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NONTRIVIAL COMPLEX SOLUTIONS FOR MAGNETIC
SCHRÖDINGER EQUATIONS WITH CRITICAL
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Abstract. Using minimization arguments we establish the existence of a com-

plex solution to the magnetic Schrödinger equation

−(∇+ iA(x))2u + u = f(|u|2)u in RN ,

where N ≥ 3, A:RN → RN is the magnetic potential and f satisfies some

critical growth assumptions. First we obtain bounds from a real Pohozaev
manifold. Then relate them to Sobolev imbedding constants and to the least

energy level associated with the real equation in absence of the magnetic field

(i.e., with A(x) = 0). We also apply the Lions Concentration Compactness
Principle to the modula of the minimizing sequences involved.

1. Introduction

The aim of this article is to study the magnetic Schrödinger equation

− (∇+ iA(x))2u+ u = f(|u|2)u in RN , (1.1)

where u:RN → C, N ≥ 3, i is the imaginary unit, A = (A1, . . . , AN ):RN → RN is
the magnetic (or vector) potential and the nonlinear term f :R+ → R is a regular
function satisfying suitable assumptions and having critical growth at infinity with
critical Sobolev exponent 2∗ = 2N

N−2 for N ≥ 3. In the recent literature, magnetic
Schrödinger equations have been studied in the critical case from different points
of view but in few papers which we recall here in the following.

Esteban and Lions [11] (1989), found solutions to

(−i∇+A(x))2u+ λu = |u|4u in R3

with λ ∈ R by solving constrained minimization problems with Concentration-
Compactness methods. Arioli and Szulkin [3] (2003), found non-trivial solutions
to

(−i∇+A(x))2u+ V (x)u = |u|2
∗−2u in RN ,

with A and V locally Lebesgue measurable by means of constrained minimiza-
tion and Concentration-Compactness arguments under suitable assumptions on the
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spectrum of the operator (−i∇+A(x))2 +V . Chabrowski-Szulkin [8] (2005) proved
the existence of a non trivial solution to

(−i∇+A(x))2u+ V (x)u = Q(x)|u|2
∗−2u in RN ,

when the electric potential V changes sign by a min-max type argument based on
a topological linking. Certain regularity properties of solutions for a rather general
class of equations involving the operator (−i∇+A(x))2 are also established. Barile,
Cingolani, Secchi [4] (2006) established existence results by abstract perturbation
techniques to

(i∇+ εA(x))2u+ εαV (x)u = |u|2
∗−2u in RN ,

where ε ∈ (0, ε0), α ∈ [1, 2], N > 4 and the potentials A and V are bounded
continuous and Lebesgue measurable. Han [12] (2006) showed the existence of a
non-trivial complex solution to

(−i∇+A(x))2u− V (x)u = |u|2
∗−2u in RN ,

with N ≥ 3, have been established by a Mountain Pass Theorem under suitable
assumptions on the integrability and the behaviour of the magnetic potential A
and the electric potential V . Wang [21] (2008) established existence results for a
nontrivial solution to

(−i∇+A(x))2u+ λV (x)u = K(x)|u|2
∗−2u in RN ,

lim
|x|→+∞

u(x) = 0

with N ≥ 3, by means of Linking Theorem applied twice when λ > 0, the mag-
netic potential A ∈ L2

loc(RN ), the electric potential V (x) is sign-changing, K(x)
is positive bounded and continuous and V,K satisfying suitable local assumptions.
Liang and Zhang [15] (2011) studied standing waves solutions ψ(x, t) = e−

iEt
~ u(x),

(t, x) ∈ R× RN , N ≥ 3, to

i~
∂ψ

∂t
= − ~2

2m
(∇+ iA(x))2ψ +W (x)ψ −K(x)|ψ|2

∗−2ψ − h(x, |ψ|2)ψ,

thus establishing the existence of at least one solution and, for any m ∈ N, the
existence of at least m pairs of solutions under suitable assumptions. Ding and Liu
[10] (2013) proved then existence and have also described concentration phenomena
of (ground states) solutions to

(−iε∇+A(x))2u+ V (x)u = W (x)(g(|u|) + |u|2
∗−2)u in RN

in the semiclassical limit (i.e. as ε→ 0) when A ∈ C1(RN ,RN )∩L∞(RN ,RN ), V,W
are positive and satisfy proper boundedness assumptions and g(|u|)u is superlinear
and subcritical. Liang and Song [14] (2014) treated

−ε2(∇+ iA(x))2u+ V (x)u = |u|2
∗−2u+ h(x, |u|2)u in RN

where N ≥ 3 and V (x) is a nonnegative potential by establishing for ε > 0 suffi-
ciently small the existence of both one solution and m pairs of solutions for every
m ∈ N by means of Lions’ second Concentration-Compactness method and Con-
centration Compactness principle at infinity in order to recover a (PS)c condition.
Alves and Figueiredo [1] (2014) studied the multiplicity of nontrivial solutions to

(−i∇−A(x))2u = µ|u|q−2u+ |u|2
∗−2u in Ω,

u = 0 in ∂Ω,
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where Ω is a smooth bounded domain of RN with N ≥ 4, A is continuous on
Ω, 2 ≤ q < 2∗ thus relating the number of solutions with the topology of Ω by
Ljusternik-Schnirelmann theory. Tang and Wang [24] (2015) studied

−(∇+ iA(x))2u+ (λa(x)− δ)u = |u|2
∗−1u in RN

with δ > 0 and the electric potential can be negative in some domain; specifically,
by variational and Nehari methods they have established the existence of a least
energy solution uλ which localizes at the bottom of the potential well as λ→ +∞.

Throughout this article, we use the following assumptions:
(A1) A ∈ L2

loc(RN ,RN ) and there exists x0 ∈ RN such that A is continuous at
x0;

(A2) A( xσ ) = σA(x) for every x ∈ RN and for every σ > 0;
(A3) A ∈ L2

rad(RN ,RN );
(A4) f ∈ C1(R+,R) and lims→0+ f(s) = 0;
(A5) 0 < lim sups→+∞ f(s)/s(2∗−2)/2 ≤ 1;
(A6) f(s)s− F (s) ≥ 0 for every s ∈ R with s ≥ 0 where F (s) =

∫ s
0
f(t) dt;

(A7) there exist λ > 0 and q ∈ (2, 2∗) such that

f(s) ≥ λs(q−2)/2 for every s ∈ R with s ≥ 0.

A typical example of a function satisfying conditions (A1)–(A3) is A(x) = A/|x|,
where A is a constant vector.

Note that by hypothesis (A2), the magnetic potential A is homogeneous of degree
−1. This hypothesis is just used in Section 4 when we show that the limit of
minimizing sequence is a nontrivial complex solution of Problem 1.1.

We shall prove the following result in the case N ≥ 3. For the definition of
the Sobolev embeddings constants S and cA which appear in the next theorem see
Section 2.

Theorem 1.1. Suppose that N ≥ 3 and (A1)–(A7) hold. Then, there exists λ∗ >
0 such that for all λ > λ∗ problem (1.1) admits a nontrivial complex solution.
Precisely, the constant is

λ∗ =
[
2(2−N)/2S−N/2N(

2N
N − 2

)(N−2)/2
](q−2)/2

c
(q−2)/2
A .

From our point of view, the main contributions of this article are as follows:
(1) Inspired by recent results obtained by Alves, Souto and Montenegro [2] (see
also Zhang and Zou [23]) for equation (1.1) when A(x) = 0, we aim to establish the
existence of a complex solution to the magnetic equation (1.1) by means of Con-
centration Compactness Principle of Lions [18, 19] in the case N ≥ 3. Concerning
the case N = 2, we mention the paper by Barile and Figueiredo [5].
(2) Since we do not know the Pohozaev identity associated with the problem (P),
we use Pohozaev’s identity of real problem, causing a modification in the arguments
that can be found in [2] (see also Zhang and Zou [23]).

Remark 1.2. Condition (A5) can be replaced by

0 < lim sup
s→+∞

f(s)
s(2∗−2)/2

≤ µ

with µ > 0 or more in general by

0 < lim sup
s→+∞

f(s)
s(2∗−2)/2

< +∞.
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For simplicity but without loosing in generality, we assume (A5) thus studying the
case µ = 1.

Remark 1.3. From (A4) and (A5), for any ε > 0 there exists Cε > 0 such that

|f(s)| ≤ ε+ Cε|s|(2
∗−2)/2 for all s ≥ 0

and by integration

|F (s)| ≤ ε|s|+ Cε|s|2
∗/2 for all s ≥ 0,

where Cε = (2Cε)/2∗.

Remark 1.4. From hypothesis (A7), by integration we obtain

F (s) ≥ 2
q
λ|s|q/2 for every s ∈ R with s ≥ 0.

This article is organized as follows. In Section 2, we fix notation and variational
tools. In Section 3 we establish some preliminary results which will be useful in
Section 4 for proving Theorem 1.1.

2. Notation and variational tools

To introduce the variational structure of the problem, we set

H1
A(RN ,C) =

{
u ∈ L2(RN ,C) :

∫
RN

|∇Au|2dx < +∞
}

with ∇Au = (∇+ iA(x))u. The space H1
A(RN ,C) is an Hilbert space endowed with

the scalar product

(u, v)A = Re
∫

RN

(
∇Au · ∇Av + uv

)
dx for any u, v ∈ H1

A(RN ,C)

where Re and the bar denote the real part of a complex number and the complex
conjugation respectively. The norm induced by this inner product is

‖u‖A =
(∫

RN

(|∇Au|2 + |u|2) dx
)1/2

for u ∈ H1
A(RN ,C)

and C∞0 (RN ,C) is dense in H1
A(RN ,C) with respect to the norm ‖ · ‖A (see [11,

Section 2] and [16, Theorem 7.22]). We denote by H−1
A (RN ,C) the dual space of

H1
A(RN ,C). Recall that for every u ∈ H1

A(RN ,C) one has∫
RN

|∇Au|2dx =
∫

RN

|∇u|2dx+
∫

RN

|A(x)|2|u|2dx− 2 Re
∫

RN

∇u · iA(x)u dx.

Since there is no relation betweenH1
A(RN ,C) andH1(RN ,C); that is, H1

A(RN ,C) 6⊂
H1(RN ,R) and H1(RN ,C) 6⊂ H1

A(RN ,C), we will frequently use in this paper the
following diamagnetic inequality (see [16, Theorem 7.21])

|∇|u|(x)| ≤ |∇Au(x)| for almost every x ∈ RN . (2.1)

This implies that, if u ∈ H1
A(RN ,C) then |u| ∈ H1(RN ,R). Therefore, u ∈

Lp(RN ,C) for any p ∈ [2, 2∗].
By adapting standard variational arguments exploited in existing literature and

by exploiting radial assumptions it is not difficult to prove that there exists φ a
solution to

− (∇+ iA(x))2φ+ φ = |φ|q−2φ in RN , φ ∈ H1
A(RN ,C). (2.2)
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Note that if Iq is the functional associated with problem 2.2, then Iq(φ) = cA,
where

cA = inf
γ∈ΓA

max
t∈[0,1]

Iq(γ(t)) > 0,

ΓA =
{
γ ∈ C

(
[0, 1], H1

A,rad(RN ,C)
)

: γ(0) = 0 and Iq(γ(1)) < 0
}
,

‖φ‖2A =
∫

RN

|φ|qdx, (2.3)

‖φ‖2A =
2q
q − 2

cA. (2.4)

Moreover, we consider the space

D1,2
A (RN ,C) = {u ∈ L2∗(RN ,C) :

∫
RN

|∇Au|2dx < +∞},

which is the closure of C∞0 (RN ,C) with respect to the norm

‖u‖D1,2
A (RN ,C) =

(∫
RN

|∇Au|2dx
)1/2

for u ∈ D1,2
A (RN ,C)

corresponding to the inner product

(u, v)D1,2
A (RN ,C) = Re

∫
RN

∇Au · ∇Av dx for u, v ∈ D1,2
A (RN ,C).

Recall that D1,2
A (RN ,C) ↪→ L2∗(RN ,C). It is also useful to define

D1,2(RN ,R) =
{
u ∈ L2∗(RN ,R) :

∫
RN

|∇u|2dx < +∞
}

which is the closure of C∞0 (RN ,R) with respect to the norm

‖u‖D1,2(RN ,R) =
(∫

RN

|∇u|2dx
)1/2

for u ∈ D1,2(RN ,R)

corresponding to the inner product

(u, v)D1,2(RN ,R) =
∫

RN

∇u · ∇v dx for u, v ∈ D1,2(RN ,R).

Recall that D1,2(RN ,R) ↪→ L2∗(RN ,R) and we denote by S0 > 0 the best constant
of Sobolev embedding D1,2(RN ,R) ↪→ L2∗(RN ,R); that is,

S0

(∫
RN

|u|2
∗
dx
)2/2∗

≤
∫

RN

|∇u|2 dx for all u ∈ D1,2(RN ,R).

If S denotes the best constant of the imbedding D1,2
A (RN ,C) → L2∗(RN ,C), that

is,

S = inf
u∈D1,2

A (RN ,C)

∫
RN |∇Au|2dx

(
∫

RN |u|2∗dx)2/2∗
,

we have that S = S0, for details see [3, Theorem 1.1].
The energy functional IA:H1

A(RN ,C)→ R associated with (1.1) is defined as

IA(u) =
1
2
‖u‖2A −

1
2

∫
RN

F (|u|2) dx for u ∈ H1
A(RN ,C).
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Under assumptions (A4), (A5) (see in particular Remark 1.3 and a direct appli-
cation of [20, Theorem 1.22]), we obtain IA ∈ C1(H1

A(RN ,C),R) with Gâteaux
differential

I ′A(u)v = Re
∫

RN

(∇Au · ∇Av + uv) dx− Re
∫

RN

f(|u|2)uv dx

for all u, v ∈ H1
A(RN ,C), and its critical points are the weak solutions to (1.1).

We denote by H1
A,rad(RN ,C) and H1

rad(RN ,R) the subspaces of H1
A(RN ,C) and

H1(RN ,R) formed by the radial functions, that is

H1
A,rad(RN ,C) = {u ∈ H1

A(RN ,C) : u(x) = u(|x|) for x ∈ RN},
H1
rad(RN ,R) = {u ∈ H1(RN ,R) : u(x) = u(|x|) for x ∈ RN}.

Now, for finding a nontrivial complex solution to (1.1) let

DA = inf
{1

2

∫
RN

|∇Au|2dx : u ∈MA

}
(2.5)

where

MA =
{
u ∈ H1

A(RN ,C) \ {0} :
∫

RN

G(u) dx = 1
}

with N ≥ 3

with g(u) = f(|u|2)u− u and G(u) = 1
2

(
F (|u|2)− |u|2

)
for u ∈ H1

A(RN ,C). Here-
after, we can denote by

DA = inf
u∈MA

TA(u)

where for simplicity of notation

TA(u) =
1
2

∫
RN

|∇Au|2dx for u ∈ H1
A(RN ,C).

Moreover, we set

J(u) =
∫

RN

G(u) dx =
1
2

∫
RN

(
F (|u|2)− |u|2

)
dx for u ∈ H1

A(RN ,C),

J ′(u)v = Re
∫

RN

g(u)v dx = Re
∫

RN

(
f(|u|2)u− u

)
v dx for u, v ∈ H1

A(RN ,C).

Lemma 2.1. Suppose (A1), (A4), (A5), (A7) hold. Then, the functional IA has a
mountain pass geometry, that is

(i) IA(0) = 0,
(ii) there exist ρ0, δ0 > 0 such that IA(u) ≥ δ0 for all u ∈ H1

A(RN ,C) with
‖u‖A = ρ0;

(iii) there exists u0 ∈ H1
A(RN ,C) such that ‖u0‖A > ρ0 and IA(u0) ≤ 0.

Proof. (i) follows easily by Remark 1.3. (ii) By exploiting Remark 1.3 again and
Sobolev embeddings, for any ε > 0 there exists Cε > 0 such that

IA(u) =
1
2
‖u‖2A −

1
2

∫
RN

F (|u|2) dx

≥ 1
2
‖u‖2A −

1
2
ε

∫
RN

|u|2dx− 1
2
Cε

∫
RN

|u|2
∗
dx

≥ 1
2

(1− ε)‖u‖2A − C
′
ε‖u‖2

∗

A .
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If we take ‖u‖A = ρ and choose ε > 0 and ρ > 0 small enough, we obtain (ii) is
satisfied for suitable ρ0, δ0 > 0.

(iii) Let v0 ∈ H1
A(RN ,C) \ {0} arbitrary and t > 0. By Remark 1.4 it is

IA(tv0) ≤ 1
2
t2‖v0‖2A −

1
q
λtq
∫

RN

|u|q dx.

Since q > 2, we obtain IA(t v0) → −∞ as t → +∞ thus, taken u0 = tv0 for t
sufficiently large (iii) is proved. �

Therefore, we can define the following minimax value or mountain pass level of
IA, i.e.

bA = inf
γ∈ΓA

max
t∈[0,1]

IA(γ(t)) > 0,

where

ΓA = {γ ∈ C
(
[0, 1], H1

A(RN ,C)
)

: γ(0) = 0 and IA(γ(1)) < 0}.

At this point, it is useful to consider the real scalar problem

−∆u+ u = f(|u|2)u in RN

u ∈ H1(RN ,R)
(2.6)

with f :R+ → R satisfying assumptions (A4), (A5)-(A7) when N ≥ 3. Here below
we give a brief description of the results which we will exploit in next sections and
which have been established in Alves, Souto and Montenegro [2] by using the ideas
in Berestycki and Lions [6], Coleman, Glazer and Martin [9] and in Jeanjean and
Tanaka [13]. The functional I0 ∈ C1(H1(RN ,R),R) associated with (2.6) is

I0(u) =
1
2
‖u‖2 − 1

2

∫
RN

F (|u|2) dx for u ∈ H1(RN ,R),

where

‖u‖ =
(∫

RN

(|∇u|2 + |u|2) dx
)1/2

for u ∈ H1(RN ,R).

The authors investigated the existence of a ground state solution to (2.6), which
means a solution to u ∈ H1(RN ,R) such that I0(u) ≤ I0(v) for every nontrivial
solution v ∈ H1(RN ,R) of (2.6). Denoting

m0 = inf{I0(u) : uis a nontrivial solution to (2.6)}

and taking into consideration the set of non-zero critical point of I0, namely

Sigma0 = {u ∈ H1(RN ,R) \ {0} : I ′0(u) = 0},

it follows that
m0 = inf

u∈Σ0
I0(u).

Let

D0 = inf
u∈M0

T0(u) with T0(u) =
1
2

∫
RN

|∇u|2dx for u ∈ H1(RN ,R)

and the C1 manifold

M0 =
{
u ∈ H1(RN ,R) \ {0} :

∫
RN

G(u) dx = 1
}

with N ≥ 3.
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It has been taken into account the Pohozaev identity manifold

P0 =
{
u ∈ H1(RN ,R) \ {0} :

N − 2
2

∫
RN

|∇u|2dx = N

∫
RN

G(u) dx
}

=
{
u ∈ H1(RN ,R) \ {0} : (N − 2)

∫
RN

|∇u|2dx = N

∫
RN

(
F (|u|2)− |u|2

)
dx
}
.

and p0 = infu∈P0 I0(u). Since I0 has a mountain pass geometry, we define

0 = inf
γ∈Γ

max
t∈[0,1]

I0(γ(t)),

where
Γ0 = {γ ∈ C

(
[0, 1], H1(RN ,R)

)
: γ(0) = 0 and I0(γ(1)) < 0}.

In [2] the authors showed that D0 is attained in H1
rad(RN ,R) and the following

least energy characterizations holds

m0 = b0 = p0 =
1
N

(N − 2
2N

)(N−2)/2(2D0)N/2 if N ≥ 3 ;

so that (2.6) has a nontrivial ground state solution.
These existence results have been established without assuming two widely used

conditions, that is the monotonicity condition

f(s2)s
s

is increasing in (0,+∞)

and the Ambrosetti-Rabinowitz condition: there exists a constant θ > 2 such that

0 < θF (s2) ≤ f(s2)s2 for any s ∈ R \ {0}.

Therefore, the paper [2] complements the results obtained in the subcritical case
by Jeanjean and Tanaka [13] and improves previous results established under the
two previous conditions. Furthermore, we stress that assumption (A7) ensures that
there exists s > 0 such that G(s) > 0, which is a necessary condition for the
existence of a solution to (2.6) since it allows to exploit Pohozaev’s identity then
Pohozaev identity manifold P0 as done by Berestycki and Lions in [6, Proposition
1].

As in [2] which we follow, from the moment we extend the existence of a solution
to (2.6) to the magnetic case (A(x) 6= 0), we also improve previous results obtained
under the two previous conditions in absence of a magnetic field. Moreover, we
complement all the papers in literature treating equation (1.1) in the subcritical
case.

3. Preliminary results

Here we establish some preliminary results which will be used for proving The-
orem 1.1 in Section 4.

Lemma 3.1. Under hypothesis (A1), (A4), (A5)–(A7), the following assertions
hold:

(a) MA is not empty;
(b) MA is a C1 manifold.
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Proof. (a) By remarks 1.3 and 1.4, for u 6= 0 one has J(tu) < 0 if t > 0 is small
and J(tu)→ +∞ if t→ +∞. Hence, J(t0)=1, for some t0 > 0.
(b) By the definitions of J and J ′ given in Section 2, for every u ∈MA we have

J ′(u)u =
∫

RN

(
f(|u|2)|u|2 − |u|2

)
dx

=
∫

RN

(
f(|u|2)|u|2 − F (|u|2)

)
dx+

∫
RN

(
F (|u|2)− |u|2

)
dx.

By (A6) and J(u) = 1, it follows that

J ′(u)u ≥
∫

RN

(
F (|u|2)− |u|2

)
dx = 2

∫
RN

G(u) dx = 2 > 0

for all u ∈MA. Then, J ′(u)u 6= 0 for any u ∈MA. �

Lemma 3.2. Let assumptions (A1)–(A6) be satisfied. Then, any minimizing se-
quence {un} for DA is bounded in H1

A(RN ,C). The same assertion holds in par-
ticular in H1

A,rad(RN ,C).

Proof. Taken {un} a minimizing sequence for DA in H1
A(RN ,C), we obtain

1
2

∫
RN

|∇Aun|2dx→ DA as n→ +∞

and ∫
RN

G(un) dx = 1, that is
1
2

∫
RN

(
F (|un|2)− |un|2

)
dx = 1.

It follows that∫
RN

|∇Aun|2dx ≤ C for all n ∈ N and for some constant C > 0 (3.1)

and ∫
RN

F (|un|2) dx = 2 +
∫

RN

|un|2dx.

By Remark 1.3 with ε = 1
2 we obtain

2 +
∫

RN

|un|2dx ≤
1
2

∫
RN

|un|2dx+ C1/2

∫
RN

|un|2
∗
dx.

Then, by (3.1), for every n ∈ N,

1
2

∫
RN

|un|2dx ≤ C1/2

∫
RN

|un|2
∗
dx ≤

C1/2

S2∗/2

(∫
RN

|∇Aun|2dx
)2∗/2

≤ C.

Consequently, {un} is bounded in L2(RN ,C) and this implies that {un} is bounded
in H1

A(RN ,C). Without any difficulty, these arguments work also in H1
A,rad(RN ,C).

�

Clearly, by Sobolev imbeddings we obtain any minimizing sequence {un} for DA

is bounded also in Lm(RN ,C) for every m ∈ [2, 2∗]. It is useful to establish some
lemmas involving the level D0 associated with (2.6) and the min-max level bA of
IA.

Lemma 3.3. Under assumptions (A1), (A4)–(A7), it holds

1
N

(N − 2
2N

)(N−2)/2

(2D0)N/2 ≤ bA.
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Proof. First let us prove that, by diamagnetic inequality (2.1), we have b0 ≤ bA,
where b0 and bA are respectively the min-max levels for the functionals I0 and IA,
that is

b0 = inf
γ∈Γ0

max
t∈[0,1]

I0(γ(t)) and bA = inf
γ∈ΓA

max
t∈[0,1]

IA(γ(t)).

To do this, we take an arbitrary γ ∈ ΓA. Then, since γ(t) ∈ H1
A(RN ,C) for every

t ∈ [0, 1], by diamagnetic inequality (2.1) we obtain |γ(t)| ∈ H1(RN ,R) and∫
RN

|∇(|γ(t)|)|2dx ≤
∫

RN

|∇A(γ(t))|2dx

which implies
I0(|γ(t)|) ≤ IA(γ(t)) (3.2)

for any t ∈ [0, 1]. Therefore,

max
t∈[0,1]

I0(|γ(t)|) ≤ max
t∈[0,1]

IA(γ(t)). (3.3)

Now, since γ ∈ C
(
[0, 1], H1

A(RN ,C)
)

we obtain |γ| ∈ C
(
[0, 1], H1(RN ,R)

)
; more-

over, γ(0) = 0 implies |γ(0)| = 0 and by IA(γ(1)) < 0 and (3.2) we obtain
I0(|γ(1)|) < 0. Consequently, |γ| ∈ Γ0 which easily gives

b0 ≤ max
t∈[0,1]

I0(|γ(t)|).

Now, taking the infimum over all γ ∈ ΓA by (3.3) we conclude b0 ≤ bA. Therefore,
to obtain the claim, it is sufficient to prove that

1
N

(N − 2
2N

)(N−2)/2

(2D0)N/2 ≤ b0.

By exploiting the results obtained in [2] (see Section 2) we know in particular that

1
N

(N − 2
2N

)(N−2)/2

(2D0)N/2 = p0 = b0.

For the reader’s convenience, we sketch here the proof of p0 ≤ b0. Indeed, from
[13], for each γ ∈ Γ0 with

Γ0 = {γ ∈ C
(
[0, 1], H1(RN ,R)

)
: γ(0) = 0 and I0(γ(1)) < 0}

it results γ([0, 1]) ∩ P0 6= ∅. Then, there exists t0 ∈ [0, 1] such that γ(t0) ∈ P0. So

p0 ≤ I(γ(t0)) ≤ max
t∈[0,1]

I(γ0(t))

implies p0 ≤ b0. Consequently, since b0 ≤ bA we obtain the result. �

Lemma 3.4. Suppose (A1), (A4)–(A6) hold. Then the number DA given in (2.5)
is positive, namely, DA > 0.

Proof. By definition DA ≥ 0. Suppose, by contradiction, that DA = 0. If {un}
is a minimizing sequence for DA = 0 in H1

A(RN ,C), from (A3), without loss of
generality, we can suppose that {un} is a minimizing sequence for DA = 0 in
H1
A,rad(RN ,C). Then

1
2

∫
RN

|∇Aun|2dx→ 0 as n→ +∞

and
1 =

∫
RN

G(un) dx =
1
2

∫
RN

(
F (|un|2)− |un|2

)
dx.
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Then, by Remark 1.3 it follows that

2 +
∫

RN

|un|2dx =
∫

RN

F (|un|2) dx ≤ ε
∫

RN

|un|2dx+ Cε

∫
RN

|un|2
∗
dx

so we obtain

2 + (1− ε)
∫

RN

|un|2dx ≤ Cε
∫

RN

|un|2
∗
dx ≤ Cε

S2∗/2

(∫
RN

|∇Aun|2dx
)2∗/2

By choosing ε = 1
2 we obtain

2 ≤
C1/2

S2∗/2

(∫
RN

|∇Aun|2dx
)2∗/2

→ 0 as n→ +∞

which is an absurd. �

Remark 3.5. Assume (A1), (A4)–(A6) hold. By Ekeland Variational Principle
stated in [22, Theorem 8.5], we can suppose that the minimizing sequence {un} ⊂
MA to DA is a Palais-Smale sequence, namely, there exists a Lagrange multipliers
sequence {λn} ⊂ R such that

1
2

∫
RN

|∇Aun|2dx→ DA as n→ +∞,

T ′A(un)− λnJ ′(un)→ 0 in H−1
A (RN ,C) as n→ +∞,

where we recall that, for simplicity of notation, in Section 2 we set TA(u) =
1
2

∫
RN |∇Au|2dx for any u ∈ H1

A(RN ,C).

Lemma 3.6. Let (A1), (A4)–(A6) be satisfied. Then, the sequence {λn} of La-
grange multipliers (see Remark 3.5) is bounded from above and

0 < lim inf
n→+∞

λn ≤ lim sup
n→+∞

λn ≤ DA.

Proof. Since T ′A(un)− λnJ ′(un)→ 0 in H−1
A (RN ,C) as n→ +∞, we obtain

T ′A(un)un − λnJ ′(un)un

=
∫

RN

|∇Aun|2dx− λn Re
∫

RN

g(un)un dx

=
∫

RN

|∇Aun|2dx− λn
∫

RN

(
f(|un|2)|un|2 − |un|2

)
dx = on(1).

This is equivalent to∫
RN

|∇Aun|2dx = λn

∫
RN

(
f(|un|2)|un|2 − F (|un|2)

)
dx

+ λn

∫
RN

(
F (|un|2)− |un|2

)
dx+ on(1).

By (A6) we obtain∫
RN

|∇Aun|2dx ≥ λn
∫

RN

(
F (|un|2)− |un|2

)
dx+ on(1)

= 2λn
∫

RN

G(un) dx+ on(1) = 2λn + on(1).
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Then, from Remark 3.5

lim sup
n→+∞

λn ≤
1
2

lim sup
n→+∞

∫
RN

|∇Aun|2dx = DA

and the right-hand inequality in the thesis follows.
Now, we prove that lim infn→+∞ λn > 0. First observe that, by Remark 1.3,
Sobolev imbeddings and the boundedness of the minimizing sequence {un} stated
in Lemma 3.2, we obtain

|J ′(un)un| ≤
∫

RN

(
|f(|un|2|) |un|2 + |un|2

)
dx

≤
∫

RN

(
(ε+ 1)|un|2 + Cε|un|2

∗
)
dx ≤ C.

Then, we conclude that

2TA(un) = T ′A(un)un = λnJ
′(un)un + on(1)

and 2TA(un)→ 2DA > 0 where the positivity of DA has been established in Lemma
3.4. �

As observed in the following remark, to study the compactness of a minimizing
sequence {un} to DA, it is sufficient to consider the sequence {|un|} of the modula
of un. So we can exploit the diamagnetic inequality (2.1) and apply to {|un|} the
Concentration-Compactness technique of Lions [18] which is based on a measure
representation.

Remark 3.7. If a sequence {un} is bounded inH1
A(RN ,C), then by diamagnetic in-

equality (2.1) the sequence {|un|} of its modula is bounded in H1(RN ,R). Then, by
Lions Concentration Compactness principle [17, Lemma 1.2], there are a countable
index set Λ, nonnegative finite measures µ and ν and families {µi}, {νi} ⊂ (0,+∞)
and {xi} ⊂ RN such that

(j) |∇|un||2 ⇀ µ ≥ |∇|u||2 +
∑
i∈Λ δxi

µi (weak∗ sense of measures);
(jj) |un|2

∗
⇀ ν = |u|2∗ +

∑
i∈Λ δxiνi (weak∗ sense of measures)

(jjj) µi ≥ S ν2/2∗

i for every i ∈ Λ.
where |u| is the weak limit of |un| and δxi

are Dirac measures at xi. This remark
can be employed in the next lemma.

Lemma 3.8. Suppose that (A1), (A4)–(A6) are satisfied. If νi > 0 for some index
i, then

νi ≥
( S

DA

)N/2
.

Proof. Let {un} be a minimizing sequence to DA which we know it is bounded by
Lemma 3.2. Let ϕ ∈ C∞0 (RN , [0, 1]) be such that

ϕ(x) =

{
1 if x ∈ B1(0)
0 if x ∈ RN \B2(0)

and |∇ϕ(x)| ≤ 2 for every x ∈ RN . Then, we can consider

ϕε,xi
(x) = ϕ

(x− xi
ε

)
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for ε > 0 and xi a singular point of the measures
∑
i∈Λ δxi

µi and
∑
i∈Λ δxi

νi whose
existence is ensured in Remark 3.7 by Lions Concentration Compactness Principle.
Clearly, ϕε,xi ∈ C∞0 (RN , [0, 1]) satisfies

ϕε,xi
(x) =

{
1 if x ∈ Bε(xi)
0 if x ∈ RN \B2ε(xi)

and |∇ϕε,xi
(x)| ≤ 2/ε for every x ∈ RN . Since {unϕε,xi

} is bounded in H1
A(RN ,C),

by Remark 3.5 we obtain

T ′A(un)(unϕε,xi
) = λnJ

′(un)(unϕε,xi
) + on(1);

that is,

Re
∫

RN

∇Aun · ∇A(unϕε,xi
) dx

= λn Re
∫

RN

(
f(|un|2)|un|2 − |un|2

)
ϕε,xi dx+ on(1).

(3.4)

Since ϕε,xi
takes real values and by direct calculations,

∇A(unϕε,xi
) = ∇Aunϕε,xi

+ un∇ϕε,xi
.

Then we can write the term on the left-hand side in (3.4) as

Re
∫

RN

∇Aun · ∇A(unϕε,xi
) dx

= Re
∫

RN

∇Aun ·
(
∇Aunϕε,xi + un∇ϕε,xi

)
dx

=
∫

RN

|∇Aun|2ϕε,xi
dx+ Re

∫
RN

un∇Aun · ∇ϕε,xi
dx.

(3.5)

Now, observe that
Re(un∇Aun) = |un|∇|un|. (3.6)

Indeed,

Re(un∇Aun) = Re (un (∇un + iA(x)un))

= Re
(
un∇un + iA(x)|un|2

)
= Re(un∇un)

= |un| Re
( un
|un|
∇un

)
= |un|∇|un|.

By substituting (3.6) in (3.5) and by replacing in turn (3.6) in (3.4) we obtain by
diamagnetic inequality∫

RN

|∇|un||2ϕε,xi
dx+

∫
RN

|un|∇|un| · ∇ϕε,xi
dx

≤ λn
∫

RN

f(|un|2)|un|2ϕε,xi dx+ λn

∫
RN

|un|2ϕε,xi dx+ on(1).
(3.7)

Note that by (A4), there exists δ > 0 such that

|f(s)| ≤ 1, for all 0 ≤ s ≤ δ.

From (A5), there exists K > 0 such that

|f(s)| ≤ |s|(2
∗−2)/2, for all s ≥ K.
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Moreover, for s ∈ [δ, k], we obtain

|f(s)| ≤ K1, for some K1 > 0.

Then
|f(s)| ≤ (1 +K1) + |s|(2

∗−2)/2, for every s ≥ 0.
In particular,

f(|un|2)|un|2 ≤ (1 +K1)|un|2 + |un|2
∗
, for every n ∈ N.

Therefore, by (3.7) it follows that∫
RN

|∇|un||2ϕε,xi
dx+

∫
RN

|un|∇|un| · ∇ϕε,xi
dx

≤ λn
(

(2 +K1)
∫

RN

|un|2ϕε,xi
dx+

∫
RN

|un|2
∗
ϕε,xi

dx
)

+ on(1).

Now, we prove that

lim sup
ε→0

lim sup
n→+∞

∫
RN

|un|∇|un| · ∇ϕε,xi
dx = 0. (3.8)

Indeed, by Hölder’s inequality,

lim sup
n→+∞

(∫
RN

|un|∇|un| · ∇ϕε,xi dx
)

≤ lim sup
n→+∞

(∫
RN

|∇|un|| |un| |∇ϕε,xi
| dx
)

≤ lim sup
n→+∞

(∫
RN

|∇|un||2dx
)1/2(∫

RN

|un|2|∇ϕε,xi
|2dx

)1/2

≤ C1 lim sup
n→+∞

(∫
RN

|un|2|∇ϕε,xi
|2dx

)1/2

= C1

(∫
RN

|u|2|∇ϕε,xi
|2dx

)1/2

where C1 = supn
( ∫

RN |∇|un||2dx
)1/2. By using Hölder’s inequality again it follows

that ∫
RN

|u|2|∇ϕε,xi
|2dx ≤

(∫
B2ε(xi)

|u|2
∗
dx
)2/2∗(∫

RN

|∇ϕε,xi |N dx
)2/N

≤ CN
(∫

B2ε(xi)

|u|2
∗
dx
)2/2∗

with CN > 0 a suitable constant depending on N . Letting ε → 0 we obtain (3.8)
is satisfied. Now, since un → u in L2

loc(RN ) it easily follows

lim sup
ε→0

lim sup
n→+∞

∫
RN

|un|2ϕε,xi
dx = 0

which together with the assertion

lim sup
n→+∞

λn ≤ DA,

in Lemma 3.6, allow us to have µi ≤ DA νi. By Remark 3.7 (jjj) we have Sν2/2∗

i ≤
µi. Then

Sν
2/2∗

i ≤ DAνi
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and νi ≥
(
S
DA

)N/2. This completes the proof. �

Lemma 3.9. Suppose that (A1), (A4)–(A6) are satisfied. If νi > 0 for some index
i, then DA ≥ 2−2/NS.

Proof. From 0 ≤ ϕε,xi
≤ 1, it follows that∫

RN

|un|2
∗
ϕε,xi dx ≤

∫
RN

|un|2
∗
dx ≤ S−2∗/2

(∫
RN

|∇Aun|2dx
)2∗/2

.

Passing to the limit as n→ +∞, we have

νi ≤ S−2∗/2 (2DA)2∗/2
.

From Lemma 3.8, since νi ≥
(

S
DA

)N/2
, it follows that DA ≥ 2−2/NS; thus com-

pleting the proof. �

Now, let us recall the next result relating the constants DA and D0.

Lemma 3.10. Under assumptions (A1), (A4)–(A6), we have DA = D0.

Proof. We follows the arguments used in [3, 11], and for the sake of completeness,
we give here the details of the proof. By diamagnetic inequality (2.1) we obtain

D0 ≤
∫

RN

(
|∇|u||2 + |u|2

)
dx ≤

∫
RN

(
|∇Au|2 + |u|2

)
dx,

which implies D0 ≤ DA.
Now, we show the reversed inequality DA ≤ D0 also holds. Taking ε > 0

an arbitrarily small constant, we consider ϕε ∈ C∞c (RN ,R) whose supp(ϕε) is
a (compact) neighborhood of x0 ∈ RN (for simplicity, we can assume x0 = 0)
satisfying ∫

RN

G(ϕε) dx = 1 and
∫

RN

|∇ϕε|2dx ≤ D0 + ε.

We can define a function uε = eiχx0 (x)ϕε with χx0(x) = A(x0) · x. Since ϕε ∈
H1(RN ,R), for a direct calculation, we obtain uε ∈ H1

A(RN ,C) and∫
RN

G(uε) dx =
∫

RN

G(eiχx0 (x)ϕε) dx

=
1
2

∫
RN

(
F (|eiχx0 (x)ϕε|2)− |eiχx0 (x)ϕε|2

)
dx

=
1
2

∫
RN

(
F (|ϕε|2)− |ϕε|2

)
dx

=
∫

RN

G(ϕε) dx = 1.

Now, by the continuity assumption in (A1) we obtain |A(x) + A(x0)|2 ≤ c in the
supp(ϕε), if we suppose ‖ϕε‖2 = o(ε), we deduce

DA ≤
∫

RN

|∇Auε|2dx =
∫

RN

|∇ϕε|2dx+
∫

RN

|A(x) +A(x0)|2|ϕε|2dx

≤ D0 + o(ε)

which completes the proof. �

From Lemmas 3.9 and 3.10 we obtain easily the next result.
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Lemma 3.11. Let (A1), (A4)–(A6) be satisfied. If νi > 0 for some index i, then
D0 ≥ DA ≥ 2−2/NS.

Lemma 3.12. Suppose (A1), (A4)–(A7) be satisfied. If

λ >
[
2(2−N)/2S−N/2N

( 2N
N − 2

)(N−2)/2](q−2)/2

c
(q−2)/2
A , (3.9)

then

bA <
1
N

(N − 2
2N

)(N−2)/2

2(N−2)/2SN/2.

Proof. Take ϕ ∈ H1
A,rad(RN ,C) a solution of (2.2). From the definition bA =

infγ∈ΓA
maxt∈[0,1] IA(γ(t)), (2.3), (2.4) and (A7), it follows that

bA ≤ max
t≥0

IA(tϕ) ≤ max
t≥0

{ t2
2
− λt

q

q

}
cA

2q
q − 2

=
cA

λ2/(q−2)
.

By using the lower bound on λ assumed in hypothesis (3.9) we obtain

bA <
1
N

(N − 2
2N

)(N−2)/2

2(N−2)/2SN/2 .

This completes the. �

Lemma 3.13. Assume (A1)–(A7) are satisfied. If (3.9) holds, namely

λ >
[
2(2−N)/2S−N/2N

( 2N
N − 2

)(N−2)/2](q−2)/2

c
(q−2)/2
A ,

then the weak limit u of any minimizing sequence {un} to DA is nontrivial.

Proof. Let {un} be a minimizing sequence to DA. Then Lemma 3.2 states {un}
is bounded in H1

A,rad(RN ,C). Then {|un|} is bounded in H1
A,rad(RN ,R) and there

exists u ∈ H1
A(RN ,C) such that |un|⇀ |u| in H1

A(RN ,R). Suppose by contradiction
that |u| = 0. By Remark 3.7 (jj) based on Lions Concentration Compactness
principle we obtain

|un|2
∗
⇀ dν =

∑
i

δxi
νi (in the weak∗ sense of measures). (3.10)

Since {|un|} ⊂ H1
rad(RN ,R), by [6, Radial Lemma A.II] there exist a radius R =

R(N) > 0 and a constant C = C(N) > 0 both independent of n such that

|un(x)| ≤ C |x|−(N−1)/2 for |x| ≥ R,

or equivalently
|un(r)| ≤ C r−(N−1)/2 for r ≥ R.

Then the sequence {|un|} is bounded in L∞(BcR(0),R) for every R > 0 or equiva-
lently there exists a constant M > 0 such that

‖un‖L∞(Bc
R(0),R) ≤M for every n ∈ N. (3.11)

This implies {|un|} converges strongly to 0 in Lm(BcR(0),R) for all m > 2 and for
any R > 0. We prove that also νi0 = 0. If on the contrary νi0 > 0, by Lemma 3.11
we obtain D0 ≥ DA ≥ 2−2/NS. Since by Lemma 3.3,

1
N

(N − 2
2N

)(N−2)/2

(2D0)N/2 ≤ bA,
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we obtain
1
N

(N − 2
2N

)(N−2)/2

2(N−2)/2SN/2 ≤ bA.

But this last inequality contradicts Lemma 3.12. Then there is no νi > 0 for every
i ∈ Λ. Consequently, by (3.10),

|un|2
∗
⇀ 0 (in the weak∗ sense of measures),

hence ∫
RN

|un|2
∗
ϕdx→ 0, for every ϕ ∈ C∞0 (RN ,C).

This implies
un → 0 in L2∗

loc(RN ,C). (3.12)
Using the same argument, we have

un → 0 in L2∗(BcR(0),C) for any R > 0,

which together with (3.12) implies un → 0 in L2∗(RN ,C).
Now, we can follow again the arguments used in Lemma 3.4. Indeed, since

{un} ⊂ MA implies

1 =
∫

RN

G(un) dx =
1
2

∫
RN

(
F (|un|2)− |un|2

)
dx,

by Remark 1.3 it follows that

2 +
∫

RN

|un|2dx =
∫

RN

F (|un|2) dx ≤ ε
∫

RN

|un|2dx+ Cε

∫
RN

|un|2
∗
dx

so

2 + (1− ε)
∫

RN

|un|2dx ≤ Cε
∫

RN

|un|2
∗
dx.

By choosing ε = 1/2 we obtain

2 ≤ C1/2

∫
RN

|un|2
∗
dx→ 0 as n→ +∞

which is an absurd. Thus, we can conclude that u 6= 0. �

4. Proof of Theorem 1.1

Under the assumptions in Theorem 1.1 we show that DA is attained by u, where
u is the non trivial weak limit of the minimizing sequence {un} to DA. Indeed,
since {un} is bounded by Lemma 3.2, we have un ⇀ u in H1

A,rad(RN ,C) and being
the weak limit u not trivial thanks to Lemma 3.13, we deduce that

TA(u) =
1
2

∫
RN

|∇Au|2dx ≤ lim inf
n→+∞

1
2

∫
RN

|∇Aun|2dx = DA. (4.1)

Now, by Lemmas 3.3, 3.11 and 3.12 we obtain that νi = 0 for every i. It remains
to prove that u ∈ M. To do this, first observe that the uniform decay at infinity
of {un} ⊂ H1

A,rad(RN ,C) together with (A4) imply the existence of a radius R > 0
such that

|un|2 − F (|un|2) ≥ 0 for any n ∈ N and in RN \BR
where BR denotes the ball of radius R centered in 0. Since un → u in L2∗(BR,C),
from [7, Theorem 4.9, Section 4], up to a subsequence, un → u a.e. in BR and
there exists v ∈ L2∗(BR) such that |un(x)| ≤ v(x) a.e. in BR. Moreover we have
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F (|un(x)|2)→ F (|u(x)|2) a.e. and, by Remark 1.3, in correspondence of any ε > 0
we obtain the existence of Cε > 0 such that

|F (|un|2)| ≤ ε|un|2 + Cε|un|2
∗
≤ ε|v|2 + Cε|v|2

∗

for all n ∈ N. By the arbitrariness of ε and the Dominated Convergence Theorem,
we obtain ∫

BR

F (|un|2) dx→
∫
BR

F (|u|2) dx.

Now, since
1
2

∫
BR

F (|un|2) dx =
1
2

∫
BR

|un|2 dx+
1
2

∫
RN\BR

(
|un|2 − F (|un|2)

)
dx+ 1,

taking into account the above considerations, the properties of limit inferior with
respect to the sum of sequences and Fatou’s Lemma we infer that∫

BR

F (|u|2) dx ≥ 1
2

∫
BR

|u2| dx+
1
2

∫
RN\BR

(
|u|2 − F (|u|2)

)
dx+ 1;

that is,
∫

RN G(u) dx ≥ 1. If we prove that also that∫
RN

G(u) dx ≤ 1, (4.2)

then we obtain u ∈MA and TA(u) = DA, or equivalently,

TA(u) = DA = min
{1

2

∫
RN

|∇Au|2dx : u ∈ H1
A(RN ,C) \ {0},

∫
RN

G(u) dx = 1
}
.

To show (4.2), suppose by contradiction that∫
RN

G(u) dx > 1.

We define h:[0, 1]→ R by

h(t) =
∫

RN

G(tu) dx =
1
2

∫
RN

(
F (|tu|2)− |tu|2

)
dx for every t ∈ [0, 1].

Now we show that h(t) < 0 for t close to 0. Indeed, by Remark 1.3 we obtain

h(t) =
1
2

∫
RN

(
F (t2|u|2)− t2|u|2

)
dx

≤ 1
2

∫
RN

(
εt2|u|2 + Cεt

2∗ |u|2
∗
)
dx− 1

2

∫
RN

t2|u|2dx

=
1
2
Cεt

2∗
∫

RN

|u|2
∗
dx− 1

2
t2(1− ε)

∫
RN

|u|2dx.

Choosing ε > 0 sufficiently small, e.g. ε < 1, we obtain h(t) < 0 for t > 0 small
enough. Clearly, h(1) =

∫
RN G(u) dx > 1. Then, by the continuity of h, there exists

t0 ∈ (0, 1) such that h(t0) = 1 which gives∫
RN

G(t0u) dx = 1⇐⇒ t0u ∈MA.

Consequently, by (4.1),

DA ≤ TA(t0u) =
t20
2

∫
RN

|∇Au|2dx = t20TA(u) ≤ t20DA < DA
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which is absurd. Thus, TA(u) = DA and u ∈MA; that is,

DA =
1
2

∫
RN

|∇Au|2dx, J(u) =
∫

RN

G(u) dx =
1
2

∫
RN

(
F (|u|2)− |u|2

)
dx = 1.

By Lagrange Multipliers Theorem, there exists a multiplier θ ∈ R such that

T ′A(u) = θJ ′(u);

in particular, for every v ∈ H1
A,rad(RN ,C) we obtain T ′A(u)v = θJ ′(u)v, namely

Re
∫

RN

∇Au · ∇Av dx = θRe
∫

RN

(
f(|u|2)u− u

)
v dx. (4.3)

By adapting the arguments in Berestycki and Lions [6], we are able to prove that θ >
0. Indeed, first remark that θ 6= 0; if not, namely if θ = 0 we would have T ′A(u) = 0
and in particular

∫
RN |∇Au|2dx = 0. Therefore, u = 0 which is impossible.

Specifically, it results that θ > 0. Indeed, suppose by contradiction that θ < 0.
Moreover, observe that J ′(u) 6= 0; otherwise,

J ′(u)v = Re
∫

RN

(
f(|u|2)u− u

)
v dx = 0

would imply f(|u|2)u−u = 0 then F (|u|2)−|u|2 = 0 which leads to a contradiction
with J(u) = 1.

Now let us consider a test function w such that

J ′(u)w = Re
∫

RN

(
f(|u|2)u− u

)
w dx > 0.

Since J(u+ εw) ∼= J(u) + εJ ′(u)w and

TA(u+ εw) ∼= TA(u) + εθJ ′(u)w for ε→ 0 and θ < 0,

it is possible to choose ε > 0 small enough so that v = u + εw satisfies J(v) >
J(u) = 1 and TA(v) < TA(u) = DA. Now, by a scale change vσ(x) = v(x/σ), there
exists 0 < σ < 1 such that

J(vσ) =
1
2

∫
RN

(
F (|vσ|2)− |vσ|2

)
dx = σN J(v) = 1

and, thanks to assumption (A2) we obtain

TA(vσ) =
1
2

∫
RN

|∇Avσ|2dx = σN−2TA(v) < DA

which is absurd. Then, θ > 0. Then u in H1
A,rad(RN ,C) satisfies (in the weak

sense)
−∆Au = θ

(
f(|u|2)u− u

)
. (4.4)

Now, we aim to prove that by exploiting a suitable change of variable the re-scaled
u, say uθ, satisfies

Re
∫

RN

∇Auθ · ∇Av dx = Re
∫

RN

(
f(|uθ|2)uθ − uθ

)
v dx (4.5)

namely, uθ satisfies (in the weak sense)

−∆Auθ + uθ = f(|uθ|2)uθ (4.6)

so that uθ is a solution to (1.1). Indeed, since

Re
∫

RN

∇Au · ∇Av dx = Re
∫

RN

∇u · ∇v dx+ Re
∫

RN

∇u · iA(x)v dx
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+ Re
∫

RN

iA(x)u · ∇v dx+ Re
∫

RN

iA(x)u · iA(x)v dx,

by substituting u(x) = uθ(
√
θx) (that is, uθ(x) = u

(
x√
θ

)
) in (4.3) and by exploiting

the change of variable y =
√
θx, we obtain

Re
∫

RN

√
θ∇yuθ(y) ·

√
θ∇yv

( y√
θ

) 1
(
√
θ)N

dy

+ Re
∫

RN

√
θ∇yuθ(y) · iA

( y√
θ

)
v
( y√

θ

) 1
(
√
θ)N

dy

+
√
θRe

∫
RN

iA
( y√

θ

)
uθ(y) ·

√
θ∇yv

( y√
θ

) 1
(
√
θ)N

dy

+ Re
∫

RN

iA
( y√

θ

)
uθ(y) · iA

( y√
θ

)
v
( y√

θ

) 1
(
√
θ)N

dy

= θRe
∫

RN

(
f(|uθ(y)|2)uθ(y)− uθ(y)

)
v
( y√

θ

) 1
(
√
θ)N

dy.

(4.7)

If we simplify 1/(
√
θ)N and put in evidence θ, it follows that

Re
∫

RN

(
∇y + i

1√
θ
A
( y√

θ

))
uθ(y) ·

(
∇y + i

1√
θ
A
( y√

θ

))
v
( y√

θ

)
dy

= Re
∫

RN

(
f(|uθ(y)|2)uθ(y)− uθ(y)

)
v
( y√

θ

)
dy.

By assumption (A2), and since 1√
θ
A
(
y√
θ

)
= A(y) for every y ∈ RN , we have

Re
∫

RN

∇Auθ(y) · ∇Av
( y√

θ

)
dy = Re

∫
RN

(
f(|uθ(y)|2)uθ(y)− uθ(y)

)
v
( y√

θ

)
dy;

thus we can conclude uθ satisfies (4.6).
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