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FIRST ORDER LINEAR ORDINARY DIFFERENTIAL
EQUATIONS IN ASSOCIATIVE ALGEBRAS

GORDON ERLEBACHER & GARRRET E. SOBCZYK

Abstract. In this paper, we study the linear differential equation

dx

dt
=

n∑
i=1

ai(t)xbi(t) + f(t)

in an associative but non-commutative algebra A, where the bi(t) form a set
of commuting A-valued functions expressed in a time-independent spectral

basis consisting of mutually annihilating idempotents and nilpotents. Explicit

new closed solutions are derived, and examples are presented to illustrate the
theory.

1. Introduction

One of the basic differential equations has the form
dx

dt
= a(t)x+ f(t), (1.1)

which is linear and of first order. A method of solution is to write the fundamental
solution (also called integrating factor) as µa(t) = e

∫ t
0 a(t′)dt′ so that the equation

can be rewritten equivalently as

d(µ−1
a x)
dt

= µ−1
a f(t),

with µa(0) = 1. For x0 = x(0), this method yields the unique solution

x(t) = µa(t)x0 + µa(t)
∫ t

0

µ−1
a (s)f(s)ds. (1.2)

The main objective of this paper is to study the differential equation

dx

dt
=

n∑
i=1

ai(t)xbi(t) + f(t) (1.3)

with initial condition x(0) = x0 in the general setting of an associative but non-
commutative algebra A. Here the bi(t) form a set of commuting A-valued functions
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expressed in a time-independent spectral basis consisting of mutually annihilating
idempotents and nilpotents. Thus, our algebra A could be the matrix algebra Mn

of real or complex n × n matrices, or a Clifford geometric algebra such as the
quaternion algebra H.

Whereas some of the special cases of this differential equation are well-known,
for example, for A ≡Mn, (when b1 = 1, bi = 0, i > 1 and a = α(t)A for a constant
matrix A, [6, p.189,193]), we believe that the more general forms of this equation
are new and have potentially many applications. Different forms of (1.3) are used
in control theory for motion planning for autonomous vehicles [11], in problems of
vibration, in column structures under periodic axial loading [12] or the equation of
motion for the classical Euler top in n-dimensional space [8]. The generalization
and extension of our methods into other areas also appears promising. Possible
areas where our methods might apply include the calculation of dichotomies for
impulsive equations [9], and in generalizations of the noncommutative operational
calculus developed in [3].

To motivate the utility of our approach, we consider the solution of the 2 × 2
matrix differential equation

dX

dt
= AXB (1.4)

with

A =
(

4 −2
3 −1

)
, B =

(
λ1 0
0 λ2

)
,

and λ1 6= λ2. For reference, A has eigenvalues 1 and 2.
A standard approach to solving (1.4) is to first multiply it out,

d

dt

(
x11 x12

x21 x22

)
= A

(
x11 x12

x21 x22

) (
λ1 0
0 λ2

)
=

(
4 −2
3 −1

) (
λ1x11 λ2x12

λ1x21 λ2x22

)
=

(
4λ1x11 − 2λ1x21 4λ2x12 − 2λ2x22

3λ1x11 − 1λ1x21 3λ2x12 − 1λ2x22

)
.

It is not possible to transform this result into an equivalent 2 × 2 linear equation
of the form

dX

dt
= CX

where C ∈ M2. On the other hand, equating each matrix element separately, we
have four equations in four unknowns. We find that

d

dt


x11

x12

x21

x22

 =


4λ1x11 − 2λ1x21

4λ2x12 − 2λ2x22

3λ1x11 − 1λ1x21

3λ2x12 − 1λ2x22

 ,

or in matrix/vector form,

d

dt
~X = C ~X
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where

C =


4λ1 0 −2λ1 0
0 4λ2 0 −2λ2

3λ1 0 −λ1 0
0 3λ2 0 λ2

 = BT ⊗A. (1.5)

and ~X is a column vector formed from the four elements of X. We have used ⊗
to denote the Kronecker tensor product [6, p.256]. See also [1, p. 123], [2], and [4,
p.245].

The solution to this equation is well-known,

~X = eCt ~X(0) (1.6)

Although we have an explicit solution, it came at the price of transforming a 2× 2
system into a 4×1 system of equations. Although this has not changed the number
of variables, it has had the unfortunate consequence of taking an intrinsic object
X and separating out its individual components. It would be better to find an ex-
pression for the 2× 2 matrix X directly as a function of the intrinsic (or invariant)
algebraic properties of the matrices A and B, rather than on representations that
depend on the choice of a coordinate system used to construct A and B. Further-
more, when elements of more general algebras are used in lieu of matrices, working
with the equivalent matrix representation of these elements (when they exist) often
results in a loss of the geometric and algebraic information used to construct the
original differential equation.

Based on the techniques described in this paper, we can immediately write down
the solution

X(t) =
(
eλ1tpA,1 + e2λ1tpA,2

)
X(0)pB,1 +

(
eλ2tpA,1 + e2λ2tpA,2

)
X(0)pB,2, (1.7)

where we have used the spectral decompositions

A = pA,1 + 2pA,2, B = λ1pB,1 + λ2pB,2

of the matrices A and B in terms of their spectral bases

pA,1 = 2I2 −A, pA,2 = A− I2

and

pB,1 =
B − λ2I2
λ1 − λ2

, pB,2 =
B − λ1I2
λ2 − λ1

,

and where Im is the m × m identity matrix. Although the solutions (1.6) and
(1.7) are equivalent, the latter expression shows the dependence of the solution on
intrinsic properties of the matrices A and B. In many cases, matrices that appear
in differential equations have geometric or physical significance; therefore, solutions
can be more easily interpreted if expressed in terms of these matrices and their
properties.

The solutions we seek are expressed by exploiting certain algebraic properties
of invariants constructed from the equation elements. Well-known examples of
invariants of a matrix are its eigenvalues, its trace, and its determinant. In many
cases, matrix elements depend on the basis used to define it. A rotation of the basis
functions changes the elements of the matrix, but not the invariants. If the solution
to a general linear differential equation is basis-independent, it becomes easier to
analyze. For example, a discussion of stability involves eigenvalues. Rather than
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study the stability of the 4× 4 matrix C, it is more sensible to relate the stability
directly to the eigenvalues of the 2× 2 matrices A and B.

2. Spectral basis

A spectral basis in the associative algebra A is an ordered set

S =
(
p1 q1 . . . qm1−1

1 . . . pr qr . . . qmr−1
r

)
(2.1)

of idempotents and nilpotents of A that generate a commutative subalgebra S of
A and satisfy the following basic rules [10]

• p1 + · · ·+ pr = 1,
• pjpi = pipj = δijpi for i, j = 1, . . . , r,
• qmi

i = 0 but qmi−1
i 6= 0,

• qjpi = piqj = δijqi.
The spectral basis S is made up of the ordered sub-blocks

Si =
(
pi qi . . . qmi−1

i

)
so that

S =
(
S1 . . . Sr

)
In writing the last equality, we are expressing the spectral basis in terms of the or-
dered sub-blocks Si. We stress that the sets are ordered, because we will be treating
them as row matrices of polynomials on which matrix operations are defined.

Note that
span(S) = span(S1)⊕ · · · ⊕ span(Sr)

where span(Si) is the subspace of A spanned by the elements of Si. The dimension
of the spectral basis S is m =

∑r
i=1mi, and determines a commutative subalgebra

S of A. Of course, any element b ∈ S is a linear combination of the elements in S,

b =
r∑

i=1

mj−1∑
j=0

βi,jq
j
i , βi,j ∈ C (2.2)

where we have adopted the convention that q0i = pi. In terms of the block decom-
position of S,

bST =
(
b1 . . . br

)
ST

where bi = pib =
(
βi,0 . . . βi,mi−1

)
ST

i . If a spectral algebra S has only one
block S = S1 =

(
1 q . . . qm−1

)
, we say that S is a simple spectral algebra. A

simple element of A has a simple spectral basis.
To take advantage of the direct sum structure, we note that

bST
i = BiS

T
i = (βi,0Imi +Ni)ST

i (2.3)

where the matrix Bi formed from scalar components of b is defined by the upper
triangular Toeplitz matrix

Bi =


βi,0 βi,1 . . . βi,mi−1

0 βi,0 . . . βi,mi−2

. . . . . . . . . . . .

. . . . . . . . . . . .
0 . . . 0 βi,0

 , (2.4)
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and where Ni is a strictly upper triangular Toeplitz matrix. We can now write

bST =
(
B1 . . . Br

)
S =

r∑
i=1

(βi,0Imi +Ni)ST
i . (2.5)

Pre-multiplying bST by Em =
(
Em1 . . . Emr

)
recovers b:

b = EmbS
T =

r∑
i=1

Emi
BiS

T
i (2.6)

where m =
∑r

i=1mi, and Emi
=

(
1 0 . . . 0

)
mi

.
Using (2.5), any analytic function f(b) is computable in a finite number of op-

erations (addition and multiplication in A). We find that

f(b)ST =
(
f(B1) . . . f(Br)

)
ST =

r∑
i=1

f(βi,0Imi
+Ni)ST

i . (2.7)

With N0
i = Imi , f(b) has the Taylor series-like expansion

f(βi,0Imi
+Ni) =

mi−1∑
j=0

f (j)(βi,0)N
j
i (2.8)

around βi,0, with normalized derivatives

f (j)(βi,0) =
1
j!
dj

dxj
f(x)|x=βi,0 (2.9)

for i = 1, . . . , r and j = 0, . . . ,mi − 1. We can then substitute (2.8) and (2.9) into
(2.7) to get

f(b)ST =
r∑

i=1

mi−1∑
j=0

f (j)(βi,0)N
j
i S

T
i . (2.10)

Multiplying both sides of this equation on the left by the contraction operator Em,
we find

f(b) =
r∑

i=1

mi−1∑
j=0

f (j)(βi,0)Emi
N j

i S
T
i . (2.11)

For example, consider the expansion of eb in the spectral basis S. Applying (2.11),
where f(x) = ex, we immediately conclude that

eb =
r∑

i=1

eβi,0

mi−1∑
j=0

1
j!
Emi

N j
i S

T
i . (2.12)

We will have use for special cases of this formula in Section 5.

2.1. Minimal Polynomial. Every element b ∈ A generates a commutative subal-
gebra Ab of A consisting of linear combinations of powers of the element b. We can
take as the standard basis of this algebra the ordered set D =

(
1 b . . . bm−1

)
;

thus any element c ∈ Ab can be expressed in the form

c =
m−1∑
i=0

βib
i = D{c}T

D (2.13)
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where {c}D =
(
β0 . . . βm−1

)
D

are the complex scalar components of the element
c ∈ Ab with respect to the basis D and βi ∈ C. When the context is unambiguous,
we will drop the subscript indicating the basis.

The minimal polynomial of the element b is the unique monic polynomial

ψ(x) =
r∏

i=1

(x− xi)mi (2.14)

of minimal degree with the property that ψ(b) = 0. We will always assume that the
distinct roots xi of the minimal polynomial are complex numbers, which guarantees
that the primitive factors of the minimal polynomial will all be of the form (x −
xi)mi . The minimal polynomial uniquely determines the spectral decomposition of
the element b,

b =
r∑

i=1

(xi + qi)pi

for distinct xi ∈ C, where pi = pi(b) and qi = qi(b), i = 1, . . . , r, are polynomials in
b of degree less than m, and where the algebra Ab = S[10].

3. Kronecker Tensor Products

In this section, we review some of the properties of tensor products in preparation
for some of the manipulations that will follow. Following [6, p.256], and [1, p.123],
[4, pp. 239-297], the tensor product of two matrices A ∈ Mm,n(A) and B ∈
Mp,q(A) satisfy

•
(A⊗B) = (aij)⊗ (bkl) := ((aij)bkl) (3.1)

(Note that some authors multiply matrix B by the elements aij of A.)
•

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (3.2)

assuming that the matrix multiplications AB and CD are well defined.
•

A⊗B = (A⊗ IB)(IA ⊗B) (3.3)

where A and B are square matrices, and IA, IB are the identity matrices
with the same dimensions as A and B respectively.

• Multiplication by an element x ∈ A:

x(A⊗B) = (xA)⊗B

(A⊗B)x = A⊗ (Bx)

• Associativity:

(A⊗B)⊗ C = A⊗ (B ⊗ C) (3.4)

• Transposition:

(A⊗B)T = AT ⊗BT (3.5)

Both of these matrices and their elements are non-commutative in general.
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4. Linear Superposition

When working with linear operators, the principle of linear superposition is a
powerful tool for problem simplification. We apply this principle to solve the linear
differential equation

dx

dt
=

n∑
i=1

ai(t)xbi(t) + f(t) (4.1)

where the time-dependent bi’s form a commutative set that can be expanded in
terms of a set of time-independent commutative spectral basis elements,

bi(t) = Si{bi}T =
ri∑

j=1

Si,jpi,j{bi,j}T (4.2)

for bi,j = pi,jbi ∈ A,

Si,j =
(
pi,j qi,j . . . q

mi,j−1
i,j

)
,

and the time-dependent coefficients

{bi,j} =
(
βi,j,0(t) . . . βi,j,mj−1(t)

)
,

where βi,j,k ∈ C for i = 1, . . . , n and j = 1, . . . , ri. The commutativity of bi and
bk implies the commutativity of the subspaces Si and Sk. Furthermore, pi,jpi,k =
pi,jpi,kδj,k.

To simplify the problem, we seek to replace (4.1) by the new equation

dy

dt
=

n∑
i=1

ci(t)ydi(t) + g(t) (4.3)

where the di are now simple elements of A, and ci, g ∈ A. Using (4.2) and the
commutativity of matrices of scalars with elements of A, it follows that

bi(t)p(j) =
ri∑

j=1

Si,jpi,j{bi,j}T p(j) = p(j)Si,ji
{bi,ji

}T , (4.4)

where p(j) = p1,j1 . . . pn,jn
. The second equality is based on p(j)pi,j = p(j)δj,ji

.
Next, multiplying (4.1) to the right by p(j), and using (2.13), (4.2) and (4.4)

gives

dxp(j)

dt
=

n∑
i=1

ai(t)xp(j)Si,ji
{bi,ji

}T + fp(j)

=
n∑

i=1

ai(t)xp(j)bi,ji + fp(j) (4.5)

Equation (4.5) is of type (4.3) with y = xp(j), ci = ai, di = bi,ji , and g(t) = f(t)p(j).
Note that ai(t) need not have a simple spectral basis and remains a general time-
dependent element of A. x(j) = xp(j) represents the solution to (4.1) projected onto
the subspace spanned by S(j) = ⊗n

i=1 span(Si,ji
). The full solution is constructed

by linear superposition of r1 r2 . . . rn elemental solutions xp(j):

x(t) =
∑
(j)

xp(j) =
r1∑

j1=1

· · ·
rn∑

jn=1

xp1,j1 . . . pn,jn (4.6)
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Several comments are in order. Since each bi is expanded in its own fixed basis,
one cannot assume that Si,k and Sj,l are orthogonal to each other when i 6= j.
When orthogonality Si,j with respect to i is not satisfied, the solutions xp(j) are
not mutually orthogonal, nor are they necessarily linearly independent.

Additional simplifications are possible if the ai are also expanded in a time-
independent spectral basis Sai, independent from the spectral basis of the bi. Let

ai = Sai{ai}T =
si∑

j=i

{ai,j}pai,jS
T
ai,j

in correspondence with (4.2), Sai,j =
(
q0ai,j . . . qni−1

ai,j

)
, and

pa(k) = pa1,k1 . . . pan,kn , along with the convention q0ai,j = pai,j . Pre-multiply (4.5)
by pa(k),

dpa(k)xp(j)

dt
=

n∑
i=1

ai,ki
pa(k)xp(j)bi,ji

+ pa(k)fp(j) (4.7)

which is of the form (4.3) with y = pa(k)xp(j), and where both di = ai,ki
and

ci = bi,ji
are simple elements of A. The full solution to (4.1) is simply a linear

superposition of elemental solutions pa(k)xp(j):

x =
∑
(j)

∑
(k)

pa(k)xp(j)

In the sections that follow, we consider only the solution of the differential equa-
tion (4.3).

5. Fundamental solution

The solution x = µa(t)x0 to the linear homogeneous equation

dx

dt
= a(t)x

with initial conditions x0 = x(0), a(t) and x ∈ A, is the basic building block for
all solutions to the equations considered in this paper. The fundamental solution
µa(t) is formally assumed to satisfy the property

dµa

dt
= a(t)µa (5.1)

with the initial condition µa(0) = 1.
The fundamental solution has been discussed by many authors in different con-

texts. In [12], the fundamental solution is studied under the condition that a(t)
is periodic. In [7], the fundamental solution determines the controllability and ob-
servability of the system. In [5], the author studies the fundamental solution in
terms of what he calls “expansions that grow on trees.” We show in this paper
how, under certain conditions and assumptions, the fundamental solution leads to
a family of solutions that can be expressed in closed form.

By convention, the identity element e of A is represented by 1, and we assume
that the left and right inverses of a ∈ A (if they exist) are equal. Under these
conditions, a−1a = aa−1 = e = 1. A subscript is attached to the generalized
integrating factor µa to reflect the A-valued function a(t) that it is associated with.
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The equation satisfied by an assumed inverse µ−1
a is determined by differentiating

µa(t)µ−1(t) = 1 with respect to t. One finds

dµ−1
a

dt
= −µ−1

a a = (−µ−1
a aµa)µ−1

a . (5.2)

Using the definition of µa, we derive an implicit relation for µ−1
a :

µ−1
a (t) = µ−µ−1

a aµa
(t) .

In the event that µa(t) and a(t) commute, µa and its inverse are simply related by
µ−1

a (t) = µ−a(t).
The fundamental solution µa(t) can be found directly through Picard iteration,

generated by successive integrations of (5.1) with respect to t. We find

µa(t) =1 +
∫ t

0

a(s1)ds1 +
∫ t

0

∫ s1

0

a(s1)a(s2)ds1ds2

+
∫ t

0

∫ s1

0

∫ s2

0

a(s1)a(s2)a(s3)ds1ds2ds3 + . . .

(5.3)

expressed as an infinite series of iterated integrals. Similarly, successive integration
of (5.2) leads to

µ−1
a (t) =1−

∫ t

0

a(s1)ds1 +
∫ t

0

∫ s1

0

a(s2)a(s1)ds1ds2

−
∫ t

0

∫ s1

0

∫ s2

0

a(s3)a(s2)a(s1)ds1ds2ds3 + . . . .

(5.4)

When a does not depend on time, a and µa commute and µa and µ−1
a reduce to

the exponential forms

µa(t) =
∞∑

j=0

ajtj

j!
≡ eat, (5.5)

µ−1
a (t) =

∞∑
j=0

(−1)jajtj

j!
≡ e−at. (5.6)

If a(t1) and a(t2) commute for all t1 and t2,

µa(t) = e
∫ t
0 a(s)ds (5.7)

and µa(t)a(s) = a(s)µa(t). This condition is automatically satisfied for any time-
dependent simple element of A whose spectral basis is independent of time.

We now wish to study the conditions under which µa+b(t) can be expressed in
terms of µa and µb, for time dependent A-valued functions a(t), b(t). This is easily
accomplished by expressing the solution to

dx

dt
= (a+ b)x (5.8)

in two different ways. From the leftmost equality, we obtain

x = µa+bx0 (5.9)

Alternatively, substituting x = µaz into (5.8), we find, with the help of (5.1) that

dx

dt
= aµaz + µa

dz

dt
= (a+ b)µaz, (5.10)
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which simplifies to

µa
dz

dt
= bµaz . (5.11)

Equation (5.11) has the solution z = µµ−1
a bµa

z0 which, in terms of x = µaz, is

x = µaµµ−1
a bµa

x0 . (5.12)

Equating the two alternative expressions for x(t) given by (5.9) and (5.12), we
conclude, for general a(t) and b(t) ∈ A, that

µa+b = µaµµ−1
a bµa

. (5.13)

Explicit solutions for µa and µ−1
a are difficult to derive from (5.3) and (5.4) for

two reasons. First, the series has an infinite number of terms. Second, it is not
possible, in general, to derive explicit closed formulas for the integrals of general
time-dependent functions that take their values in A. However, when a(t) has
an expansion in a constant spectral basis S =

(
S1 . . . Sr

)
, then µa is easily

expressed as a finite series of integrals with integrands in C.
Let

a(t) =
r∑

i=1

{ai}SiS
T
i pi =

r∑
i=1

Emi(αi,0(t)Imi +Ni(t))ST
i pi,

be the spectral expansion (see (2.11)) of a, where Si =
(
1 . . . qmi−1

i

)
pi. From

(2.12) it follows that

µa =
r∑

i=1

e
∫ t
0 αi,0(s)dsEmi

e
∫ t
0 Ni(s)dsST

i pi.

Since the last integral on the right is the exponential function of a strictly upper
triangular Toeplitz matrix, it can be written as the finite sum

e
∫ t
0 Ni(s)ds =

mi−1∑
j=0

1
j!

[ ∫ t

0

Ni(s)ds
]j

.

6. Solution to dx/dt = a(t)xb(t) + f(t)

Let a(t) ∈ A be an arbitrary time-dependent function of t, and b(t) ∈ S for the
simple spectral basis S =

(
1 q . . . qm−1

)
. Thus,

b(t) =
m−1∑
j=0

βj(t)qj = {b}ST (6.1)

where β0(t), . . . , βm−1(t) are the time-dependent scalar components of b in the
spectral basis S. Multiplying (6.1) on the right by ST , we find that bST = BST ,
where B ∈Mm is given by (2.4) after removal of the i subscript.

We are concerned with deriving the general solution to the inhomogeneous equa-
tion

dx

dt
= axb+ f (6.2)

with initial condition x(0) = x0. Multiplying (6.2) on the right by ST , we find that

dxST

dt
= axbST + fST = BaxST + fST .
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A major simplification occurs when B is decomposed into the sum of a diagonal
matrix β0Im and a nilpotent matrix N , B = β0Im +N . One must therefore solve

dxST

dt
= (L+K)xST + fST (6.3)

where we have defined L = β0a and K = aN in anticipation of the next section.
We first compute the solution xHS

T to the homogeneous equation (setting f = 0
in (6.3)), followed by an application of the method of undetermined constants. From
(5.12), the homogeneous solution is

xHS
T = µLµΓx0S

T (6.4)

where Γ = µ−1
L KµL ∈Mm(A). The solution cannot be simplified further, because

in general, µLa 6= aµL.
To apply the method of underdetermined constants, we replace x0 by an unknown

element z(t) ∈ A and substitute the modified homogeneous solution µLµΓz(t)ST

back into (6.3), which leads to

dxST

dt
= (L+K)xST + µLµΓ

dz

dt
ST = (L+K)xST + fST (6.5)

or
dz

dt
ST = µ−1

Γ µ−1
L f(t)ST

with particular solution

zST =
∫ t

0

µ−1
Γ (s)µ−1

L (s)f(s)ST ds (6.6)

Combining the homogeneous and particular solutions leads to the general solution

x(t)ST = µL(t)µΓ(t)x0S
T +

[
µL(t)µΓ(t)

∫ t

0

µ−1
Γ (s)µ−1

L (s)f(s)ds
]
ST (6.7)

The solution to (6.2) is found by pre-multiplication of (6.7) by Em, with the result

x(t) = EmµL(t)µΓ(t)x0S
T + Em

[
µL(t)µΓ(t)

∫ t

0

µ−1
Γ (s)µ−1

L (s)f(s)ds
]
ST (6.8)

Our method of solution brings about a major simplification. The scalar time-
dependent matrix N(t) ∈ Mn(C) is a strictly upper triangular Toeplitz nilpotent
matrix, while µL ∈ A. Therefore, Γ is a strictly upper triangular Toeplitz nilpotent
m×m matrix with elements in A and the property Γ(t1)Γ(t2) = Γ(t2)Γ(t1) remains
true for all t1 and t2. As a consequence, µΓ is a finite sum of m iterated integrals.

7. Solution to dx/dt =
∑

i aixbi + f

We now extend the methodology of the previous two sections to solve the linear
inhomogeneous equation

dx

dt
= A(t)xBT (t) + f(t) (7.1)

in A with x(0) = x0. A =
(
a1 . . . an

)
and B =

(
b1 . . . bn

)
are row vectors of

time-dependent elements in A that satisfy the commutativity relations bi(t)bj(t) =
bj(t)bi(t) for all time. As explained in Sections 2 and 4, we only consider simple
spectral bases Si and use the principle of linear superposition to reconstruct the full
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solution. The bi(t) remain mutually commutative if they are expressed as a time-
dependent linear combination of time-invariant commuting simple spectral bases
Si. Therefore, each bi has an expansion of the form

bi(t) =
mi−1∑
k=0

bik(t)qk
i (7.2)

where qi is nilpotent with multiplicity index mi.
Recall from (2.3), that

bi(t)ST
i = BiS

T
i = (bi,0Imi

+Ni)ST
i (7.3)

where Bi is an upper triangular Toepliz matrix (see (2.4)). We proceed by defining

S = S1 ⊗ · · · ⊗ Sn, and ST = ST
1 ⊗ · · · ⊗ ST

n .

Note that biST = B̄iS
T , where we have defined

B̄i = Im1 ⊗ · · · ⊗Bi ⊗ · · · ⊗ Imn
.

As a general notational device, the bar over a symbol indexed by i represents
a tensor product of identity matrices, with the ith matrix replaced by the symbol,
itself of dimensionmi×mi. Therefore, with the help of (3.2), we find that xBTST =
xB̄TST = B̄TxST , where

B̄ =
(
B̄1 . . . B̄n

)
.

Multiplying (7.1) on the right by ST , we obtain

dx

dt
ST = AxBTST + fST = AB̄TxST + fST . (7.4)

Following the strategy of the previous section, slot i in B̄i is decomposed into the
sum of a diagonal and a nilpotent matrix, so that

B̄i = bi,0Īmi
+ N̄i.

The following definitions will make (7.4) formally identical to (6.5) in the previous
section:

K̄ =
n∑

i=1

aiN̄i, (7.5)

L̄ =
n∑

i=1

b0,iaiĪmi = IM

n∑
i=1

b0,iai = IML

where M = m1m2 . . .mn and L =
∑n

i=1 b0,iai. With the preceding definitions,
(7.4) becomes

dxST

dt
= (L̄+ K̄)xST + fST , (7.6)

which has the homogeneous solution (f = 0)

xHS
T = µL̄µΓ̄x0S

T , (7.7)

where Γ̄ = µ−1
L̄ K̄µL̄ ∈MM (A). The general solution to (7.6) is immediately found

to be

x(t) = EMµL̄(t)µΓ̄(t)x0S
T + EMµL̄(t)µΓ̄(t)

∫ t

0

µ−1
Γ̄

(s)µ−1
L̄ (s)f(s)ST ds. (7.8)
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Recall that Γ is defined by

Γ̄ =
n∑

i=1

Γ̄i,

where Γ̄i = µ−1
L aiN̄iµL ∈MM (A). Let us now compute an explicit representation

for µΓ̄, defined recursively by

µΓ̄ = 1 +
∫ t

0

Γ̄(s)µΓ̄(s)ds = 1 +
n∑

i=1

∫ t

0

Γ̄i(s)µΓ̄(s)ds

At the next iteration level,

µΓ̄ = 1 +
n∑

i1=1

∫ t

0

ds1Γ̄i1(s1)
(
1 +

n∑
i2=1

∫ s1

0

ds2Γ̄i2(s2)µΓ̄(s2)
)

(7.9)

= 1 +
n∑

i1=1

∫ t

0

ds1Γ̄i1(s1) +
n∑

i1=1

n∑
i2=1

∫ t

0

ds1

∫ s1

0

ds2 Γ̄i1(s1)Γ̄i2(s2)µΓ̄(s2)

(7.10)

The kth iterated integral takes the form

I(k) =
n∑
i1

· · ·
n∑
ik

∫ t

0

ds1

∫ s1

0

. . .

∫ sk−1

0

dsk

k∏
j=1

Γ̄ij
(sj), (7.11)

so that µΓ̄ =
∑∞

k=0 I(k), where, by convention, I(0) = 1. A similar development
yields µ−1

Γ̄
=

∑∞
k=0(−1)kJ (k) with J (0) = 1, and

J (k) =
n∑
i1

· · ·
n∑
in

∫ t

0

ds1

∫ s1

0

ds2 . . .

∫ sn

0

dsn−1

1∏
j=k

Γ̄ij
(sj),

8. Examples

Example 1. We work out in detail the case n = 2 and mi = 2 with the elements
ai and bi functions of time. The equation to solve is

dx

dt
= a1(t)xb1(t) + a2(t)xb2(t), (8.1)

where b1 = β1,1,0(t)p1,1 + β1,1,1(t)q1,1 + β1,2,0(t)p1,2 + β1,2,1(t)q1,2,
b2 = β2,1,0(t)p2,1 + β2,1,1(t)q2,1 + β2,2,0(t)p2,2 + β2,2,1(t)q2,2, and x(0) = x0. As
explained in Section 4, the principle of linear superposition allows us to solve first

dx

dt
= a1xc1 + a2xc2

where
c1 = γ1,0 + γ1,1q1, c2 = γ2,0 + γ2,1q2, (8.2)

are simple elements of A. Define L = a1γ1,0 + a2γ2,0, the direct product

ST =
(

1
q1

)
⊗

(
1
q2

)
of spectral bases, and the direct product

E4 = E2 ⊗ E2 =
(
1 0

)
⊗

(
1 0

)
=

(
1 0 0 0

)
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of row vectors. The solution is (see (7.8), (7.9),(7.11))

x(t) = E4µL

(
1 +

2∑
i=1

∫ t

0

ds1 Γ̄i(s1) +
2∑

i1=1

2∑
i2=1

∫ t

0

ds1

∫ s1

0

ds2 Γ̄i1(s1)Γ̄i2(s2)
)
x0S

T

(8.3)
The first term of (8.3) is clearly T1 = E4µL(t)x0S

T = µL(t)x0. The second term
in (8.3) is

T2 = E4µL(t)
2∑

i=1

∫ t

0

ds1 Γ̄i(s1)x0S
T

The matrix Γi has the form

Γi = ζi

(
0 ζi
0 0

)
= ζiJ2 (8.4)

where ζi = µ−1
L aiγi,1µL ∈ A and J2 is a nilpotent matrix of degree 2. It is straight-

forward to derive

E4Γ̄1x0S
T = ζ1(E2J2 ⊗ E2J2)(x0S

T
1 ⊗ ST

2 ) = ζ1x0q1

Similarly, E4Γ̄1x0S
T = ζ2x0q2.

With these definitions,

T2 = µL(t)
∫ t

0

ds1 (ζ2(s1)x0q2 + ζ1(s1)x0q1)

The structure of the third term, T3, of (8.3) is easily determined from (8.4) and
the properties of tensor products. Recalling that Γi(s1)Γi(s2) = 0, we find

T3 =
2∑

i1=1

2∑
i2=1

µL(t)
∫ t

0

ds1

∫ s1

0

ds2E4Γ̄i1(s1)Γ̄i2(s2)x0S
T

= µL(t)
∫ t

0

ds1

∫ s1

0

ds2 (ζ1(s1)ζ2(s2) + ζ2(s1)ζ1(s2))x0q1q2 .

Returning to the original variables, we obtain the solution to our simplified original
equation (8.1), with b’s defined by (8.2),

x(t) =µL(t)x0 + µL(t)
∫ t

0

ds1
(
[µ−1
L a2γ2,1µL]s1x0q2 + [µ−1

L a1γ1,1µL]s1x0q1
)

+ µL(t)
∫ t

0

ds1

∫ s1

0

ds2

(
[µ−1
L a1γ1,1µL]s1 [µ

−1
L a2γ2,1µL]s2

+ [µ−1
L a2γ2,1µL]s1 [µ

−1
L a1γ1,1µL]s2

)
x0q1q2 (8.5)

Expressions within square brackets are evaluated at the value indicated by their
subscript.

As explained in Section 4, in order to solve the original equation (8.1), it is first
multiplied on the right by p1,ip2,j to get the projected equations

dxij

dt
= a1xij(β1,i,0 + β1,i,1q1,i) + a2xij(β2,j,0 + β2,j,1q2,j), (8.6)
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where xij = xp1,ip2,j . Each of these equations has a solution given by (8.5). Thus,

xij(t) = µLij
(t)x0p1,ip2,j + µLij

(t)
∫ t

0

ds1

(
[µ−1
Lij
a2β2,j,1µLij

]S1x0p1,iq2,j

+ [µ−1
Lij
a1β1,i,1µLij ]s1x0q1,ip2,j

)
+ µLij

(t)
∫ t

0

ds1

∫ s1

0

ds2

(
[µ−1
Lij
a1β1,i,1µLij

]s1 [µ
−1
Lij
a2β2,j,1µLij

]s2

+ [µ−1
Lij
a2β2,i,1µLij ]s1 [µ

−1
Lij
a1β1,j,1µLij ]s2

)
x0q1,iq2,j

where Lij = β1,i,0a1 + β2,j,0a2. The full solution to (8.6) is

x(t) =
2∑

i=1

2∑
j=1

xij(t). (8.7)

In the special case when b1 and b2 are expressed in the same constant spectral basis
S = {p1, q1, p2, q2}, the explicit full solution (8.7) simplifies to

x(t) =
2∑

i=1

xii(t)

= µL11(t)x0p1 + µL22(t)x0p2

+ µL11(t)
∫ t

0

ds1 [µ−1
L11

(a2β2,1,1 + a1β1,1,1)µL11 ]s1x0q1

+ µL22(t)
∫ t

0

ds1 [µ−1
L22

(a2β2,2,1 + a1β1,2,1)µL22 ]s1x0q2,

(8.8)

where Lii(t) = b1,i,0a1 + b2,i,0a2.
If ai and βi,j are independent of time, (8.5) reduces to

x(t) =eLtx0 + eLt

∫ t

0

ds e−Ls(a1γ1,1e
Lsx0q1 + e−Lsa2γ2,1e

Lsx0q2)

+ eLt

∫ t

0

ds1

∫ s1

0

ds2

(
e−Ls1γ1,1a1e

L(s1−s2)γ2,1a2e
Ls2

+ e−Ls1γ2,1a2e
L(s1−s2)γ1,1a1e

Ls2

)
x0q1q2,

(8.9)

where we have used µL = eLt = e(a1γ1,0+a2γ2,0)t and µ−1
L = e−Lt = e−(a1γ1,0+a2γ2,0)t.

When a1 and a2 commute, the solution (8.9) simplifies further,

x(t) = eLtx0 + teLt (a1γ1,1x0q1 + a2γ2,1x0q2) + t2eLtγ1,1γ2,1a1a2x0q1q2. (8.10)

Finally, if γi,0 = 1 and γi,1 = 0, and a1 and a2 do not commute, we obtain

x(t) = eLtx0 (8.11)

where L(t) = (a1 + a2)t, as the solution to

dx

dt
= (a1 + a2)x

as expected.
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Example 2. In this example, we consider the matrix differential equation
dX

dt
= A1XB1 +A2XB2 (8.12)

where X is a 3× 3 matrix,

B1 =

−1 1 0
0 −1 0
0 0 −1

 , B2 =

2 0 1
0 2 0
0 0 2

 ,

and A1 = BT
1 , A2 = BT

2 . It is easily checked that B1 and B2 commute, and so do
A1 and A2. The matrices B1 and B2 can be written in the form

B1 = −I3 +Q1, B2 = 2I3 +Q2

where the nilpotents Q1 and Q2 are uniquely determined and both have index
of nilpotency 2. Note also that Q1Q2 = 0. The solution to (8.12) is given by
substituting these quantities into (8.10):

X(t) = eLt
(
X(0) + t(A1X(0)Q1 +A2X(0)Q2)

)
. (8.13)

Let X(0) =

c11 c12 c13
c21 c22 c23
c31 c32 c33

, and note that

L = −A1 + 2A2 =

 5 0 0
−1 5 0
2 0 5

 = 5I3 +Q

where Q =

 0 0 0
−1 0 0
2 0 0

 and Q2 = 0. From (2.12), it follows that eLt = e5t (I3 +

Qt) and the solution (8.13) takes the explicit form

X(t) = e5t×
c11 c12 − c11t c13 + 2c11t

c21 − c11t c22 + (c11 − c12 − c21)t+ c11t
2 c23 + (−c13 + 2c21)t− 2c11t2

c31 + 2c11t c32 + (2c12 − c31)t− 2c11t2 c33 + (c11 + 2c13 + 2c31)t+ 4c11t2


Example 3: Quaternions. We solve the differential equation dx

dt = axb + f(t)
where a, b ∈ HC , the algebra of quaternions over the complex numbers. Any
quaternion a ∈ HC can be written in the form

a = a0 + a

where a = a1i + a2j + a3k is the complex vector part of the quaternion, ak ∈ C
are complex scalars, and i, j,k are the basis elements of the associative quaternion
algebra satisfying the famous defining relations

i2 = j2 = k2 = ijk = −1.

We solve the above equation under the assumptions that a(t) is a general time-
dependent quaternion-valued function, and b(t) is a time-dependent quaternion-
valued function of any of the three possible spectral types:

(I) b(t) = b0(t)
(II) b(t) = b1(t)p1 + b2(t)p2

(III) b(t) = b0(t) + b1(t)q
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where b0(t), b1(t), b2(t) are complex scalar valued functions of the real parameter t.
For type I, we find immediately that the solution is

xH(t) = µb0a(t)x0,

for the homogeneous part, and

x(t) = µb0a(t)
[
x0 +

∫ t

0

µ−1
b0af(s)ds

]
for the full solution.

For type II, we find by superposition of the solutions of type I, that

x(t) = µb1a(t)x0p1 + µb2a(t)x0p2,

for the homogeneous part, and

xH(t) =
2∑

i=1

µbia(t)
[
x0 +

∫ t

0

µ−1
bia

(s)f(s)ds
]
pi

for the full solution.
For type III, we have, using the results from Section 6,

xH(t) = E2µb0aµΓ(t)x0S
T ,

for the homogeneous part, and

x(t) = E2µb0aµΓ(t)
[
x0 +

∫ t

0

µ−1
Γ (s)µ−1

b0a(s)f(s)ds
]
ST

for the full solution, Γ = γJ2, γ(t) = µ−1
b0aaµb0ab1 ∈ HC ,

J2 =
(

0 1
0 0

)
is a nilpotent of index 2 and S =

(
1 q

)
.

Next we derive the explicit representation of the solution for type III in terms
of elementary operations in A. Since Γ2 = 0, we have

µΓ(t) =
(
I2 + J2

∫ t

0

ds γ(s)
)

Similarly,

µ−1
Γ (t) =

(
I2 − J2

∫ t

0

ds γ(s)
)

(8.14)

The homogeneous solution can be written as

xH(t) = µb0a(t)
(
x0 +

∫ t

0

ds γ(s)x0q

)
while the non-homogenous part, xNH = x− xH has a more complex form.

We derive the non-homogeneous part in stages:

xNH = E2µb0a(t)I2

(
1 + J2

∫ t

0

ds γ(s)
) (∫ t

0

ds µ−1
Γ (s)µ−1

b0a(s)f(s)
)
ST

= E2µb0a(t)I2

(∫ t

0

µ−1
Γ (s)µ−1

b0a(s)f(s)ds
)
ST

+ E2J2µb0a(t)
(∫ t

0

ds γ(s)
) (∫ t

0

ds I2µ
−1
b0a(s)f(s)

)
ST (8.15)
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where J2
2 = 0 was used to eliminate some terms. Substituting (8.14) into (8.15),

we find after simplification,

xNH(t) = µb0a(t)
∫ t

0

ds µ−1
b0a(s)f(s)

− µb0a(t)
∫ t

0

ds µ−1
b0a(s)f(s)

∫ t

s

ds1 γ(s1)q (8.16)
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E-mail address: sobczyk@mail.udlap.mx


