Electronic Journal of Differential Equations, Vol. 2007(2007), No. 96, pp. 1-10.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

POSITIVE SOLUTIONS FOR CLASSES OF MULTIPARAMETER
ELLIPTIC SEMIPOSITONE PROBLEMS

SCOTT CALDWELL, ALFONSO CASTRO,
RATNASINGHAM SHIVAJI, SUMALEE UNSURANGSIE

ABSTRACT. We study positive solutions to multiparameter boundary-value
problems of the form

—Au = Ag(u) + pf(u) in
u=0 on 09,

where A > 0, p > 0, Q C R™; n > 2 is a smooth bounded domain with 9Q2 in
class C? and A is the Laplacian operator. In particular, we assume g(0) >0
and superlinear while f(0) < 0, sublinear, and eventually strictly positive. For
fixed p, we establish existence and multiplicity for A small, and nonexistence
for A large. Our proofs are based on variational methods, the Mountain Pass
Lemma, and sub-super solutions.

1. INTRODUCTION

We study the multiparameter elliptic boundary-value problem
—Au=Mg(u) + pf(u) in Q
u=0 on 0, (1.1)
where A > 0, u > 0, Q C R™; n > 2 is a smooth bounded domain with 92 in class
C? and A is the Laplacian operator. We assume g : [0,00) — R is differentiable,

g(0) > 0, non decreasing, and there exist A, B € (0,00) and ¢ € (1, Z—fg) such that
for > 0 and large

Az < g(z) < Bxf. (1.2)
Also, we assume there exists § > 2 such that for x > 0 and large
29(x) > 0G(z) (1.3)

where G(z) = [ g(t)dt.
Further, we assume f : [0,00) — R is differentiable, f(0) < 0, non decreasing,
eventually strictly positive, and there exists a € (0,1) such that

lim —f (Z)
u—oo U

We establish the following results:

—0. (1.4)
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Theorem 1.1. Let p > 0 be fized. There exists \* > 0 such that if X € (0, \*),
(1.1) has a positive solution uy satisfying ||ux|leco > CNTTT, where ¢ > 0 s
independent of \.

Theorem 1.2. There exists o > 0 such that for p > po, (L.1) has at least two
positive solutions for \ small.

Theorem 1.3. Let u > 0 be fixzed. Then (1.1)) has no positive solution for X\ large.

We note that for fixed p > 0, when A is small Ag(0) + pf(0) < 0, and hence
is a semipositone problem. It has been well documented in recent years
(see [8, 12, 13]), that the study of positive solutions for semipositone problems is
mathematically very challenging. We establish Theorem using the Mountain
Pass Lemma. In Theorem the second positive solution is established via sub-
super solutions. The nonexistence result in Theorem is proved by using the
fact that Ag(u) + pf(u) is bounded below by a piecewise linear function. We will
prove Theorem in Section 2, Theorem [I.2] in Section 3, and Theorem in
Section 3. Our results apply, for example, to the case when f(u) = (u+1)3 — 2
and g(u) = u® + 1.

We refer the reader to [10] where the case n = 1 was studied in detail. In
particular, using a modified quadrature method, analysis of positive solution curves
and their evolution as A, i vary was established. See [25] for related results for single
parameter semipositone problems.

2. PROOF oF THEOREM [L.1]

We extend g and f as g(x) = ¢(0) and f(z) = f(0) for all z < 0. Throughout
this paper we will denote by W the Sobolev space VVO1 2(9) and by L" the space
L™(Q), for r € [1,00). Let J : W — R be defined by

2
; |V;| dx — A Hy (u)dz, (2.1)

J(u) ==

where H)(u) = AG(u) + pF(u) with G(t) = fot g(s)ds and F(t) = fot f(s)ds. For
future reference we note that there exist real numbers A, B, C such that

q+1 N
G(z) < B|x|+1 +B forallz€R,
q
q+1 N
G(z) > A;+ 1 + A forall z € [0,00), (2.2)

F(z) < |z|**t 4+ C forall z € R.
In addition, defining hy(z) = Ag(x) + pf(z) it follows from that for any
01 € (2,6), there exists 63 such that
xhx(z) > 61 (AG(x) + pF(x) — 02) for all x € R. (2.3)
Also from and we see that there exists 05 such that
lg(x)] < 03(Jz|?+1) forall z € R.

|f(x)] < Os5(lz]+1) forall z € R. 24)

It is well known that J is class C'' and that u is a critical point of J if and only
if u is a solution of (1.1). We prove J has a critical point using the Mountain Pass
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Lemma (see Ambrosetti and Rabinowitz in [5]). We now recall the Mountain Pass
Lemma.

Lemma 2.1 (Mountain Pass Lemma). Let E be a real Banach space and J €
CY(E,R) satisfy the Palais-Smale condition. Suppose J(0) =0 and

(I) there are constants p, o > 0 such that J/sp, > a and
(II) there is an e € E\B, such that J(e) < 0.

Then J possesses a critical value co > a. Moreover, ¢y can be characterized as

=i f
0= er tegj[l(a()),(l)] T(t),
where I' = {o € C([0,1], E) : 0(0) = 0,0(1) = e} and B, is a ball in E with center
0 and radius p.

We recall that J : W — R is said to satisfy the Palais-Smale condition if every
sequence (vy), such that (J(vy,)) is bounded and VJ(v,) — 0, has a convergent
subsequence.

Due to a standard argument (see [5]) shows that for each A > 0, the
functional J satisfies the Palais-Smale condition.

In Lemma [2.2] we show that J satisfies the first and second conditions of the
Mountain Pass Lemma and obtain a critical estimate on J. In Lemma 23] we
obtain a crucial regularity estimate which we will use to prove that the solution
obtained from the Mountain Pass Lemma is positive.

In the next lemma we prove that J satisfies the remaining conditions of the
Mountain Pass Lemma and obtain an estimate on the critical level.

Lemma 2.2. There exists A\ > 0 and C > 0 such that if X\ € (0,)\) then J has a
critical point uy of mountain pass type satisfying
2 2

J(’LL)\) > C%/\_ q-1,

Proof. By the Sobolev imbedding theorem there exist positive constants K7, Ko
such that

lullzon@) < Krllulyzgy and Jullger@ < Kolulyregy, — (25)

1
for all u € Wol’Q(Q)' Let C = ((¢ + 1)/(4BKf+1))1/(q+1) and # — OXN -1 Let
||u||W012 = r. This and 1' yield

1
Jw) == r*— | Hy(u)dx
2 Q
1 \B ~ 3
>0 - ?/ |tz — AB|O| M/ o+ dz — uC10)|
q Q Q
1 ABKIt! . N
> - p? = Lt _ABIQ| — pKg Tt — uC|Q
Z 5 | QU — nK3 uClQ| 26)

2
— \"2/(a=1) (g — At/ @D B — pKRgTI ot N/ (a=1)
4

_Mé|Q|/\2/(q—1))

2
> 32/
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for A sufficiently small.
Let v denote an eigenfunction corresponding to the principal eigenvalue Ay of
—A with Dirichlet boundary conditions with v; > 0 and ||v; ||W01,2 = 1. Let

F(B) = min{F(s);s € [0,00)}. (2.7)

For s > 0

2
J(sv1) = 5”1)1”?%},2(9) - )\/Q G(svy)dx — M/QF(svl)dm

2 pat! _ (2.8)
< ——/\(Asq“/ 1—dx+AQ) — uF(B)Q
<3 [ e+ Ai0)) — uF ()2

— —00 as § — 00,
since ¢ > 1. This implies there is a s; > r such that J(sjv1) < 0. By choosing
v = s1v; we have satisfied the second condition of the Mountain Pass Lemma and
Lemma [2.2]is proven. (I

Lemma 2.3. There exist ¢; > 0 and A € (0, ), such that ||uy s < CIATT for all
Ae (0,0).

Proof. Throughout this proof ¢ denotes several positive constants independent of
the parameter A. From (2.2)) we have

J(sv1) = 1 52 ,/ H)y(svy)dx
2 Q
1 AAsatl )
< — 2 _ q+1d “A\AIQ| — uF Q
=27 T gt /Q|”1| z Q] — uF(B)]9] 9
= % s = %Sq“ — (uF(B) + AA)|Q| where Ko = [, |v1|" dz
q
= p(s) — (WF(B) + AA)|9].
Since
1 1
<|lz—-——= —2/(q—1) y—2/(q—1) .

for s € [0,00), there exists a positive constant ¢ such that for A > 0 sufficiently
small

J(sv1) < A2/ for all s € [0, 00). (2.11)
Since J(uy) < max{J(sv1);s € [0, s1]} we have
J(uy) < e/, (2.12)

for A > 0 sufficiently small.
From (2.3)), for A small we have

||UH?/VOL2(Q) S 20)\—2/(11—1) + 2/§\2H)\(U)\)d$
2
< 2eA"Hla-h) 4 ?/ unhy (uy)dz + 202|Q (2.13)
1.JQ

2
— -2 —1 2
=2e\"2/ >+701 lull .2 ) + 26212,
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Since 67 > 2, from (2.13]) we see that there exists ¢ > 0 such that for A small
lunllwa2 gy < e/ @D, (2.14)

This, (2.3), and the fact that uy is a critical point of J also give

/ uphy(uy)de < e~/ and Hy(uy)dx < eA"2/(a=1) (2.15)
Q Q

From ([2.14) and the Sobolev imbedding theorem, for A > 0 small, ||ux||z2n/(n-2 <

Kex—1/(a=1) where K > 0 is the positive constant given in this imbedding. Hence
: . (a=1)(n—2) a(n=2)

using 1l and letting a1 = ||~ 2z» a3 = || @ we have

q(n—2)
@n)

s )l < 0 ([ (unt” + o] + () 7557 )

< O3 (Muall?s- + parfluallpe + (A + p)az)
< O3 (AKuxllfy + par K |luxllw 4 (A + p)az) ,

(2.16)

Since the constants 63, K, i1, a1, a2 in (2.16) are independent of A, from (2.14]) we
see that there exists a positive constant ¢ such that for A small enough

[Ba(ur) || 2e s < eA™H 0D, (2.17)

By a priori estimates for elliptic boundary-value problems (see [I]) |Juy|lz < eA=1/ (=1,
where || ||2 denotes the norm in the Sobolev space W22({2) and c is a constant in-
dependent of X. Since W?2(Q) may be imbedded into L**/("~% repeating the

argument in ([2.16]) and (2.17)) we see that

[ha(un) || p2n/ -y < AT and  fuylf, 2n < At (2.18)
=
where || - |5 2n denotes the norm in the Sobolev space W 2ty (Q). Tterating
N

this argument we conclude that
usllz,r < eA™H @70, (2.19)

with » > n/2. Since for such r’s, W27 is continuously imbedded in L>°, we have
luxl| < eA=1/@=1 which proves the lemma. O

Proof of Theorem [1.1} From the definition of g we see that G is bounded from
below. We let G = inf{G(s); s € R}. This, Lemma and (2.7) give

/Q ha(un)uadz = [|us |3
> 2J(uy) + 2(G + F(B))|]
o A (2.20)
> Tx?/@*l) +2(G+ F(0))|9

2
> C;)\*Z/(q*l)
- 8 i

for A > 0 small. Let v > 0 be such that |Q|037[(v? + yp) = C?/(32]Q2]) with C as
in (2.20), and Q) = {z;u(z) > YA~ D}, From Lemma (2.20), and (2.4
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we have
02
?)\_2/((1_1) S/ hA(u,\)uAda:
Q
= h,\(uA)u,\dx—i-/ hA(u,\)u,\dﬂc
) 20 (2.21)
< |03 A [(ef + AT ED 4 X+ )

+ 1000372 @I [+ )AL A+ )
< 20,0 ([ e (¢] + eap) + QP (7 + ),

for A > 0 small. Now by the definition of v we conclude
C2
Q> ——— =k 2.22
= 3203c1(ct + c1p) ! (222)
Let z : Q — R be the solution to
—Az=1 inQ

z=0 on 0N (2.23)

Since € is assumed to be of class C2, from regularity theory for elliptic boundary-
value problems it is well know (see [I8]) that there exist a positive constants oy, o9
such that

o1d(z,00) < z(z) < god(z,00), (2.24)
where d(x,092) denotes the distance from x to the boundary of 2.

Let n(x) denote the inward unit normal to © at € 9Q. Since Q is a smooth

region, there exist an € > 0 such that

N (09) = {x+ Bn(z) : B € [0,e),z € ON}

is an open neighborhood of 9 relative to 2. Also (see [19]), this € can be chosen
small enough so that if y = = + fn(z) then d(y,00) = |B]. Since |N(0Q)| =
O(g) — 0 as ¢ — 0, we can without loss of generality assume that

IN.(00)] < 3

Letting Ky = Q) — N:(99), we have that
k
|Ky| > 71

Let G denote the Green’s function of the Laplacian operator, —A, in €, with
Dirichlet boundary condition. For x € K and £ € 992 we have, by Hopf’s maximum
principle,

oG

— > 0.

o (@.6)
Since K x 09 is compact there exists €1 € (0,¢) and b > 0 such that if x € K
and & € N, (09) then

oG

— > b.

o (e.6) 2
In particular, for z € Ky and d(£,09Q) < 1 we have G(x,&) > bd(£,09). For &
such that d(&,0Q) < &1 we have

ur(€) = /Q G, ) (un)dr = /Q G, ) Mg un)dx + /Q G, O)uf (up)de
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Since g(uy) > 0 for all uy

ux© > [ Gla.e)Aglus)de + / Gz, E)uf (ur)da

K

> [ Gz, &) g(ur)dz + pf(0)=(S).

Ky

Therefore, for A small enough by (1.2)) and (2.24]),

ux(€) > /K bd(€, 0N Auldz + uf(0)2(¢)

> bd(€, 0Q) AyINTT K| + uf (0)02d(€, 09)
> ad(€, 0)NT T,

(2.25)

where ¢ > 0 is independent of .
We define w)y (z) and zy(z) such that

—Awy = Ag(uy) + pft(uy) in Q

wy =0 on 9N
and
—Azy =pf (uy) inf
zy=0 1in 09
where

_Jfx) =8 oy ) f@) x<p
f+(ac)—{0 x<p and f (x)_{O x>0,

It is clear that uy = wy + z). Also, note that
@) = [ Glauf ™ (un()dy
so clearly zy < 0 and since £~ (ux(y)) > f(0) we have
@) = [ Glaps©dy = (0) [ Gl

So we have —M; < z(zx) < 0 where M; = —pf(0) max, g [, G(x,y)dy > 0. For
such that d(x,9Q) = 1 we have

wx(€) = ur(€) — 22 () > ua(€) > eeATT,

and by the maximum principle we have wy(x) > e1éNTT for all 2 € Q — N, (09).
This implies that uy (z) = wy(z)+2x(x) > €16\a=T — M and so ux(z) > (616/2)Aq;—11
for all z € Q\N¢, (09) for small A\. This and imply that for A small enough
ux(z) > 0 on , which proves Theorem [1.1 O
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3. PROOF OF THEOREM

In this section we prove a multiplicity result for g > pg and A small using a sub
and super solution method. According to [II] there exists a o > 0 such that for
> o there exists a w such that

—Aw = pf(w) in
w=0 on JN

where w > 0 on 2. Since A > 0 and g > 0 it follows that

—Aw < Ag(w) + pf(w) in Q
w <0 on 09,

which implies that w is a sub solution of (1.1)).
Let z be as in (2.23]). Define ¢ = oz where o > 0, independent of A, is large
enough so ¢ > w in Q and

floz) 1
K o 2
This is possible since f is a sublinear function (see ((1.4)). Next let A > 0 be so
small that

Thus
—A¢ =0 > Ag(02) + pf(oz) = Ag(¢) + nf(¢) in Q.

Hence ¢ is a supersolution of (1.1)) and there exists a solution @) (say) of (1.1)
such that w < uy < ¢ for u > pp and A > 0 small. However, from Theorem
for Asmall, we have the existence of a positive solution, uy, such that ||u|/eco >

co)\_rll. Hence A. small uy and u) are two distinct positive solutions of (1.1]).

4. PROOF OF THEOREM [L3|

Let u be a positive solution to (|1.1)). There exist ¢ > 0 and € > 0 such that
g(u) > (ou+¢) for all u > 0. So for A > 0, it follows that

Aou +¢€) for u > 3

Ag(u) + pf (u) > {)\(UUJFE) + uf(0) foru<f.

Choosing A large enough so that Ae + pf(0) > %, we have

M)+ f () 2 Ao+ 5

for u > 0 and X large. Now let A1 be the first eigenvalue and ¢ > 0 be a correspond-
ing eigenfunction of —A with Dirichlet boundary condition. Multiplying both sides

of (1.1) by ¢ and integrating we get

/ (—Au)pdz = / (Ag(w) + f ()b
Q Q
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which implies
[ wnide = [ gta) + s (w)ods
Q Q

/u)\lcédx > /()\au—i— E)(ﬁclx,
Q Q 2

/Q[Al — Aojupdx > /Q %d)dx.

For \ > % we obtain a contradiction. So for a given p > 0, (|1.1)) has no positive
solution for large .

Appendix A. (see also [9] and [25]) Let 1 < ¢ < 22 and ag = 2n/(n — 2). If
{a;} is the sequence defined by
- a5 1N
= qn — 2051

then there exists an integer k£ > 0 such that gn — 2 < 0.

Proof. Assume 20 < gn for j =0,1,2,...,p, for all p> 0. Then
Q;_11

% O e O
_ajoin—ajoign +2(a;-1)°
qn — 2051
n —qn+ 2051
=aj[————
qn — 201
for 7 =0,1,2,...,p, for all p > 0. Hence
n
—ag=ag]l—— —1]=A4(¢,n) >0
o1 — Qo Oéo[qn_ 200 ] (g,n)
since 1 < g < Z—fg, and a; > . Similarly,
n n
- =0 | ———— — 1] > ap|———— — 1],
azm o al[qn—Qal ] ao[qn—2a0 )

80 ag > g and ag > ap+2A(g,n). Repeating this argument p times we have a,, >
ag + pA(g,n) and (o) to be increasing in constant increments, which contradicts
2ap < gn for all p > 0. (]
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