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PERIODIC SOLUTION AND GLOBAL EXPONENTIAL
STABILITY FOR SHUNTING INHIBITORY DELAYED

CELLULAR NEURAL NETWORKS

ANPING CHEN, JINDE CAO, & LIHONG HUANG

Abstract. For a class of neural system with time-varying perturbations in the

time-delayed state, this article studies the periodic solution and global robust
exponential stability. New criteria concerning the existence of the periodic
solution and global robust exponential stability are obtained by employing

Young’s inequality, Lyapunov functional, and some analysis techniques. At
the same time, the global exponential stability of the equilibrium point of
the system is obtained. Previous results are improved and generalized. Our

results are shown to be more effective than the existing results. In addition,
these results can be used for designing globally stable and periodic oscillatory
neural networks. Our results are easy to be checked and applied in practice.

1. Introduction

The dynamics of cellular neural networks(CNNs) and delayed cellular neural
networks(DCNNs) have been investigated in recent years, due to their great po-
tential in information processing systems. CNNs and DCNNs have been applied in
solving problems such as image and signal processing, vision, pattern recognition
and optimization. Many important results can be found in the references for this
article.

It is known that the neural networks possess possibly three dynamic properties:
convergence, oscillation and chaotic behavior. The first dynamic behavior has been
widely studied, [1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 22, 25, 26, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40]. However, for the oscillator dynamic behavior, the study has
stayed in a lower level. Only a few results have obtained in [7, 9, 10, 11, 12, 13,
14, 15]. As for the chaotic dynamic property, the research advances continue to be
slow.

In this paper, we study a class of shunting inhibitory type DCNNs, which was
first proposed by Bouzerdoum and Pinter [3]. It has been applied to psychophysics,
speech, perception, robotics, adaptive pattern recognition, vision and image pro-
cessing [3, 4, 5, 6, 24, 25, 29, 30, 34]. So its dynamic behavior research has an
important significance for theory and applications.
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We consider a two-dimensional grid of processing cells. Let Cij denote the cell
at the (i, j) position of the lattice, and let r-neighborhood Nr(i, j) of Cij be

Nr(i, j) = {Ckl|max |k − i|, |l − j| ≤ r, 1 ≤ k ≤ m; 1 ≤ l ≤ n}.

In SICNNs, neighboring cells exert mutual inhibitory interaction of the shunting
type. The dynamics of a cell Cij are described by the following nonlinear ordinary
differential equation [6],

dxij

dt
= −aijxij(t)−

∑
Ckl∈Nr(i,j)

ckl
ijf(xkl(t))xij + Lij(t).

In the system above, xij is the activity of the cell Cij , Lij is the external input to
Cij , the constant aij > 0 represents a passive delay rate of the cell activity, ckl

ij ≥ 0 is
the connection or coupling strength of postsynaptic activity of the cell transmitted
to the cell Cij , and the activation function f(xkl) is a positive continuous function,
representing the output or firing rate of the cell Ckl. When Lij is a constant, the
power and stability of the system have been researched in [3, 4, 5, 6, 24, 25, 29,
30, 34]. In [13, 40], we have studied the existence and global stability of almost
periodic solution for the system above with delays. However, to best our knowledge,
the periodic solution and global exponential stability are seldom discussed for the
model. In this paper, we introduce the delays into the system, and consider the
periodic solution and exponential stability of the SIDCNNs

dxij

dt
= −aijxij(t)−

∑
Ckl∈Nr(i,j)

ckl
ijfkl(xkl(t− τkl))xij + Lij(t), (1.1)

where aij > 0, ckl
ij ≥ 0. Here Lij(t) is a continuous periodic functions with period

ω; i.e., Lij(t+ ω) = Lij(t),∀t ∈ R.
We assume that the nonlinear system (1.1) satisfies the initial conditions

xij(s) = ϕij(s), s ∈ [−τ, 0], (1.2)

where τ = max(i,j){τij}, ϕ = (ϕ11, . . . , ϕij , . . . , ϕmn)T ∈ C([−τ, 0],Rm×n). The
solution of system (1.1) through (0, ϕ) is denoted by

x(t, ϕ) = (x11(t, ϕ), . . . , xij(t, ϕ), . . . , xmn(t, ϕ))T .

Define xt(ϕ) = x(t+θ, ϕ), θ ∈ [−τ, 0], t ≥ 0. Then xt(ϕ) is in C = C([−τ, 0],Rm×n)
the Banach space of continuous functions which map [−τ, 0] into Rm×n with topol-
ogy of uniformly converge. The norm is defined as

‖xt‖p = sup
−τ≤θ≤0

( ∑
(i,j)

|xij(t+ θ)|p
)1/p

,

in which p ≥ 1. When p = +∞, the ∞-norm is

‖xt‖∞ = sup
−τ≤θ≤0

max
(i,j)

[|xt(i,j)(t+ θ)|].

We assume that the following conditions are satisfied:
(H1) The functions fij(x) (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) are positive on R.
(H2) There is a constant µij > 0 such that

|fij(x)− fij(y)| ≤ µij |x− y|, for any x, y ∈ R.
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For convenience, we set

Mf = max
(i,j)

sup
x∈R

{fij(x)}, pij = Mf

∑
Ckl∈Nr(i,j)

ckl
ij ,

Lij = max
t∈R

|Lij(t)|, qij =

{
|ϕij(0)|, if |ϕij(0)| ≥ Lij

aij
,

Lij

aij
, if |ϕij(0)| < Lij

aij
.

When aij ≥ pij , we define

Nij =

{
aijqij

aij−pij
, if aij > pij ,

qij , if aij = pij .

The main results of this article are stated in the next theorems. To this end
introduce the following assumptions

(H3) For i = 1, 2, . . . ,m; j = 1, 2, . . . , n,

− paij + pMf

∑
Ckl∈Nr(i,j)

ckl
ij + (p− 1)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

+
∑
(i,j)

(
∑

Ckl∈Nr(i,j)

ckl
ijµklNij) < 0 .

Theorem 1.1. Assume that the hypotheses (H1–(H3) are satisfied. Then system
(1.1) has a unique ω-periodic solution and all other solution converge globally ex-
ponentially to this solution in the p-norm as t→ +∞, where p ≥ 1.

(H4) For i = 1, 2, . . . ,m; j = 1, 2, . . . , n,

−aij +Mf

∑
Ckl∈Nr(i,j)

ckl
ij +

∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij < 0 .

Corollary 1.2. Assume that the hypotheses (H1), (H2), (H4) are satisfied. Then
system (1.1) has a unique ω-periodic solution and all other solutions converge glob-
ally exponentially to this solution in the 1-norm as t→ +∞.

Corollary 1.3. Assume that (H1)-(H3) are satisfied, and Lij(t) = Lij is constant.
Then system (1.1) has a unique equilibrium x∗ and all other solution converge
globally exponentially to the equilibrium in the p-norm as t→ +∞.

(H5) For i = 1, 2, . . . ,m; j = 1, 2, . . . , n,

−aij +Mf

∑
Ckl∈Nr(i,j)

ckl
ij +

∑
Ckl∈Nr(i,j)

ckl
ijµklNij < 0 ,

Theorem 1.4. Assume (H1), (H2), (H5) are satisfied. Then system (1.1) has a
unique ω-periodic solution and all other solution converge globally exponentially to
this solution on the ∞-norm as t→ +∞.

Corollary 1.5. Assume that (H1), (H2), (H5) are satisfied, and Lij(t) = Lij is
constant. Then system (1.1) has a unique equilibrium x∗ and all other solution
converge globally exponentially to the equilibrium in the ∞-norm as t→ +∞.

The organization of this paper is as follows. In section 2, we give some definitions
and lemmas. In section 3, we state the proofs of the Theorem 1.1 and Theorem 1.4.
In section 4, we shall show an example to illustrate our main results. In section 5,
we give some conclusion of the main results.
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2. Some definitions and lemmas

In this section, we give some definitions and lemmas. Let C = C([−τ, 0],Rm×n)
be the Banach space of continuous functions which map [−τ, 0] into Rm×n with the
topology of uniform converge. Let

x∗(t) = (x∗11(t), . . . , x
∗
ij(t), . . . , x

∗
mn(t))T

is the periodic solution of system (1.1) with the initial conditions ψ∗ and x(t) =
(x11(t), . . . , xij(t), . . . , xmn(t))T be the solution of system (1.1) with the initial con-
ditions ϕ. We denote

‖ϕ− ψ∗‖p
p = sup

−τ≤θ≤0

[ n∑
i=1

|ϕij(θ)− ψ∗ij |p
]
, p ≥ 1.

‖ϕ− ψ∗‖∞ = sup
−τ≤θ≤0

max
(i,j)

[
|ϕ(i,j)(θ)− ψ∗(i,j)(θ)|

]
.

Definition. The periodic solution x∗(t) of system (1.1) is said to be globally
exponentially stable in the p-norm, if there exists a constant ε > 0 and k ≥ 1 such
that for all t > 0, ∑

(i,j)

|xij(t)− x∗ij(t)|p ≤ k‖ϕ− ψ∗‖p
pe
−εt .

Definition. The periodic solution x∗(t) of system (1.1) is said to be globally
exponentially stable in ∞-norm, if there exists a constant ε > 0 and k ≥ 1 such
that for all t > 0,

max
(i,j)

|xij(t)− x∗ij(t)| ≤ k‖ϕ− ψ∗‖∞e−εt,

Definition. Let F (t) : R → R be a continuous function, then the upper right Dini
derivate is defined as

D+F (t) = lim sup
h→0+

1
h

(F (t+ h)− F (t)).

Lemma 2.1 ([13]). Suppose that fij is a positive continuous function on R, Lij(t)
is a bounded continuous function and aij ≥ pij. Then the solution xij(t) of system
(1.1) is bounded on R+, and |xij(t)| ≤ Nij, where

pij = Mf

∑
Ckl∈Nr(i,j)

ckl
ij ,

Nij =

{
aijqij

aij−pij
, if aij > pij ,

qij , if aij = pij .

qij =

{
|ϕij(0)|, if |ϕij(0)| ≥ Lij

aij
,

Lij

aij
, if |ϕij(0)| < Lij

aij
.

Mf = max
(i,j)

sup
x∈R

{fij(x)}, Lij = sup
t∈R

{|Lij(t)|}.

The proof of this lemma follows from a minor modification of the proof in [13,
Lemma 2].
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3. Proofs of the main results

The proof of Theorem 1.1. (1) Case p > 1: For any ϕ,ψ ∈ C, let x(t, ϕ) and
x(t, ψ) represent the solution of system (1.1) through (0, ϕ) and (0, ψ) respectively.
It follows from system (1.1) that

d

dt
(xij(t, ϕ)− xij(t, ψ)) =− aij(xij(t, ϕ)− xij(t, ψ))

−
∑

Ckl∈Nr(i,j)

ckl
ij

[
fkl(xkl(t− τkl, ϕ))xij(t, ϕ)

− fkl(xkl(t− τkl, ψ))xij(t, ψ)
]
,

(3.1)

for all t ≥ 0, i = 1, 2, . . . ,m; j = 1, 2, . . . , n. From (H3), there exists a small ε > 0
such that

ε− paij + pMf

∑
Ckl∈Nr(i,j)

ckl
ij + (p− 1)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

+eετ
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij < 0 .

Now, we consider the Lyapunov functional

V (t) =V1(t) + V2(t)

=
∑
(i,j)

|xij(t, ϕ)− xij(t, ψ)|peεt

+
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

∫ t

t−τkl

|xkl(s, ϕ)− xkl(s, ψ)|p eε(s+τkl)ds,

(3.2)

in which

V1(t) =
∑
(i,j)

|xij(t, ϕ)− xij(t, ψ)|peεt,

V2(t) =
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

∫ t

t−τkl

|xkl(s, ϕ)− xkl(s, ψ)|p eε(s+τkl)ds.

Calculating the upper right derivative D+V1 of V1 along the solution of system
(3.1), we have

D+V1

∣∣
(3.1)

≤
∑
(i,j)

{
εeεt|xij(t, ϕ)− xij(t, ψ)|p + peεt|xij(t, ϕ)− xij(t, ψ)|p−1

×D+|xij(t, ϕ)− xij(t, ψ)|
}

=
∑
(i,j)

{
εeεt|xij(t, ϕ)− xij(t, ψ)|p + peεt|xij(t, ϕ)− xij(t, ψ)|p−1

× sign(xij(t, ϕ)− xij(t, ψ))
[
− aij(xij(t, ϕ)− xij(t, ψ)

−
∑

Ckl∈Nr(i,j)

ckl
ij

(
fkl(xkl(t− τkl, ϕ))xij(t, ϕ)− fkl(xkl(t− τkl, ψ))xij(t, ψ)

)]}
;
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i.e.,

D+V1

∣∣
(3.1)

≤ eεt
∑
(i,j)

{
(ε− paij)|xij(t, ϕ)− xij(t, ψ)|p + p|xij(t, ϕ)− xij(t, ψ)|p−1

×
∑

Ckl∈Nr(i,j)

ckl
ij

∣∣ [fkl(xkl(t− τkl, ϕ))− fkl(xkl(t− τkl, ψ))]xij(t, ϕ)

+ fkl(xkl(t− τkl, ψ)) (xij(t, ϕ)− xij(t, ψ))
∣∣}

≤ eεt
∑
(i,j)

(ε− paij)|xij(t, ϕ)− xij(t, ψ)|p + eεt
∑
(i,j)

{
p|xij(t, ϕ)− xij(t, ψ)|p−1

×
∑

Ckl∈Nr(i,j)

ckl
ij

[
µkl |xkl(t− τkl, ϕ)− xkl(t− τkl, ψ)||xij(t, ϕ)|

+Mf |xij(t, ϕ)− xij(t, ψ)|
]}

= eεt
∑
(i,j)

(
ε− paij + pMf

∑
Ckl∈Nr(i,j)

ckl
ij

)
|xij(t, ϕ)− xij(t, ψ)|p

+ eεt
∑
(i,j)

{
p

∑
Ckl∈Nr(i,j)

ckl
ijµklNij |xkl(t− τkl, ϕ)− xkl(t− τkl, ψ)|

× |xij(t, ϕ)− xij(t, ψ)|p−1
}
.

Using the inequality ab ≤ 1
pa

p + 1
q b

q, ( 1
p + 1

q = 1, p > 1, a, b ≥ 0) [37]. We obtain

D+V1(t)
∣∣
(3.1)

≤ eεt
∑
(i,j)

(
ε− paij + pMf

∑
Ckl∈Nr(i,j)

ckl
ij

)
|xij(t, ϕ)− xij(t, ψ)|p

+ eεt
∑
(i,j)

{
p

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

[1
p
|xkl(t− τkl, ϕ)− xkl(t− τkl, ψ)|p

+
p− 1
p

|xij(t, ϕ)− xij(t, ψ)|p
]}

= eεt
∑
(i,j)

(
ε− paij + pMf

∑
Ckl∈Nr(i,j)

ckl
ij

)
|xij(t, ϕ)− xij(t, ψ)|p

+ eεt
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij |xkl(t− τkl, ϕ)− xkl(t− τkl, ψ)|p

+ eεt
∑
(i,j)

(p− 1)
∑

Ckl∈Nr(i,j)

ckl
ijµklNij |xij(t, ϕ)− xij(t, ψ)|p

= eεt
∑
(i,j)

ε− paij + pMf

∑
Ckl∈Nr(i,j)

ckl
ij + (p− 1)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij


× |xij(t, ϕ)− xij(t, ψ)|p

+ eεt
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij |xkl(t− τkl, ϕ)− xkl(t− τkl, ψ)|p .

(3.3)
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Calculating the upper right Dini derivative D+V2 of V2 along the solution of system
(3.1), we have

D+V2

∣∣
(3.1)

=
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

[
|xkl(t, ϕ)− xkl(t, ψ)|peε(t+τkl)

− |xkl(t− τkl, ϕ)− xkl(t− τkl, ψ)|p eεt
]

≤ eεteετ
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij |xkl(t, ϕ)− xkl(t, ψ)|p

− eεt
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij |xkl(t− τkl, ϕ)− xkl(t− τkl, ψ)|p .

(3.4)
From (3.3) and (3.4), we can obtain

D+V |(3.1)

≤ D+V1|(3.1) +D+V2|(3.1)

≤ eεt
∑
(i,j)

(
ε− paij + pMf

∑
Ckl∈Nr(i,j)

ckl
ij + (p− 1)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

)
× |xij(t, ϕ)− xij(t, ψ)|p + eεteετ

∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij |xkl(t, ϕ)− xkl(t, ψ)|p

≤ eεt
∑
(i,j)

(
ε− paij + pMf

∑
Ckl∈Nr(i,j)

ckl
ij + (p− 1)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

)
× |xij(t, ϕ)− xij(t, ψ)|p

+ eεt
(
eετ

∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

) ∑
(i,j)

|xij(t, ϕ)− xij(t, ψ)|p

=
∑
(i,j)

(
ε− paij + pMf

∑
Ckl∈Nr(i,j)

ckl
ij + (p− 1)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

+ eετ
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

)
|xij(t, ϕ)− xij(t, ψ)|p

< 0, for all t ≥ 0.

i.e. D+V (t) ≤ 0, Thus, we have

V (t) ≤ V (0), for all t ≥ 0. (3.5)

where

V (t) =
∑
(i,j)

|xij(t, ϕ)− xij(t, ψ)|peεt

+
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

∫ t

t−τkl

|xkl(s, ϕ)− xkl(s, ψ)|p eε(s+τkl)ds.

Note that

V (t) ≥ eεt
∑
(i,j)

|xij(t, ϕ)− xij(t, ψ)|p, for all t ≥ 0. (3.6)
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Again,

V (0)

=
∑
(i,j)

|xij(0, ϕ)− xij(0, ψ)|p

+
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

∫ 0

−τkl

|xkl(s, ϕ)− xkl(s, ψ)|p eε(s+τkl)ds

≤ ‖ϕ− ψ‖p
p +

∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

∫ 0

−τ

|xkl(s, ϕ)− xkl(s, ψ)|p eε(s+τ)ds

≤ ‖ϕ− ψ‖p
p +

∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

∫ 0

−τ

∑
(i,j)

|xij(s, ϕ)− xij(s, ψ)|p eε(s+τ)ds

≤ ‖ϕ− ψ‖p
p + τeετ

∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij‖ϕ− ψ‖p

p

=

1 + τeετ
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

 ‖ϕ− ψ‖p
p.

(3.7)
Set

k = 1 + τeετ
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij ,

then k > 1. Therefore, from (3.5)–(3.7), we have∑
(i,j)

|xij(t, ϕ)− xij(t, ψ)|p ≤ ke−εt‖ϕ− ψ‖p
p. (3.8)

In addition, from this inequality, we can easily obtain

‖xt(ϕ)− xt(ψ)‖p ≤ k
1
p e−

ε
p (t−τ)‖ϕ− ψ‖p. (3.9)

Now, we can choose a positive integer m such that

k
1
p e−

ε
p (mω−τ) ≤ 1

2
. (3.10)

Define a Poincaré map

P : C([−τ, 0],Rm×n) → C([−τ, 0],Rm×n)

by Pϕ = xω(ϕ), then we can derive from (3.9) and (3.10) that

‖Pmϕ− Pmψ‖p ≤
1
2
‖ϕ− ψ‖p.

Therefore, Pm is a contraction map. Then there exists a unique fixed point x∗ ∈
C([−τ, 0],Rm×n) such that Pmx∗ = x∗. Note that

Pm(Px∗) = P (Pmx∗) = Px∗.

This implies Px∗ ∈ C([−τ, 0],Rm×n) is also a fixed point of Pm. So,

Px∗ = x∗, i.e. xω(x∗) = x∗.
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Let x(t, x∗) be the solution of system (1.1) through (0, x∗), obviously, x(t+ ω, x∗)
is also a solution of system (1.1) and note that

xt+ω(x∗) = xt(xω(x∗)) = xt(x∗), for all t ≥ 0.

So, x(t + ω, x∗) = x(t, x∗), for all t ≥ 0. This shows that x(t, x∗) is exactly one
ω-periodic solution of system (1.1) and it is easy to see from (3.8) that all solutions
of system (1.1) converge globally exponentially to it on p-norm as t → +∞. The
proof of the case p > 1 is completed.

(2) Case p = 1: From (H4), there exists a small ε > 0 such that

ε− aij +Mf

∑
Ckl∈Nr(i,j)

ckl
ij + eετ

∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij < 0.

we consider the Lyapunov functional

V (t) =
∑
(i,j)

|xij(t, ϕ)− xij(t, ψ)|eεt

+
∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

∫ t

t−τkl

|xkl(s, ϕ)− xkl(s, ψ)| eε(s+τkl)ds,

by making a minor modification for the proof of the case p > 1 above, we can obtain
the proof.

Proof of the Theorem 1.4. For any ϕ,ψ ∈ C, let x(t, ϕ) and x(t, ψ) represent the
solutions of system (1.1) through (0, ϕ) and (0, ψ) respectively. Let i0j0 = i0j0(t)
is the down index such that

max
(i,j)

|xij(t, ϕ)− xij(t, ψ))| = |xi0j0(t, ϕ)− xi0j0(t, ψ)|,

From (H5), there exists a small ε > 0 such that

ε− ai0j0 +Mf

∑
Ckl∈Nr(i,j)

ckl
i0j0 + eετ

∑
Ckl∈Nr(i0,j0)

ckl
i0j0µklNi0j0 < 0.

Now, we construct the Lyapunov functional

W (t) = W1(t) +W2(t)

= |xi0j0(t, ϕ)− xi0j0(t, ψ)|eεt

+
∑

Ckl∈Nr(i0,j0)

ckl
i0j0µklNi0j0

∫ t

t−τkl

|xkl(s, ϕ)− xkl(s, ψ)| eε(s+τkl)ds,

(3.11)

in which W1(t) = |xi0j0(t, ϕ)− xi0j0(t, ψ)|eεt and

W2(t) =
∑

Ckl∈Nr(i0,j0)

ckl
i0j0µklNi0j0

∫ t

t−τkl

|xkl(s, ϕ)− xkl(s, ψ)| eε(s+τkl)ds.
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Calculating the upper right derivative D+W1 of W1 along the solution of system
(3.1), we have

D+W1

∣∣
(3.1)

= eεt sign(xi0j0(t, ϕ)− xi0j0(t, ψ))
d

dt
(xi0j0(t, ϕ)− xi0j0(t, ψ)

+ εeεt|xi0j0(t, ϕ)− xi0j0(t, ψ)|
= eεt sign(xi0j0(t, ϕ)− xi0j0(t, ψ))

{
− ai0j0(xi0j0(t, ϕ)− xi0j0(t, ψ))

−
∑

Ckl∈Nr(i0,j0)

ckl
i0j0

[
fkl(xkl(t− τkl, ϕ))ϕi0j0(t, ϕ)

− fkl(xkl(t− τkl, ψ))ψi0j0(t, ψ)
]}

+ εeεt|xi0j0(t, ϕ)− xi0j0(t, ψ)| ;

i. e.,

D+W1

∣∣
(3.1)

≤ eεt
{
(ε− ai0j0)|xi0j0(t, ϕ)− xi0j0(t, ψ)|

+
∑

Ckl∈Nr(i0,j0)

ckl
i0j0

[∣∣fkl(xkl(t− τkl, ϕ))− fkl(xkl(t− τkl, ψ))
∣∣∣∣xi0j0(t, ϕ)

∣∣
+

∣∣fkl(xkl(t− τkl, ψ))
∣∣∣∣xi0j0(t, ϕ)− xi0j0(t, ψ)

∣∣]}
≤ eεt

{
(ε− ai0j0)|xi0j0(t, ϕ)− xi0j0(t, ψ)|

+Mf

∑
Ckl∈Nr(i0,j0)

ckl
i0j0

∣∣xi0j0(t, ϕ)− xi0j0(t, ψ)
∣∣

+
∑

Ckl∈Nr(i0,j0)

ckl
i0j0µklNi0j0

∣∣xkl(t− τkl, ϕ)− xkl(t− τkl, ψ)
∣∣}

= eεt
(
ε− ai0j0 +Mf

∑
Ckl∈Nr(i0,j0)

ckl
i0j0

)
|xi0j0(t, ϕ)− xi0j0(t, ψ)|

+ eεt
∑

Ckl∈Nr(i0,j0)

ckl
i0j0µklNi0j0 |xkl(t− τkl, ϕ)− xkl(t− τkl, ψ)| .

(3.12)
Calculating the upper right derivative D+W2 of W2 along the solution of system
(3.1), we have

D+W2

∣∣
(3.1)

=
∑

Ckl∈Nr(i0,j0)

ckl
i0j0µklNi0j0e

ε(t+τkl) |xkl(t, ϕ)− xkl(t, ψ)|

− eεt
∑

Ckl∈Nr(i0,j0)

ckl
i0j0µklNi0j0 |xkl(t− τkl, ϕ)− xkl(t− τkl, ψ)| .

(3.13)
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From (3.12) and (3.13), we get

D+W |(3.1)

≤ D+W1|(3.1) +D+W2|(3.1)

≤ eεt
(
ε− ai0j0 +Mf

∑
Ckl∈Nr(i0,j0)

ckl
i0j0

)
|xi0j0(t, ϕ)− xi0j0(t, ψ)|

+ eεteετ
∑

Ckl∈Nr(i0,j0)

ckl
i0j0µklNi0j0 |xkl(t, ϕ)− xkl(t, ψ)|

≤ eεt
∑
(i,j)

(
ε− ai0j0 +Mf

∑
Ckl∈Nr(i,j)

ckl
i0j0

)
max
(i,j)

|xij(t, ϕ)− xij(t, ψ)|

+ eεteετ
( ∑

Ckl∈Nr(i0,j0)

ckl
i0j0µklNi0j0

)
max
(i,j)

|xij(t, ϕ)− xij(t, ψ)|

= eεt
(
ε− ai0j0 +Mf

∑
Ckl∈Nr(i0,j0)

ckl
i0j0 + eετ

∑
Ckl∈Nr(i0,j0)

ckl
i0j0µklNi0j0

)
×max

(i,j)
|xij(t, ϕ)− xij(t, ψ)|

< 0 .

Therefore, D+W (t) ≤ 0. Thus W (t) ≤W (0). Note that

W (t) ≥ eεt|xi0j0(t, ϕ)− xi0j0(t, ψ)| = eεt max
(i,j)

|xij(t, ϕ)− xij(t, ψ)|, t ≥ 0.

Again,

W (0) = |xi0j0(0, ϕ)− xi0j0(0, ψ)|

+
∑

Ckl∈Nr(i0,j0)

ckl
i0j0µklNi0j0

∫ 0

−τkl

|xkl(s, ϕ)− xkl(s, ψ)| eε(s+τkl)ds

≤ ‖ϕ− ψ‖∞ + τeετ
∑

Ckl∈Nr(i0,j0)

ckl
i0j0µklNi0j0‖ϕ− ψ‖∞

= (1 + τeετ max
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij)‖ϕ− ψ‖∞.

Set
k = 1 + τeετ max

(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij ,

then k > 1. Thus, we have

max
(i,j)

|xij(t, ϕ)− xij(t, ψ)| ≤ ke−εt‖ϕ− ψ‖∞. (3.14)

This implies
‖xt(ϕ)− xt(ψ)‖∞ ≤ ke−ε(t−τ)‖ϕ− ψ‖∞. (3.15)

We can choose a positive integer m such that ke−ε(mω−τ) ≤ 1
2 . Now, define a

Poincaré map
P : C([−τ, 0],Rm×n) → C([−τ, 0],Rm×n)
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by Pϕ = xω(ϕ), then we can derive from (3.15) that

‖Pmϕ− Pmψ‖∞ ≤ 1
2
‖ϕ− ψ‖∞.

So, Pm is a contraction map. Hence, there exists a unique fixed point x∗ ∈
C([−τ, 0],Rm×n) such that Pmx∗ = x∗. Note that

Pm(px∗) = P (Pmx∗) = Px∗.

This implies that Px∗ ∈ C([−τ, 0],Rm×n) is also a fixed point of Pm. So,

Px∗ = x∗, i. e. xω(x∗) = x∗.

Let x(t, x∗) be the solution of system (1.1) through (0, x∗), obviously, x(t+ ω, x∗)
is also a solution of system (1.1) and note that

xt+ω(x∗) = xt(xω(x∗)) = xt(x∗), for all t ≥ 0.

Therefore, x(t+ ω, x∗) = x(t, x∗), for all t ≥ 0. This shows that x(t, x∗) is exactly
one ω-periodic solution of system (1.1) and from (3.14) it is easy to see that all
solutions of system (1.1) converge exponentially to it on ∞-norm as t→ +∞. The
proof is complete.

4. An example

For i, j = 1, 2, 3, consider the system of SICNNs

dxij

dt
= −xij(t)−

∑
Ckl∈Nr(i,j)

ckl
ijfkl(xkl(t− 0.1))xij + cos t (4.1)

with the initial condition ϕij(s) = sin s, s ∈ [0.1, 0]. Let fkl(x) = f(x) = 0.1(|x+
1| + |x − 1|), then fkj satisfies assumptions (H1) and (H2), and µkl = 0.2 (k, l =
1, 2, 3), Mf = 0.2, aij = 1, Lij = 1, ϕij(0) = 0, qij = 1 (i, j = 1, 2, 3). Again we
take

C = (cij)3×3 =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 =

 0.1 0.05 0.1
0.05 0.1 0.05
0.1 0.05 0.1

 .

Set r = 1, then we have
∑

Ckl∈Nr(1,1) c
kl
11

∑
Ckl∈Nr(1,2) c

kl
12

∑
Ckl∈Nr(1,3) c

kl
13∑

Ckl∈Nr(2,1) c
kl
21

∑
Ckl∈Nr(2,2) c

kl
22

∑
Ckl∈Nr(2,3) c

kl
23∑

Ckl∈Nr(3,1) c
kl
31

∑
Ckl∈Nr(3,2) c

kl
32

∑
Ckl∈Nr(3,3) c

kl
33

 =

 0.3 0.45 0.3
0.45 0.7 0.45
0.3 0.45 0.3

 .

and

(pij)3×3 = (Mf

∑
Ckl∈Nr(i,j)

ckl
ij )3×3 =

0.06 0.09 0.06
0.09 0.14 0.09
0.06 0.09 0.06

 .



EJDE-2004/29 PERIODIC SOLUTION AND GLOBAL EXPONENTIAL STABILITY 13

Clearly pij < aij , for i, j = 1, 2, 3.

(Nij)3×3 = (
aijqij
aij − pij

)3×3 =

 100
94

100
91

100
94

100
91

100
86

100
91

100
94

100
91

100
94

 ,

(
∑

Ckl∈Nr(i,j)

ckl
ijµklNij)3×3 =

 6
94

9
91

6
94

9
91

14
86

9
91

6
94

9
91

6
94

 ,

∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij = 0.8137142.

Taking p = 2, we easily check that(
− paij + pMf

∑
Ckl∈Nr(i,j)

ckl
ij + (p− 1)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

+
∑
(i,j)

(
∑

Ckl∈Nr(i,j)

ckl
ijµklNij)

)
3×3

=
(
0.8137142 + 0.4

∑
Ckl∈Nr(i,j)

ckl
ij + 0.2

∑
Ckl∈Nr(i,j)

ckl
ijNij − 2

)
3×3

=

 −1.002456 −0.9073847 −1.002456
−0.9073847 −0.7434951 −0.9073847
−1.002456 −0.9073847 −1.002456

 < 0.

Therefore, (H3) holds. Hence, then system (4.1) has a unique 2π-periodic solution
and all other solution converge globally exponentially to it on the 2-norm as t →
+∞. Again take p = 1, we can easily check that(

− aij +Mf

∑
Ckl∈Nr(i,j)

ckl
ij +

∑
(i,j)

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

)
3×3

=
(
− 0.1862858 + 0.2

∑
Ckl∈Nr(i,j)

ckl
ij

)
3×3

=

−0.1262858 −0.0962858 −0.1262858
−0.0962858 −0.0462858 −0.0962858
−0.1262858 −0.0962858 −0.1262858

 < 0 .

Therefore, (H4) holds. By Corollary 1.2, system (4.1) has a unique 2π-periodic
solution and all other solution converge globally exponentially to it on the 1-norm
as t→ +∞. We can easily check that(

− aij +Mf

∑
Ckl∈Nr(i,j)

ckl
ij +

∑
Ckl∈Nr(i,j)

ckl
ijµklNij

)
3×3

=

−0.8761702 −0.8110989 −0.8761702
−0.8110989 −0.6972093 −0.8110989
−0.8761702 −0.8110989 −0.8761702

 < 0.

Thus, (H5) is satisfied. By Theorem 1.4, system (4.1) has a unique 2π- solution
and all other solution converge globally exponentially to it on the ∞-norm as t
approaches +∞.
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Conclusion. In this paper, we have derived some simple sufficient conditions in
term of systems parameters for periodic solutions and global exponential stability
of SIDCNNs. The results possess important significance in some applied fields, and
the conditions are easily checked in practice. These play an important role in design
and application of SIDCNNS. In addition, the method of this paper may be applied
to some other systems such as the systems given in [14, 19, 20, 22, 23].
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