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ERGODICITY OF THE TWO-DIMENSIONAL MAGNETIC
BENARD PROBLEM

KAZUO YAMAZAKI

ABSTRACT. We study the two-dimensional magnetic Bénard problem with
noise, white in time. We prove the well-posedness including the path-wise
uniqueness of the generalized solution, and the existence of the unique invari-
ant, and consequently ergodic, measure under random perturbation.

1. INTRODUCTION

The Bénard problem is concerned with the motion of a horizontal layer of vis-
cous fluid heated from below and the magnetic Bénard problem similarly with the
electrically conducting viscous fluid. Both problems have attracted much attention
in the past (cf. [I8| B8] for the Bénard problem and [19, 20, B3] B9, 40] for the
magnetic Bénard problem). In particular, systems of stochastic partial differential
equations for these problems have been studied intensively (cf. [2 O] [10] for the
Bénard problem and [3] for the magnetic Bénard problem). For such systems, the
existence of a unique invariant measure, if proven, describes the statistical equilib-
rium to which the system approaches. In this manuscript, we show the existence
and uniqueness of the invariant measure, which is consequently ergodic, for the
magnetic Bénard problem.

2. PRELIMINARIES AND STATEMENT OF RESULTS

We consider a spatial domain D = (0,L) x (0,1) with L > 0. We denote
0, & %, 0; & 8%,» i = 1,2 and let (ej,ez) represent the standard basis in R2.
We let u(z,t) = (u1,u2)(x,t),b(x,t) = (by,by)(z,t), p(x,t),0(x,t) be the velocity
and magnetic vector fields, pressure and temperature scalar fields respectively. We
furthermore denote by 11, V2, k the kinematic viscosity, magnetic diffusivity, thermal
diffusivity respectively and s = H?vv, where H is the Hartman number. Finally
we let n/(z,t),j = 1,2, be the Gaussian random fields, white noise in time, to be
elaborated more below. With these notations, we consider

Bpu+ (u- Vu— v Au+ V(p+ g\b|2) — 5(b- V)b = ey +n, (2.1)
Ob+ (u-V)b— (b-V)u — veAb = n?, (2.2)

2010 Mathematics Subject Classification. 35Q35, 37TH99, 60H15.

Key words and phrases. Bénard problem; ergodicity; invariant measure; irreducibility;
Krylov-Bogoliubov theorem; strong Feller.

(©2016 Texas State University.

Submitted December 3, 2015. Published March 16, 2016.

1



2 K. YAMAZAKI EJDE-2016/79

00+ (u- V)8 — kAO —up =0, (2.3)
equipped with the boundary and initial conditions
u, P, b,0,01u,01b,010, periodic in the x;-direction with period L,
u,b2,62b1,0 =0 on {.1‘2 = 0} U {.IQ = 1},

(U,b, 0)(1‘70) = (UOab0790)(I)7 (25)
where z; is the i-th coordinate of = (cf. [3 section 2.1.4 pg. 386]). For simplicity,
hereafter we assume s = 1, write [ f for [, f(z)dz and when an equality or an
inequality consists of a constant ¢ that is of no significance, we write A~ B, A < B
instead of A = ¢B, A < ¢B respectively. For convenience, hereafter we frequently

denote the solution by y = (u,b,0). We now set up the standard functional setting
and subsequently state our main results. We let

H,=H, 2 {u € (LA (D)*:V-u=0, U1 |z, =0} = Uil{z1=1}

(2.4)

Un|{zy=0} = Uz|{zy=1} =0},
Hy = (L*(D))?,

and set H £ H; x H, x Hs, endowed with its norm for 3/ = (u/, 17, 67),
(' 9% =/y1 v WP =y), G=12
We define
Vi ={ue H nN(H"(D))?: ul{zy—0} = ul{z,=1} = 0,u is L-periodic in z1},
Va = Hy 0 (H'(D))?,
Vs ={0 € H'(D) : 0| (4,0} = 0|{z5=1} = 0,0 is L-periodic in z;}.
We let V £ V; x V, x V3, and A; be the Stokes operator defined by its bilinear form

ay(ut,u?) =1y i/Vuzl VUi, (W ul) = |}, utiu? e Vi

i=1

Similarly As is defined by its bilinear form

as(b',b?) = ugi/w}-w?, ax(b7,67) = |[V|I3,, b, b7 € Va.

i=1

As is generated by the Dirichlet form

az(0',6%) :ﬁ/val.ve{ az(67,67) = ||67|3,, 6'.6° € V3.
Finally A be the operator defined by
a(y',y?) = i/”lvuzl Vi + vV V0 + kYO V0%, a(y’,y7) = [l
i=1
j =1,2. We denote by V{ = D(AY?),V} = D(AY?), Vi = D(AY?) and V! 2

D(AY?),1 € R (cf. [38, Chapter IT Section 2.1]). We also define bilinear continuous
mappings B;,i =1,...,5 to satisfy

(By(u*,u?),u?) = /(u1 SWV)u?-ud, (Ba (bt b?),ud) = /(b1 VAL ERETEN
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(Bs(u!,1?) - %) = / (Wl -V, (Ba(b!,u?), b = / (b - V) b,

(Bs(u',0%),0%) = /(ul -V)6%63.

For y = (u,b,0), denoting

By (u,u) — Bs(b,b) O, nl
B & (Batuet) B | my2 (0], ne (2],
B5(U,9) Uo O

we rewrite (2.1)—(2.3)) as
oy + Ay + B(y,y) = Ry +n. (2.6)

We remark on a distinctive feature of the Bénard and magnetic Bénard problems in
comparison to the Navier-Stokes equations (NSE) and the magnetohydrodynamics
(MHD) system. Considering the case e.g. n = 0 for the MHD system which is
at R=0,60 = 0, we see that there exists o’ > 0, for example o = min{vy,v2} > 0,
such that

(Ay,y) + (Ry,y) > [|yl1%;

i.e. A+ Ris coercive on H'(D), while in the case of the Bénard and the magnetic
Bénard problems, such a property is valid only if min{vy,vo, k} > 0 is sufficiently
large (see [38, Chapter III Section 3.5]).

Concerning n/(t),j = 1,2, we let {gg,)\{ >, 7 = 1,2,3 be the eigenvectors

and their corresponding eigenvalues of A; respectively. Then we define w’(t) £

Yo B (gl

Giui(t) 23 olgigl, =12 (2.7)

i=1
where {Uf }24,4 = 1,2 are noise intensities, {ﬁf 2, j = 1,2 are families of inde-
pendent standard one-dimensional Brownian motions defined for all ¢, on (Q, F,P)
with expectation with respect to P’ denoted by E and filtration of F; = o{w(s) —
w(r) : 7 < 5 <t} where w = (w!,w?,0). We note that {g/}22,, j = 1,2 forms an
orthonormal basis for H;, j = 1,2, 3 respectively.
Now letting G £ (G',G2,0),G € L(H), we define our solution.

Definition 2.1. The stochastic process y = (u, b, 0) is a generalized solution over
time interval [tg, T] of (2.6) if P a.e. w € Q,
(1)
. 2 . 1/4 1/4
y(,w) € C([to, T|; H) N L*(to, T; D(A}"") x D(A5'") x V3), (2.8)
(2) y = (u,b,0) satisfies for all ¢ = (¢!, 2, ¢%) € D(A),

w(t), &) — (u(to). 6) + / (Ay, ¢)ds
fo (2.9)

. / (Bly.y) + Ry, d)ds + (Gu(t) — Gu(to), 9),

to

(3) y = (u,b,0) is progressively measurable.
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Let us now recall that irreducibility in V! implies that the transition function
P(t,z,T) = P({y(t;z) € T'}) satisfies
P(t,z,T) >0 Vt>ty, €V
for all non-empty open set I' C V!. Moreover, their associated Markovian semigroup
{P,;} is defined by
(Pe)(z) = El(y(t; 2))] (2.10)
is Feller if P,(Cy(V')) C Cy(V') and strong Feller if Py(B,(V')) C Cy(V!) for all
t € (to,T] where By(V!), Cy(V!) are the sets of all real Borel functions that are

bounded, continuous and bounded respectively. We define a dual semigroup P} in
Pr(H), the space of probability measures on H, by

[ vz = [ Psa

If Pf i = p, then p € Pr(H) is called an invariant measure for the dynamical system
(Pr(H), P). We now state our first result.

Theorem 2.2. Suppose that for both j = 1,2, we have
ol £0 Vi=1,2,...; (2.11)

J
o; <
LT it

for some v >0 (2.12)
fori large enough. Then for all y;, = (u,b,0)(ty) € H, there exists a unique process
y that solves (2.9) as defined in Deﬁnition such that in addition to the regularity

of @3).
u(-w) € L2(to, T; D(AT™E T30y 0 LA, 7, D(AY YY),
b(-,w) € L2(to, T; D(AM™E 472 hy 1 L4 T D(AVY))

for all v < g, P-a.e. w € Q. Moreover, it is a Markov process. Finally, there
exists an invariant measure for (2.6]).

To prove the uniqueness of the invariant measure, it suffices to prove the irre-
ducibility and strong Feller property ([8] and e.g. [6l Theorem 4.2.1]). Under a
slightly more restrictive condition, this is possible.

Theorem 2.3. Let | € Z,1 > 2. Suppose that for both j = 1,2, {Uf . satisfy

(2.11) and

; c
172

c

for i's large enough. Then for all yo 2 (ug,bo,0) € V!, there exists a unique
process y that solves (2.9) as defined in Deﬁm’tion at to = 0 such that for P-a.e.
w e Q,

y € C([0,T]; V');
moreover, it is a Markov process. Finally, there exists a unique invariant measure
wof 9) at to = 0, supported in V' such that lim; o P(t,z,T") = u(T) for all
r € VLT € B(VY).
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Remark 2.4. (1) As a consequence of uniqueness, the invariant measure claimed in
Theorem [2.3)is ergodic (cf. [6, Theorem 3.2.6]). To the best of the author’s knowl-
edge, both Theorems and represent new results on the magnetic Bénard
problem. Moreover, although the existence of an invariant measure for the Bénard
problem is shown in [10], not its uniqueness. As the magnetic Bénard problem
when b = 0 becomes the Bénard problem, Theorem [2.3] proves the uniqueness of
the invariant measure obtained in [I0] for the Bénard problem as well.

(2) The proofs of Theorems and follow the approach of [10, 12] closely.
The proof is also inspired by the previous work on ergodicity of the NSE, Burgers’
equation (see [5l [Tl [14) 16l [17]); we also refer to [1 22] 24, 25| 26, BT} B2 4] as
closely related important work. We remark however that in [I0] [I4], the path-wise
uniqueness of the generalized solution was missing for a technical reason; in fact,
in [14] Remark after Theorem 3.1}, this uniqueness was stated as an open problem.
We follow the approach of [I3] to obtain such a path-wise uniqueness.

(3) For the generalization to ! non-integer and [ = 1 cases, we refer to the
[12, Section 6]; we chose not to pursue this direction of research for simplicity of
presentation.

3. PrROOF OoF THEOREM EXISTENCE

We consider two Ornstein-Uhlenbeck processes: for a@ > 0, j = 1, 2, defined also
for t <0,

dzd + Az (H)dt = —azd (t)dt + dGIw, (3.1)
for which their solutions are of the form
t
2 (t) = / e(TAI=O =) QI (s) (3.2)

(cf. [7]) and we collect their properties in the Appendix. By (2.12)) we see that
there exists y9 > 0 such that

- ;
P Biviv e >\J ——2%

i=1
because X ~ i as i — oo. Thus, by Lemma (1) we see that P-a.s.
2 € C([to, T); D(A) 1)), (3.3)
and by Lemma (2)
Gl € C([to, T]; DA™ 1)), (3.4)

Now we define

so that by (2.6) and @,

ot + Ayu+ By (u,u) + By (w, 2 )—|—Bl( ,) — Bo(b,
:_Bl( Zas a)+BQ( Zas a)+9€2+a2

— A 1 7 A 2
T=u—2z2, b=b-—2)

B) — BQ(E, 2(21) — BQ(ZZ,B)

(3.6)
Oib + Asb + Bs(u, b) + Bs(1, zi) + Bg(zi,g) — By(b,u) — By(b, Zé) — B4(zi7ﬂ)

= _B3(Zc1u Zi) + B4(Z§m Zé) + O‘ng
(3.7)
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00 + Asb + Bs(u,0) = —Bs(2),0) + Uz + 2, 5, (3.8)

where z/, , is the second component of z,.

We now fix w €  and take L2-inner products of (3.6)(3.8) with (%, b,0). Their
addition yields

SO B0 +1(m.5.0)]7
= (B1(w, W), 2) — (Ba(b,0), 22) + (B (24, 70), 2b) — (Ba(22,0), 22)
+ (fea,u) + oc(zé,m + (B3 (u, b), zg) — (By(b,b), zé}
+ (Bs(21,5), 22) — (Ba(22,b), 21) + a(22,b) + (T, e20) + (21, e20)
< @l llalhva 22l zo + 1Bl all@liva 221 o + 112201 @y + 1122113 @l
+ 1611l + alzbl[@l + [@ll s [Bllvall22 o + 1Bl 4 1Bllv, 1241 2o (3.9)
A+ zh e lBlva 221 e + 12212 lBllve 22l s + @l 22118] + [][6] + |=4]16)
o R P 1 1 A o [P [ [
+ 12213 la@lv, + 1011l + 241l + (@22 B ve N2 o

T11/2173/2 7 L -
+ B2 1B, 2al o + N2l callBllva 1220 o + 1221181 + [al16] + |5 6]

1. - .

< SN@ B0 + el (@b, 0)*(1 + [l(za, 22)lI14) + ell(za, 28) |1

where we used integration by parts, Holder’s inequalities, Gagliardo-Nirenberg in-
equalities of e.g. ||ullzs(py S |u|1/2||u||%,<2 (cf. [28, Lemma 6.2], and more generally
[30]), and Young’s inequalities. We also relied on important cancelations such as

After subtracting 1|(@,b,0)||? from both sides of (3.9), we obtain by the Sobolev
embedding of D(Ajl-/4) — L*(D) and (3.3) that for all t € [to, T

T

(@, b,0)(t)]? +/ 1@, b,0)[|%ds < [(@,b,0)(to)]* +1 S 1. (3.10)
to

Proposition 3.1. Under the hypothesis of Theorem a > 0, on [ty,T] such

that (u,b,0)(to) € H, there exists a unique solution (1, b,0) to (3.6)(3.8) such that

(@(to), blto), 0(t0)) = (ulto) — 24(to), b(to) — 25(t0), 0(t0)) and

(@, b,0) € C([to, T; H) N L*(to, T;V) P —a.e. we Q. (3.11)
Moreover, the solution is independent of c.

Proof. With the a priori estimates of , a standard Galerkin approximation
scheme shows the existence of the solution (see [ 28 [38]). We note that due to
the regularity of u and b are obtained from , z}, and b, 22 respectively. This
is the reason why in Definition we require only u € LQ(tO,T;D(AyZL)),b €
L2(to, T; D(AY™*)) instead of L(ty, T; Vi), L2(to, T; Va).
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1 2
We now prove the uniqueness. Suppose there exists (@', b ,0'), (w?,b",6?%) that
are both solutions. Then defining
Aol
sutul —w?, SbEb —b, 6026 —0° (3.12)

we see that from (3.6)—(3.8)),
0:0T + A10U = — By (6w, u") — By (u?, 61) — B1(0T, 2L) — Bi(zL, 6n)

+ By(65,0") + Bay(b”, 6b) + Bs(6b, 22) + Ba(22,6b) + 80es, 3.13)

8:0b + A26b = — B3 (07,5 ) — Bs(2, 0b) — Bs(6, 22) — Bs (2L, 60)
+ By(65, ") + By(b",67) + Ba (b, zL) + By(22, 610), (319
0166 + A380 = —Bs (6w, 0') — Bs(u?, 660) — Bs (2L, 00) + 01, (3.15)

with duy = ul — u3, U% being the second component of @, j = 1,2.
Taking L?-inner products on (3.13)—(3.15) with (97, db, 0) respectively we obtain
similarly to (3.9),

1 _ _
504l (97, 0b, 60)* + 1157, 6b, 66)|
= —/(MV)ﬂl ~6ﬂ+/(5ﬂ-V)dﬂ~z;+/(5B-V)Bl ~5ﬂ—/(55~V)5ﬂ~z§
+/5962~5ﬂ—/(5ﬂ'V)51 ~55+/(5E~V)6B-zi+/(5B-V)ﬂl - 8b
—/(5B-V)55.z; —/(5E~V)9159+/5ﬂ~§962
_ _ — _ 7 71 —
< ||| Za @ [lvy + 110a] pall6Tllva |zl s + 118b] e 1B [lv, [l | 4
— . o . =1 — . —
+ 1160l Lo 16T vy (1221 Lo + 1661|6] + [[6w] L [0 [[v1|8D]| L4 + (16T £a[|8D]lv, [|23 ] o
+ [180]17 [ vy, + 11681 24 [|0Bl|vs |2a Ml o + (|0 2o 16 v, (|68 2o + [l |66)]
1 _ - _
< 5116w, 86, 86)|5; + el (9, 6b, 36)|* (|| (@', B3+ 1I(8, 22) 144 +1)

where we use the crucial cancelations
/(62 -V)8b - 5a+/(52 -V)6a - b = 0,
/(zi -V)db - 5ﬂ+/(zi -V)dou - 6b = 0.
Subtracting 1|(6u, b, 66)||Z from both sides, we obtain
0,|(5, 6b, 60)[* + [|(5, 65, 60) 1
< |52, 8B, 80) (| (@', B, 01) 13 + | (=L, 22) I3 + 1).

Gronwall’s inequality with (3.3) and (3.10) implies uniqueness.
Concerning the Markov property, it suffices to show that for y = (u, b, 9),
E[(y(t; to, y(to))|Fs] = Pees(¥) (y(s; to, y(to)))

for all tg < s < t,y(to) € H, 9 € Cp(H). This result is classical and can be found in
[7, Theorem 9.14].

(3.16)
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We have already shown that the solution (1, b, #) to is unique for all
a > 0. For a fixed a > 0, we let (uq, ba, 9) be the unique solutlon to —(3.8]).
Then by ., Uy = Ug + 2},bo = by + 22 and for a > 0, we have (ua,ba,ﬁ)
L?(0,T;V). Moreover, for j = 1,2, denoting by 27, the solution to at a =0,
we see that they satisfy

0=, = 2) = Az — ') — a2}

so that

(2 — ) (1) = e~ =04 (7 —zﬂ)(to)—/ e~ 029 (s)ds

to

for all a > 0 and it is well-known (cf. [35]) that (24, — 27)(t) € L?(to,T;V;). Thus,
Ug — 2 € L2(tg, T; V1), bo — 2% € L%(to, T; V) and therefore for all @ > 0, we obtain
a unique solution (uq,bs) independent of «; it is also clear that @ is independent
of a. 0

Proposition 3.2. Under the hypothesis of Theorem suppose that for some
v € (0,3) N (0,270), where o € (0, 2], 4, = y(to) € D(AY). Then P-a.e. w € €,

y € C([tO’T];D(Amin{%%ﬂ“m})) N L2([t0 T] (Amm{ 5+, 4+’YO}))

Proof. For both j = 1,2, zJ € C([to, T]; D (A}O—F%)) by (3.3) and hence due to (3.5]),
it suffices to show that

(w.5.0) € C([to, T); D(A™:440))) 1 12([tg, T, D(A™™ 3 +7:44700 ),

We first remark that |A¥ | ~ |A% -|. We take L2-inner products on (3.6)—(3.8) with
(ATu, A3'D, A376) to obtain

6t|(A JAJD, AT + (A2, AT D, A2 TT0) 2
:—/[(a.V)a+(a.V)zg+(z;.vm—(B.V)E—(B.V) 2 _(:22.V)5 - 4.
- [1GL- )k = (2 V) = bea —azl] - AT
- /[(a B+ (@ V)2 + (2L V)= (B V)i — (B V)L — (22 - V)] - ADG
- / (21 V)22 — (22 - V)2l — az2] - 4275
- /[(ﬂ- V)0 + (2L V)0 + 73y + 2L ,] A2,

We bound e.g.

/(u V- APa < A @ vyl AF Tl < AT P A
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by Hoélder’s inequality and Lemma [5.3] We compute similarly on other nonlinear
terms to obtain

76t|(A7 AYD, ATO)2 + (AT, AT D, AT T0) 2
< (AT + AT R AT TR o+ AT A R4 R 22 A

(IAFY Rl 4+ AT T2 2212 4 1A 0] + A7 2 2L))147 ]

(14573 al| A5 T30 + | A5 Fal AT TR 2] 4 A5 R 2L 1A TR B 45D

(

(

-

= N

452 22 4 1432214

VEhsk Ve RVt PRV E A TP VA ER VPVt A
(3.17)

Now zJ € C([to,T];D(A;’ﬁ%)) by (3.3) and v € (0,27o] by hypothesis so that
i+3 <7+ i Thus,

- N

N
N
N
N

—8t|(A LAYD, AL + |[(AZ T, AZ TR, AT 0) P2
< (14 |AY?5] | A7a) + | AY25)| ATD| + |AZ 0] A70])| A Al
+ (1 + |AY %3] AZm| + |AY?5)| ATB])| A2 D)
+ (1 + |Ay %3l AJal + |43/ %6)| AJ6)) A5 T
|<A2*”* AZTB, AZT0)? + (1 + (AT, AZD, AJ0)2)(1 + 1|7, B, 0)]|2)

where we used that v — 5 <1 7 + 3., Gagliardo-Nirenberg and and Young’s inequal-
ities. Hence, by Gronwall’s inequality we obtain

t 1 1 — 1
|(A7T, AZD, AJO) () + [ (A7, A3, A3 T70)Pds
to

|(A’Y A’Yb APYH)( )‘ZEfttO 1+|\(E,E,9)||%ds.

The computation above may be repeated for -y replaced by min{~, i+’70}; there-
fore,
t
AT A0 @B, 0) ()] + [ [(AFTEE0) b, 0) P ds
to

< |Amin{%%+~m}(@7 b, 9)(t0)|2eff0 1+|I(E5»9)H§ds.
Finally, as (@, b,0)(to) = (u — zL,b — 22,0)(tg) due to (3.5)) where (u,b,0)(to) €
) 1
D(A") by hypothesis and zJ, € C([to, T]; D(A;’”Jr“)) by (3.3]), we see that

Amn{3+90} (7 B0)(1)]? < 0.
| b b

Thus, by (3.11)), the proof is complete. |

Proposition 3.3 (Dissipativity). Let y(t,to, (0,0,0(tg)),w) be the solution y =
(u,b,0)(-,w) at time t that has values (u,b,0)(tg) = (0,0,0(ty)) € H. Suppose that



10 K. YAMAZAKI EJDE-2016/79

—1<0(to) <1 a.e. x € D. Then under the hypothesis of Theorem[2.9, there exists
a random variable r(w) P-a.s. finite such that for v € (0,%) N (0, 2]

sup [A7y(0,t0,y(to),w)| < r(w). (3.18)

—00<tp<0
Proof. We take L2-inner products on (3.6), (3.7) with (@,b) to obtain similarly to
(13.9), applying Holder’s, Gagliardo-Nirenberg and Young’s inequalities,
1. - B _
SO @ D) + [ally, + 1167,
1, - €, - _ 3.19
< U, + 18113, + 51@ B2 + el =4, 22) 14 (3.19)
0P (20, 221174 + (28, 22) M1 2a + 1(6, 20, 22)1%)
for € > 0 arbitrary small. We may choose ¢ > 0 sufficiently small so that by
Poincare’s inequality,

- 1 - 3 _
el@ ) + Sl + 1BlIT,) < Izl + [Pl

Thus, subtracting 3 (|[@l|}, + [|b]|3,) from both sides of (3.19), we may obtain for
some constant ¢y > 0,
— — t 1 2 4
(@B (5 t0) Pl <o

! 1 .2\ 4 1 ,2\12y [t —etcoll(z1,22)]14 4 d (320)
SC/ ([[(zas 2a)M[1a + (0, 24, 25)7)els ~T0NEZallLatr s,
to

Now 2/ (t) is an ergodic process with values in (L*(D))?; thus,

to——00

N DY A :
tim |~ [ zdlds = Bl )1
=

while by Sobolev embedding of D(A;M) — L*(D) and Lemma (2), for all s, we
know

lim B2 (s)l|74] = 0
ax—00

so that for ¢y > 0 fixed, we have

€
—e+ o B[|(, )OI < — 5

for a > 0 sufficiently large. Thus,

1 0 €
lim T/ fe+co||(z(ll,zi)||‘i4ds§f§.
to

to——o00 —1p
This implies that for given w € Q for some 7(w) < 0 sufficiently small, we have

0 € €
swp [ et eolleh 2 fads < (<(—t0) = (D00 (320)
to<t(w) Jto

Moreover, by (3.3) and the Sobolev embedding of D(A}O—s_i) — (L*(D))?, there

exists a constant ¢(w) such that

0
| sup /—e—l-coH(zi,zi)||i4ds|Sc(w). (3.22)

T(w)<to<0 Jto
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Thus, by (3.21)) and (3.22)) we have the bound

0 .

S)(t if to < 7(w),

[ el s < O ST
to

w) if 7(w) < to,

We observe that for a fixed 7(w), limg,—, oo €(tg,w) = —o0. Besides, for 7 <
-1,V t € [-1,0], we also have

t
/femn( 2L 22| ads < Elto,w) + c(w).
to

Under our hypothesis, 2J is a stationary process with values in (L*(D))?; thus, for
all t <0,

12t @) llns < e(w)(L+[t), |24t w)] < e(w)(1 + [t]) (3.23)

for some ¢(w) > 0 taken larger than before if necessary. Thus, for all ¢t € [—1,0],tg <

t, from (3.20)),

t
(7, B)(8)[2 < |(@,B)(to) [2e™to) o) 4 / o+ () (1 4 |s])ds < 1 (w)

¢
’ (3.24)

for some 71 (w) because of Proposition
We go back to (3.19)); subtracting (||u||v1 + [[6]I3,) from both sides of (3.19)

leads to
Ol (@, b)* + 1[I, + b1, < 1@, 0)12(1+ (2, 22)174) + [1(za 22) 171 + (01

Integrating over [—1, 0] leads to
0 p—
[, 1BIR, s < rage) (3.25)

for some ra(w) due to (3.23), (3.24) and Proposition Next, taking L2-inner
products of (3.8)) with 6, applying Young’s inequality and integrating over [—1, 0]
give

0 0(—1 2 0 12 2
/1 16113, ds < |(2)|+/1 \9|Q+%+ 20| Fol ds < r3(w) (3.26)

for some r3(w) due to Proposition (13.23) and ((3.24)).

Next, from (3.17)), we compute

78t|(A}ﬂ APB)2 + |(AF 7, A2 D)2

b)
<1(4f 7 AT TR + (14 (4] A R (3:27)

+|(A4+2zl A4+2 2>|4+||9HV3)
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2 1o
Subtracting |(A? a, A3 —Mb)\g from both sides of (36) , using that + + % <o+ %
and Gagliardo-Nirenberg and Gronwall’s inequalities over [—1,¢],t € [—1,0] lead to

sup |(A]@, A3b)(1)]?

te[—1,0]

< 1(A7m, AZ) (~D)Pel N EOIT (3.28)

— T 0 1 1
4 S M@, vy ds / L (AT 728, AT 22 + (|61 ds S ra(w)

for some r4(w) due to (3.25), (3.26) and (3.3)). Finally, we go back to computations
of (3.17) again to similarly obtain

%@\AQGF +1AFT0P

<AFTOP 41+ (A P a, AT TGP+ 1AL

<AFT0P + (1 + ([l | ATa + 116]%, | 4700 + [A; 2240,
Subtracting |A§ +AY9|2 from both sides and applying Gronwall’s inequality give

AF0(0)[? < |AJ0(—1)[2el=1 1015 2

0 2 0 147
el Wt [ (1l Ayl + 14T 2L s,
-1

Thus, by (3.25)), (3.26)), (3.28) and (3.3)), for all t; < 0, we obtain

|A36(0, 0, y(to),w)|* < r5(w) (3.29)
for some r5(w). With (3.28) and (3.29) we now conclude the proof by defining
r(w) 2 ry(w) + 75(w). O

Proof of Theorem[2.3 We now prove the path-wise uniqueness of the generalized
solution y to (2.6). The issue here is that we do not know if (u,b)(:,w) belongs

to L2(t0,T;D(A1/2) X D(A;/z)), in contrast to the deterministic case, because
, 1

22, € C([to, TV; D(A;{D+4)),'yo > 0 in (3.3), although from Proposition a we have
(W, b)(-,w) € L?(ty, T; V1 x Vi) for P-a.e. w € Q. The key observation from [13] is
that along with the same type of classical results in [37], we only need (u,b)(-,w) €
L4(t0,T;D(A}/4) X D(A;M)) to prove the path-wise uniqueness and this follows
from the interpolation inequality of, e.g. in the case of u,
424(t0,T;D(A}/4)) S ||ﬂH%°"([tO7T];H1)||ﬂ||%2(to,T;V1) 5 1
and similarly for b. Therefore, by (3.3) and (3.5)), we obtain (u,b)(-,w) belongs to
L*(to, T; D(AV*) x D(AY*)) P-ace. w € Q.

As in the proof of Proposition we may consider (ul, b, 01), (u?, b, 62) that
both solve (2.6)) so that defining u £ u' —u?,6b 2 b* — b2, 66 £ ' — 62, we obtain

Orou + Aydu+ (Ju - V)ur — (u? - V)du — (6b- V)b! — (b% - V)b = §fe,
D40b + Agdb + (du - V)b! — (u? - V)db — (8b- V)u' — (b* - V)du = 0,
0160 + A380 + (Su - V)0 + (u? - V)60 = dus.

[
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Therefore, taking L?-inner products with (du,db,d0), a computation very similar
to the proof of Proposition [3.1] shows that

%aq((su, 6b,60)|> + || (5u, 6b, 66) ||
< 216, 80, 00)3 + el (B, b, 86) (1 + (' DV, v e, + 101641,
Thus, Gronwall’s inequality implies (du, db, 6) = 0.

Next, we prove the existence of an invariant measure. With r(w) from
we let Oy 2 {w € Q : r(w) < N} so that Qn / Q (N — 00), UyQn =
Q,limy o P(2x) = 1 and hence for all ¢ > 0 fixed, there exists N, > 0 suffi-
ciently large so that 1 — e < P(Qy,). On the other hand, by Proposition

P(Qn,) < P({|y(0,%0,y(to),w)|p(av) < Ne})

where y(0,t,y(to),w) is a solution to at time 0 with value y(to) at time to.
Therefore,
1—e <P({ly(0,%0,y(t0),w)Ip(ar) < Ne})-

By the compact embedding of D(AY) — H for all v > 0 (cf. [29, Theorem 16.1]),
this implies that for all € > 0, there exists a compact set K. C H such that
1—e< P(y(O,to,y(to),w) € KE)

Next, we let v £ L(y(0, —7,y(—7),w)) so that v, = P,y = L(yo(T,w)) =
L(y—-(0,w)),7 > 0 and define

1 T
ur = T/o vrdr (3.30)

so that we know {ur}r>o is tight. By Prokhorov’s theorem [36], it is weakly
convergent. Thus, the existence of an invariant measure now follows from the
Krylov-Bogoliubov theorem [27], specifically [Tl Corollary 11.8]. O

4. PROOF OF THEOREM [2.3} UNIQUENESS

We return to , denote by 27, j = 1, 2, the solution to at o = 0, but for
t > 0 with the additional condition that 2/(0) = 0, and let @ = u — 2,b = b — 22
and hence similarly to — we obtain

i+ Ay = — By (w,w) — By (w, 2') — Bi(4, 1) — By(z%, 2")
+ B(b,b) + Ba(b, 2%) + Ba(2%,0) + Ba(2%, 2%) + fea,
b + Agb = —Bs(w,b) — Bs(q, 2%) — Bs(2',b) — Bs(2', 2%) (4.1)
+ By(b,1) + By(b, 2') + B4(22,7) + By(2?, 21),
010 + A30 = —Bs(w,0) — Bs(2',0) + 72 + 25,

where 2] is the second component of 2!
Proposition 4.1. Forl € Z, 1 > 2, suppose that for both j = 1,2, Uf < il%. Then
for all yo = y(0) € V!, there exists a unique solution y = (u,b,0) to

y(t) + /0 Ay + B(y,y)ds = yo + /0 Ryds + Guw(t) (4.2)

such that y € C([0,T); V') P-a.s., and it is a Markov process, satisfying the Feller
property in V.
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Proof. From our hypothesis that of < il%, we obtain for both j = 1,2,
1/2 4 2
EJ|A/ "2 (#)|7] < o0 (4.3)

(see [12]). Moreover, from the higher regularity of the initial data, taking L?-inner
products of (4.1)) with (A%, ALb, AL6) respectively and using the Banach algebra
property of H® s > 1 in two-dimensional space, we compute

SO AYTD AP0 +1(A)7 W 4,7 T A 0)

= —/A?[Bl(ﬁ,ﬂ)—l—Bl(Ezl)+Bl(zl7ﬂ)+B1(zl,zQ)
~ Bo(5,B) — Ba(b, 2%) — Ba(22,B) — Ba(:%,2%)] - A, " u + /A}/QeezA}/Zu
- /A;Tl [Bs(,5) + By (T, 22) + By(21,B) + Bs(2L, 22)

_ _ 141 _
— B4(b,ﬂ) — B4(b,2’1) — B4(2’2,ﬂ — B4(2’2,Zl)] . A22 b
-1 1
— [ 47 (Ba(@.) + B 004,70+ [ (45 + 4244} %
1 IESY [E5Y
< AT A5,
el + 1@ 2L + 1 22+ B + 1B, 2218, + 1221,
DI + 1@ B + 1 2L+ 1D + 1 )l
1@ OIS, + 11O + 11 21 2,).

+1

SR FEY
Subtracting 1[(A;% @, A, b, A;* 6)|? from both sides, and using the fact that we
know from the basic estimate P-almost surely,

T
sup [(@B0)F + [ 1w.B60)[de 5 1.
t€[0,T 0
inductively we obtain
T
sup II(ﬂ,EG)II@Hr/ 1@, b, 0) |31t S 1. (4.4)
te[0,7T] 0

With such a priori estimates, a standard Galerkin approximation scheme proves
the existence of the unique solution

a,b,0 € C([0,T); V) N L2(0, T; VI+1)
and hence
ue C([0,T]VY), beC((0,T];Vy)
as z; € C([0,T};V}),j = 1,2 by (£.3). O

4.1. Irreducibility. Let B(v,p) be a ball of radius p > 0 centered at v € V!. By
denseness of V2 in V!, we find y, € VI*2 such that ||v — y,||y: < p/2. Thus,

P(r,2, B(v,p) > P(r.2, By, ) (45)

where P(t,z,T) = P({y(t,z) € T'}).
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Proposition 4.2. Forl € Z,l > 2, suppose that for both j = 1,2, af < 11% Then,
given any 7 € (0,T], z = (z1, 72, 23) = (uo,bo, b)) € V', y, € VI*2, there exists

j € C([0,7); V) N C((0,7]; VI+2),
we € Lip([0, 7]; V'),
such that § = (ﬁ,l;, é) is a solution to ([.2)) with wg = (G'w!, G*w?,0), §(0) = =,
?)(T) =Yr-

Proof. Given x € V!, we consider with Glw! = G?w? = 0. Then we know
there exists a unique § € C([0,T]; V') N L%(0, T; VI*1). Since § € L2(0,T;VI*1h),
in particular, there exists 7, € (0,7) arbitrary close to 0 such that §(ry) € V/*L
Restarting from 71, we find

§ € O([r, TRV N L2 (1, T3 VIF2),
Now we take 75 € (71, 7) arbitrary close to 7 so that §(72) € VI*2. We let
[yr — 9(2)] (4.6)
for t € [1a,7]; we observe that §(t)|t=r = y-. We set
£ 2 0 + Ay + B(§,9) — R

90 = () +

— Ty

it follows that
é e Vit 4 C([r2, T];Vl) + C([r2, T];Vl+1) + C([r2, T];Vl+2).

Now integrating & over |7y, ], we see that

d(t) & / &(s)ds € Lip([ra, 71; V1), (4.7)

Next, with w € 2 fixed we prove the following proposition:

Proposition 4.3. For | € Z,l > 2, suppose wg, g € CY([0,T); VIHI=3) v >
% - T E V!, for both j = 1,2, o] < =75 and y,y are the corresponding solutions
to (4.2) with wg,wg respectively. Then

1+1—- &

ly — dlleqo,mvy S llwa — wGHcv([o,T];Vf“*%X\@ )

Proof. By [15, Theorem 5.2], we obtain for j = 1,2,
2(t) = e M GIwd (t) + /Ot Ajem 94 (GIwI (1) — GIw (s))ds.
Thus, with z = (2!, 22), 2 = (2!, 22) where for j = 1,2,
dzj + A dt = GIdi?,  27(0) =0,
so that similarly applying [I5, Theorem 5.2}, for j = 1,2, we obtain
2i(t) = e MG (t) + / t Aje= =94 (GIpI () — GIa (s))ds
and hence it follows that 0

41— £ . (4.8)

Il = Zlleqmvixvy S llwe =dall,, (o 700015 415
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Now by hypothesis we have y and ¢ as the corresponding solutions with we, wa

respectively so that defining

1

— A 7 A <~ A A 2 A7 2
T2u—zY bEb-—22, w2a-3, Lp— 32

ol

and furthermore
Uiu—%, B2b-b ©20-0, 213 22,2 3
we obtain
WU+ AU +By(a+ 2 U+7)+B(U + 7,0+ 2")
~ Bo(b+ 22, B+7%) — Bo(B+ 7,0+ 3%) = ey,
at§+A2§+Bg(a+zl,§+22)+B3(U+21,z+22)
— By(b+ 22U +7') — B4(B + 7%, a0 + 3,
80 + A30 + Bs(W + 21,0) + Bs (U + 24, 60) — (U +71)a,

where (U +7%'); is the second component of U +z'. Taking L2-inner products with
(AU, AL B, AL©) respectively gives

+1 1+1 141

1 _ _ Ll 41
SO(APT A4°B A?0) +|(A7 T, 4,7 B, A" ©)P

by Young’s inequalities and Banach algebra property. Therefore, after subtracting
[ W S S

ﬂ(Af U,A,* B, As” ©)|? from both sides, by Proposition [4.3) and that
U(0) = B(0) = ©(0) = 0, we obtain

(U, B,O)llcqomvy S 1 Z2)lcomvixve)- (4.9)
Thus,

ly = dllcqo vy S 1T, B, O)lleo,mvy + 1Z1,22) o, ry:vi x vy
S GEZ2)leqo v v

I+1- &

< — W e
S lwe =6l o, o vt
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by and . a

We now complete the proof that the Markovian semigroup P; is irreducible in
\%
Pr0p0s1t10n 4 4. Forl € Z,1 > 2, suppose that for both j = 1,2, {a © . satisfies
, ol < i1/2, z,v €V 7€ (0,T], p>0. Then
P(r,2, B(v, p)) > 0.

Proof. We denote by y(-, wg;x) the solution to (4.2) emanating from z as initial
data with wg = Gw = (G'w!, G?>w?,0)T and obtain

y(-, we; z) = 9(, Wa; @)oo,y < collwe — wal| IS g

Ws:p(0,7 XV,

€

for some ¢y > 0 by Proposition if v > % — 7 and the one-dimensional Sobolev
embedding of W*?(0,7) — C7([0,7]) for all v < s — %. Thus,

P({llwg — gl 14§ 171+§) < —})

wer(0,m;v, T2 xv, 2¢0 (4.10)
< P({{ly(, was ) — (5 wa; )| e o,y < 5})-

It is shown in [12] that
p

71+§XV2171+§) < 7} > 0 (411)

P({lloc — el

because the law of G’w is a full measure on W*P?(0, T} Vl HZ X ‘/2171+§). Thus,
applying (4.11]) to ( allows us to conclude that

0 < P({[ly(m,wg; x) — (7, 0q; )|l < g}).

By Proposition we see that 0 < P(7,z,B(y-, 5)). By (4.5), the proof is com-
plete. O

4.2. Strong Feller property. We let H) = span{g{7 .., g} } where we recall that
{gl <, are the complete orthonormal systems of eigenfunctions of A;,7 =1,2,3
and 7 : H; — HJ,m, : H — szl HJ £ H, be the projection operator defined by
mx =3 " (x,g])g. Forafixed R > 0, we define a cutoff function ¥ € C*(R)

that satisfies
o ={y L n
We consider y\ 2 ( SNAS G(R)) for fixed n € N, that solves
dulV + [Arul? + W (||y ][5 m Br(ul?, ul?)
- \I/R(||y(R)HVZ)7Tr1LB2(b1(zR O] dt
=, 0 egdt+7T1G1dw1
db? + [AsbD + W ([l 5 )75 Ba (ul, Y)
= VR([lySP15)ms Ba (0, ul)]dt
= 12G?dw?,
w®+mﬂm+%mwww3&<®e®n = myuy 3t
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(u'(nR)v bglR)’ 0%12))(0) = (W'}L'I:l? Wix% Wbeg) = Tn, (412)
where ugfg is the second component of uis), and its associated Markovian semigroup

Pt(ﬁ). We prove the following proposition:

Proposition 4.5. Under the hypothesis of Theorem[2.3, for allt > 0 and all R > 0,
there exists a constant L = L(R,t) > 0 such that

[P 0@) = B ()] < Liix = vl
foralln €N, z,v € Hy, ¥ € Cy(Hy) such that ||[¢]lc, £ sup,cy, [P(z)] < 1.

Proof. Firstly, P, t 1) is Feller and hence Pt(ﬁ)(C'b(Vl)) C Cy(V!); moreover, by mean

value theorem,

Pia'v(@) = Paw)| < sup - IDPGIW(R) - bl = vl
n, vyl >

n

where DPt(ﬁ)w(k) - h denotes the derivative of the mapping v P( )w( ) at the

point k in the direction h. We rewrite 2)) similarly to as
dy( + [y + \I/Ru\y(mllw)wnB( <R>, yp))dt = ﬂnRy(R)dt + 1 Gw.

Tl

Thus, by Elworthy’s formula (see e.g. [7, pg. 267]), for all h € H,, with an n-
dimensional standard Wiener process [,

= JEW (t0) [ (5667w DY (i) - b dus).
0

By Burkholder-Davis-Gundy inequality (e.g. [23]),

[DP{P ()] - h

PP s@)nl < Sl B[( [ 1mGE m) 4Dy s tias) ] (413

where we used that ¢ € Cy(H,). Due to and we have for a constant
¢ independent of n,
(T, GG )" 20| < c|olyier Yy € Hy. (4.14)
We let
W& o ket B S 2 2 @ o),

i

where 27, j = 1,2 are solutions to (3.1)) with a = 0, ¢ > 0, 27(0) = 0 and also denote
Y0 (t) £ Dy (t;2)) - h

n

D@ h Db h D, 6 S
= Dx27(R) h $2b£LR) h D, G(R) h = N 75 Te
D, a® n D, 0 D, o s 7o

where D £ (Dxl,DxQ,D%) which is a derivative of the mapping = +— ySLR’) (t;x).
Thus, 8,Y,\" = 9, [Dy(R)( x)] - h and it can be checked that

Bym + Avin — mpnzes

= WP (A2, 42D, g [ B ) + By b))

n n

+ Ur([lyS )12 mh [~ Bi(m, ulf) — By (ul ) + Ba(nz, b)) + Ba (b9, 2],
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Om2 + Aamp
= 22U ([lyS P 150)(A 2y B, A2 D,y - By [=Ba(ulf?, b)) + By (b, ul?)]
+ Ur([lyP150)mn = Bs(n1,659) — Bs(ul,n2) + Ba(na, ul?) + Ba (b, m)],
O3 + Asng = —2W([ly [3:)(AY 2y, AY2 Dy - hyw Bs (ulf?), 05)
— Ur(lySP 13075 [Bs (m, 657) + Bs (ul?, ng)] + i 2,
that
Ogna + A1ny — 71'71177662
= 205 (yP 5)(AY 2y, AV2 Doy - Byl [— By (ul?, ul?) + Ba (b9, b))
+ ORIy 150 mh =By (na, ul™) = By (ul® ,ma) + Ba(ns, b57) + Ba (b9, 15)],
Ogns + Aans
= 22U ([lyS 15 )(A 2y A2 Dy - By [~ Ba(ulff?, b)) + By (b, ul?)]
+ Uy 1507 s = Bs (14, bY) — Ba(ul 1) + Ba(ns, ulf?) + Ba (b, ma)],
O + Asne = —2U5([yP15:) (A 2y, AV2 D,y - hywd Bs (ul?), 65)
— UR(lyS15)75 [Bs (na, 05) + B (ull?, n6)] + mima 2,
and that
A7 + Az — mhnges
= 22U ([lyS P 15)(A 2y, A2 Dy - By [= By (uff?, ul?) + By (b, 001)]
+ Ur(y130) mh = Bi(nr, ul) = By (ul?, n7) + Ba(ns, i) + Ba (057, s )],
Oins + Aans
= 205 (ly P 50)(AY 2y, AV2 Doy () - Byl [— By (ul®, b)) + Ba(b{, ul?)]
+ Ur(ly130) 72 [~ Bs(n7, b)) — Bs(ulf®, ) + Ba(ns, ul?) + B0\ m7)],
Oeo + Asny = 20y ([lyP [[5:)(AY 2y, AV2 Dyl - hym B (ul?), 0(9)
= Ul 5:)75 [Bs (7, 657) + Bs (ul?, no)] + iz 2,

where 71 2,14,2,77,2 are the second components of 1y, 14, 77 respectively.
We take L2-inner products with

(Allnh AlQﬁQ? Aén?n Al17747 Al27753 Aénﬁa Al17777 Al2n87 Al3779)
respectively to estimate for example,
1 [E5
04 P + A ]

S Wy 12| A2y || A2y, B | (| AV 2ulD 2 | A6 12) A

1
|

+ Ry 120 (1A m AV 2 ulP] + | AT 0| AL 26D A, 2
+ AT || AV 2|
< e(R)(JAV2Y P 4 | A2y | + | A0 ]) | ALE | + | A 0] | A2y

< SIAT mP + o(R) AV2Y (PP

l\')\»—l
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where we used Holder’s and Young’s inequalities. Subtracting 1 |A 771 |2 from both
sides gives

QA w2 + A, m* < o(R)|AVAY R,
Similar computations on the other eight equations show that in sum
0| AVPY P2 L AT Y2 < o(R)| A2V, B2, (4.15)

Thus,
IV, @)15 < [[Al5e”

and hence integrating (4.15)) gives
[ I s < el e

This implies

t
B[ / 1Y () |31ards] < (R, D[R]

so that
/ 1Dy (s5:2)] - 20 ds] = / 1Y ()[20ads] < (R D|IAI2.  (4.16)
Therefore,
sup  |[DPIDw(k)] - b
kyh€H, |||y <1
< s CleE / |(mn GG )~ Dy (5: 1)) - hf2ds) /2]
k,h€ Hop, [ Bl <
< ol B DU i Al
kyh€Hn, Rl <
C(R,t
< s <%>cm,t>nhnw < G
k,h€Hp, ||kl <1
by (4.13)), (4.14), Holder’s inequality and (4.16)). |

‘We now consider

Au® -+ (A + W30 By (0, ) = Wiy B Ba(b), 6

= 0P eqdt + G'duw',
b + [A2b ™+ Wa(ly ™ |5) Bs (™ 6U) — Wa(ly ™ |5) B0, ul)]dt
= G?dw?,
O + [A30) + W (ly ™2 Bs (u™), 00)]dt = u dt,

(U(R)ub R)79(R))( ) = ((El,l'z,.’[]g) =,

with Pt(R) as its associated Markovian semigroup, pass the limit and obtain the
following proposition:



EJDE-2016/79 MAGNETIC BENARD PROBLEM 21

Proposition 4.6. Under the hypothesis of Theorem[2.3, for allt > 0 and all R > 0,
there exists a constant L = L(R,t) > 0 such that

IPy(z) — P y(v)] < Lz — vl

for all z,v € V!, ¢ € Cy(V') such that ||¢|c, < 1. Moreover, Pt(R)w is Lipschitz
continuous for all ¢ € By(V').

Proof. The a priori estimates in Proposition are available for the Galerkin
approximation system (4.12)); hence, by the well-known compact embedding results
(see [4 28] [38]), and passing to a subsequence if necessary and relabeling it, we
obtain

Yy — B ae t, Pas. (n — o).
We let ¢ € Cy(V?) so that ¢ € Cy(H,,) and because 4 € H,, we obtain
Yy (52) = Yy (e) i LNO,T) (0 — o)

by dominated convergence theorem. Taking expectation, using again that i is
continuous and bounded, due to dominated convergence theorem, we obtain

T
B [ WP 5) = o™ )lat] -0 (n - o)
0

and hence by Fubini’s theorem

T
| Bl 60 = o Pl =0 (= o0).
Taking a subsequence again, and relabeling it we obtain for a.e. t € [0,T],

E[[¢(ys? (52) = ¢y (52))]] =0 (n — o0). (4.17)

By (2.10), we now see that for all z,v € V!, ¢ € Cp(V!) such that ||[¢c, < 1,
there exists L = L(R,t) > 0 such that

[P yp() — P (w)]
< [P Pp(x) — PEDw(@)| + PG w() — PO ()] + PG () =PI (v)|
< B[y (52)) = w8 (52))[] + Ll - vfl

+ Elle(y® (50) — (P (0))]]

— Lz = vllv

by Proposition and (4.17). Since the trajectories of y(R)(t; r) in V! are contin-
uous, this holds for all ¢ € [0, T]. Considering the total variation of V!, this holds
for all ¥ € By(VY). O

The following proposition is now an immediate consequence of the above result.

Proposition 4.7. Under the hypothesis of Theorem[2.3, for all t > 0,
lim [|P(t,z,-) — PB)(t,2,)||var = 0
R—o0

uniformly with respect to x in bounded sets of V.
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Proof of Theorem|2.5 We now complete the proof of the strong Feller property.
By Proposition with z,v in some ball of € V!, for all € > 0 fixed, t > 0, there
exists R > 0 such that R > R, implies

|P(t,2,) = PYO(t, 2, ) |lvar + | P(t, 0,) = PYO(t, 0, ) var < 2€.
Thus, for x,v such that ||z — v||y: < §+ where L is that of Proposition
1Pt 2, ) = P(t, ) v
<P 2,) = P (b2, )y + PO 2,) ~ PO (10, v
+ [Pt 0,) = Pt v, ) lvar
< 2+ Lz — v|jy < 3e

by Proposition Thus, P; : By(V!) — Cy(V!) for all t € (0,T]; i.e. {P;} is strong
Feller. g

5. APPENDIX

Lemma 5.1 ([10]). Let {g/, M }°, be the eigenvectors and their corresponding

0N e

eigenvalues of Aj, j =1,2. Then
(1) for f =32, filh)gl(2), = 1,2, P-a.s.,

f € D(A}) if and only if i(ﬁ(t))%i)% < o0;

=1

(2) in particular, for GIwi(t) =Y 72, afﬂf(t)g{, Jj=1,2, from (2.7), we have
P-a.s.,

G/ (t) € D(A%) if and only if Y (07)*(A)** < oc.
i=1
Lemma 5.2 ([10]). For 2 (t) = ffoo e(mAi=)(t=8) qGIwi (s) in (3.2), where
Gilwi(s) =3, U{ﬁf(s)gg, i=1,2 from (2.7): we have P-a.s.,
) e J\2 )\j)Qk
23 € D(AY) if and only i M
(A5) if yf;%\%ra)

lim BllAY* )Y = 0.

)

Lemma 5.3 (21, Lemma 2.2]). In an n-dimensional bounded domain D, let P be
a continuous projector from (L"(D))™ to the closure of {u € (C§*(D))™ : V-u = 0}
1
in (L"(D))" and A= —PA. Then for 0 <6 < 3 + @
1A= P(u-V)ollLr Sso,0r 1A ullLr [ AP]|2r
ifé6+0+p>2+10>0p>0 p+6>1/2.
For the next result, see [I0, Proposition 6.1] and [38, Chapter III, Section 3.5.2].

Proposition 5.4. Suppose —1 < 0(x,ty) <1 a.e. © € D. Then —1 < 0(z,t) <1
a.e. x € D, for all t > tg, P-almost surely.
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