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AN EXISTENCE RESULT FOR ELLIPTIC PROBLEMS WITH
SINGULAR CRITICAL GROWTH

YASMINA NASRI

Abstract. We prove the existence of nontrivial solutions for the singular

critical problem

−∆u− µ
u

|x|2
= λf(x)u + u2∗−1

with Dirichlet boundary conditions. Here the domain is a smooth bounded

subset of RN , N ≥ 3, and 2∗ = 2N
N−2

which is the critical Sobolev exponent.

1. Introduction

This paper concerns the semilinear elliptic problem

−∆u− µ
u

|x|2
= λf(x)u + u2∗−1 in Ω

u > 0 in Ω
u = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in RN , N ≥ 3 with 0 ∈ Ω; λ and µ are
positive parameters with 0 ≤ µ < µ := (N−2

2 )2, µ is the best constant in the Hardy
inequality, 2∗ = 2N

N−2 is the critical Sobolev exponent and f is a positive measurable
function which will be specified later.

In recent years, many people have paid much attention to the existence of non-
trivial solutions for singular problems we cite [4, 5, 7, 8] and the references cited
therein.

For f(x) = 1, Jannelli [7] obtained the following results:
If 0 ≤ µ ≤ µ− 1, then (1.1) has at least one solution u ∈ H1

0 (Ω) for all 0 < λ <
λ1(µ) where λ1(µ) is the first eigenvalue of the operator (−4− µ

|x|2 ) in H1
0 (Ω).

If µ−1 < µ < µ, then (1.1) has at least one solution u ∈ H1
0 (Ω) for all µ∗ < λ <

λ1(µ) where

µ∗ = min
ϕ∈H1

0 (Ω)

∫
Ω
|∇ϕ(x)|2
|x|2σ dx∫

Ω
|ϕ(x)|2
|x|2σ dx

and σ =
√

µ +
√

µ− µ.
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If µ− 1 < µ < µ and Ω = B(0, R) then (1.1) has no solution for λ ≤ µ∗.
If λ ≤ 0 and Ω is star shaped then (1.1) has no nontrivial solutions using

Pohozaev-type identity.
For the quasi-linear form of (1.1) the problem has been studied by [5] for µ = 0

and f(x) = 1
|x|q where 0 ≤ q < p. The purpose of the present paper is to extend

(partially) the results obtained by [7] to the case where f can be singular.
This paper is organized as follows. In section 2, we recall some preliminaries

results. In section 3, we give the proof of our theorem using mountain pass Theorem.

2. Notation and Preliminaries

We make use the following notation:
Lp(Ω), 1 ≤ p ≤ ∞, denote Lebesgue spaces, the norm Lp is denoted by ‖ · ‖p for

1 ≤ p ≤ ∞;
D1,2(RN ) denotes the closure space of C∞

0 (RN ) with respect the norm ‖·‖D1,2(RN ) :=( ∫
RN |∇u|2dx

)1/2;
Br(0) is the ball centred at 0 with radius r;
C, C1, C2 will denote various positive constants;
On H1

0 (Ω) we use the norm

‖u‖µ =
( ∫

Ω

(|∇u|2 − µ
u2

|x|2
)dx

)1/2

.

By Hardy’s inequality [6], this norm is equivalent to the usual norm of H1
0 (Ω). Let

F =
{
f : Ω → R+ : lim

|x|→0
|x|2f(x) = 0 with f ∈ L∞loc(Ω\{0})

}
;

for 0 ≤ β < 2, we set

F2,β =
{
f ∈ F : 0 < lim

|x|→0
|x|βf(x) < ∞

}
.

Now, we recall the following results.

Lemma 2.1 ([4]). Let 0 ≤ µ < µ = (N−2
2 )2, λ ∈ R+, f ∈ F . Then the eigenvalue

problem

−∆u− µ
u

|x|2
= λf(x)u in Ω

u = 0 on ∂Ω

admits a nontrivial weak solutions in H1
0 (Ω) corresponding to λ ∈ (λk

µ(f))∞k=1 where
0 < λ1

µ(f) < λ2
µ(f) ≤ λ3

µ(f) ≤ · · · → +∞.

Lemma 2.2 ([4]). Let Ω be a bounded domain in RN and f ∈ F . Then the
embedding H1

0 (Ω) ↪→ L2(Ω, f dx) is compact.

Lemma 2.3 ([4]). Let 2∗β = 2(N−β)
N−2 , if f ∈ F2,β, 0 ≤ β < 2; then the embedding

H1
0 (Ω) ↪→ Lq(Ω, fdx) is (i) continuous for all 2 ≤ q ≤ 2∗β, (ii) compact for 2 ≤ q <

2∗β.

Now, we give some examples of function f ∈ F having lower order singularity
than |x|−2 at the origin:

(a) Any bounded function.
(b) In a small neighbourhood of 0, f is |x|−β for 0 < β < 2.
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(c) f(x) = |x|−β/| log |x|| in a small neighbourhood of 0.

Definition 2.4. Let c ∈ R, E be a Banach space and I ∈ C1(E, R). We say that I
satisfies the Palais-Smale condition at the level c, for short (PS)c, if every sequence
(un)n in E such that I(un) → c and I ′(un) → 0 as n → +∞ in E′ (dual of E), has
a convergent subsequence in E.

Definition 2.5. A function u in H1
0 (Ω) is said to be a weak solution of (1.1) if u

satisfies∫
Ω

(
∇u∇v − µ

uv

|x|2
− λf(x)uvdx− u2∗−1

v
)
dx = 0 for all v ∈ H1

0 (Ω).

It is well known that the nontrivial solutions of (1.1) are equivalent to the non
zero critical points of the energy functional

Jλ,µ(u) =
1
2

∫
Ω

|∇u|2dx− µ

2

∫
Ω

u2

|x|2
dx− λ

2

∫
Ω

f(x)u2dx− 1
2∗

∫
Ω

|u|2
∗
dx.

Define the constant

Sµ = inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2dx− µ

∫
RN

u2

|x|2 dx( ∫
RN |u|2∗

)2/2∗
.

It is known that Sµ is achieved by the family of functions

u∗ε =
Cε

(ε|x|σ′/
√

µ + |x|σ/
√

µ)
√

µ

where Cε = (4εN(µ − µ)/(N − 2))
√

µ
2 , σ =

√
µ +

√
µ− µ and σ′ =

√
µ −

√
µ− µ,

see [8] for the details.
Note that u∗ε satisfies

−∆u− µ
u

|x|2
= |u|2

∗−2u for u ∈ D1,2(RN )\{0}.

Hence, we have

‖u∗ε‖2
µ = ‖u∗ε‖2∗

2∗ = (Sµ)N/2.

Let 0 ≤ φ(x) ≤ 1 be a function in C∞
0 (Ω) defined as

φ(x) =

{
1 if |x| ≤ R

0 if |x| ≥ 2R,

where B2R (0) ⊂ Ω. Set

uε = φ(x)u∗ε and vε =
uε

‖uε‖2∗
, (2.1)

so that ‖vε‖2∗

2∗ = 1.
In the present paper we prove the following result.

Theorem 2.6. Let f ∈ F2,β and 0 ≤ β < 2. If 0 ≤ µ ≤ µ − ( 2−β
2 )2 and

0 < λ < λ1
µ(f), then (1.1) has at least one positive solution.



4 Y. NASRI EJDE-2007/84

3. Proof of the main theorem

First, we establish some lemmas.

Lemma 3.1. Assume that f ∈ F2,β and 0 < λ < λ1
µ(f). Then Jλ,µ satisfies (PS)c

for all c < (Sµ)N/2/N .

Proof. Let (un)n be a sequence such that

Jλ,µ(un) → c and J ′λ,µ(un) → 0 in [H1
0 (Ω)]′ as n → +∞. (3.1)

We remark that

2Jλ,µ(un)−
〈
J ′λ,µ(un), un

〉
= (1− 2

2∗
)‖un‖2∗

2∗ ≤ 2c + o(1), (3.2)

combining (3.1) and (3.2) we show that (un) is bounded in H1
0 (Ω).

From Lemmas 2.2 and 2.3, and the reflexivity of H1
0 (Ω) we extract a subsequence,

still denoted un such that

un → u weakly in H1
0 (Ω)

un → u in Lr(Ω) if 1 < r < 2∗,
un → u almost everywhere,
un

x
→ u

x
weakly in L2(Ω),

un → u strongly in L2(Ω, fdx).

(3.3)

From (3.3) we deduce that

〈J ′λ,µ(u), ϕ〉 = 0 for all ϕ ∈ H1
0 (Ω), (3.4)

hence u is a solution of (1.1).
Denote vn := un − u, then the Brezis-Lieb lemma [2] implies

‖∇un‖2
2 = ‖∇u‖2

2 + ‖∇vn‖2
2 + o(1);

‖un‖2∗

2∗ = ‖u‖2∗

2∗ + ‖vn‖2∗

2∗ + o(1);∫
Ω

u2
n

|x|2
dx =

∫
Ω

u2

|x|2
dx +

∫
Ω

v2
n

|x|2
dx + o(1).

(3.5)

Using (3.1), (3.5) and lemma 2.2, we obtain

Jλ,µ(u) +
1
2
‖vn‖2

µ −
1
2∗
‖vn‖2∗

2∗ = c + o(1), (3.6)

and
‖u‖2

µ = ‖u‖2∗

2∗ + λ

∫
Ω

f(x)u2dx− ‖vn‖2
µ + ‖vn‖2∗

2∗ + o(1).

From (3.4) it follows that

‖vn‖2
µ − ‖vn‖2∗

2∗ = o(1).

We may therefore assume that

‖vn‖2
µ → a and ‖vn‖2∗

2∗ → a,

by the definition of Sµ, we have

Sµ‖vn‖2
2∗ ≤ ‖vn‖2

µ,

in the limit we have
Sµa2/2∗ ≤ a,
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it follows that either a = 0 or a ≥ (Sµ)N/2.
If a ≥ (Sµ)N/2 passing in the limit in (3.6) we obtain

Jλ,µ(u) +
1
N

a = c

using the assumption c < 1
N (Sµ)N/2, we find

Jλ,µ(u) < 0. (3.7)

On the other hand, from (3.4) we obtain

Jλ,µ(u) =
1
N
‖u‖2∗

2∗ ≥ 0,

which is a contradiction with (3.7). Then un → u strongly in H1
0 (Ω). �

Lemma 3.2. Assume that f ∈ F2,β then 1/ There exist α, δ > 0 such that
Jλ,µ(u) ≥ α for all u ∈ H1

0 (Ω) such that ‖u‖µ = δ for all 0 < λ < λ1
µ(f).

2/Jλ,µ(v) < 0 for all v ∈ H1
0 (Ω) such that ‖v‖µ > δ.

Proof. Using the definition of Sµ and the fact that 0 < λ < λ1
µ(f), we obtain

Jλ,µ(u) ≥ 1
2
(
1− λ

λ1
µ(f)

)
‖u‖2

µ −
1

2∗(Sµ)2∗/2
‖u‖2∗

µ .

So for δ > 0 sufficiently small there exists α > 0 such that

Jλ,µ(u) ≥ α for ‖u‖µ = δ.

For t > 0,

Jλ,µ(tu) =
t2

2
(‖u‖2

µ −
∫

Ω

f(x)u2dx)− t2
∗

2∗
‖u‖2∗

2∗dx,

as t → +∞ we have Jλ,µ(tu) → −∞. Then there exists v ∈ H1
0 (Ω) such that

Jλ,µ(v) < 0 for ‖v‖µ > δ. �

Lemma 3.3. Assume that 0 < λ < λ1
µ(f) and 0 ≤ µ ≤ µ− ( 2−β

2 )2. Then

sup
0≤t<∞

Jλ,µ(tvε) <
1
N

(Sµ)N/2

provided ε > 0 is a small enough.

Proof. Consider the functions

g (t) := Jλ,µ(tvε) =
t2

2
(‖vε‖2

µ − λ

∫
Ω

f(x)v2
εdx)− t2

∗

2∗
,

where vε is the extremal function defined in (2.1). Note that limt→+∞ g(t) = −∞
and g(t) > 0 when t is close to 0. So that supt≥0 g(t) is attained for some tε > 0.
From

0 = g′(tε) = tε
(
‖vε‖2

µ − λ

∫
Ω

f(x)v2
εdx

)
− t2

∗−1

ε ‖vε‖2∗

2∗ ,

we have

tε =
[
‖vε‖2

µ − λ

∫
Ω

f(x)v2
εdx

] 1
2∗−2

.

Thus,

g (tε) =
1
N

(
‖vε‖2

µ − λ

∫
Ω

f(x)v2
εdx

) 2∗
2∗−2

.
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Then as in [7] (see also [3]), we have the following estimates:∫
Ω

(
|∇vε|2dx− µ

vε
2

|x|2
)
dx = S

N
2

µ + Cε
N−2

2 ;

since f ∈ F2,β , there exist r > 0 and C1, C2 > 0 such that K1|x|−β ≤ f(x) ≤
K2|x|−β on BR (0). Thus

C1ε
√

µ̄

2
√

µ̄−µ
(2−β) ≤

∫
Ω

f(x)v2
εdx ≤ C2ε

√
µ̄

2
√

µ̄−µ
(2−β) if µ < µ− (

2− β

2
)2;

C1ε
N−2

2 | log ε| ≤
∫

Ω

f(x)v2
εdx ≤ C2ε

N−2
2 | log ε| if µ = µ− (

2− β

2
)2.

Consequently,

g (tε) ≤

{
1
N S

N
2

µ + Cε
N−2

2 − C1ε
N−2

2 | log ε| if µ = µ− ( 2−β
2 )2,

1
N S

N
2

µ + Cε
N−2

2 − C1ε
√

µ̄

2
√

µ̄−µ
(2−β) if µ < µ− ( 2−β

2 )2.

Therefore, for ε > 0 sufficiently small and µ ≤ µ− ( 2−β
2 )2 we get

sup
t≥0

Jλ,µ(tvε) <
1
N

SN/2
µ .

�

Proof of Theorem 2.6. From Lemmas 3.1, 3.2 and 3.3, Jλ,µ satisfies all assumptions
of mountain pass Theorem [1], then c is a critical value i.e. there exists u ∈ H1

0 (Ω)
such that J ′λ,µ(u) = 0 and Jλ,µ(u) = c > 0. Since Jλ,µ(u) = Jλ,µ(|u|) = c, thus
problem (1.1) admits a positive solution. �

References

[1] A. Ambrosetti, P. Rabinowitz; Dual variational methods in critical point theory and applica-
tions, J. Funct. Anal. 14 (1973), 349-381.
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Université de Tlemcen, département de mathématiques, BP 119 Tlemcen 13000, Algérie

E-mail address: y nasri@mail.univ-tlemcen.dz


	1. Introduction
	2. Notation and Preliminaries
	3. Proof of the main theorem
	References

