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BIFURCATION OF CRITICAL PERIODS OF A
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Abstract. We investigate the critical period bifurcations of the system

ẋ = ix + xx̄(ax3 + bx2x̄ + x̄x̄2 + dx̄3)

studied in [6]. We prove that at most three critical periods can bifurcate from
any nonlinear center of the system.

1. Introduction

Consider a system of ordinary differential equations on R2 of the form

u̇ = −v + P (u, v),

v̇ = u+Q(u, v),
(1.1)

where u and v are real unknown functions and P and Q are polynomials without
constant and linear terms. The singularity at the origin of system (1.1) is either
a center or a focus. In a neighborhood of a center the so-called period function
T (r) gives the least period of the periodic solution passing through the point with
coordinates (u, v) = (r, 0) inside the period annulus of the center.

If T (r) is constant in a neighbourhood of the origin, then the center at the origin
is called isochronous. For a center that is not isochronous any value r > 0 for which
T ′(r) = 0 is called a critical period. The problem of critical period bifurcations is
aimed on estimation of the number of critical periods that can arise near the center
under small perturbations. It was investigated for the first time by Chicone and
Jacobs [2] in 1989 for quadratic systems and some Hamiltonian systems. After that,
many studies were devoted to the problem (see, e.g. [1, 5, 7, 10, 12, 15, 16, 17,
18, 19, 20, 21] and references given there). One of difficulties in investigations of
this problem is that before studying the critical periods bifurcation for a polynomial
system one should resolve the center problem for the system, that is, find all systems
in the family with a center at the origin.

Studies of the center problem are usually simpler if one considers the problem in
the complex setting. To perform a complexification we can make the substitution
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x = u+ iv obtaining from (1.1) the complex differential equation

ẋ = ix−
n−1∑

j+k=1

ajkx
j+1x̄k. (1.2)

Adjoining to (1.2) its complex conjugate and considering ājk as a new parameter
bkj and x̄ as a distinct unknown function y we obtain the system

ẋ = ix−
n−1∑

j+k=1

ajkx
j+1yk = ix+ P̃ (x, y),

ẏ = −iy +

n−1∑
j+k=1

bkjx
kyj+1 = −iy + Q̃(x, y).

(1.3)

This system is called the complexification of (1.1) and it is equivalent to (1.2) when
y = x̄ and bkj = ājk.

By Poincaré-Lyapunov theorem system (1.1) has a center at the origin if and
only if it admits in a neighbourhood of the origin an analytic first integral of the
form

Φ(u, v) = u2 + v2 + h.o.t.,

which is equivalent to the existence of a first integral of the form

Ψ(x, x̄) = xx̄+ h.o.t.

for system (1.2).
Thus, extending the notion of center from real systems to systems (1.3) it is said

that complex system (1.3) has a center at the origin if in a neighbourhood of the
origin it admits an analytic first integral of the form

Ψ(x, y) = xy +

∞∑
j+k=3

Ψjkx
jyk. (1.4)

Since to each ajk in the first equation of (1.3) corresponds the parameter bkj
in the second equation of (1.3), system (1.3) has 2` parameters. We denote the
ordered 2`-tuple of the parameters of (1.3) by (a, b); that is,

(a, b) = (ap1q1 , . . . , ap`q` , bq`,p`
, . . . , bq1p1), (1.5)

and we use the notation C[a, b] for the ring of polynomials in the variables ap1q1 ,
ap2q2 , . . . , bq1p1

over C.
Recently, Garćıa, Llibre and Maza [6] studied limit cycle bifurcations near a

center or a focus at the origin of the quintic system written in the complex form as
the equation

ẋ = ix+ xx̄(ax3 + bx2x̄+ cx̄x2 + dx̄3),

which, in order to use the notation similar to the one in (1.2), we write as the
complex equation

ẋ = i(x− a31x4x̄− a22x3x̄2 − a13x2x̄3 − a04xx̄4). (1.6)

In this paper we study critical period bifurcations from the center at the origin
of system (1.6). We first describe a way to compute the period function of system
(1.2) using the normal form of its complexification (1.3). Then we prove that at
most three critical periods can bifurcate from any nonlinear center of the system.
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2. Preliminaries

To study critical period bifurcations of system (1.6) we have to compute a series
expansion of the period function T (r) of the system. One possibility is to pass
to polar coordinates. This way is geometrically and theoretically straightforward,
however it is not computationally efficient since one needs to compute integrals of
trigonometric polynomials, and this is a difficult task in the case of polynomials of
high degree.

Another possible computational approach relies on calculations of Poincaré-
Dulac normal form of the complexification (1.3). We briefly remind it following
to [14] and [5].

As it is well-known after a change of coordinates

x = y1 +
∑

j+k≥2

h
(j,k)
1 yj1y

k
2 ,

y = y2 +
∑

j+k≥2

h
(j,k)
2 yj1y

k
2 ,

(2.1)

system (1.3) can be brought to the Poincaré-Dulac normal form

ẏ1 = y1(i+

∞∑
j=1

Y
(j+1,j)
1 (y1y2)j) = y1(i+ Y1(y1y2)),

ẏ2 = y2(−i+

∞∑
j=1

Y
(j,j+1)
2 (y1y2)j) = y2(−i+ Y2(y1y2)).

(2.2)

The normal form (2.2) is not uniquely defined since the so-called resonant coef-

ficient h
(j+1,j)
1 and h

(j,j+1)
2 in (2.1) can be chosen arbitrary. We will chose for all j

(j = 1, 2, . . . ) h
(j+1,j)
1 = h

(j,j+1)
2 = 0 (in such case the transformation (2.1) is called

distinguished).

The coefficients Y
(j+1,j)
1 and Y

(j,j+1)
2 in (2.2) are polynomials of the ring C[a, b].

Denote by Y the ideal generated by all coefficients of the normal form

Y := 〈Y (j+1,j)
1 , Y

(j,j+1)
2 : j ∈ N〉 ⊂ C[a, b], (2.3)

and by YK the ideal generated by the first K pairs of the coefficients,

YK := 〈Y (j+1,j)
1 , Y

(j,j+1)
2 : j = 1, . . . ,K 〉.

The normal form of a particular system (a∗, b∗) with the fixed parameters is
linear when all the coefficients of the normal form evaluated at (a∗, b∗) are equal to
zero,

Y
(j+1,j)
1 (a∗, b∗) = Y

(j,j+1)
2 (a∗, b∗) = 0 for all j ∈ N,

that is, when the point (a∗, b∗) belongs to the variety of the ideal Y. The variety
V(I) of a polynomial ideal I is the set of common zeros of all polynomials of the
ideal. The variety VL := V(Y) is called the linearizability variety of system (1.3).
As it is well known system (1.1) has an isochronous center at the origin if and only
if the system is linearizable. Thus, the real systems (1.1), which parameters after
the complexification are in VL , have isochronous centers at the origin.

For system (1.3) one can find a function (1.4) such that

[ix+ P̃ (x, y)]Ψx(x, y) + [−iy + Q̃(x, y)]Ψy(x, y) = g11(xy)2 + g22(xy)3 + · · · ,
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where gkk is a polynomial in the coefficients of system (1.3). The polynomial gkk is
called the k-th focus quantity. Clearly, system (1.3) with fixed coefficients (a∗, b∗)
has a center at the origin if and only if gkk ≡ 0 for all k ∈ N. We call the ideal

B := 〈gkk : k ∈ N〉 ⊂ C[a, b]

the Bautin ideal of system (1.3). The variety of B, VC = V(B), is called the center
variety. We will also use the ideal generated by the first K focus quantities, which
we denote

BK := 〈gkk : k = 1, . . . ,K〉 ⊂ C[a, b].

Let us denote

G = Y1 + Y2,

H = Y1 − Y2.

It is easy to see that the origin is a center for (1.3) if and only if G ≡ 0, in
which case H has purely imaginary coefficients and the distinguished normalizing
transformation converges. We also define

H̃(w) = −1

2
iH(w).

When (1.3) is the complexification of a real system one can recover the real
system by replacing every occurrence of y2 by ȳ1 in each equation of (2.2). In such
case, performing the transformation y1 = reiϕ we obtain from (2.2) the equations
for ṙ and ϕ̇ as follows:

ṙ =
1

2r
(ẏ1ȳ1 + y1 ˙̄y1) = 0,

ϕ̇ =
i

2r2
(y1 ˙̄y1 − ẏ1ȳ1) = 1 + H̃(r2) .

(2.4)

We write the function H̃ as

H̃(w) =

∞∑
k=1

H̃2k+1w
k.

The integration of the second equation in (2.4) gives the least period of the periodic
solution of (??)assing through the point with coordinates (r, 0) as

T (r) =
2π

1 + H̃(r2)
= 2π

(
1 +

∞∑
k=1

p2k(a, ā)r2k
)

(2.5)

for some coefficients p2k. The center at the origin of system (1.6) corresponding to
a parameter a∗ is isochronous if and only if p2k(a∗, ā∗) = 0 for k ≥ 1.

It is easy to see that p2k are polynomials in the parameters a, ā of system (1.2).
We can extend the polynomial functions p2k(a, ā) to the set of parameters (a, b)
setting in (2.4) y2 instead of ȳ1. Then instead of (2.5) we obtain the function

T (r, a, b) = 2π
(

1 +

∞∑
k=1

p2k(a, b)r2k
)
, (2.6)

which coincides with the period function (2.5) when b = ā.
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We call the polynomial p2k(a, b) in (2.6) the k-th isochronicity quantity. Using
(2.5) and the formula for the inversion of series the first three polynomials p2k are
computed as:

p2 = −H̃3 =
i

2

(
Y

(2,1)
1 − Y (1,2)

2

)
p4 = −H̃5 + (H̃3)2 =

i

2

(
Y

(3,2)
1 − Y (2,3)

2

)
− 1

4

(
Y

(2,1)
1 − Y (1,2)

2

)2
,

p6 = −H̃7 + 2H̃3H̃5 − (H̃3)3

=
i

2

(
Y

(4,3)
1 − Y (3,4)

2

)
− 1

2

(
Y

(2,1)
1 − Y (1,2)

2

)(
Y

(3,2)
1 − Y (2,3)

2

)
− i

8

(
Y

(2,1)
1 − Y (1,2)

2

)3
.

(2.7)

Since values of the isochronicity quantity p2k are of interest only on the center
variety, we should work with the equivalence class [p2k] of p2k in the coordinate ring
C[VC ] of the center variety, which can be viewed as the set of equivalence classes
of polynomials C[a, b] by VC . That is, for polynomials f, g ∈ C[a, b],

[f ] = [g] in C[VC ]

if and only if

f − g ≡ 0 on VC .

We denote

P = 〈p2k : k ∈ N〉 ⊂ C[a, b] and P̃ = 〈[p2k] : k ∈ N〉 ⊂ C[VC ],

and for K ∈ N,

PK = 〈p2, . . . , p2K〉 and P̃K = 〈[p2], . . . , [p2K ]〉 .

The ideal P is called the isochronicity ideal.
Finally, we remind that given a Noetherian ring R and an ordered set

B = {b1, b2, . . .} ⊂ R,

we construct a basis MI of the ideal I = 〈b1, b2, . . .〉 as follows:

(a) initially set MI = {bp}, where bp is the first non-zero element of B;
(b) sequentially check successive elements bj , starting with j = p + 1, adding

bj to MI if and only if bj /∈ 〈MI〉
The cardinality of MI is called the Bautin depth of I.

3. An upper bound for critical periods bifurcating from centers of
system (1.6)

Along with system (1.6) we consider its complexification

ẋ = ix(1− a31x3y − a22x2y2 − a13xy3 − a04y4),

ẏ = −iy(1− b40x4 − b31x3y − b22x2y2 − b13xy3).
(3.1)

Our study is based on the following theorem which is an immediate corollary of [5,
Theorem 5.2 and Remark 5.3].

Theorem 3.1. Suppose that for the complexification (1.3) of the family (1.2):

(a) VL = V(PK) ∩ VC ,
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(b) the Bautin depth (i.e., the cardinality of the minimal basis) of P̃K in C[VC ]
is m, and

(c) a primary decomposition of PK +
√

B can be written R∩N where R is the
intersection of the ideals in the decomposition that are prime and N is the
intersection of the remaining ideals in the decomposition.

Then for any system of family (1.2) corresponding to (a∗, ā∗) ∈ VC \V(N), at most
m− 1 critical periods bifurcate from a center at the origin.

Thus, to estimate the number of bifurcating critical periods of system (3.1) we
have to know the center and linearizability varieties of the system.

First we note that it follows from Corollary 3.4.6 in [14] that for system (3.1)
the focus quantities g2k+1,2k+1 are zero polynomials. Using the results of [9] we can
easily prove the following statement.

Proposition 3.2. The center variety of system (3.1) is defined by the seven first
non-zero focus quantities,

V(B) = V(B14), (3.2)

where B14 = 〈g2,2, g4,4, g6,6, g8,8, g10,10, g12,12, g14,14〉, and it consists of four com-
ponents defined by the following prime ideals:

I1 =〈a22 − b22, a31a13 − b13b31, b231a04 − a213b40,
a31b31a04 − b13a13b40, a231a04 − b213b40〉,

I2 = 〈b40, b31, a13, b22, a22, b13〉,
I3 = 〈a04, b31, a13, b22, a22, a31〉,

I4 = 〈a22 − b22, 3b13 − a13, 3a31 − b31〉.

Proof. Using the algorithm in [14, Chapter 3] and a Mathematica code similar
to the one given in [14, Fig. 6.1 of Appendix] we computed the focus quantities
g2,2, g4,4, . . . , g14,14 (since the expressions are long, we do not present them here,
but one can easily compute them using any available computer algebra system).
Then, using the routine minAssGTZ, which is based on the algorithm of [8], of the
computer algebra system Singular [3] we found that the minimal associate primes
of B14 are the prime ideals I1, . . . , I4 in the statement of the theorem.

By the results of [9] if the parameters (a, b) of system (3.1) are from one of
the varieties V(I1), . . . ,V(I4), then the corresponding systems have a center. This
means that (3.2) holds. �

Note, that taking into account that V(B) is a complex variety, from (3.2) we
obtain that the radical of B coincides with the radical of B14, that is,

√
B =

√
B14.

To find the linearizability variety of system (3.1) and the isochronicity quantities
p2k we have computed the normal form of system (3.1) up to the order 17 and found

four first non-zero pairs of the resonant coefficients Y
(2k+1,2k)
1 , Y

(2k,2k+1)
2 as follows:

Y
(3,2)
1 = −ia22; Y

(2,3)
2 = ib22;

Y
(5,4)
1 = i(−2a13a31 + a31b13 − 3a13b31 − 2a04b40)/2;

Y
(4,5)
2 = −i(a31b13)/2 + (3a13b31)/2 + b13b31 + a04b40;
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Y
(7,6)
1 = (4a13a22a31 + a22a31b13 − 6a13a31b22 + a31b13b22 − 11a13a22b31

− 6a04a31b31 + 2a22b13b31 − 3a13b22b31 − 10a04b
2
31 − 12a213b40

− 5a04a22b40 − 2a04b22b40)/4;

Y
(6,7)
2 = i(−a22a31b13 − 2a13a31b22 − a31b13b22 + 3a13a22b31 + 6a22b13b31

+ 11a13b22b31 − 4b13b22b31 + 12a04b
2
31 + 10a213b40 + 2a04a22b40

+ 6a13b13b40 + 5a04b22b40)/4;

Y
(9,8)
1 = i(132a13a

2
22a31 + 36a213a

2
31 + 108a04a22a

2
31 − 150a222a31b13 − 6a13a

2
31b13

+ 6a231b
2
13 + 192a13a22a31b22 − 72a04a

2
31b22 + 204a22a31b13b22

− 324a13a31b
2
22 + 18a31b13b

2
22 − 198a13a

2
22b31 − 126a213a31b31

+ 192a04a22a31b31 + 24a222b13b31 − 24a13a31b13b31 + 6a31b
2
13b31

− 132a13a22b22b31 − 267a04a31b22b31 + 24a22b13b22b31 + 18a13b
2
22b31

− 162a213b
2
31 − 384a04a22b

2
31 − 18a13b13b

2
31 − 132a04b22b

2
31 − 396a213a22b40

− 78a04a
2
22b40 − 200a04a13a31b40 + 27a13a22b13b40 − 180a213b22b40

− 48a04a22b22b40 + 90a13b13b22b40 − 800a04a13b31b40 − 56a04b13b31b40

− 48a204b
2
40)/48;

Y
(8,9)
2 = i(−18a222a31b13 − 6a13a

2
31b13 − 6a231b

2
13 − 24a13a22a31b22

− 204a22a31b13b22 − 24a13a31b
2
22 + 150a31b13b

2
22 − 18a13a

2
22b31

+ 18a213a31b31 − 90a04a22a31b31 + 324a222b13b31 + 24a13a31b13b31

+ 6a31b
2
13b31 + 132a13a22b22b31 − 27a04a31b22b31 − 192a22b13b22b31

+ 198a13b
2
22b31 − 132b13b

2
22b31 + 162a213b

2
31 + 180a04a22b

2
31 + 126a13b13b

2
31

− 36b213b
2
31 + 396a04b22b

2
31 + 132a213a22b40 + 56a04a13a31b40

+ 267a13a22b13b40 + 72a22b
2
13b40 + 384a213b22b40 + 48a04a22b22b40

− 192a13b13b22b40 − 108b213b22b40 + 78a04b
2
22b40 + 800a04a13b31b40

+ 200a04b13b31b40 + 48a204b
2
40)/48.

Then, using (2.7) for the calculation of p4 and computing the series expansions
(2.6) in order to find p8, p12 and p16 we obtain the first four non-zero reduced
isochronicity quantities (by the reduced quantities we mean the polynomials ob-
tained in such way that in formulas (2.7) and their extensions to any p2k only
terms containing the highest order coefficients of the normal form are taking into
account; it is sufficient to work with the reduced quantities since the other terms
of p2k are in the ideal 〈p2, . . . , p2k−2〉) of system (3.1) as follows:

p4 =
1

2
(a22 + b22); p8 = −1

2
(a31b13 − a31a13 − b13b31 − 3a13b31 − 2a04b40);

p12 =
1

8
(−4a13a22a31 − 2a22a31b13 + 4a13a31b22 − 2a31b13b22 + 14a13a22b31

+ 6a04a31b31 + 4a22b13b31 + 14a13b22b31 − 4b13b22b31 + 22a04b
2
31 + 22a213b40

+ 7a04a22b40 + 6a13b13b40 + 7a04b22b40);
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p16 =
1

48
(−66a13a

2
22a31 − 18a213a

2
31 − 54a04a22a

2
31 + 66a222a31b13 − 6a231b

2
13

− 108a13a22a31b22 + 36a04a
2
31b22 − 204a22a31b13b22 + 150a13a31b

2
22

+ 66a31b13b
2
22 + 90a13a

2
22b31 + 72a213a31b31 − 141a04a22a31b31

+ 150a222b13b31 + 24a13a31b13b31 + 132a13a22b22b31 + 120a04a31b22b31

− 108a22b13b22b31 + 90a13b
2
22b31 − 66b13b

2
22b31 + 162a213b

2
31 + 282a04a22b

2
31

+ 72a13b13b
2
31 − 18b213b

2
31 + 264a04b22b

2
31 + 264a213a22b40 + 39a04a

2
22b40

+ 128a04a13a31b40 + 120a13a22b13b40 + 36a22b
2
13b40 + 282a213b22b40

+ 48a04a22b22b40 − 141a13b13b22b40 − 54b213b22b40 + 39a04b
2
22b40

+ 800a04a13b31b40 + 128a04b13b31b40 + 48a204b
2
40).

We now look for the linearizability variety of system (3.1).

Proposition 3.3. For system (3.1),

VL = V(Y8) = VC ∩V(P8). (3.3)

Proof. Using the routine minAssGTZ of Singular we found that the minimal as-
sociate primes of ideals 〈Y8〉 and 〈B14, P8〉 are the same. Namely, they are the
ideals:

Q1 = 〈b40, b31, a13, b22, a22, b13〉, Q2 = 〈b40, b31, b22, a22, a31〉,
Q3 = 〈b40, a04, b22, a22, b13 − 3a13, a31 − 3b31〉,
Q4 = 〈b40, a04, b22, a22, b13 + a13, a31 + b31, 〉

Q5 = 〈a04, a13, b22, a22, b13〉, Q6 = 〈a04, b31, a13, b22, a22, a31〉.

By the results of [13] systems with the coefficients from the varieties of these
ideals are linearizable. This proves (3.3). �

We now can estimate the number of critical periods near a center at the origin
of system (1.6).

Theorem 3.4. At most 3 critical periods bifurcate from nonlinear centers of system
(1.6).

Proof. By Proposition 3.3, part (a) of Theorem 3.1 holds with K = 8. We then
check that in C[VC ]:

[p8] 6∈ 〈[p4]〉, [p12] 6∈ 〈[p4], [p8]〉, [p16] 6∈ 〈[p4], [p8], [p12]〉. (3.4)

To this end, with the routine radical of the computer algebra system Singular
we compute the radical of the Bautin ideal B = B14 denoted R14, that is,

R14 =
√

B14

(one can also computeR14 using the routine intersect of Singular and the ideals
I1 − I4 given in the statement of Proposition 3.2 since it is follows from the proof
of Proposition 3.2 that R14 = ∩4k=1Ik). Then with the reduce of Singular we
check that for k = 2, 3, 4 the remainder of the division of the polynomial p4k by a
Groebner basis of the ideal

〈p4, . . . , p4(k−1),R14〉
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is nonzero. That means, that (3.4) holds, which, in turn, yields that the Bautin

depth of P̃8 in C[VC ] is 4.
Then, with the routine primdecGTZ [4, 8] of Singular we have computed the

primary decomposition of the ideal

Q = 〈P8,R14〉

and found that

Q = ∩13k=1Qk,

where Q1, . . . , Q6 are prime ideals given in the statement of Proposition 3.2,
Q7, . . . , Q13 are some ideals defined by many polynomials (for these reason we do
not present them here, however the interested reader can easily compute Q and the
primary decomposition Q = ∩13k=1Qk with an appropriate computer algebra system
using the ideals P8 and I1 − I4 presented above) whose associate primes are:√

Q7 = 〈b40, b31, b22, a22, b13 − 3a13, a31〉,√
Q8 = 〈b40, b31, b22, a22, b13 + a13, a31〉,√
Q9 = 〈a04, a13, b22, a22, b13, a31 − 3b31〉,√
Q10 = 〈a04, a13, b22, a22, b13, a31 + b31〉,√
Q11 = 〈b40, b31, a13, b22, a22, b13, a31〉,√
Q12 = 〈a04, b31, a13, b22, a22, b13, a31〉,√

Q13 = 〈b40, a04, b31, a13, b22, a22, b13, a31〉.

Thus,
√
Qk = Qk for k = 1, . . . , 6 and

√
Qk 6= Qk for k = 7, . . . , 13; that is, the

ideals R and N from the statement of Theorem 3.1 are

R = ∩6k=1Qk and N = ∩13k=7Qk.

To find systems (1.6) whose coefficients are in the variety of the ideal N we

perform as follows. Let Ts =
√
Qs+6 for s = 1, . . . , 7. Using the intersect of

Singular we compute the ideal T = ∩7k=1Tk and find that

T = 〈a22, b22, a04b40, a13b40, b13b40, a04b31, a04a31, a13b31,
b13b31, a13a31,−3a213 − 2a13b13 + b213, a31b13, a

2
31 − 2a31b31 − 3b231〉.

Clearly, V(N) = V(T ) in C8.
Since in the case when (3.1) is a complexification of the real system the param-

eters aks and bsk are complex conjugate we perform the change of variables

a31 = A31 + iB31, b13 = A31 − iB31,

a22 = A22 + iB22, b22 = A22 − iB22,

a13 = A13 + iB13, b31 = A13 − iB13,

a04 = A04 + iB04, b40 = A04 − iB04,

where Aks, Bks are real parameters. Substituting these values into the ideal T and
computing a Groebner bases of the obtained ideal in the ring

Q[A04, A13, A22, A31, B04, B13, B22, B31]
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we find the ideal

TR = 〈A22, B22, (B13 −B31)(3B13 +B31), A2
31 +B2

31,

A31B13 +A13B31, 3A13B13 + 2A31B13 +A31B31,

A13A31 −B13B31, 3A
2
13 + 2B13B31 +B2

31, A31B04 +A04B31,

−A13B04 +A04B13, A04A31 −B04B31, A04A13 +B04B13, A
2
04 +B2

04〉.

(3.5)

The basis of TR contains the polynomials

A22, B22, A
2
31 +B2

31, A
2
04 +B2

04.

Since A31, B31, A04, B04 are real parameters we conclude that

A22 = B22 = A31 = B31 = A04 = B04 = 0. (3.6)

Substituting the values from (3.6) into polynomials of the ideal TR given in (3.5)
we find that also

A13 = B13 = 0.

It means that the only system of the form (1.6) whose parameters are in the
variety of the ideal N is the linear system (1.2), that is, the system ẋ = ix. Thus,
by Theorem 3.1 at most 3 critical periods bifurcate from non-linear isochronous
centers of system (1.6). �
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