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EXISTENCE OF SOLUTIONS TO AN EVOLUTION
p-LAPLACIAN EQUATION WITH A NONLINEAR
GRADIENT TERM

HUASHUI ZHAN, ZHAOSHENG FENG

ABSTRACT. We study the evolution p-Laplacian equation with the nonlinear
gradient term
ut = div(a(z)|VulP72Vu) — B(z)|Vul?,

where a(z),B(z) € CY(Q), p > 1 and p > ¢ > 0. When a(z) > 0 and
B(z) > 0, the uniqueness of weak solution to this equation may not be true.
In this study, under the assumptions that the diffusion coefficient a(z) and
the damping coefficient B(x) are degenerate on the boundary, we explore not
only the existence of weak solution, but also the uniqueness of weak solutions
without any boundary value condition.

1. INTRODUCTION

Consider the evolution p-Laplacian equation with the nonlinear gradient term
uy = div(a(z)|VuP72Vu) — B(z)|Vul|?, (z,t) € Qr = Q x (0,T), (L.1)
with the initial-boundary value conditions:
u(z,t) = up(z), z€Q, (1.2)
w(z, t) =0, (z,t) €N x(0,T), (1.3)
where €2 is a bounded domain in RY with a C? smooth boundary, p > 1, ¢ < p,
a(z) and B(z) € C*(Q) satisfy
a(m)|m€89 =0, a(x)}meQ >0, ba(x)> B(z)>0. (1.4)
Here and in what follows, b is a positive constant.
Equation (1.1)) arises in several scientific fields such as mechanics, physics and
biology [7,14]. If a(x) > ¢ > 0, and there exists a point z¢ €  such that B(zg) > 0,

then in general the uniqueness of the solution is not true [2} B [5, [6], T3], 16, 17]. In
[1], the equation

up = div(|VulP~2Vu) + q(z)u”, (2,t) € Qr, (1.5)

with 0 < v < 1, was studied. It shows that the uniqueness of the solution of
equation (|1.5) is not true, provided that ¢(z) > 0 and there exists a point zg € 2
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such that g(xg) > 0. Recently, Zhan [15] considered the equation
ug = div(p®|VulP~2Vu) + f(u,z,t), (z,t) € Qr, (1.6)

and proved that the weak solution of equation ([1.6]) with the initial value (1.2 has
the stability

/ lu(z,t) — vz, t)|dx < c/Q |uo(x) — vo(x)|dz, (1.7)

where p(z) = dist(z,09) and f(u, ) is a Lipschitz function. The inequality (1.7)
also indicates that the solution of with the initial condition (|1.2)) is unique.
However, if f(u,-,-) is not a Lipschitz function, for an example,

f(uvxvt) = q(x)u’y
as given in (L., the problem whether the solution u of has the stability
or not, remains to be an open problem.

By the above short reviews, when the diffusion coefficient a(z) is degenerate on
the boundary, the uniqueness of the solution for the initial-boundary value problem
- has been an interesting topic. In this study, we assume that the damping
coefficient B(x) is also degenerate on the boundary, and establish the uniqueness
of weak solution. This result is different from those presented in the literature

2, 3} 15, 16}, (13} 16} 17].
To introduce the weak solution of equation (1.1]), we set

V = LP(0, T; Wl P(Q)) and V* = LY (0,T; W12 (Q)).
Definition 1.1. A function u(z,t) € L>=(Qr), satisfying a(z)|Vul|P € LY(Qr), is

said to be a weak solution of equation (|L.1)) with the initial condition (|1.2)), provided
that u, € V* 4+ LP/9(Qr) and

/ U, @ dt+// )| VulP~2Vu - Vodrdt = //B|Vu|q¢da:dt (1.8)

holds for all ¢(x,t) € V N L74(Qr). The initial value condition is satisfied in the
sense of that

tim [ w(e.0s@hde = [ wola)p()s (1.9)
for any p(z) € C§° ().

Definition 1.2. The function u(x,t) is said to be the weak solution of the initial-
boundary value problem (1.1)-(L.3), if u(x,t) satisfies Deﬁnition and the bound-
ary value condition (1.3)) is satisfied in the sense of trace.

Now, we state our main results on the existence and uniqueness.

Theorem 1.3. Ifp>1,0< ¢ < p, a(z) and B(z) satisfy (L.4), and

ug € L=(Q), a(z)|Vue|’ € L'(Q), (1.10)
then there exists a weak solution of equation with the initial condition .
Theorem 1.4. Ifp>1,0< g <p, a(z) and B(x) satisfy , and

/ a(ac)fﬁ(a:)dx < 00, (1.11)
Q

then the initial-boundary value problem (L.1)-(1.3) has a solution in the sense of
Definition [I.3
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Theorem 1.5. Letp > 1 and 0 < g < p. Suppose that u and v be two solutions of
(1.1) with the initial value ug(z) = vo(x), and with the same homogeneous boundary

value condition (1.3). If conditions (1.4) and (L.11) are true, then u = v.
In general, if condition (|1.11]) is not true, i.e.,

/ a(x)_ﬁd:r = 00,
Q

then weak solutions of equation may lack the regularity to have a trace on
the boundary. Accordingly, we can not impose the usual boundary value condition
(1.3). However, because of condition (1.4), we are able to prove the uniqueness of
the weak solution of equation without any boundary value condition. In other
words, the degeneracy of a(z) and B(z) on the boundary may take place of the
boundary value condition . This is the key feature of this paper.

Theorem 1.6. Letp > 1 and 0 < g < p. Suppose that u and v be two solutions of
(1.1) with the initial value ug(x) = vo(x). If condition (1.4) is true, and for small
A > 0 there holds

L] e < (1.12)

where Q) = {x € Q : a(x) > A}, then u = v, i.e., the solution of the initial value

problem (1.1)-(1.2)) is unique.

Theorem tells us that for the uniqueness of the solution of equation
with the initial value ug(x) = vo(x), the condition [, a(m)fﬁdx < 00 may not be
necessary.

The paper is organized as follows. In Section 2, we prove the existence of the
solution to equation with the initial condition . In Section 3, we present
the proof of Theorem Section 4 is dedicated to the proof of Theorem and
the uniqueness of the solution without any boundary value condition.

2. PROOFS OF MAIN RESULTS

% is fized, and let

Lemma 2.1 ([§]). Let 0(s) = se’ s € R, where n > 1

O(s) = [; 0(r)dr. Then 6(0) =0 and
O(s) >0, ab'(s)—0blo(s)| = g, Vs € R, (2.1)
where b is the constant as in (1.4), and a is a constant to be determined.

Lemma 2.2 ([§]). Assume thatm: R — R is a piecewise C* with w(0) =0 and ' =
0 outside a compact set. Let I(s) = [ n(o)do. If u € V with u, € V* + LY(Qr),
then

T
/0 (trs ()t =, 7))y 4 L1 (@r v oL ()

:/QH(u(T))dx—/H(u(O))dx.

Q

(2.2)

Proof of Theorem[I.3 Consider the approximation equation

Oun . 1 _ .
% —div [(a(z) + E)|Vun‘l7 *Vu,| = B(z) min{|Vu,|%,n}, (z,t) € Qr, (2.3)
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with the initial-boundary value conditions (1.2)-(L.3). The existence of the weak
solution u, € L* follows from the standard methods (for instance, the pseudo-
monotonicity operator theory [9] 10, [TT], or the difference and variation methods
[12]). By the maximal theory, we have the uniform bound:

[wn (2, )| Lo (@r) < [Juoll Lo (0)- (2.4)

Our goal is to show that a subsequence of the approximate solution sequence {u,}
converges to a measurable function u, which coincides with the weak solution of

the problem (1.1))-(|L.2]).

Step 1: Weak convergence We choose 0(uy,) as a test function in (2.3]), then

/ <3gn (un) dt+// \Vu [P0’ (up,) dz dt
0 t T

(2.5)
:/ Bmin{|Vun|?, n}0(u,) da dt.
Qr
From Lemma [2.2] we have
T ou,
<W’ O(up))dt = [ [O(un(T)) — O(ug)]dz.
0 Q
By Young’s inequality, (2.5] m becomes
/@ un (T dx+// Vu [P0’ (wp,) dz dt
< / O(ug)dz + // B|Vu,|?0(uy,)| dz dt
/@UO dx—i—// B|V n|p+7|9(un |) de dt
< / O (up)dx + // (B|Vu,|P + T|9(un)|) dx dt.
Q T
We rewrite the above inequality as
[ etun@ds+ [[ (0w - B(ate) + 3) o]
A U, x ) Un, a(z) + — U,
1
= P 2.6
X (a(w)—l— n)|Vun\ dx dt (2.6)

O(ug)dx + c.
Q

Let a =1 in Lemma 2.1l Then
1\ -1
0 (un) = B(al@) + — ) 10(un)] > 0 (un) = bl6(un)]| >

)

// |Vun|p dz dt < / O(ug)d (2.7)

By (1.4) and (2.7), we have |Vu,| € LY (Qr). By the Hélder inequality and
ba(z) > B(x), we have

N |

so we deduce that

B(2)|Vun|” € Lioe(Qr). (2.8)
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By (2.4), (2.7) and (2.8)), there exists a function u and an n-dimensional vector
function ¢ = (1, -+, ) satisfying

u € L=(Qr), |5| € Lﬁ(QT)’
and
u, — *u, weakly star in L= (Qr),
(a@) + ) VP2V, = ¢ in 175 (Qr),
B(x)|Vun|? — v, in L/9(Qr).

Step 2: Strong convergence Clearly, by (2.7) and (2.8), 3gt” is bounded in the
space

L7 (0, Ts W7 (Q)) + L/9(Qr).
For a fixed s such that s > % + 1, the following holds:
(1) When s > &, we have H§(Q) — L°°(2), and then L*(€2) — H*(1).

(2) When s —1 > & we have H§(Q2) — WP(Q), consequently, WP (Q) —
H=5(Q).

As a result, we have

I ouy, ” <
—_ 1 H—s X C
ot LY(0,T;H—°(2))

where c is independent of n. For any given ¢ € C3(Q), we have

O(puy)
=5

Lo, < C (2.9)
for u, € Wy ?(Q) and

| Vurds <] [ 1VePlurds+ [ or|vu,pds
Q Q Q

lel?
o a(r)

Sc—i—cl/ a(x)|Vuy|Pde,
Q

<c+c a(x)|Vuy,|Pdz (2.10)

where ¢; = max, o lP/a(x) > 0 is a constant independent of n, and Q, is the
support set of ¢. Notice that Wy (Q) «scompect [p(Q) < H—*(Q). Tt follows
Simon’s compactness theorem [8] that pu, — @u, strongly in LP(0,T; L?(2)).
Step 3: Almost everywhere convergence In step 2, by the arbitrariness
of ¢, we can let {u,} be a subsequence of {u.} such that u, — u a.e. in Qr.
According to Egoroff’s theorem, for the fixed 6 > 0, there is a closed set Es C Qr
such that
(1) The measure u(Qr — Ej5) < §;
(2) up = w uniformly on Es. It follows that |u, — un| < k, for the fixed k > 0
and sufficiently large m and n.
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Suppose that ¢ (0 < ¢ <1) is a cut-off function satisfying ¢ € C3°(Qr), and ( =1
on Ej. Let Ty (s) be the usual truncation function defined as

s, Is| < k,
Tk(s) = k, S Z k,
—k, s< —k.

For n # m, we have

w = div {(a(m) + %) |V, |P~*Vu, 1)
—(a@)+;%NVumw4vmm}—b@»qvuﬂq—wvumwy

By choosing (aTy(u, — uy,) as a test function and using

// z)|Vu, [P dzx dt < c, // )|V, [P dedt <c,

by the Holder inequality it is not difficult to deduce that

// |Vun|p 2V, — [V P2 Vu,,)
x (Vuy, — Vum)CaTk( — Upy,) dz dit

gk:// a|Cel|tn — wm| dt dx

+k‘// NIV P2V, — |V, P72V, ||V (al)| dz dt
T (2.12)

+ \* - *| // |Vt [P (| Vg | 4 [Vt )T (n — )
+ [V (Ca)| Tk (upn — upm)] dx dt

+m// )| Van|? = [V |2|C da dt
< ———
< ke(d) + 2 — =

In view of T}, > 0, Tj(s) = 1 on |s| < k and the fact that u,, converges uniformly
on Ejs, we have

// 2(@) ([Vun P72V, — [V [PV, ) (Vu, — V) do dt

// 2)(|Vun P2V, — |V P2V,
Es
x (Vu, — Vum))Tk( Upp,) da dit

// \Vun|p Ny — |V P2 V,)
T

x (Vuy, — Vum)(jaTk( — Upp,) dz: dt.

(2.13)
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By the arbitrariness of k, from (2.12)-(2.13)), we get

lim sup // 2)(|Vun P2V, — |Vt P2 V,)
Es

n,Mm— 400

X (Vi — Vuy,) drdt = 0.

(2.14)

Using this equality and following [8] 4], we have

// x)|Vuy, — Vup,|P dedt — 0. (2.15)
Es

For any ¢ € C§°(£2) with 0 < ¢ <1 such that
W’Qm =1 ‘p|Q\Q =0,

since a?(x) > ¢(\) > 0 on Q,, it follows from (2.15) that

// (pun) — V(pum)|P de dt — 0.
Es

Thus, {Veu} is a Cauchy sequence in (LP(Es))"N. We may assume that Vu, — «,
strongly in (LP(E;))N. Since @u, — pu strongly in L*(Q) with s > 1, it is easy
to see that pu, — @u strongly in LP(Ej). From the above analysis, we see that
a = pu. By the arbitrariness of A\, Vu,, — Vu a.e. in Fs, and by the arbitrariness
of §, Vu,, — Vu a.e. in Qr.

Step 4: Convergence Let 6 be the function defined in Lemma It follows
that O(u, — um) € L®(Qr) NV since up,un € L®(Qr) N V. Thus, for any
0 < ¢(z) € C3(Q), we can take pf(u, — uy,) as a test function in (2.11)). Then

/ <75(Una—t ) , 00 (up — um)>

//T |Vu P2V, — ( (m)+%)|vum|p—2vum}

X (Vuy, — Vum)0 (un — U )pdadt
/ / |Vu P27y, — ( (z) + %) |vum|P*2vum}
Vu: — Vum)VgoG( — Upy,) dz dit
- // B(min{|Vaun|?, n} — min{|Vaum|?, m})0(un — wn)edz.
Using to estimate the first term on the left-hand side of yields
/OT <w, Pty — )}t = /Q(p@(un Cun)(T)dz >0, (217)

Since u, — u, U, — w a.e. in Qr, the right-hand side of (2.17)) can be estimated
as follows:

// B(min{|Vuy|?, n} — min{|Vu, |7, m}0(un, — wm)pdedt

(2.16)

b// D) ([Vtnl? + [V P)]0(n — )| da dt

< b// ) (| Vtr [P 2Vt Vit + |Vt [P 2V, V) [0t — )| da dt
T
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1 , 1 ,
+b [f\Vu”P” Vu, — —|Vum|p Vit | (Vg — V) |0(un — un)|@ dz dt
T

1
+b// |Vu P72V, — (a(@) + —)|Vum |7 * Vi, ]
. m
x (Vu, — Vum)|0(un — Um )| dz dt.
Hence, can be rewritten as:

// \Vu P2V, — (a(z) + %)|Vum|p_2Vum](Vun — V)
un—um)—b|0( Um )| dax dt
/ [ (@) + DIVunl 9 = (ala) + IVl )

x Vol ((up, — um)) dx dt
b / / ()] [Vt P2Vt Vit + [Vt [P~ 2Vt Vi [8 1ty — )| e dlt

1 1
+ b// (= Vun|P 72 Vun — = |Vum [PV, | (Vu, — Vug,)
LN m

X |0(wn, — wum) | da dt.

(2.18)
Clearly, we have
lim lim / / |Vu P2V u, — (a(2) + —)[Viir|P~2Vtrs]
n—oom—oo [ Jo. m (2.19)
X (Vg — VU, ) Vel (u, — ty,) dedt = 0,
and ) )
lim lim b// [=|VunP 2V, — — |V [P7? Vi,

X (Vuy, — Vu)|0(un — um)|@daxdt = 0.

With the help of (2.1) in Lemma (with @ = 1), since Vu,, — Vu a.e. in Qr,
and p(z) € C3(9), we may utilize Fatou’s Lemma in (2.18)) as m — +o0 to obtain
that

// |Vu P=2Vu, — a(x)|VuP2Vu)(Vu, — Vu)pde dt
1
cb// (| Vtn [P~ 2V, Vu + |VulP2VuVau,)]|0(u, —u)| de dt—i—o(g)

< cb\a v |Vun\p_2Vun|L,,/(I (Q7)|a'/P0(u, — w)Vul Q)

1
+ cbl|a"F Vulr~ 2Vu9(unf )l (Qr) 0" " Vun| La(@r) + ()

< C(// a|Vuy|P dxdt // alf(un — u)|P|Vul? dx dt)/P
+ C(// a(2) |0y — )7 |Vul? dz dt // )|V | da dt)

1
+O(ﬁ
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C<// a|0(un *U)|p|vu|q dx dt) /p

1/p' 1
+o // alo(un — 0|Vl dz dt) Y o).

n

~—

Since O(u, — u) is uniformly bounded, by the Lebesgue dominated convergence
theorem we have

// |Vun|p *Vup — |VulP*Vu) - (Vu, — Vu)p de dt — 0,
which 1m;hes
// |Vun\p *Vup, — [VulP*Vu) - (Vu, — Vu)edzdt — 0, (2.21)
becausz
nlirr;o -~ // |Vu|P~2Vu - (Vu, — Vu)pdrdt = 0.
Following [§], by (2.21] -, vze arrive at
// |Vun — VulPpdzdt — 0, (2.22)

which implies
|Vun — Ve, x[0,1)) — 0,
where 2 is any compact subset including in Q. That is, u, — wu strongly in
LP(0, T; W,5P(Q)).
Step 5: Passing to the limit. By and the property of Nemytskii
operator ([10}[11]), the generalized Lebesgue dominated convergence theorem yields

|V, |P~?Vu, — |Vu[P~?Vu, strongly in LfO/C(QT),
min {|Vu,|”,n} — |Vul?, strongly in L} (Qr).
For each ¢ € C§°(Qr), we get

I — div((a(z) + 1 |Vun|p_2Vun — o) VulP~2Vu), )|

= |// V(I Vun P2V, — a(z)|Vu|P>Vu) - Vo dr dt
T

< || Vua|P~ 2Vun — |Vu|p72Vu|L,,/(Q¢X(O7T))|a(x)V<p|Lp(QT)

1 /7
+ f/ / |V, P2V, - Vo d dt.
nJo Ja,
It follows that
1 _ _
|- div((a(z) + E)|Vun\p YV — |VulP*Vu)||pr — 0.
Thus, for the principal term in the approximate equation (2.3)), we have
1
—div((a(z) + =)|Vun|P"2Vu,) — — div(a(z)|Vu|P~2Vu), strongly in D’
n
Meanwhile,

lim (B(x)|Vu,|? — B(z)|VulP, ¢) = 0.

n—00
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As a consequence, one has u,; — uy, strongly in D', it follows that u, (z,0) — ug(z)
in the sense of measure. This proves that u € L™ (Qr) is a weak solution to equation
(1.1) with the initial value condition (|1.2)). O

Lemma 2.3. If [, a(gc)fﬁdx < 00, u s a weak solution of equation (1.1) with
the initial condition (1.2). Then the trace of u on the boundary 02 can be defined
in the traditional way.

Proof. Clearly, we have

// |Vu| dx dt

Qr

—// |Vu|dxdt+// |Vu|dz dt
{(z,t)eQr;aP— T [Vu|<1} {(z,t)€EQT;0P— T |Vu|>1}

< // a 7T dxdt—i—// (apj|Vu|)p_1|Vu|dxdt
Qr T

:// a1 d:rdt+// a|VulP dz dt < c.
QT T

The last inequality is because of the assumption that fQ a(m)_ﬁdaj < c. So u has
the trace on the boundary 0f2. O

By Lemma [2.3] and Theorem [I.3] we arrive at Theorem [I.4] immediately, so here
we omit its proof.

3. PROOF OF THEOREM

Let u and v be two solutions of equation (1.1)) with the initial values ug(z) =
vo(z) and with the same homogeneous boundary value condition (1.3). We will
prove the uniqueness of the solutions by the way of contradiction. Suppose that

esssUp,cq |u — vl > 0. (3.1)

For the function 6 defined in Lemma it follows that 6(u —v) € L*(Qr) NV,
since u,v € L>®(Q7) N V. Thus, f(u — v) can be taken as a test function in (1.8
such that
<8(u —0)
ot

_ / B(2)(|Vul? — [Vo]9)8(u — v)da.
Q

,O0(u—v))+ /Q a(x)(|Vu|P~2Vu — |Vo[P~2Vo)(Vu — V)@ (u — v)dx

(3.2)
Using ([2.2) to estimate the first term on the left-hand side of (3.2)) yields

<¥, ©0(u —v)) =5 /@ (u—v) (3.3)
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By Young’s inequality, we have
| BVt = Vo) = o)l
/ B(z |Vu|p +9op) + 2 P9\ — v)|dr (3.4)
< E/QB(x)(|Vu|p + |Vu|P)|0(u — v)|dz + Z%/QB(:&)W(u —v)|dex,

and

9/ B(2)(|Vul? + [Vo[P)[6(u — v)|dz

b/ Y(IVal? + [VolP)|8(u — v)|de

(3.5)
<b / V(| Vu|P~2VuVo + |Vo|P2VoVa) [0 (u — v)|dz
Q
+b / M| VulP~2Vu — |[VoP =2 Vo] (Vu — Vo) |[0(u — v)|dz.
Q
By (3.3 —-, we have
9]
a/ﬂ@(u —v)dx
+ / a(z)(|VulP~2Vu — |VoP~2Vv)(Vu — Vo) [0 (u — v) — blf(u — v)|]dz
Q
(3.6)
< 7/3 )0(u — v)|dx
+ b/ Y(IVulP~2VuVo + [VoP~2VuVu)|0(u — v)|dz.
Note that

/ a(z)(|Vu[P2VuVu + |V~ 2VoVu)|0(u — v)|dz
Q
< c/ a(@)([Vul? + [VolP)|0(u — v)|da.

Q

So, by (3.6), we have

/@(u—v)dm—/@(uo—vo)dx
/ / 2)[0(u — v)| de dt (3.7)

+c/ / VIV ul? + [VolP)|0(u — v)]| da dt.
Since ug = v, by (3.7] ., we find that

/@u—v x<7// x)|0(u — v)|dx dt
0

(3.8)
+c/ / Y(Vul? + [VolP)0(u — v)]| da dt.
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Notice that O(s) = %6"52 is an even function. Without loss of generality, we

may assume that 0(u —v) > 0. If
7/ 2)|0(u — v)|dx < c/ a(x)(|Vul? + |Vu|?)|0(u — v)|dz,
Q

then, by (3.8]), we have

/ O(u —v)dr < c/ / V(I Vul? + |VolP)|0(u — v)| dz dt.

That is,
o /e”(“ v dy < c/ / V([ Vul? + [VolP)|u — v]e” ™) da dt
n
< c/ €SS SUP,eq |U — v|/ Y(IVul? + |VolP )e"(“*”)2 dz dt.
0

This is impossible when n — 0.
If

7q/ B(z)|0(u — v)|dz > c/ a(z)(|Vul? + [Vo|P)|u — U‘eﬁ(u—v)zdL
Q Q
then, (3.8) yields

i/ =) gy < c/ B(m)|u—v\e’7(“7”)2d1’.
2n Ja Q

This is impossible when 17 — 0. Consequently, we have
essSUp,eq [u — v| =0,

which implies that the solution is unique.

4. UNIQUENESS WITHOUT ANY BOUNDARY VALUE CONDITION

Proof of Theorem[1.6. For any 0 < ¢(x) € CJ(£2), we take pf(u — v) as a test
function in (1.8) as

<w7 @o(u - U)>

+ / a(x)(|Vu|P~2Vu — |VoP~2Vo)(Vu — Vo) (u — v)pde
2 (4.1)
+ /Q a(x)(|Vu|P~?Vu — |VoP~2Vo)(Vu — Vo) Vb (u — v)dz

= / B(z)(|Vul? = [Vu|)0(u — v)pdz.
Q
Using (2.2 to estimate the first term on the left-hand side of (4.1]) leads to

<%7 eO(u—v)) = ;)t / O (u —v)dx. (4.2)
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By Young’s inequality, we have
‘/ V(| Vul? — |Vv|q)0(u—v)<pdx‘
/ B(z ]% IVl + [Vol?) + %He(u — o)plda (4.3)
/ B(z)(|VulP + |Vv|?)|0(u — v)p|dx + ]% /Q B(2)|0(u — v)p|dz,
and

4 p v|P uU—2v T
! /Q B(@)([Vul? + [Vol?) 6(u — v)pld

< b/ a(z)(|VulP + [VulP)|0(u — v)|e dz dt
Q

(4.4)
< b/ a(x)(|Vu|P2VuVo + |V 2VoVau) |0(u — v)|p dz dt
Q
+ b/ a(x)[|Vu|P~2Vu — |VolP~2Vo](Vu — Vo) |0(u — v)|p dz dt.
Q
Then, by f, we have
0
8t/ ©O(u — v)dx
+ / a(x)[|[VulP~2Vu — |Vo|P~2Vo](Vu — Vo) [0 (u — v) — bl6(u — v)|]edx
Q
(4.5)
—|—/ a(z)(|VuP~2Vu — |Vo|P"2V) Vb (u — v)dx
// )| VulP2VuVu + |VoP~2VuVul|0(u — v)|dz.
By Young’s inequality, we have
/ a(z)p[|Vu|P2VuVu + |VoP2VoVu||f(u — v) dx dt
@ (4.6)

< C/Qa(;v)(|Vu|p + [VolP)|0(u — v)|p dx dt.
In view of ¢ < ¢, we have
/ a(2) 0| [VulP 2V uV o] |0(u — v)|pdz < c(/Q (@) (VP + [VoPde, (A7)
\/ D)Vl |VolP=2Vovul|0(u — v)|pda] < c(/Q a(2)(|VulP + [VolPde. (4.8)

For a small positive constant A > 0, let Q) = {x € Q : a(z) > A}. By a process
of limit, we set

. . 1, ifx € Qy,
¢ =oa(z) = {;a(z), re0\ 0y (4.9)
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It follows from ([1.12) that
’/ )(IVulP~2Vu — |Vo|P Vo) Vel (u — v)da|

= | a(@)(|VulP*Vu — [Vu[P > Vo) Vb (u — v)dz|
O\Q\

= y
< c(/ a(@)([Vul? +|Vol?)dz) 1(/ a(x)|Valdz ) ’
N A\ Java,

p—1

<e( [, a@Tur+ Vo)) 7

which approaches zero as A — 0.
By integrating (4.5)) from 0 to ¢, we have

(4.10)

/ ©O(u —v)dx — /Q ©O(up — vo)dx

/ 2)[[VulP~2Vu — [VolP~2V 0] (Vi — Vo)
X [0'(u —v) — bl0(u —v)|]dzdt (4.11)

/ / Y(|VulP~2Vu — |[VoP~2Vo) Vel (u — v) dz dt
/ / 2)p||VulP~2VuVo + |[VoP~2VuVul|0(u — v)| dz dt.

Let A — 0 in (4.11). Then

/@(u—v)dm—/@(uo—vo)dﬂc

+hm/ / NIVuP~2Vu — |[Vu|P~2Vo](Vu — Vo)

X [0 (u —v) — bl0(u — v)|] dx dt
(4.12)

—I-;irrb// )(VuP~2Vu — |Vu|P~2 Vo) Vb (u — v) dz dt

/ / 2)||VulP2VuVo + |VoP~2VoVau||0(u — v)| dx dt
/ / V(IVul? + [VolP|6(u — v)| dz dt.
By (4.5)-(4.12), noticing that O(s) = %67752, we have

/Q O(u —v)dx — /Q O(up — vo)dx

(4.13)
< c/ B(z)|0(u —v)|dz + c/ a(z)(|Vul? + |[Vu|P||lu — v|e”(“_“)2d:c.
Q Q
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Since ug = v, by (4.13)), we have
/ O(u —v)dr < c/ B(x)|6(u — v)|dx
Q Q

(4.14)
+ c/ a(z)(|VulP + [VolP||u — U|677(u—v) da.
Q

From this inequality, similar to the proof of Theorem [1.5] one can obtain u = v.
Consequently, the proof is complete. ([l
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