

The time average energy density of the electromagnetic field is given by4 

(1.7) 

where 
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Both E and B are plane waves with wave vector k, frequency ro and phase~- These 

waves represent photons and therefore have two polarization states. In order to develop 

an analogy between the harmonic oscillator and the radiation field, the Coulomb or 

radiation gauge will be used with a zero scalar potential. 5 It is also important to note that 

the Coulomb and Lorentz gauges are equal for a zero scalar potential. 

The E and B fields are given in terms of the vector potential by 

E = -A , B = v' x A , v' · A = 0 . (1.9) 

Let 

5 

A = A i { -w t + k.x} 
0 e . (1.10) 

Notice that A has the same form as the de Broglie wave for a free particle with energy ro, 

and momentum k . Now from ( 1. 7) 

(1.11) 

and since from ( 1. 9) 

E= -A , (1.12) 



6 

then 

E* = -A* 
' (1.13) 

and so 

E •E*=A*-A. (1.14) 

It can also be shown ( see Appendix A ) that 

B. B* = k1 A ·A*. (1.15) 

Now substituting Eq. (1.14) and Eq. (1.15) into Eq. (1.11), we obtain 

p = { A* · A+ k1 A ·A *}/2 . (1.16) 

Comparing Eq. (1.5) with Eq. (1.16), we find that for a given time and form= 1, the 

complex particle displacement becomes the A field 

We can also infer from the comparison ofEq. (1.5) with Eq. (1.16) that the solution to 

Eq. ( 1.16) gives the energy spectrum of the harmonic oscillator, where n is the number of 

photons ~th wave vector k and frequency w. 



Also, each mode will have a zero-point energy given by ro / 2 , corresponding to no 

photons present. 

1. 7 ELECTROMAGNETIC ENERGY DENSITY OF THE VACUUM 

The method of periodic boundary conditions6 will be used to count the modes of the 

electromagnetic field. Consider standing waves in a cubical box7 of volume V = L3 

where the complex vector potential A vanishes along the edges of the bo~ then 
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(1.17) 

where nx , ny , nz are integers. The wave vectors kx , ky , kz will then have discrete values. 

However, as L becomes large and approximates the size of the universe, the discrete 

values of k approach a continuum. 

The number of modes is given by 

N = (L / 2n )3 k3 = (L / 2n )3 p3• (1.18) 

We can consider p3 as a volume Vk in momentum space. Then the volume density of each 

mode is given by 

(1.19) 



This result implies that the number of modes dn between OJ and OJ + dro is equal to the 

volume in momentum space in a thin spherical shell divided by (2n)3, or 
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dn = 4nc.idw I (2n)3 . (1.20) 

Since there are two polarization states and the energy of each mode is given by OJ / 2 and 

depends only on k, the total energy density is given by 

(1.21) 

where the limits of integration are from O to OJmax. 

This result gives the energy density for the electromagnetic vacuum and reveals that 

p ➔ oo as OJ ➔ ao . We must therefore choose a cut off frequency in order to obtain a 

finite value for the vacuum energy density. The Planck time (see Appendix C) occurs 

1 o-« seconds after the big bang and at any time earlier than the Planck time, all of our 

physical theories break down. The Planck energy (see Appendix C) is the energy of the 

photons at the Planck time. This energy will be chosen as the maximum since at any time 

later than the Planck time, the temperature of the universe decreases and thus the energy 

of the photons decreases. It is also believed that at the Planck energy, the gravitational 

interaction is as strong as the electromagnetic and strong interactions. 8 Using the planck 

energy of 1019 Gev, we have from Eq. (1.21) that the electromagnetic energy density of 

the vacuum (see Appendix C) in fenni (t) is 
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Pvac = 8.4 X 1076 r- 4 . (1.22) 

In chapter 3 this result will be compared to the gravitational energy density. 



CHAPTER II 

CASIMIR ANALYSIS 

2.1 CASIMIR EFFECT 

In 1948, H. B. G. Casimir showed that two uncharged conducting plates placed in a 

vacuum will attract each other. This phenomenon has since been known as the Casimir 

effect. The Casimir effect can be understood by considering the change in the zero-point 

energy of the vacuum in the vicinity of the plates. When the plates are sufficiently close 

together there are fewer allowed modes between the plates than outside the plates. This 

energy difference does work on the system and draws the plates together. The Casimir 

effect, therefore, provides evidence for the existence of the zero-point electromagnetic 

energy density of the vacuum. 

2.2 CASIMIR FORCE 

Consider two parallel-uncharged conducting rectangular plates of length 

Lx = Ly = L , separated by a distance d. In order for the tangential components of the 

electric field to vanish9 on the walls of the conducting plates, we require that10• 11 

kx = jn/L , ky = mn/L , kz = rur/d , (2.1) 

where j, m and n are positive integers including zero. 
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The allowed frequencies are given by 

, (2.2) 

The zero-point energy of the electromagnetic field between the plates for two polarization 

states is given by 

The factor of two arises because there are two independent polarizations if the integersj, 

m, n, et: 0. If one of the integers is zero then there is only one polarization state and a 

factor of 1/ 2 will be required in Eq. (2.3). IfL is large compared to d, then the values of 

j and m forms a continuum and the sums over j and m are replaced by integrals. Now 

(kx, ky, kz) = ( j1t/ L , m1t/ L , n7t/ d ) , . (2.4) 

and for continuous j and m we have 

( dj, dm ) = {L/1t dkx , L/1t dky). (2.5) 
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Also for 

( dkx , dky ) = ( dx , dy), (2.6) 

the zero-point energy within the plates is given by, 

where the summation and the limits of integration are from zero to infinity. 

Eq. (2. 7) implies that the zero-point vacuum energy is infinite in any finite volume. On 

the other hand if d is arbitrarily large, then the sum over n can be replaced by an integral, 

so Eq. (2. 7) becomes 

The limits for Eq. (2.8) are also from zero to infinity so this equation also gives an 

infinite quantity. The potential energy of the system when the plates are separated by the 

distance d is given by 

(2.9) 
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or 

(2.10) 

Introducing polar coordinates r,0 in the x, y plane, we have that 

dx dy =rdrd0 (2.11) 

and 

(2.12) 

Since 0 ranges from O to rc/2 for kx , ky > 0 , Eq. (2.10) now becomes 

U (d) = L 2 / n2 [L n f d0 f rdr { r2 + 1t2 n2 /d 2} 112 _ 

d In f d0 f dzf rdr{ r2 + z2} 112 ] (2.13) 

where the limits on rare from zero to infinity. Changing variables gives 



U(d)=L2 n2/4d3 [l: 0 Jdp{p+n2 } 112 _ 

J dzJ dp{ p + z2}112]. 
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(2.14) 

Eq. (2.14) gives the difference between two infinite quantities and can be rewritten as 

U(d) = L2 n2 /4d3 [ 1/ 2 F(O) + L n=1F(n)- J dz F(z)], (2.15) 

where the limits of the sum are from one to infinity and the limits on the integral are from 

zero to infinity and for u = n or z, 

(2.16) 

The Euler-Maclaurin summation formula, 12 

L n= 1 F(n) - J dz F(z) = -1 / 2 F(O) - 1 / 12 F'(O) + 1 / 720 F"'(O) ... (2.17) 

where primes denote derivatives, will be used to solve Eq. (2.15), with the 

assumption that F(oo) ➔ 0. This assumption is valid since a real conductor will become 

transparent to electromagnetic waves with frequencies above the plasma frequency of the 

conductor; the plates will remain unaffected for frequencies above a cutofffrequency. 13 

We are in essence assuming that the Casimir force is a low frequency effect. 



Integrating Eq.(2.16) gives 

F(u) = J dp ( p + u2)112 = 2/3 ( p + u2}312 

= F(oo) - F(O) = 0 - (2/3) u3 = (-2/3) u3 , 

15 

(2.18) 

where the limits of integration is from O to oo . From Eq. (2.18) we have that F'(O) = 0, 

F"'(O) = - 4, and all higher order derivatives are equal to zero. Substituting these results 

into Eq. (2.15) we obtain 

(2.19) 

which gives a force ( in fermi( f"2)) of 

(2.20) 

or 

F(d) = -i1 L2hc I ( 240 d4 ), (2.21) 

indynes. 

This result is the Casimir force. 
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2.3 LAMOREAUX EXPERIMENT 

The most precise experimental results, to date, for detecting the Casimir effect-were 

obtained by Lamoreaux. 14 The experiment is extremely difficult to perform with parallel 

plates. Lamoreaux used one conducting plate and a spherical lens, both of which were 

made of quartz and coated in copper and gold. Since the Casimir force is geometry 

dependent another force equation had to be derived. This equation does not have an 

exact solution; however, if the radius of curvature of the lens R is much greater than the 

separation of the plates A then the attractive force ( in dynes) between the lens and the 

plate is, 

F(u) = 21t Rhc { 7?! (720 A3)} • (2.22) 

In the experiment a plate was attached to a sensitive torsion balance. If one plate 

moved towards the other the pendulum would twist A laser was used to measure the 

twisting of the pendulum to an accuracy of0.01 microns. When a current was applied to 

a system of piezoelectric components one of the plates moved. At the same time an 

electronic feedback system was used to maintain the position of the torsion pendulum. 

The zero-point energy effect is related to the amount of current needed to maintain the 

pendulum's position. Lamoreaux found that the measured force fell within 5 percent of 

the value predicted by Eq. (2.22). 



CHAPTERfil 

GRAVITATION 

3.1 GRAVITATIONAL ENERGY DENSITY 

Newton's theory of gravitation will be used to determine the energy density of the 

vacuum and the result will be compared to the zero-point energy density, which was 

obtained in the previous chapter. 

In order to accomplish this goal let us assume that the universe possesses an energy 

density; then since matter and energy are equivalent there should be some gravitational 

effects. The cosmological principle15 assures us that the universe is homogenous and 

isotropic; therefore, the energy density of the universe must be uniformly distributed. 

Although general relativity is necessary for analysis on a large scale, it is possible, due 

to a homogenous and isotropic universe, to choose a volume large enough to apply 

Newton's laws and small enough to remove any general relativistic effects. On the other 

hand Newton's laws have stood the test of time in our solar system; this implies that the 

energy density is not sufficiently large to affect planetary motion. Now according to 

Newton's laws, the solar force Fs on a planet of mass Ma distance r from the sun Ms is 

given by 

(3.1) 
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Now an energy density in the vacuum p8 would produce a force F v on the planets. To 

determine F v, consider a sphere of radius r which contains a uniform matter density given 

byM(r). 

Then 

F v = G M(r) Ml r2, (3.2) 

and 

M(r) = f pgdv = 4/3 re r3pg (3.3) 

which gives 

(3.4) 

It can also be shown (see Appendix B) that the uniform energy density outside the sphere 

will not produce any force on the planet. The consistency of Newton's Laws assures us 

that Fv is much smaller than Fs. Comparing Eq. (3.1) to Eq. (3.4) gives 
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(3.5) 

Using Ms= 1.99 x 1030 kg and the orbital radius of Pluto, r = 5.9 x 1012 m. then ( see 

AppendixC) 

Ps< 2.3 x 10 ·9 kg/m3 = 6.5 x 10 ·27 f 4 . (3.6) 

This result clearly indicates that the gravitational energy density of the vacuum is very 

small. 

3.2 COMPARISON OF Pvac TO Pg 

The universe consists of visible as well as a comparatively larger amount of dark 

matter. Since the energy density would be affected most by the larger amount of matter, 

the present estimate for the amount of dark matter16 will be used for this comparison. 

Using p8 < 10"26 kg/ m3 = 2.9 x 1044 f"4 for the amount of dark matter in the universe 

and comparing with Eq. (1.22) , where pVIJJ; = 8.4 x 1076 r-4, we obtain a discrepancy of 

120 orders of magnitude. This is one of the largest discrepancies between two theories in 

all of science. 

3.3 EINSTEIN'S FIELD EQUATION 

The field equation of general relativity is given by17 
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Gab= 81t iab, ( 3.7) 

where 't'ab, the energy-momentum tensor, corresponds to the distribution of matter and 

Gab, the metric tensor, corresponds to the geometry of space. The field equations are 

difficult to solve because they are non-linear and do not follow the superposition 

principle. This non-linearity occurs because a gravitational field contains energy which, 

according to the equivalence of mass and energy, is also a source of gravitational fields. 

The essence of general relativity is that gravity couples universally with energy. This 

principle must apply to the enormous zero-point energy of the vacuum, yet the gravitation 

effect is not observed. Perhaps an analysis of the nature of this interaction may provide 

the essential information necessary for a workable theory of quantum gravity. 

3.4 QUANTUM FIELD THEORY 

Quantum field theory combines special relativity and quantum mechanics. In quantum 

mechanics the wave function \j/ (r,t) is a field, which is used to predict the results of 

observation. In quantum field theory, however, the wave function \j/ (r,t) is quantized and 

becomes an operator lf/(r,t), which satisfies certain commutation relations. 18 

This method is called "second quantization" and requires the classical coordinates of 

quantum mechanics to become quantum operators. Since \j/ (r,t) is a field the quantum 

operators possess continuous rather than discrete indicies. Thus, quantum field theory has 

an infinite number of degrees of freedom and frequently leads to infinities in 

computation. As an example consider the zero-point energy of Eq. (1.22) 

Pvac = (rorna,J4 / 8n2, (3.8) 
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Pvao can only be determined for a particular finite value of Wmax, since Pvao-+ oo as 

OJmax-+ oo. Quantum field theory only requires differences in energies; so, the infinite 

solutions can be eliminated by arbitrarily defining the vacuum energy as a zero point of 

reference. It is seen then that in quantum field theory, infinite energies can be easily 

defined away. However, since gravity couples universally with matter and energy, the 

infinite energy of the electromagnetic vacuum must be considered in general relativity. 

Currently there is no acceptable explanation as to why such a large zero-point vacuum 

energy has such a small gravitational effect. 



CHAPTERIV 

THE COSMOLOGICAL CONSTANT PROBLEM 

4.1 COSMOLOGICAL PRESSURE 

The large electromagnetic energy density of the vacuum suggests that the universe 

possesses a pressure which is analogous to a cosmological constant. To demonstrate this 

let us treat the universe as a gas undergoing an adiabatic expansion with pressure P, 

energy density µ, internal energy E, and a zero external force. 

From the first law of thermodynamics the work done is 

dE=-PdV 
' 

(4.1) 

and 

dE= µ dV, (4.2) 

which combine to yield 

P=-µ. (4.3) 



According to Eq.(4.3) the energy density of the universe is equivalent to a negative 

pressure which can oppose the attractive force of gravity and cause the universe to 

expand. Also, Eq. (4.2) gives 

23 

dE/dV=µ. (4.4) 

This result indicates that the work. which expands the universe, goes into maintaining a 

constant value for the cosmological constant. If the cosmological constant is as large as 

the value predicted by Eq. (1.22), the universe would be expanding at a rate of 1060 times 

its present value. 19 We are then faced with the question of whether the cosmological 

constant does exist and if so, what is its value? This is the cosmological constant 

problem. 

4.2 THE AGE PROBLEM 

The equation for the expansion of the universe R(t) is20 

where Pmis the mass density of the universe, k = ·1, 0, +1 is the curvature for a universe 

which is respectively open, flat or closed; H is Hubbell's constant with a present value of 
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H.., and G is the universal gravitational constant. According to Eq. (4.5) there are three 

terms which govern the expansion of the universe: a matter term, a cosmological constant 

term, and a curvature term. 

Let 

(4.6) 

(4.7) 

(4.8) 

then 

(4.9) 

The present cosmology model predicts an age for the universe, which is much 

younger than the oldest stars. This problem can be resolved by choosing a sufficiently 

large cosmological constant in Eq. ( 4.3) for a flat universe. Assume that there is no 

cosmological constant and that the universe is flat. In this case the expansion of the 

universe will be governed by the amount of matter it contains. The more massive the 

universe the younger it would be. The expansion of a massive universe will eventually be 
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slowed down by the force of gravity. This implies that the universe expanded at a faster 

rate in the past than in the present and therefore took less time to reach its present size. 

Thus it will be younger. On the other hand assume that there is a cosmological constant 

and that the universe is flat. Since the cosmological constant is equivalent to a pressure, 

the force provided by the pressure will become greater as the universe expands. Thus the 

universe will expand at a faster rate in the present than it did in the past. This will allow 

for an older universe. Thus by choosing the proper combination of Om and QA in Eq. 

(4.9), with Qk = 0, we can adjust our models to resolve the age problem; the larger the 

cosmological constant, the older the universe. This implies that the cosmological constant 

is physically significant and requires further study. 

4.3 SEARCHING FOR THE COSMOWGICAL CONSTANT 

The expanding universe has a decreasing mass density and a constant cosmological 

constant. This relationship should provide observational effects that may help in 

determining the value of the cosmological constant. There are several experimental 

techniques presently available for the measurement of the cosmological constant; 

however, two of these seem most promising; the study of gravitational lensing and the 

study of high redshift supernovae. 

The theory of general relativity predicts that light, from an object, will bend in a 

gravitational field and produce gravitational lenses. These lenses will then produce 

multiple images of the object. The difference in travel time from the source to the 

observer of two distinct rays is inversely proportional to Hubbell's constant.21 



26 

The method of gravitational lensing studies the images of quasars, which are the furthest 

visible objects in the universe, that are lensed by elliptical galaxies. This method is 

unique because it is independent of the dynamical state of the object that serves as the 

lens. It is expected that high values of the cosmological constant will produce larger 

numbers of gravitational lenses. 22 Thus far only a few gravitational lenses have been 

observed. This suggests that the cosmological constant is small. 

Another experimental method is the study of type Ia supemovae23 explosions. These 

explosions occur when a dying white dwarf star pulls too much gas off a neighboring red 

giant24 and undergoes a thermonuclear explosion. The study of type Ia supernovae is 

unique because all type Ia explosions are the same; type Ia supernovae explosions which 

occurred when the universe was young are the same as those which occur today. By 

comparing the brightness of distant supernovae to those which are nearby, we are able to 

determine their distances. Using their distance and redshift, the Hubble constant can be 

determined. Recent data from both methods indicates that n~ is less than 0•5 within a 

95% confidence interval, this implies that the universe will keep expanding. However, 

both of these methods are quite new and require further refining. 



CHAPTERV 

SUMMARY AND CONCLUSION 

The purpose of this thesis was to demonstrate the ideas involved in the cosmological 

constant problem. This was accomplished by comparing the zero-point energy density of 

the vacuum to the observed energy density and showing that these differ by 120 orders of 

magnitude. It was also shown that the cosmological constant could act as a pressure to 

expand the universe and that the work done in an adiabatic expansion is precisely the 

amount of energy necessary to keep the cosmological constant a constant. 

The question of course is, does the cosmological constant exist? This problem 

involves two of the most successful physical theories. Quantum field theory which is 

accurate to one part in 1011 and general relativity with an accuracy25 of one in 1014 should 

not disagree by 120 orders of magnitude. Perhaps this is a clue that both theories are 

approximations of a more fundamental theory. 



APPENDIX 
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APPENDIXA 

DERIVATION OF EQ. (14) 

Given: 

V • { C X D } = D · V X C - C • V X D. (A.I) 

V • A= 0. (A.2) 

VA + k2 A = 0 (Hemholtz equation). (A.3) 

B = VX A (A.4) 

A = A e -i Cro t + k. x) 
0 (A.5) 

Show: 

B • B* = k2 A · A* (A.6) 

Proof: 

B · B* = { V X A } · {V X A*} (A.7) 
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- A* ·V XV X A+V• {AX V X A*} (A.8) 

=A*· { V·VA -VA}+ V • {A X V X A*}. (A.9) 

Substituting (A.2) and (A.3) into (A.9) we obtain 

{ V X A } • {V X A*}= k2 A · A* + V • { A X V X A*}. (A. l 0) 

Integrating (A.10) gives 

I ((V X A) . (V X A*)) dV = § " • (A X " X A*) dV 

+ I k2 A. A* dV. (A.11) 

Using the divergence theorem, we have 

§ V • (A X V X A*) dV = § dS· (A X ( V X A*)) . (A.12) 

This surface integral vanishes due to the periodic boundary conditions on A and A*. 

Thus (A.11) becomes 
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J ((V X A)· (V X A*)) dV = J le A· A* dV , (A.13) 

or 

B · B* = { V X A } • {V X A*} = k2 A · A* (A.14) 



APPENDIX B 

In Appendix B Newton's Law of gravitation will be used to derive the force on a mass 

located anywhere within the hollowed-out region of a solid sphere. 
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Figure B-1. A hollowed-out sphere of radius r1 within a solid sphere of radius r2, which contains a 
uniform distribution of matter. 



Consider the hollowed-out sphere in figure B-1. The potential <l> at the 

field point P (where the prime denotes a dummy variable of integration) is 

given by26 

<I> = -G J {p ( r') / r } dv' . 

For a uniform mass distribution 

p (r') = p. 

In spherical coordinates 

<I>= -Gp III {r' 2 sine cir' d0 d~}/ r, 

upon integrating with respect to cp from O to 2n, we have 

<I>= -2nGp Jr' 2 cir' J { sine de }/r. 

The law of cosines gives 
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(B.l) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 
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since R is constant for a given r', differentiation yields, 

2rdr = 2r'Rsin0d0 (B.6) 

substituting Eq. (B.6) into Eq. (B.4) and integrating first with limits on r from r' - R to 

r' + R and then with limits on r' from r1 to r2 yields, 

<I>= {-2nGp / R}J r' dr' f dr 

= -4 Gpf r'dr' 

According to Eq. (B. 7) the potential inside the hollowed-out region is constant, 

therefore the force on any mass placed within that region is zero. 

(B.7) 
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APPENDIXC 

In this appendix the Planck time, the Planck mass and the Planck energy will be given. 

Also, the unit conversions for Eq. (1.22) and Eq. (3.6) will be determined. 

PLANCK UNITS 

The Planck time tp is obtained from a combination of fundamental physical constants. 

It contains Newton's gravitational constant G, Planck's constant Ii and the speed of light c. 

For Ii= 1.05 x 10-34 J/s, G = 6.672 x 10-11 N m2/ kg2, 

and c = 3.0 x 108m/s, we have 

(C-1) 

The Planck mass Mp is also determined by a combination of the fundamental constants 

and is given by, 

The Planck energy Ep is then obtained from, 

Ep = Mp c2 = 1.221 x 1019 Gev. 

THE UNIT CONVERSION OF EQ. (1.22) 

Now let us consider the unit conversion ofEq. (1.22). From Eq. (1.21) 

Pvac = {romax)4 / 8n2. 

Let us introduce the fenni (f) unit oflength, where lf= lx 10·15m. 

Now lie= 3.162 x 10-17 erg• cm = 197.3 Mev • f. 

(C-2) 

(C-3) 

(C-4) 

(C-5) 



For Wmax = 1019 Gev, we have 

romax = {1019 Gev}{ 1/ ( 197.3 Mev• f)} 

= 5.08 X 109 / f 

Substituting (C-6) into (C-4) yields, 

Pvac = ( Wmax)4 / 8n2 

= (5.08 X 109 / f)4 / (81t2) 

= 8.4 X 1076 f'4 . 

THE UNIT CONVERSION OF EQ. (3.7) 

From Eq. (3.6) 

pg< 2.3 x 10 ·9 kg/m3. 

Using E = mc2 , we obtain 

1 kg = 9 X 1016 J. 

Also, 

1 Mev = 1.602 x 10-13 J, 

and 

lie= 197.3 Mev • f. 

Recalling that 

lf= lx 10-15m 
' 

36 

(C-6) 

(C-7) 

(C-8) 

(C-9) 

(C-10) 

(C-11) 

(C-12) 
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and combining (C-8) thru (C-12), we obtain 

(2.3 x 10-9 kg/m3) (9.0 x 1016 J/kg) (lMev/ 1.602 x 10-13J)(l x 10-15m/ t) 

( 1/ 197.3 Mev•t) = 6.5 x 10-27 f 4 . (C-13) 
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