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I.    INTRODUCTION 
 
 Diamond is an important functional material and has enjoyed a growing number of 

applications for its extreme material properties. For diamond films produced by chemical vapor 

deposition, many properties have been found to be dependent on the crystallographic direction of 

the diamond lattice [1,2], such as roughness, wear resistance [3], optical properties [4]. Under some 

models, thermal conductivity is predicted to vary with lattice direction[5,6]. The preferred orientation 

has been shown to vary strongly with the growth parameters such as methane concentration, 

temperature and pressure [1]. Understanding the orientation distributions of the crystallites is key to 

describing the full properties of the film. 

 The orientation distribution is a probability density function that provides the likelihood 

that a grain in a polycrystalline sample has a given orientation. It cannot be measured directly, and 

is instead calculated using data from x-ray diffraction, electron backscatter diffraction, or 

transmission electron microscopy. A method for calculating a function for the orientation 

distribution was first solved by Bunge in 1967 [7], and can now be quickly obtained using modern 

software. 

 In this work, the orientation distribution function (ODF) is found using x-ray diffraction 

measurements for diamond films under varying methane concentration and thicknesses. The data 

from the x-ray measurements are analyzed using MTEX, a MATLab based toolbox. A review of 

texture analysis in CVD diamond and the modern analytic tools will also be provided.  
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Figure 1: Schematic representation of crystallites randomly oriented 
in a sheet. [7] 

II.   BACKGROUND 

2.1 Texture 

Texture, or preferred orientation, is a description of the alignment of crystal grains in a thin 

film. Their alignment or partial alignment towards a direction can greatly influence bulk material 

properties, and films may be tailored through their growth parameters to enhance or diminish the 

texture [2]. In general, for any polycrystalline film, the orientations of the crystallites evolves 

through a number of stages starting with island growth, coalescence and further thickening [1].  

Following in the description by Bunge [7], let 𝐾𝐾𝐴𝐴 be the fixed sample coordinate system, 

and 𝐾𝐾𝐵𝐵 be the set of crystal coordinates in the material. Below we can see a sketch of crystallites 

with different orientations 𝐾𝐾𝐵𝐵 embedded in the sample. 

 

 

 

 

 

Many studies find a particular crystallographic direction hkl to be preferentially oriented 

with a direction in the sample reference frame 𝐾𝐾𝐴𝐴 . Moreover, in a large majority of studies, this 

direction coincided with the substrate normal [2]. This is the fiber texture, with the crystal planes 

hkl aligned along the fiber axis the sample normal. The crystal 
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orientation 𝐾𝐾𝐵𝐵 is described by three angles that transform it from the frame 𝐾𝐾𝐴𝐴. The Euler angles 

are employed most commonly for the description of texture. 

The directions TD and RD seen in Figure 1 are the Transverse and Rolling Directions. 

These, together with the Normal Direction (ND), form a set of three orthogonal directions. These 

sample directions are used due to the early association of texture analysis in the processing of metals 

such as cold rolling. For polycrystalline films, the RD and TD do not have the same meaning 

because of the lack of directional processing techniques, and the texture along the two directions is 

often the same in the case of a fiber texture. Instead, the RD and TD specify two in-plane directions 

for the sample surface, and the ND is just the sample normal. 

 

2.2 Euler Angles 

The Eulerian angles are a coordinate system for the description of a rigid body in three-

dimensional space in relation to a fixed coordinate system. Other representations such as the matrix, 

Rodrigues vectors, and quaternions have some advantages in the mathematical treatment of the 

orientation distribution [7], however the Euler angles are most commonly used for discussing the 

ODF. 

The three Euler angles are denoted many ways; here they will be given as (𝜙𝜙1,Φ,𝜙𝜙2). The 

series of rotations can be described as: (1) A first rotation 𝜙𝜙1 about the z direction, transforming 

the system 𝑥𝑥𝑥𝑥𝑥𝑥 to the system 𝑥𝑥′𝑦𝑦′𝑧𝑧, (2) A rotation Φ around the 𝑥𝑥′ direction, transforming the 

system 𝑥𝑥′𝑦𝑦′𝑧𝑧 to 𝑥𝑥𝑥𝑥′′𝑍𝑍, (3) A rotation 𝜙𝜙2 around the 𝑍𝑍 direction, transforming the system to 𝑋𝑋𝑋𝑋𝑋𝑋. 

This can be seen in Figure 2a. 

 It’s important to note that the order of the rotations matter. The initial sample frame can 

be considered 𝑥𝑥𝑥𝑥𝑥𝑥, with subsequent frames 𝑥𝑥′𝑦𝑦′𝑧𝑧, 𝑥𝑥′𝑦𝑦′′𝑧𝑧′ and 𝑋𝑋𝑋𝑋𝑋𝑋 as the final crystal frame. The 
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transformation from the sample frame 𝑥𝑥𝑥𝑥𝑥𝑥 to the crystal frame 𝑋𝑋𝑋𝑋𝑋𝑋 is then described by the 

rotation: 

𝑔𝑔 = { 𝜙𝜙1,Φ,𝜙𝜙2}                                                           (1) 
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Figure 2a:  Intrinsic rotations. The rotations occur on each new orientation of the rotating frame. 

Figure 2b : Extrinsic rotations. The rotations occur in reference to the non-rotating frame. 

𝑍𝑍 



5 

The Euler angles are composed of three intrinsic rotations, meaning that they occur on the 

body of the rotating coordinate system, not the fixed sample coordinate system. The difference 

between intrinsic and extrinsic rotations can be seen below in Figure 2. The Euler angles (top) are 

given in terms of the rotations 𝜙𝜙1, Φ and 𝜙𝜙2 in that order, while the extrinsic rotations (bottom) are 

given by arbitrary rotations 𝜃𝜃1,𝜃𝜃2,𝜃𝜃3.  

For the Euler angles, it’s worth noting that one rotation occurs around z, and one occurs 

around Z. In this way, it may help to consider the rotation from the sample frame 𝐾𝐾𝐴𝐴 to a crystal 

frame 𝐾𝐾𝐵𝐵 as “setting” the Z coordinate, and then rotating around Z through the in-plane directions. 

2.3 Orientation Distribution 

The orientation distribution function is a statistical description of the orientations of the 

crystallites. The ODF is a probability density, and it describes the volume fraction of crystallites 

with a given orientation {𝜙𝜙1,Φ,𝜙𝜙2} relative to a perfectly random distribution. If crystallites with 

orientation 𝑔𝑔 and a spread of orientations 𝑑𝑑𝑑𝑑, are contained within the volume element 𝑑𝑑𝑑𝑑, then an 

probability distribution function 𝑓𝑓(𝑔𝑔) that describes the density of crystallites can be defined by 

𝑑𝑑𝑑𝑑
𝑉𝑉

= 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑                                                                (2) 

To every position 𝑔𝑔(𝜙𝜙1,Φ,𝜙𝜙2) there is a volume fraction of crystallites described by 𝑓𝑓(𝑔𝑔) 

[7]. The space spanned by the 3 angles {𝜙𝜙1,Φ,𝜙𝜙2} is the orientation space and is defined between 

0 ≤ 𝜙𝜙1,𝜙𝜙2 ≤ 360° , and 0 ≤ Φ ≤ 180°. One way this density function is visualized is by 

inscribing the ranges of each angle onto the Cartesian coordinates of a cube as seen in Figure 3. 

The regular x, y, and z coordinates now correspond to the three angles, and a heat map, or contour 

lines can describe the density at each location. 
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Figure 3: The Euler Space. A particular hkl may be described a coordinate (𝜙𝜙1,Φ,𝜙𝜙2) [7] 

 

To see inside the volume of the cube, cross sections are taken of the Euler space so that in 

each slice two coordinates are varied, and one coordinate is constant for each given slice. It’s typical 

to allow 𝜙𝜙1 and Φ to vary within the slice, and for 𝜙𝜙2 to remain constant. The 𝜙𝜙2 coordinates then 

varies with 5° degree changes between slices. One such slice can be seen below in Figure 4. It is 

common to display 19 panels in a 5x4 display when showing the ODF, allowing 𝜙𝜙2 to vary between 

0° and 90°, with the last panel providing information about the set. 

The orientation distribution has units of multiples of a random distribution, or MRDs. The 

MRD is a relative measure that describes textures in reference to a sample with perfectly random 

crystallites. A sample that has perfectly random crystallites would have a constant value of 1 

everywhere. A value of 2 at a given orientation would indicate that the density of crystallites 

oriented in that direction is twice as would be expected in the random case. A sample approaching
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a perfect single crystal would have one emerging orientation and some indistinguishable 

orientations based on symmetry. If a single crystal cubic system has its (001) direction aligned with 

the sample normal, and if the (100) is aligned with either the transverse or rolling directions (i.e., 

the sample and crystal frames are aligned), the MRD value diverges to infinity as the angles 

𝜙𝜙1,Φ,𝜙𝜙2 → 0.  

2.3.1 Invariant Measure 

One consideration for the normalization of the MRD units is the invariant measure, and 

how a sample with random crystallites would actually look in in the orientation space.  See Figure 

4 below 

 

Figure 4: A perfectly random sample in orientation space with no corrections. [7]  

 

The reason the distribution looks skewed is because low angles of Φ are points near the 

poles, and high values of Φ are points near the equator. Equal angle elements of the Euler angles 

(𝜙𝜙1,Φ,𝜙𝜙2) produce unequal area elements in real space where the crystallites are measured. If we 

were to imagine our x-ray detector moving in a sphere around the sample, the area on the sphere 

swept out by Φ angles near the equator is much larger than that of the area swept near the poles. 

To correct for this, Bunge gives the invariant measure as: 
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𝐼𝐼(𝜙𝜙1,Φ,𝜙𝜙2) = sinΦ                                                      (3) 

 

This allows for an orientation space where a random distribution is represented by a 

constant density everywhere[7]. If we consider the orientation element 𝑑𝑑𝑑𝑑, it must also be scaled by 

the factor 1
8𝜋𝜋2

 for the integration of the three angles over their respective ranges. We obtain a factor 

1/2𝜋𝜋 for each the integrations of 𝜙𝜙1 and 𝜙𝜙2 over the range of 0 to 2𝜋𝜋, and a factor of 2 from 

integrating sinΦ from 0 to 𝜋𝜋. The orientation element is given by 

𝑑𝑑𝑑𝑑 = 1
8𝜋𝜋2

𝑠𝑠𝑠𝑠𝑠𝑠Φ𝑑𝑑𝜙𝜙1𝑑𝑑Φ𝑑𝑑𝜙𝜙2                                                      (4) 

Combining with (2) we obtain the normalization condition 

𝑑𝑑𝑑𝑑
𝑉𝑉

= 1
8𝜋𝜋2

𝑓𝑓(𝑔𝑔)𝑠𝑠𝑠𝑠𝑠𝑠Φ𝑑𝑑𝜙𝜙1𝑑𝑑Φ𝑑𝑑𝜙𝜙2                                                      (5) 

Following this scaling, a random distribution now produces a constant value of 1 everywhere in the 

orientation space. 

 

Figure 5: A perfectly random sample in orientation space with 𝜁𝜁 = sinΦ. [7] 
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2.4 Pole Figure Measurement 

The pole figure measurement is the fundamental scan in x-ray diffraction for texture 

analysis. It is performed by maintaining a single Bragg condition between the source and detector 

for a set of planes 𝒉𝒉𝒉𝒉𝒉𝒉, and tilting the sample through all orientations in the top hemisphere. Here, 

we will use the angles typical in x-ray analysis for pole figures. The angle 𝛼𝛼 represents the tilt of 

the scattering vector 𝐾𝐾 from the unit normal and is bounded between 0 and 𝜋𝜋
2
. The angle 𝛽𝛽 represents 

the rotation of the vector 𝐾𝐾 around the unit normal and has bounds 0 to 2𝜋𝜋. Scanning with a single 

Bragg condition over all tilts, i.e. the full ranges of 𝛼𝛼 and 𝛽𝛽, provides diffraction intensities which 

can be related to the density of crystallites. 

 

 

Figure 6: Schematic representation of the pole figure measurement. [8]  

 

The intensities, 𝐼𝐼ℎ𝑘𝑘𝑘𝑘(𝛼𝛼,𝛽𝛽) are measured for each tilt of the scattering vector. Please note 

that the labels (𝜒𝜒,𝜙𝜙) and (𝜓𝜓,𝜙𝜙) may be used for (𝛼𝛼,𝛽𝛽) in some texts. Flat circular projections are 

generally used to represent the obtained data, and there exist a few possibilities for projecting the 

function 𝐼𝐼ℎ𝑘𝑘𝑘𝑘(𝛼𝛼,𝛽𝛽) onto a unit circle when scaling the angle 𝛼𝛼 to the radial distance in the graph. It 

is most common to use the stereographic projection for pole figures although the “iso-tilt” and  

Scattering 
Vector 𝐾𝐾 N 
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equal area maps are also used. The Figure 7(a) below relates with Figure 6 from above, and shows 

two ways the scattering vector at a point P may be projected onto a flat plane through the equator. 

The two circular, flat, projections on the equator are the subsequent Figures 7(b,c). Values can 

become tightly packed for high angles of 𝛼𝛼 in the perpendicular projection of Figure 7(b), so other 

projection schemes such as the stereographic projection, tan 𝛼𝛼
2
, are used for better clarity.  

 

 

Figure 7: (a) Scaling of a point P to P’ using perpendicular (sin𝛼𝛼) and stereographic (tan 𝛼𝛼
2
) projections, 

with (b) and (c) as their corresponding nets. [2] 

  

The choice of one net over another depends on preference, but it should be stated what 

choice of projection is selected. Here, the stereographic projection will be used. 

It should be stated that during tilting in the pole figure measurement, different depths of 

the film are interrogated, and thus an average is produced over the measured penetration depth [2].  
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Most textures have been shown to increase with thickness, and may produce challenges if 

information is desired from a particular thickness regime. 

2.4.1 Interpretation of Pole Figure Measurements 

Pole figure measurements on their own can produce very useful qualitative data about the 

nature of polycrystalline growths by seeing how the positions of the intensities align with the 

sample reference frame. Most polycrystalline films exhibit a fiber texture aligning with the unit 

normal of the sample[2], and this can be clearly seen from pole figures without a quantitative 

analysis of the intensities. If we consider a single crystal sample with the (001) direction aligned 

with the ND, we can project the other crystallographic directions in the stereograph.   

 

 

Figure 8: (a) Reference sphere and (b) stereographic projection with miller indices for crystallites with 

(001) aligned with the normal direction.  

 

This provides a useful frame to compare pole figure data with known crystallographic 

directions. A sample with a different orientation facing the normal direction would of course 
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produce a different stereogram. For such a sample with its (001) face aligned in the ND, the (001) 

and (111) pole figures are shown over the full range of 0° ≤ 𝛼𝛼 ≤ 90° in Figure 8*.  

 

 

 

Figure 9: (001) (a) and (111) (b) pole figures on a single crystal sample.[12] 

 

On the (001) pole figure we see diffraction peaks of all the equivalent {001} planes, and 

similarly in the (111) pole figure we observe all the {111} peaks. With the two pole figures, and 

the known crystal stereographs, we could deduce that the sample is approaching a single crystal. 

Pole figures on polycrystalline materials show similarities to the single crystal cases, and 

may lie between entirely random and a perfect crystal. The pole figure on a perfectly random 

sample shows no distinct features at all with perfectly uniform intensity. The pole figure on a 

single crystal shows sharp, predictable diffraction peaks such as Figure 9. The polycrystalline 

case may show some combination of the two, where the crystallites are only aligned in one 

(111) Pole Figure (001) Pole Figure 
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direction. The same (001) and (111) pole figures for a polycrystalline sample with a <001> 

texture is shown in Figure 10.  

A (001) scan would again show a strong center peak aligning with the normal direction at 

𝛼𝛼 = 0°. The (111) scan looks very different however, and shows a ring positioned at 𝛼𝛼 = 54.7°, 

the known angle between the (001) and (111) planes in the cubic system. The angles between 

common Miller indices can be seen in table 1[2]. The four distinct (111) peaks in the single crystal 

case of figure 8* have smeared together into a ring. This can be understood as the crystallites 

having random in-plane orientations, although the (001) direction is still aligned with the ND. 

Similarly, one may also expect a ring to be found in the (001) measurement at 𝛼𝛼 = 90° for the 

four distinct points on the rim (100, 010, 01�0, 1�00) that are also be smeared around the 

stereograph. 

 

 

Figure 10: (111) and (001) Pole figures on a sample with <001> fiber texture.  
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When we collect x-ray data from a pole figure measurement, we are only be able to 

interrogate one 𝒉𝒉𝒉𝒉𝒉𝒉 at a time. For this reason, it is well known that a single pole figure 

measurement cannot provide enough information to specify the orientation distribution. The pole 

figure represents a projection of the orientation space (where the 𝜙𝜙2 coordinate is lost), and we 

cannot distinguish between crystallites rotated in-plane. Because of this, the accuracy of the ODF 

reconstruction is improved for each pole figure that can be measured. 

 

 

Table 1: Angle between common miller indices. [2] 

 

 

2.4.2 Interpretation of Inverse Pole Figures 

One way to visualize the orientation distribution is through the inverse pole figure. The 

inverse pole figure shows the distribution of crystal planes 𝒉𝒉𝒉𝒉𝒉𝒉 for a particular tilt, while the regular 

pole figure shows the distribution of tilts for a particular plane 𝒉𝒉𝒉𝒉𝒉𝒉. When considering an inverse 

pole figure, we must specify the sample direction in which we are observing. The inverse pole 

figure is graphically represented by the same stereographic projection used in regular pole figures.  
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The Figures 10 (a) and (b) below show the full and truncated inverse pole figures in the 

normal direction ND for some material. This graph tells us that in the ND, the {011} set of planes 

is most prevalent in the normal direction. The units are the same as the ODF, in units of MRDs. 

 

 

Figure 11: Full (a) and Truncated (b) inverse pole figures with <011> fiber texture.[12] 

 

It is possible that an inverse pole figure such as that of Figure 11 could belong to either a 

polycrystalline sample with a strong fiber texture in the ND or a single crystal, and may be 

distinguished based on sharpness of the peaks and by additional inverse pole figures. For an ideal 

single crystal, we expect the inverse pole figure to show a single sharp peaks regardless of the 

direction we are looking at, and for their MRD value to diverge to infinity at the peak centers. A 

highly textured polycrystalline material would show peaks only in some directions, with much 

weaker peaks in its preferred directions. A perfectly random sample, by contrast, would never show 

peaks from any direction instead producing a uniform value with no contours for all crystal planes 

and for all directions. Figure 12 below shows inverse pole figures for 95% cold-rolled nickel as an 

example of how a polycrystalline material may appear. The contours are in units of MRDs. 

ND ND 
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Figure 12: ND (a) TD (b) inverse pole figures of 95% cold-rolled nickel.[12] 

 

The distribution of the crystal planes in the various directions, such as ND or TD can vary 

dramatically and depend strongly on the processing conditions. We may be able to infer from the 

Figure 10A that there are practically no (001) planes in either the ND or the TD. 

The inverse pole figure can be considered a complete description of the ODF for a single 

direction (or fiber), and is more frequently used than the Cartesian orientation space due the large 

number of samples with a fiber texture. Due to its relation to the ODF, the inverse pole figure also 

has units of MRDs and can diverge towards 0 or infinity, where a value of 1 corresponds with a 

perfectly random sample. 

In the stereographic projection for the cubic system there are 24 indistinguishable unit 

triangles. The inverse pole figure is truncated to a single triangle in part for convenience and to 

distinguish it visually from the pole figure. This truncated version may not be suitable for crystal 

systems with lower symmetries, but is employed overwhelmingly for cubic systems. 

 

 

2.5 Calculation of the ODF 

 Calculation of the ODF from experimental data was an unsolved problem in the mid 20th 

century and its solution was fundamental in describing the properties of emerging powder and 
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polycrystalline materials. Independent methods were proposed by Bunge [7], Roe [9], and Williams 

[10,11]. There are two main methods for ODF construction from pole figure data: (i) fit the 

coefficients of the spherical harmonic functions to the pole figure data such as the technique used 

by Bunge and Roe, and (ii) discrete methods of calculating the ODF directly via an iterative process 

such as the least squares method by Williams[12].  

 Following from Bunge in the general case, the density of points distributed in orientation 

space can be represented by an orientation distribution function expressed in terms of the 

generalized spherical harmonics: 

 

𝑓𝑓(𝜙𝜙1,Φ,𝜙𝜙2) =  ∑ ∑ ∑ 𝐶𝐶𝑙𝑙𝑚𝑚𝑚𝑚𝑃𝑃𝑙𝑙𝑚𝑚𝑚𝑚(Φ)𝑒𝑒−𝑖𝑖𝑖𝑖𝜙𝜙2𝑒𝑒−𝑖𝑖𝑖𝑖𝜙𝜙1+𝑙𝑙
𝑛𝑛=−𝑙𝑙

+𝑙𝑙
𝑚𝑚=−𝑙𝑙

∞
𝑙𝑙=0                    (6) 

 

where 𝐶𝐶𝑙𝑙𝑚𝑚𝑚𝑚 are coefficients, and 𝑃𝑃𝑙𝑙𝑚𝑚𝑚𝑚(Φ) are the Legendre polynomials. Special forms of the 

function 𝑃𝑃𝑙𝑙𝑚𝑚𝑚𝑚(Φ) may be employed for simplification in high symmetry systems, and Bunge does 

so frequently in the case of fiber textures or other special cases. The orientation distribution is 

completely described if the coefficients are known, so we must find a way to determine the 

coefficients from available pole figure data. It should be noted that an appropriate cut off value for 

𝑙𝑙 must be specified that is sufficiently high enough to avoid truncation error. 

 To relate the pole figure to the orientation distribution, we start by considering that the pole 

figure is simply an integral of the ODF taken over the angle 𝜙𝜙2. For a pole figure on the Bragg 

condition for the hkl set of planes, 𝑃𝑃ℎ𝑘𝑘𝑘𝑘(𝛼𝛼,𝛽𝛽), we can write: 

 

𝑃𝑃ℎ𝑘𝑘𝑘𝑘(𝛼𝛼,𝛽𝛽) = 1
2𝜋𝜋 ∫ 𝑓𝑓(𝜙𝜙1,Φ,𝜙𝜙2)𝑑𝑑𝜙𝜙2

2𝜋𝜋
0                                          (7) 
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This is the fundamental equation for the ODF computation where we transform from the pole figure 

coordinates (𝛼𝛼,𝛽𝛽) to the Euler angles (𝜙𝜙1,Φ,𝜙𝜙2). The method of solving this equation and finding 

the ODF from experimental data is known as the pole figure inversion [12]. 

 In the series expansion method of Bunge and Roe, the pole figures are described in terms 

of a series expansion, whose coefficients can relate to the coefficients of the ODF: 

   

𝑃𝑃ℎ𝑘𝑘𝑘𝑘(𝛼𝛼,𝛽𝛽) = ∑ ∑ 𝐹𝐹𝑙𝑙𝑛𝑛(ℎ𝑘𝑘𝑘𝑘)𝑙𝑙
𝑚𝑚=−𝑙𝑙 𝐾𝐾𝑙𝑙𝑛𝑛(𝛼𝛼,𝛽𝛽)∞

𝑙𝑙=0                                    (8) 

 

where 𝐹𝐹𝑙𝑙𝑛𝑛(ℎ𝑘𝑘𝑘𝑘)  are the coeffecients of the series expansion and 𝐾𝐾𝑙𝑙𝑛𝑛(𝛼𝛼,𝛽𝛽) is the spherical 

harmonic functions.  

 The coefficients of the pole figure expansion, 𝐹𝐹𝑙𝑙𝑛𝑛(ℎ𝑘𝑘𝑘𝑘), and the coefficients of the ODF 

expansion 𝐶𝐶𝑙𝑙𝑚𝑚𝑚𝑚 can be related by the relationship: 

 

𝐹𝐹𝑙𝑙𝑛𝑛(ℎ𝑘𝑘𝑘𝑘) = 4𝜋𝜋
2𝑙𝑙+1

∑ 𝐶𝐶𝑙𝑙𝑚𝑚𝑚𝑚𝐾𝐾𝑙𝑙∗𝑚𝑚(ℎ𝑘𝑘𝑘𝑘)𝑙𝑙
𝑚𝑚=−𝑙𝑙                                         (9) 

 

where 𝐾𝐾𝑙𝑙∗𝑚𝑚(ℎ𝑘𝑘𝑘𝑘) is the complex conjugate of 𝐾𝐾𝑙𝑙𝑚𝑚. This forms the system of equations that can be 

used to solve the coefficients 𝐶𝐶𝑙𝑙𝑚𝑚𝑚𝑚 [13], and ultimately the ODF.  

 An index 𝐽𝐽 may be defined that describes the sharpness of the texture, where a value of 1 

corresponds to a perectly random sample, and a value diverging to infinity corresponds to a prefect 

single crystal. The texture index J may be defined as: 

 

𝐽𝐽 = ∑ 1
2𝑙𝑙+1

(𝐶𝐶𝑙𝑙𝑚𝑚𝑚𝑚)2𝑙𝑙,𝑚𝑚,𝑛𝑛                                                      (10) 

  

 The texture index is a single parameter that describes the sharpness of the texture, and has 

historically been used to provide a basis of comparison between textured materials. It provides a 
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quantitative measure of the preferred orientation without additional considerations for the details 

of the distribution, i.e., if the sample is <001> textured or <111> textured. The texture index only 

cares about the magnitude of the preferred orientation as compared to the entirely random case. 

The larger the coefficients 𝐶𝐶𝑙𝑙𝑚𝑚𝑚𝑚, the greater the index. 

 

2.6 Considerations for an X-ray Diffraction Intensities 

The effects that determine the measured intensities in an x-ray diffraction experiment for 

polycrystalline films are dependent on the measurement geometry and the crystal structure. The 

principal elements are the effects of a non-coplanar geometry for values 𝛼𝛼 ≠ 0 on the x-ray beam, 

and the properties of the crystal such as structure factor and symmetry group. After accounting for 

the other effects, we can make a statement as to the effect of the texture on the observed intensities. 

A quantitative analysis of x-ray intensities starts by considering the integral intensity of a 

diffraction peak in the 𝜃𝜃/2𝜃𝜃 configuration. The integral intensity 𝐼𝐼𝒉𝒉𝑚𝑚 with the reflection 𝒉𝒉 = ℎ𝑘𝑘𝑘𝑘, 

can be written as: 

 

𝐼𝐼ℎ𝑚𝑚 = 𝑆𝑆𝑆𝑆𝐹𝐹𝑚𝑚𝑇𝑇𝒉𝒉|𝐹𝐹𝒉𝒉|2𝑚𝑚𝒉𝒉𝐿𝐿𝐿𝐿 𝐴𝐴𝛼𝛼                                                (10) 

Where 𝑆𝑆𝑆𝑆𝐹𝐹𝑚𝑚 is a generic instrumental scaling factor, 𝑇𝑇𝒉𝒉 is the scaling factor due to texture, 

𝐹𝐹𝒉𝒉 is the structure factor, 𝑚𝑚𝒉𝒉 is the multiplicity of a plane 𝒉𝒉, 𝐿𝐿𝐿𝐿 is known as the Lorentz-

polarization factor, and is the product of the Lorentz, geometry, and polarization factors. Lastly, 

𝐴𝐴𝛼𝛼 is the absorption factor for the pole figure configuration[2]. Lastly, we must also consider the 

background and defocusing corrections in the case for pole figure measurements. These factors will 

be addressed to give a thorough overview, however the factors comprising the Lorentz-polarization 

factor are typically not included in pole figure measurements. This is due to the fact that these 

factors scale all points within a pole figure for a given Bragg reflection by the same amount. For 
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the quantitative study of x-ray intensities, typically only an absorption factor and a defocusing 

factor (not listed in the equation above) are factored into the analysis. Also, a background 

subtraction is included. 

2.6.1 Multiplicity 

For polycrystalline samples, the intensities are scaled by their multiplicity due to crystal 

systems having multiple indistinguishable planes. Consider for example that the {111} set of planes 

has 8 indistinguishable planes (111, 1�11,11�1,111� , 1�1�1, 1�11� , 11�1� , 1�1�1�), while the {100} set of 

planes has only 6 (100,010,001,1�00,01�0,001�) . This causes a reflection to be overrepresented by 

the multiplicity of indistinguishable planes, and intensities must be scaled by their multiplicity 

when comparing reflections. 

2.6.2 Lorentz-polarization Factor 

 The Lorentz-polarization factor is a product of Lorentz, geometry and polarization factors. 

By convention the term 𝐿𝐿𝐿𝐿 is used for the combination of these terms. 

The geometry factor represents two effects on the spreading the Bragg peak over a circular 

segment of the focusing circle. In the 𝜃𝜃/2𝜃𝜃 configuration, the intensities are spread over the Debeye 

rings and causes a dilution of the intensities by a factor 1/ sin 2𝜃𝜃. Secondly, the diffractomer 

measures an area region over a cone of scattered photons and intensity will scale with their density, 

cos𝜃𝜃. The geometry factor G in the 𝜃𝜃/2𝜃𝜃 configuration is the product of these terms and can be 

given as 𝐺𝐺 = 1/2 sin𝜃𝜃 [13] . 

  In the pole figure configuration, the geometry factor is given as [2]: 

𝑘𝑘(𝜔𝜔, 𝛿𝛿) = 1
sin (𝜔𝜔+𝛿𝛿)

+ 1
sin[2𝜃𝜃0−(𝜔𝜔+𝛿𝛿)]

                                    (11) 

where 𝜔𝜔 is the sample tilt, and 𝛿𝛿 is the divergence of the beam path. 
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 The polarization factor 𝐶𝐶̅2 arises due to the fact that x-ray emissions from an x-ray tube 

have random polarizations. The interactions of these photons can be shown to be shown to scale 

the intensities by the factor: 

𝐶𝐶̅2 = 1 + cos2 2𝜃𝜃
2

                                                         (12) 

 Lastly, the Lorentz factor is a measure of the time of reflection permitted to each 

reflection[14]. The term L is commonly given the value: 

𝐿𝐿 = 1/ sin 2𝜃𝜃                                                              (13) 

2.6.3 Absorption Factor 

One effect of a non-coplanar geometry on the intensities arises from the change in path 

length through the sample surface. As the sample is tilted through angles 𝛼𝛼, the total path length in 

the sample is changed. The total path length 2𝑙𝑙 can be shown to be equal to 2𝑧𝑧/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 where 𝑧𝑧 

is the depth coordinate[2]. Integrating the intensities from thickness of the film 𝑡𝑡, we can yield: 

𝐴𝐴𝛼𝛼 = �1 − exp �− 2𝜇𝜇𝜇𝜇
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠cosα

��                                                  (14) 

As an appropriate absorption factor. 

2.6.4 Defocusing Factor 

A second major consequence of the non-coplanar geometry is the broadening of the x-ray 

footprint on the sample surface as seen in Figure 13. This is considered the defocusing effect, and 

can become quite severe for large angles of 𝛼𝛼. 
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Figure 13: Change in shape and orientation of irradiated footprint on sample surface for tilts 𝛼𝛼 

and Bragg angle 2𝜃𝜃.[14] 

 

 

The defocusing effect reveals itself in the diffractogram as a broadening of the peaks 

because the cone of diffracted intensities broadens. To obtain a correct interpretation of the effect, 

a randomly oriented powder sample must be used as a reference. If an appropriate sample is not 

available, the pole figure measurement can be limited to lower values of 𝛼𝛼 from the full range. In 

parallel beam configuration, values of 85° – 89° may be achieved, while Bragg-Brentano 

configurations may need to be limited to as low as 𝛼𝛼 = 70° [2]. The defocusing effect must also be 

obtained for each plane 𝒉𝒉𝒉𝒉𝒉𝒉 that pole figure measurements are to be taken. While the effect is 

purely geometric and can be calculated, in practice it has been obtained experimentally as seen in 

Figure 14. The pole figure data for the sample is then corrected for the defocusing effect by dividing 

by the fractional intensity 𝐼𝐼
𝐼𝐼0

 for each point in 𝛼𝛼. 
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Figure 14: Intensity correction for x-ray pole figure measurements on quartz in the 

Bragg Brentano configuration. [14] 

 

 

2.6.5 Background Subtraction 

The background intensities during pole figures must also be accounted for and removed. 

The background correction can be performed by scanning from 𝛼𝛼 = 0° to 90° with a 3° variation  

𝜃𝜃/2𝜃𝜃 angle. This is typically performed by measuring over the 𝜒𝜒 axis in the diffractometer. The 

measurement can be taken at a high value, 2𝜃𝜃 + 3°, and a low value, 2𝜃𝜃 − 3°. For each value 𝜒𝜒, 

an average of the high and low measurements values are averaged and subtracted from the nominal 

2𝜃𝜃 values. A full pole figure to measure the background is generally unnecessary, and would only 

be required if the sample does not have symmetry through 𝛽𝛽. Figure 15 shows the general process, 

where an average of the high and low background measurements, 𝐵𝐵ℎ and 𝐵𝐵𝑙𝑙, are taken. 

 

𝛼𝛼 

𝐼𝐼 / 𝐼𝐼0 
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 Figure 15: Linear background correction for a pole figure.[2] 

 

 

2.6.6 Substrate Peak Removal 

In pole figure measurements, a particular Bragg condition is selected and the diffractometer 

cannot distinguish diffracted intensities from different materials. This may be problematic if the 

materials have neighboring peaks in the 𝜃𝜃/2𝜃𝜃 coordinate, as they will certainly interfere with each 

other. The subtraction of the non-representative intensities may take on different methods 

depending on the materials in question (single crystal, polycrystalline, multilayers). Substrate peak 

removal is considered here due to its applications for CVD diamond on silicon. 

Figure 16 shows an image of raw pole figure data taken from the 1.5% sample. You can 

see in both scans a few distinct points that dominate the intensity of the graphs. These are 

underlying silicon peaks. In the (220) pole figure for example, the 8 fold symmetry seen is from 

the {331} planes of silicon. Data points in the top graph can be higher than 1000 counts, however 

anything above this threshold is color-coded the same. 

 

 



25 
 

 

                    

 

Figure 16: Pole figure measurements before (top) and after (bottom) outlier of Group I 1.5% methane 

sample. 

 

Although the silicon peaks are quite sharp, their intensities are very large compared to the 

polycrystalline diamond and can affect data points in the proximity. The diamond peaks, depending 

on the film, have an intensity on the order of 500 to 5000 counts depending on thickness and growth 
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conditions. The silicon peaks can exhibit intensities on the order of 100,000 and can exhibit a few 

hundred to a few thousand counts for values between 3 and 6 degrees of the silicon peak. 

The subject of substrate peak removal is not discussed in literature for pole figures 

specifically, so general outlier removal is proposed here. Substrate peaks were removed by the 

combination of two outlier removals. First a standard deviation, 𝜎𝜎𝛼𝛼𝑖𝑖, is calculated for all data points 

with equal 𝛼𝛼, and data points 3 standard deviations above the median, 𝑀𝑀𝑑𝑑𝛼𝛼𝑖𝑖, value are subtracted. 

The subscript alpha is intended to show that the group has equal 𝛼𝛼 values, and the subscript 𝑖𝑖 is 

intended to indicate which alpha value. A second outlier removal proceeds by recalculating these 

standard deviations and median values. Rings comprised of varying 𝛽𝛽 points with a shared value 𝛼𝛼 

far from silicon peaks were found to have a normal distribution, where the mean values of the 

distributions were nearly identical to the median. The ratio of the standard deviations to the median 

values, 𝜎𝜎𝛼𝛼𝑖𝑖 / 𝑀𝑀𝑑𝑑𝛼𝛼𝑖𝑖  were calculated for all intensity rings. This ratio was similar for all points far 

from the silicon peaks and corresponds to the signal to noise ratio. The median value of all these 

ratios, 𝜎𝜎𝛼𝛼1 / 𝑀𝑀𝑑𝑑𝛼𝛼1, 𝜎𝜎𝛼𝛼2 / 𝑀𝑀𝑑𝑑𝛼𝛼2 … , was taken. Data points were removed if they fell above a value 

equal to the median for each ring, 𝑀𝑀𝑑𝑑𝛼𝛼𝑖𝑖, plus the median 𝑀𝑀𝑑𝑑𝛼𝛼𝑖𝑖 times the median of the ratios times 

1.6. The value of 1.6 is chosen due to its correspondence with a confidence interval of 90%, and 

was found to generally produce a reasonable threshold across the data sets. 

 To provide clarity, an overview of the data processing is given below in Figure 17. First, 

data points affected by underlying silicon peaks are removed. The data points then undergo a 

background subtraction, and finally they are scaled according the absorption factor in the pole 

figure configuration. 
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Figure 17: Flow chart for corrections to measured intensities. 

 

 

 

2.7 Texture in CVD Diamond 

Texture formation in CVD Diamond can be understood through the van der Drift 

evolutionary selection model [15,16] as seen in Figure 18.  The crystallographic direction with the 

highest growth rate in the substrate normal direction will be favorable, leading to a strong fiber 

texture in the sample normal direction. The grains that grow the fastest vertically overtake smaller 

grains, and dominate the orientation of the film. [16] 
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Figure 18: van der Drift growth model showing crystallite formation over time.[18]. 

 

Growth rates along the various growth directions is a kinetics driven process, and depends 

on the surface energy, multiplicity of the growth plane, and on the deposition parameters[18]. The 

addition of new carbon atoms to a crystallite is in part governed by the number of available 

nucleation sites and the availability of the various methane radicals.  

The growth mechanism on the {111} and {100} surfaces has been investigated 

considerably in the literature. In the texture analysis carried out by Liu et. at (2009) [15] using a DC 

arc jet technique, they analyzed their work in the context that deposition along {111} planes occurs 

via an interaction of radicals with at least one free bond (𝐶𝐶𝐻𝐻3, 𝐶𝐶𝐻𝐻2, 𝐶𝐶𝐶𝐶, 𝐶𝐶) and one radical with at 

least three (𝐶𝐶𝐻𝐻1 or 𝐶𝐶). Further, that growth along the {100} direction proceeds with two 𝐶𝐶𝐻𝐻2 bonds. 

This follows from the models by Goodwin and Butler [19] on CVD diamond growth and the {111} 

growth mechanism suggested by Tsuda et al. [20].  

The occurrence of twins and microtwins during growth has also been shown to affect the 

texture of the film through destabilization of growth [15,16], and was the subject of the growth model 

suggested by Meakin[21] for the rapid formation of <110> textures seen in many films. For the 
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diamond structure, twinning planes can occur along the directions <111> and <110> with the first 

being more common[15]. These twinning events reorient the crystal frame, and a summary of the 

transformations can be seen in Table 2. There are more rotations that lead <111> and <110> into 

an equivalent direction than there are for the <100> directions, which may cause deterioration of 

the <100> faces in hot-filament growth [22]. 

 

 

Table 2: Possible transformations by primary and secondary twinning in diamond [15]. 

 

For CVD diamond grown by hot filament, films showing a variety of textures including 

<111>, <001> and <110> have been reported[22], although the exact deposition parameters are 

generally guarded. They reported that <111> and “cauliflower” <110> textured films suffer from 

a high densities of twinning, where <100> films are much more stable to defects. 

Increased substrate temperature has been linked with enhancement of the <001> texture 

fiber and has been reported for hot filament[23] and DC arc methods[15]. The methane decomposition 

and diamond deposition rates increase with rising substrate temperatures [24,25], and it is expected 

that the generally elevated consumption rate of 𝐶𝐶𝐻𝐻2 limits the availability of 𝐶𝐶𝐶𝐶 for {111} 

growth[26]. Additionally, the increased substrate temperature is expected to cause hydrogen on the 

growth front to be more easily extracted by the hydrogen in the gas phase leading to more 

nucleation sites and a reduction of stacking faults and twins [27,28]. 

Elevated methane concentrations and film thickness have been associated with the <110> 

texture. Liu et. at [15] propose that increased methane concentrations lead to increased consumption 
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of 𝐶𝐶𝐻𝐻2 radicals, again limiting the availability of 𝐶𝐶𝐶𝐶 radicals. Increased thicknesses are predicted 

to favor the fastest growing direction according to the van der Drift model, which tends to be <110>. 

 

2.8 MTEX 

Two general classifications are used for the estimation of an ODF: direct and indirect. [33] 

There is some inconsistency regarding the terminology of methods, but for our purposes, we will 

adopt this language. Direct methods use a series of measurements of complete orientation 

information such as electron backscatter diffraction. Indirect methods make up the majority of 

methods for ODF calculation and rely on pole figure measurements as an input. These methods 

compare the ODF through the pole figure inversion equation, and attempt to minimize the error 

between the two [33]. The values of the initially estimated ODF are then continuously improved to 

fit the associated measured pole figure values [12].  

 Important indirect methods include, but are not limited to the WIMV method [29,30], the 

vector method [31,32], and the component method [33]. These methods and their implementation in 

software code only consider the orientation distribution function at discrete locations in the 

orientation space, which can limit the step size of the measurement or may force binning of the 

measurement intensities to fit a regular grid [30,34]. This is because these methods do not consider a 

continuous function, but rather they take a truncated version of the series expansion. As such, these 

methods are sometimes referred to as discrete methods. Furthermore, its been shown that these 

methods do not computationally apply to sharp textures [36]. 

The MTEX algorithm, a freely available MatLabTM based toolbox, is a recently developed 

indirect method that provides a way to represent, analyze and interpret crystallographic textures 

from x-ray pole figures and electron backscatter diffraction measurements. The MTEX algorithm 

employs a unique algorithm for the calculation of the ODF and offers some key advantages over 

the other methods. 
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 First, MTEX allows for arbitrarily step sizes in measured diffraction intensities, which is 

key to enabling area detectors for the use of quantitative texture analysis. Secondly, the algorithm 

has been shown to better approximate sharp textures than other methods [36], and can keep the 

harmonic degree relatively large (up to about 500) reducing errors associated with truncation.  

The unique algorithm that MTEX employs is based on the recognition of the relationship 

between a known integral operator, the Radon transformation, and the general axis distribution 

function. Let 𝐾𝐾𝑠𝑠 = {𝑥𝑥,𝑦𝑦, 𝑧𝑧} be a right handed coordinate system for the sample, and let 𝐾𝐾𝐶𝐶 =

{𝑎𝑎, 𝑏𝑏, 𝑐𝑐} be a right-handed coordinate system for the crystal. A rotation g is the orientation of the 

crystal if it rotates the sample coordinate system to the crystal coordinate system by 𝒈𝒈𝑥𝑥 = 𝒂𝒂,𝒈𝒈𝑦𝑦 =

𝒃𝒃,𝒈𝒈𝑧𝑧 = 𝒄𝒄. Additionally, let 𝒓𝒓 = (𝒖𝒖,𝒗𝒗,𝒘𝒘)𝑇𝑇 be a coordinate vector with respect to the sample 

coordinate system, and let 𝒉𝒉 = (𝒉𝒉,𝒌𝒌, 𝒍𝒍)𝑇𝑇 be a corresponding coordinate vector with respect to the 

crystal coordinate system that has the same direction. 

The axis distribution function (Bunge, 1982) or the pole density function (PDF) (Matthies 

et al., 1987), is the pole figure function of equation (7) over a general range.  It can be considered 

by integrating the function 𝑓𝑓(𝑔𝑔) over all orientations where the crystal directions 𝒉𝒉 are parallel to 

the sample direction 𝒓𝒓. 

 

𝑃𝑃(𝒉𝒉, 𝒓𝒓) = 1
2𝜋𝜋 ∫ 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑑𝑑ℎ ||𝑟𝑟                                                   (15) 

 

On an important side note, Bunge addresses that the function 𝑃𝑃(𝒉𝒉, 𝒓𝒓) cannot distinguish 

between +𝒉𝒉 and −𝒉𝒉, a fundamental issue when trying to solve for the ODF that causes the function 

𝑓𝑓(𝑔𝑔) to only contain even exponents in the series expansion. This is known as the ghost error, and 

different methods for obtaining corrected ODFs include the zero-range method [37,38], the quadratic 

method [39], the positivity method [40], the “maximum entropy method” and the method proposed by 

Lücke et. al [41,42]. 
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It’s shown that the inversion of the pole figure to the ODF can be recognized as the Radon 

transformation ℛ, a historically known integral transform, as it acts on a function 𝑓𝑓(ℎ, 𝑟𝑟).  It can 

be written 

ℛ𝑓𝑓(ℎ, 𝑟𝑟) = 1
2𝜋𝜋 ∫ 𝑓𝑓(𝑔𝑔)𝑑𝑑𝑔𝑔ℎ ||𝑟𝑟                                                (16) 

 

The transformation ℛ is an integral transform which takes a function 𝑓𝑓 defined on a plane 

to a function ℛ𝑓𝑓 defined on the space of lines in the plane, whose value at a particular line is equal 

to the line integral of the function 𝑓𝑓 over the line. The relationship between an ODF 𝑓𝑓 and its Radon 

transform ℛ𝑓𝑓 is one to one, whereas the relationship between the pole density function 𝑃𝑃 and the 

ODF is not, which offers some advantages in its computation.  

A model is assumed that the true ODF can be expanded into a linear combination of radially 

symmetric basis functions, a well known technique in approximation theory on the sphere and other 

manifolds [36]. A family of these functions are formed by the de la Vallée kernel, and offer 

computational advantages when working with the Radon transformation.  

To summarize the MTEX algorithm, MTEX fundamentally operates by proposing an ODF 

that is comprised of up to 100,000 simple bell shaped distributions. These distributions are formed 

by the de la Vallée kernals, a set of distribution functions that are themselves formed by a set of 

Fourier coefficients. The diffraction intensities are modeled into a pole density function (PDF) with 

appropriate crystal symmetries by assuming the intensities have a Poison distribution, and that the 

intensities correspond to the mean value of the Poison distribution. The Radon transformation of 

the proposed ODF is then compared to the PDF using a weighted least squares estimator. This least 

squares estimator is weighted in the sense that deviations from small diffraction intensities are more 

severely penalized than deviations from large diffraction intensities, or more precisely that the 

least-squares functionals are weighted with the inverse expected variance of the measurement error 

[36]. The least squares estimator is itself a minimization problem, which is solved using a modified 
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steepest decent algorithm (Kim, 2002, Bardsley & Nagy, 2005). A flow of the MTEX process is 

shown in Figure 19, although this does not necessarily indicate the order of operations in the 

software code. 

                           

 

Figure 19: Basic flow chart for MTEX algorithm. [18]. 

 

For a full explanation of the MTEX approach, readers are referred to [35,36] Estimates for 

the accuracy of texture measurements have not been widely used, although some attempts to 

explore uncertainties in the pole figures have been undertaken [33]. A variety of sources of 

uncertainty have been investigated for an estimated ODF including errors in the pole figure 
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measurement [43,44], truncation error in the series expansion method [36], limitations in the number 

of available pole figures[7], and differences between ODF solving techniques and their software [45].  
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III.    EXPERIMENT 

 

Diamond films were grown using the Hot Filament CVD method using methane, hydrogen, 

oxygen and argon gasses. Samples were prepared using a (100) oriented silicon wafers and a novel 

photoresist diamond seeding method that produces nucleation density of approximately 1010𝑐𝑐𝑚𝑚−2. 

Group I samples were grown at 1.50%, 2.25%, 3.0%, 3.75% and 4.5% 𝐶𝐶𝐻𝐻4/𝐻𝐻2 ratios for 8 hours. 

Group II samples were grown to a target thickness of 1.2 𝜇𝜇m, with 𝐶𝐶𝐻𝐻4/𝐻𝐻2 ratios of 1.5%, 3%, 

and 4.5%. The gas flow rates were 2 lpm 𝐻𝐻2, 3 sccm 𝑂𝑂2, with varying methane concentrations. The 

1.5% 𝐶𝐶𝐻𝐻4/𝐻𝐻2 from Group II incidentally had an 8-hour growth, and is also the 1.50% sample in 

Group I. All samples were grown using a pressure of approximately 20.8 torr, and a 6mm sample 

to wire distance with a substrate temperature of 670°F as measured by an IR pyrometer.  

Pole figures for the texture analysis of the films was measured by a Rigaku SmartLab X-

ray Diffractometer, using a 2mm x 2mm spot size, a parallel beam configuration, no Soller slit or 

collimator, and an open detector. The spot size was chosen as a compromise between intensity and 

selection area, considering that measurements were taken 15mm apart. PB was selected to improve 

defocusing errors. An open detector configuration was selected as it is well known that pole figures 

should be scanned with an open detector. Data was collected at 3° intervals in both 𝛼𝛼 and 𝛽𝛽, with 

an integration time of 1 second. The scanning range was limited to 𝛼𝛼 = 70°, due to the lack of an 

appropriate powder sample for a defocusing correction. Measurements were taken at diamond’s 

(111), (220) and (311) diffraction peaks at 43.93°, 78.93° and 93.83° degrees respectfully, 

although the (311) pole figures were excluded from analysis due to the propagation of underlying 

silicon peaks. A variation in grain size had been found for these samples corresponding with the 

radial distance from the center of the wafer, so additional pole figures were taken at 10mm intervals 

from the center starting at 15mm to investigate the effect of grain size on the texture. The samples 
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were only aligned once at the 15mm positions. In hindsight this may cause issues for proceeding 

measurements as diamond films can exhibit high stresses and may bow the substrate wafer.  

Estimation of the ODF was performed using the MTEX toolbox. The inverse pole figures 

and the texture index were found using MTEX. Intensities were first corrected for outliers, then a 

linear background subtraction was performed. Intensities were then scaled according to the 

absorption factor in the pole figure configuration. A defocusing factor is not applied. 

The grain size was measured using the Heyn Linear Intercept method [46] from SEM 

images, using lines that produced at least 50 intersections. SEM images were measured on a Helios 

Nanolab 400 FIE SEM at 10kV and .34 nA Film thickness was measured using a Bruker DektakXT 

profilometer. 
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IV.   RESULTS 

 

Orientation Distribution 

Group I 

The strength of the texture, as indicated by the texture index 𝐽𝐽, was found to be most 

dependent on increased thickness, though only the 4.50% methane sample showed a noticeable 

increase. The Group II samples, with relatively low thicknesses, showed a texture index associated 

with a nearly random distribution. The results of the texture index, thickness and grain size for the 

Group I samples is summarized below in tables 3. The inverse pole figures of Figure 18 show a 

growing trend towards a <220> fiber texture with increased methane concentrations, shifting from 

a <111> texture in the 1.5% sample, to a clear <220> texture in the 2.25% sample and above. The 

increased texture index with increasing thickness is predicted according to the Van der Drift growth 

model 

 

 

 

Table 3: Summary of the texture index 𝐽𝐽, thickness, and grain size by sample and measured 

position for Group I.   
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(e)  

             

 

Figure 20: Inverse pole figures of at (a) 1.5%, (b) 2.25% (c) 3.0% (d) 3.75% and (e) 4.50% 

𝐶𝐶𝐻𝐻4/𝐻𝐻2 samples of Group I  (8 hours) at 25mm. 

 

Group II 

 The texture index, thickness, and grain size of the Group II samples are summarized 

below in table 4. The inverse pole figures for these samples are also reported.  

 

 

Table 4: Summary of the texture index 𝐽𝐽, thickness, and grain size by sample and measured 

position for Group II.   
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Figure 21: Inverse pole figures of at (a) 1.5%, (b) 3.00% (c) 4.50% 𝐶𝐶𝐻𝐻4/𝐻𝐻2 samples of Group II  

(1.2 um target thickness) at 25mm. 
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The <220> texture for higher methane concentrations may be explained in literature by 

the elevated growth rate, and by relation, elevated consumption rate of 𝐶𝐶𝐻𝐻2. The elevated 

consumption of 𝐶𝐶𝐻𝐻2 limits further acquisition of 𝐶𝐶𝐶𝐶 for growth on the {111} surface [26], causing 

a reduction of {111} growth and a relative balance of (111) and (001) growth rates, leading to a 

<110> texture. 

 

Morphology 

 The orientation distribution may also be effected by the increased propensity of twinning 

as can be observed visually by SEM. Figure 16 (a-c) shows SEM micrographs of 𝐶𝐶𝐻𝐻4/𝐻𝐻2 ratios 

1.5%, 3%, and 4.5% taken at 15mm from the center of the wafer. The morphology of the films 

show that the 1.5% methane sample had octahedron features with large (111) faces, with a twinning 

destabilization of the (100) faces leading to the appearance of the commonly seen “5-fold” 

symmetry. Increasing the methane concentration led to higher deposition rates, but an increasing 

tendency for twining and the emergence of the “cauliflower” structure seen in the thick 4.5% 

sample Figure 16(d). The cauliflower morphology is known to be associated with a high defect and 

twinning density [23]. Interestingly, the 4.5% sample initially is shown to originally have defined 

grains, giving way to the cauliflower texture as the deposition times increases. As discussed here 

in section 2.7, the <110> texture may be enhanced by the increased number of twinning events. 

The effects of twinning on the morphology can be visualized in Figure 17. Free standing 

grains for (a) 1.5%, (b) 3% and (c) 8 hour 4.5% 𝐶𝐶𝐻𝐻4/𝐻𝐻2 can be seen. It’s clear that as the methane 

concentration increases, the propensity for twinning is increased. This has the effect of reducing 

the size of the crystal domains and reducing the long-range order of the crystallite. 
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(c)                                                                                   (d) 

 

       

 

      

Figure 22: SEM Micrographs of Group II CVD Diamond samples 15mm from center at (a) 

1.5%, (b) 3% (c) 4.5% 𝐶𝐶𝐻𝐻4/𝐻𝐻2, and (d) 4.5% 8h 𝐶𝐶𝐻𝐻4/𝐻𝐻2  from Group I. 

 

   

 

 

 

    (a)                                                                                   (b) 
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(a)                                                                      (b)  

 

 

 

 

 

 

 

               

 

         

(c)  

 

Figure 23: SEM Micrographs of free standing grains from Group II 8 hour growths with (a) 

1.5%, (b) 3% and (c) 4.5% 𝐶𝐶𝐻𝐻4/𝐻𝐻2 concentrations 15mm from center. 

 

Grain Size 

The grain sizes were found to decrease with increasing methane concentration, as seen by 

comparing the nearly equal thickness of the 1.5% and 4.5% samples. The grain size of the 3% 

sample was slightly higher, likely owing to its slightly greater thickness. Grain sizes and 

thicknesses were found to decrease slightly with radial distance from the center of the wafer. This 

is best understood by a inhomogeneous growth conditions, and a reduction of methane radicals 

towards the edges. Grain size was not included for the thick 4.5% sample, as it does not have well 
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defined features. These variations in grain sizes and thickness across the wafer were found not to 

produce a meaningful change in the texture index. 

 

Conclusions 

Texture analysis using the techniques of x-ray diffraction are presented and performed on 

diamond films grown by hot filament chemical vapor deposition on silicon under varying 

methane concentrations and thicknesses. The grain size is known to vary across the growth wafer, 

and the variation in grain size for each sample was analyzed for its effect on the texture. It is 

shown that higher methane concentrations lead to a higher <110> texture as evidenced by the 

Group II samples. Higher methane concentrations also was associated with a higher twinning 

density and reduction in grain size. The emergence of <110> texture from a nearly random 

distribution was shown to depend strongly on thickness in the case of the 4.5% samples. 

It is found that the (311) pole figures were not suitable for texture analysis due to the 

appearance of underlying silicon peaks, and the generally low intensities from this Bragg condition. 

A different choice of substrate material, or thicker diamond samples may lead to a larger set of 

usable pole figures thereby increasing the accuracy of the estimated ODF. Pole figures from the 

lowest methane concentration, 1.50%, are shown below before (Figure 24) and after (Figure 252) 

removal of substrate peaks. It is suggested that the outlier removal was unsuccessful to the close 

proximity of the silicon peaks in the (311) pole figure. 

 For applications that depend on the lengths of the crystal domains or grain sizes, such as 

thermal conductivity, lower methane concentrations are recommended as the films produced have 

large features with the lowest density of twinning. 

 The CVD reactor was found to have minor inhomogeneities across the growth surface, 

possibly attributed to differences in methane radical availability. The effect of these 

inhomogeneities were not found to produce a meaningful change in the calculated orientation 

distribution. 



45 
 

 

 

 

Figure 24: Pole figures of 1.5% methane sample before outlier removal. 

 

                      

Figure 25: Pole figures of 1.5% methane sample and after outlier removal.  
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