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Abstract

Statistical analysis of microarray gene expression data has recently attracted a great deal of
attention. One problem of interest is to relate genes to survival outcomes of patients with the
purpose of building regression models for the prediction of future patients’ survival based on their
gene expression data. For this, several authors have discussed the use of the proportional hazards
or Cox model after reducing the dimension of the gene expression data. This paper presents a
new approach to conduct the Cox survival analysis of microarray gene expression data with the
focus on models’ predictive ability. The method modifies the correlation principal component
regression (Sun, 1995) to handle the censoring problem of survival data. The results based on
simulated data and a set of publicly available data on diffuse large B-cell lymphoma show that the
proposed method works well in terms of models’ robustness and predictive ability in comparison
with some existing partial least squares approaches. Also, the new approach is simpler and easy
to implement.

KEYWORDS: survival analysis, Cox model, microarray gene expression data, correlation prin-
cipal component regression
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1 INTRODUCTION

One of the major advantages of microarray technology is that it allows simulta-
neous monitoring or measurements of expression levels of thousands of genes.
In consequence, this has produced a huge amount of high-dimension gene ex-
pression data and led to a great deal of research effort in statistics spent on
the development of statistical approaches appropriate for the analysis of such
data. In the analysis of microarray gene expression data, several questions
have drawn a lot of attention. One is the classification or cluster analysis of
gene expression data with purposes of, for example, classifying samples into
categories such as types or grades of tumors. The developed methods for this
have helped, for example, identify previously undetected subtypes of cancer.
Another question is how to identify differentially expressed genes. This could
be a single gene or a group of genes related to or determining a clinical out-
come of interest. Also the genes to be identified could be unknown one or
more specific groups of genes to the researchers. This paper discusses survival
analysis of microarray gene expression data with purposes of relating gene
expression information or patterns to clinical variables representing times to
certain events such as survival times of cancer patients.

In the analysis of microarray gene expression data, one of the main chal-
lenges to statisticians is the number of variables (genes) needed to be dealt
with, which of course could be thousands, being larger than or far exceeding
the number of samples. It is well-known that this makes invalid or inappro-
priate most of existing statistical methods such as commonly used approaches
for linear or nonlinear regression analysis and survival analysis. The same
problem was encountered in chemometrics where one of the main purposes is
to predict variables such as the quality of a product or human blood analytes
using spectrum information that can be measured at hundreds or thousands
of different wavelengthes simultaneously. For spectrum analysis, a number of
regression techniques that allow a large number of variables have been devel-
oped and investigated. These include the standard principal component re-
gression (SPCR), linear and nonlinear partial least squares (PLS) approaches
and correlation principal component regression (CPCR). The CPCR has been
successfully used in chemometrics to achieve a simpler and better prediction
model than SPCR and PLS regression (Sun, 1995). Note that all of statistical
methods developed in chemometrics are for the purpose of regression analysis,
not survival analysis.

For the survival analysis of microarray gene expression data, in addition to
facing a large number of variables, one has to deal with censoring, a common
and unique feature of survival data. Due to this and the special interest in sur-
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vival analysis, models commonly used in survival analysis are quite different
from those usually employed in regression analysis. Among them, the most
widely used model is the proportional hazards or Cox model for right-censored
data and several authors have investigated the use of its combination with the
principal component analysis (PCA) or PLS for the survival analysis of gene
expression data. For example, Nguyen and Rocke (2002) suggested to first
apply the PLS approach to gene expression and survival data to reduce the
dimension and then fit the Cox model to the resulting PLS components with
the survival data. Park et al. (2002) proposed a method to transform the Cox
survival analysis to a generalized linear regression problem and then apply the
PLS technique to the transformed problem. Li and Gui (2004) also developed
a clever analysis procedure that allows one to perform the PLS analysis un-
der the Cox model. Note that the set of PLS components in these methods
are determined using a complicated algorithm and the results of both gene
expression and survival data. This could make the study of the properties of
these methods more challenging. Of course, one could directly use the com-
ponents resulting from PCA for the Cox survival analysis. However, this has
been proved to tend to give less satisfactory results due to the fact that the
components obtained may not be related to patients’ survival (Bair and Tib-
shirani, 2004). Li and Li (2004) proposed to first select a subset of principal
components and then apply a sufficient dimension reduction method to ob-
tain fewer number covariates in the Cox model, which requires an additional
assumption. Other approaches not using principle components or PLS compo-
nents include penalized partial likelihood approaches (Gui and Li, 2005) and
a boosting procedure using smoothing splines (Li and Luan, 2005).

In this paper, we present a new approach for the Cox survival analysis.
Instead of PCA or PLS, the approach makes use of a variant of CPCR, which
will still be referred as CPCR. Details of the methodology are presented in Sec-
tion 2. The section also discusses the criteria for the selection and assessment
of the prediction ability of models. In Section 3, for illustration, we apply the
proposed method to a set of gene expression data with survival information on
the diffuse large B-cell lymphoma (DLBCL) patients used by other authors to
illustrate their methods. We also compare the proposed method with existing
methods based on simulated data. The results suggest that the new method
gives better prediction models and is more robust in situations considered. We
conclude the paper with some remarks in Section 4.
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2 METHODS

2.1 Correlation Principal Component Regression

The SPCR has been used as a regression technique for a long time mainly
for the situation where there exist strong multicollinearities among predictor
variables and/or the number of predictor variables is close to or larger than the
sample size such as in gene expression data. Multicollinearities could cause the
variances of some of the estimated coefficients being very large and, thus, lead
to unstable and potentially misleading estimates of the regression equations.
CPCR is a variant of the SPCR and was developed particularly for the case
where the prediction is of main interest. The idea behind SPCR is to regress a
response variable on principal components ordered by their variability rather
than on original predictor variables, while the idea behind CPCR is to regress
a response variable on principal components ordered by their correlations with
the response variable. In both cases, the number of principal components used
in the final regression model is typically much less than the number of predictor
variables.

Let X (n× p) denote the gene expression level matrix with n samples and
p genes (predictor variables) and Y (n× 1) the sample of a response variable.
In SPCR, the first step is to find the principal components of X given by
Z = ( z1, ... zK ) = UD, where K = min{p, n}, the zl’s are ordered by their
variances from the largest to the smallest and X = U D V t is the singular
value decomposition of X, where U(n × p) and V (p × p) are matrices with
U tU = V tV = V V t = I(p× p), an identity matrix, and D(p× p) is a diagonal
matrix with eigenvalues of X tX on diagonal positions. For a given integer A,
the least squares regression is applied by regressing Y on ZA = ( z1, ..., zA ),
the first A principal components of X. For CPCR, the first step is the same as
in SPCR, but in the second step, the least square regression is applied through
regressing Y on Z∗

A = ( z∗
1 , ..., z

∗
A ), the first A principal components with the

highest correlations with Y .
Note that the idea behind SPCR is to retain as much as possible the vari-

ation present in the data. When prediction is mainly concerned, retaining the
variability is no longer of interest. Instead one would be mostly interested
in the variability of a predicted value that is usually evaluated by prediction
errors discussed below. In other words, SPCR assumes that the main informa-
tion of interest is contained in the directions of the predictor space with high
variations. In some situations, however, the high variations may be generated
by sources that are not related to the response variable under study and it’s
not uncommon that a component with lower variance is a good predictor in
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a regression model (Jolliffe, 2002). In these cases, it is natural to use only
the principal components that represent relevant directions in the regression
as in CPCR. In general, the major information about a response variable is
often included in the principal components with intermediate variances, espe-
cially in the case where the ratio of the sample size to the number of genes is
small. In this case, there is not enough information available to estimate the
regression parameters in all directions and only the parameters in important
directions should be estimated. Also there always exists noise in the measure-
ment, and thus the more principal components used in the model, the larger
noise is incorporated. This is partly the motivation for CPCR, which employs
only the relevant principal components (with large correlations) and ignores
the irrelevant principal components.

As mentioned earlier, PLS has been used in the Cox survival analysis of
gene expression data. Similar to CPCR, it assumes that the information of
interest about a response variable is mainly contained in the directions of the
predictor space which have both large variations and high correlations with
the response variable. Note that in all of SPCR, CPCR and PLS, a sequence of
models is generated. The selection of an appropriate model will be discussed
below.

2.2 Cox Survival Analysis

By Cox survival analysis, we mean the analysis of survival data using the
proportional hazards or Cox regression model, the most commonly used model
in survival analysis. Suppose that one observes right-censored survival data
given by { (Yi = min{Ti, Ci}, δi = I(Yi = Ti), Xi); i = 1, ..., n }, where Ti

denotes the true survival time, Ci the censoring time independent of the Ti,
and Xi the vector of covariates or genes associated with subject i in the study.
Let λ(t|Xi) denote the hazard function given covariates Xi, the probability
that a subject with Xi fails at time t given that the subject has survived up
to time t. The Cox model assumes that

λ(t|Xi) = λ0(t) exp(β′ Xi) , (1)

where λ0(t) is an unknown baseline hazard function corresponding to subject
with Xi = 0 and β is the vector of regression parameters. The objectives are
to make inference about β and predict future survival.

To estimate β, the most frequently used procedure is to find β that maxi-
mizes the so-called partial likelihood function

Lp(β) =
n∏

i=1

{
exp(β′Xi)∑n

j=1 I(yj ≥ yi) exp(β′Xj)

}δi

.
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Note that Lp does not involve λ0(t), a main advantage of the partial likelihood
approach. Of course all methods developed for the Cox model assumes that
the sample size n is larger than the dimension of the Xi’s. In the next subsec-
tion, we discuss how to perform the Cox survival analysis for microarray gene
expression data.

2.3 A Proposed Survival Analysis Procedure

The proposed procedure is similar to that given in Nguyen and Rocke (2002).
Instead of using PLS, we propose to use a variant of CPCR to first reduce
the dimension of gene expression data by finding the principal components
and order them based on the strength of their association with the survival
time. Specifically, let X = (X1, ..., Xn)′ (n × p) denote the gene expression
data matrix, Y (n × 1) the response vector of interest representing survival
times to a certain event such as death due to cancer or censoring times, and
δ (n × 1) the vector of censoring indicators. We apply CPCR to X, Y , and
δ to obtain the principal components Z∗ = ( z∗1 , ..., z

∗
K ), ordered from the

smallest to largest based on the p−values from testing β = 0 under model
(1) when regressing Y on the principal components individually. Note that
we propose to use p−values instead of correlation coefficients between the
true survival time and individual components because the coefficients cannot
be computed due to censoring. For X with centered columns, K = n − 1.
For each A (1 ≤ A ≤ K), replacing predictor variables in model (1) with
Z∗

A = ( z∗1 , ..., z
∗
A ) gives

λ(t|Z∗
A) = λ0(t) exp(β∗′

A Z∗
A) = λ0(t) exp(f(X)), (2)

where the risk score function f(X) is a linear combination of the original
data matrix X. Then one applies the partial likelihood approach to obtain an
estimate β̂∗

A in model (2). The estimate, say β̂A, of the original β in model (1)
can then be obtained by transforming Z∗

A back to X.
Note that if model (2) consists of all the PCs, it is equivalent to one in-

cluding of all genes, so the problems caused by multicollinearities have not
gone away. Thus, one key part of the above procedure is the selection of A,
the number of the components used in model building. For this, note that it
usually depends on the purpose of the modeling. In general, the number of
components (A) in a model could be regarded as an indicator of the complex-
ity of the model, and the larger A is, the bigger noise is incorporated and the
more sensitive the model is to outliers. In other words, if the prediction is
of main interest, one would prefer a model with fewer number of components
and smaller prediction error.
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In order to assess how well a model predicts future survival outcomes, one
can randomly set aside a set of observations in the dataset as validation data
and use the remaining as training data for model fitting. Then the predictive
performance of a fitted model can be evaluated using root mean squared error
for prediction (RMSEP), area under a time dependent ROC curve (AUC), or
correct prediction or classification rate if risk group information, such as stages
in tumor development, of a subject is available.

To obtain the RMSEP, let R denote a random subset of {1, ..., n} with m
elements and β̂∗

A,R the partial likelihood estimator obtained based on training
data {YR, Z∗

A,R}, where {YR, Z∗
A,R} denotes {Y, Z∗

A} with the information on

subjects iεR removed. That is, β̂∗
A,R is β̂∗

A with the information from the sub-
jects i ε R removed. For each i ε R in the validation set, define the martingale
residual as

Mi,R = δi −
∫

I(Yi ≥ t) exp(β̂∗ ′
A,R z∗A,R, i) dΛ̂∗

0(t; β̂
∗
A,R) ,

where z∗A,R, i is the transformed Xi given by the same operation that gives Z∗
A

from X and

Λ̂∗
0(t; β̂

∗
A,R) =

∫ t

0

{ ∑
i

I(Yi ≥ s) exp(β̂∗ ′
A,R z∗∗A, i)

}−1 ∑
i

d I(Yi ≤ s, δi = 1) ,

which is an estimate of the baseline cumulative hazard function. In the above,
the summations

∑
i and

∑
l are over subjects not in R and z∗∗A, l is the lth row

of Z∗
A,R. Then we propose to define the prediction error of a model as

RMSEP (A,m) =

{
1

m

∑
iεR

M2
i,R

}1/2

,

the delete-m root mean square error of prediction. Alternatively, one can use

RMSEP (A) =

(
1

n

n∑
i=1

M2
i, i

)1/2

,

the delete-one root mean square error of prediction, as a criterion to evaluate
the prediction ability of a model. Note that in RMSEP (A), the subset R
contains only one element i.

Let A0 denote A such that RMSEP (A0,m) for a given m or RMSEP (A0)
minimizes RMSEP (A,m) or RMSEP (A), respectively. The optimal or final
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Cox survival model is then given by model (2) with βA and λ0(t) replaced by
β̂A0 and dΛ̂0(t; β̂A0), where

Λ̂0(t; β̂A0) =

∫ t

0

{
n∑

i=1

I(Yi ≥ s) exp(β̂′
A0

Xi)

}−1 n∑
i=1

d I(Yi ≤ s, δi = 1) .

Note that in practice, one may want to choose a model or A∗
0 such that

RMSEP (A∗
0,m) or RMSEP (A∗

0) is close to the minimum, but A∗
0 is less

than A0, which achieves the minimum RMSEP. This could give a simpler and
more robust model with similar prediction ability. Since most statistical soft-
ware packages such as SAS, S-PLUS, and R contain functions for the partial
likelihood approach and SPCR, the proposed procedure can be easily imple-
mented.

The second criterion is to use AUC, originally developed by Heagerty et.
al. (2000), computed from each subject in the validation dataset to assess the
predictive ability of a model at different time points. For right-censored data,
time-dependent event indicator δ(t) indicates whether a survival time is larger
or smaller than time t. At each time t, risk score function f(X) in model (2)
can be used as a continuous diagnostic marker of a survival outcome for the
binary variable δ(t). Following Li and Gui (2004), we can define

sensitivity (c , t | f(X) ) = P{ f(X) > c | δ ( t ) = 1}, and

specificity (c , t | f(X) ) = P{ f(X) ≤ c | δ ( t ) = 0}.
At time t, AUC is then defined as the area under a time-dependent receiver
operator characteristic curve, ROC (t | f (X) ), which is a plot of sensitivity
(t | f (X) ) vs. 1−specificity (t | f (X) ) with c, the cutoff value for f(X), vary-
ing. The larger the AUC is, the better predictive ability a model has at a
certain time. Note that a nearest neighbor estimation of the bivariate distri-
bution was used to estimate the sensitivity and specificity, which guarantees
that both are monotonic in c (Heagerty et al. 2004 and Akritas, 1994). In
practice, to construct a ROC (t | f ( X ) curve and compute the corresponding
AUC at time t, one may use a certain number, say r, of values for c between
the smallest and the largest values of f(X) based on validation data. One
would choose a model that gives the largest AUC.

In addition, since f(X), the risk score function in model (2), is a risk
indicator of the survival event such as death in cancer studies, subjects can be
classified into different risk groups such as different tumor development stages
based on their values of the risk score function when comparing to a certain
cutoff f0, which may be determined with the help of a professional such as a
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physician based on data in the past. When information about membership of
a subject to a risk group is available, one can compute the correct classification
rate, which is computed as percentage of times a subject is correctly classified
into a group. This criterion is used in a simulation study in the next section
to evaluation the proposed method.

3 NUMERICAL STUDIES AND RESULTS

3.1 DLBCL Data

To illustrate the procedure presented in the previous section and compare it to
the two partial least squares methods proposed in Li and Gui (2004), referred
as LG1 and LG2 thereafter, we reanalyzed the DLBCL gene expression data
that were analyzed by Rosenwald et. al. (2002) and Li and Gui (2004) among
others. The dataset includes gene expression measurements of 7,399 genes on
240 patients with DLBCL and their survival times. There exist some missing
gene expression measurements and they are replaced by the average of gene
expression measurements of the nearest 8 genes according to the Euclidean
distance as described in Li and Gui (2004). Among the 240 patients, 138
(57.5%) deaths were observed during the study with the median death time
of 2.8 years and, for others, right-censoring times were observed.

Considering the fact that most genes are irrelevant to patients’ survival,
we analyzed the reduced dataset given by 488 genes that are significantly
related to the hazard rate of survival time at 0.01 significance level based on
the univariate Cox regression analysis to reduce noise. To select a proper
model, we then divided the 240 patients at randomly into two samples with
m = n/3 = 80 patients in the validation sample and the remaining in the
training sample, as in Li and Gui (2004) and Bair and Tibshirani (2004).
We fit model (2) to the training data and calculated the root mean square
error of prediction RMSEP (A,m) based on the validation data. The above
procedure is repeated for 50 times. Figure 1 (a) presents the average curves of
the error of prediction obtained by connecting the values of RMSEP (A,m)
up to A = 5. Note that here we have three curves corresponding to three
different Cox regression procedures. The curve corresponding to CPCR was
obtained by using the procedure proposed in the previous section and the other
two curves corresponds to the two procedures studied in Li and Gui (2004).
Specifically, LG1 denotes the partial Cox regression procedure and LG2 means
the application of LG1 to the principal components of the original data (Li
and Gui, 2004). It can be seen from Figure 1 (a) that all three procedures
require only one component, A0 = 1, to achieve similar minimum values for
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Figure 1: Prediction Error Comparison

RMSEP. However, CPCR yields more stable models because the prediction
errors are much smaller as A increases.

Since it is known that the squared martingale residuals are skewed, to give
a more robust estimate of the prediction error, we also calculated the root
median of all squared residuals (RMedSEP) instead of RMSEP (A,m) for the
three procedures. Figure 1 (b) presents the three curves of the prediction errors
given by connecting the mean RMedSEP (A,m) values up to A = 5. It gives
the similar conclusion as Figure 1 (a) and it is apparent that all procedures
are more stable from the median point of view as expected.

In addition, we repeated the above analysis by using the delete-one root
mean square error of prediction RMSEP (A) and RMedSEP (A) and the re-
sults are displayed in Figure 1 (c) and (d). As expected, it gives similar
conclusions and again suggests that one component is good enough for the
datasets discussed here.

We also applied the three methods to the full dataset with 7,399 genes
and the results are very similar except for getting larger quantities for the
prediction errors as expected.
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3.2 Simulated Data

We compared the proposed method with LG1 and LG2 given in Li and Gui
(2004) based on simulated gene expression and survival data by focusing on
predictive ability. Results for correct classification rate and AUC will be re-
ported later. Mimicking the DLBCL data and following Bair and Tibshirani
(2004), we generated gene expression data X with p = 5, 000 genes for n = 240
subjects for classification and 120 subjects for AUC comparison due to calcu-
lation time consideration. All gene expression values were generated from
N(0, 1) with a few exceptions. Genes 1-50 for subjects 1-n/2 had a mean of
1.0. For genes 51-100, 30% of all subjects were randomly chosen to have a
mean of 2.0. Similarly, for genes 101-200, 50% of the subjects were randomly
chosen to have a mean of 1.0. Finally for genes 201-300, 70% of the subjects
were randomly chosen to have a mean of 0.5.

To generate survival data, we assume that subjects come from one of the
two risk groups, high or low risk group. Survival times Ti are generated from
exponential with a mean of μ = 10 or 15 for subjects 1-n/2 (low risk) and
with a mean of 8 for the rest (high risk). Independently, censoring time Ci

is generated from exponential with a mean of 10 for each subject. Then we
obtained survival data {Yi = min(Ti, Ci), δi = I(Ti ≤ Ci), i = 1, ..., n}. Note
that when μ = 10, the two groups has a difference of 2 for mean survival time,
which is smaller than that when μ = 15. When μ = 10, generated data has
about 46.2% of right-censoring, which is close to that of the DLBCL data.

The generated datasets are then treated in the same way as with the orig-
inal DLBCL for analysis. Significance level 0.05 was used in selecting relevant
genes before applying the three methods, and the resulting gene matrix X gen-
erally has more genes than the number of subjects. On average, less than half
of the first 50 genes were selected. But more were selected when the difference
between the two risk groups was larger (μ = 15). Based on 250 replications,
Figure 2 shows that the classification rate for correctly classifying a subject in
the validation sample of size 80 into either high- or low-risk group based on
whether the value of f(X) is greater or less than 0, which is the mean risk score
for all subjects in the training sample. It can be seen that CPCR outperforms
both LG1 and LG2 for classification, especially when the mean difference in
survival time is large between the two groups, which corresponds to μ = 15
for the low-risk group. The correct classification rates for the three methods
generally drop slightly as more components are involved in the Cox model.
This may be caused noise introduced by excessive number of components in
the model.

Figure 3 shows the comparisons of mean AUC curves across time using
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delete-forty cross validation based on 10 replications with n = 120 and μ = 15.
At each distinct time point from the validation sample, r = 3 cutoff values for
f(X) between the smallest and the largest values of f(X) exclusively were used
to construct a ROC curve and compute the AUC. Note that the computation
could be time-consuming for large n and r. Since each replication may have a
different set of distinct time points, interpolation and extrapolation were used
in getting the average. Plots (a)-(c) in Figure 3 show that the proposed method
outperforms LG1 and LG2 slightly when two or three components were used
in the Cox model in terms of AUC. It has smaller but close AUC to LG1 and
LG2 when only one component was used. Figure 3 (d) compares the AUC
curves of CPCR with different values of A. It indicates that generally a two-
component model yields the best predictive ability based on the 10 datasets
generated.

4 CONCLUDING REMARKS

Microarray gene expression data have similar structures as spectrum data and
one of the common features between them is that there exists strong multi-
collinearity in gene expression levels among different genes or spectra among
different wavelengthes. No matter what are the purposes of the analysis, one
has to deal with this multicollinearity first by transformation and/or dimension
reduction.

This paper presents an approach to the survival analysis of gene expression
data and it combines CPCR and partial likelihood approach together under
the Cox model framework. Note that due to censoring, p−values are used in
determining correlation instead of correlation coefficients calculated by treat-
ing censoring time as survival time or using imputed survival time. For the
DLBCL data and the simulated data, using CPCR in conjunction with the
Cox model can yield close or even better prediction and more robust models
than using PLS approaches with the settings considered. Also the new ap-
proach can be easily implemented using common statistical software packages
and is simpler in computation than the methods based on PLS (Li and Gui,
2004; Nguyen and Rocke, 2002). All computations were implemented using R.

Screening genes before applying dimension reduction techniques can lower
the noise carried in the data and increase predictive ability. The number of
genes screened out can be controlled by a significance level used for individual
tests under the Cox model. The model selection criteria, RMSEP and AUC,
were also discussed. Note that if estimation of β in the Cox model is the main
objective instead of prediction, one may want to use a different model selection
criterion.
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The proposed CPCR chooses PCs with strongest association with the sur-
vival time to be included in the Cox model. Another way to select PCs is to
apply a standard model selection procedure such as backward or best subset
selection, as pointed out by a referee. A direction for future investigation may
focus on different ways of selecting PCs.

The simulation study focused on the performance of the proposed method
in prediction. A more thorough examination of the method, such as on the
ROC curves and components selected, may help gain more insight of the
method. We will leave it for future investigation.
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