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Athermal annealing of low-energy boron implants in silicon
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Silicon samples that have been ion implanted with boron at energies below 3 keV have been
athermally annealed. The annealing process has been characterized using secondary ion mass
spectrometry and infrared absorption spectroscopy. The athermally annealed samples show
activation comparable to that for thermally annealed samples, but with much less boron diffusion.
The activation in the athermally annealed samples is shown to be much higher than would be
achieved by recrystallization of the amorphous layer. 2@1 American Institute of Physics.
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As device dimensions in integrated circuits shrink, theathermally annealed samples, the measurements were made
need for shallow boron implants at low energies becomesvithin the annealed region, but far enough away from the
more imperative. The production of shallow boron implants,laser crater to avoid any effects due to surface roughness or
however, is hampered by transient enhanced diffusi@D) heat from the laser. As expected, significant diffusion is ob-
of boron during implantation and annealitig.In order to  served in the thermally annealed control samples. One pa-
assess its effectiveness at reducing TED, we have investtameter used to assess the degree of diffusion is the depth at
gated the athermal annealing proéeéon shallow boron which the concentration falls below a certain value. For these
implants. experiments, we are using a concentration value of 1

The experiments were performed on 100 mm Czochralx 10*¥cm™2 to determine the degree of diffusion. Using this
ski silicon wafers that were implanted in two different ways. value, the diffusion in the thermally annealed samples in-
The first samples were implanted withB* at an energy of 1  creases by a factor of approximately 3 in the preamorphized
keV and a dose of 3:810*cm ™2 At this energy, the im- sample, and approximately 4 in the nonpreamorphized
plant does not amorphize the silicon. The second set ofample. Doses obtained by integrating the SIMS profile for
samples were preamorphized with a germanium implant of $he boron implant alone were Xx6.0"cm™2 for the as-
keV and a dose of £10'°cm™2, followed by an''B* im-  implanted sample, 2:610%cm 2 for the athermally an-
plant at 3 keV and a dose of<110'°cm 2 These two doses nealed sample, and 5Q0*3cm 2 for the thermally an-
and implant energies were chosen because they are repres@@aled sample. We speculate that the higher calculated dose
tative of implants being considered for shallow junction fab-in the athermally annealed sample is due to increasing sur-
rication processes. Control samples of both types were theface roughness closer to the laser focal Sdocreased sur-
mally annealed at 900°C ffol h in a N, atmosphere. In  face roughness interferes with the trajectories of the second-
addition, a preamorphized sample was annealed at 550 °C fafty jons, delaying their arrival in the mass spectrometer. This
1 h in order to recrystallize the amorphous layer by solidcauses the measured profile to be “smeared,” somewnhat,
phase epitaxfl,to serve as a control on whether the athermakesulting in a higher calculated dose. Actual surface rough-
process was simply recrystallizing the amorphous layer. Th@ess was not measured because it was not considered to be
athermally annealed samples were subjected to a single lasgh important parameter. Subsequent experiments will include
pulse of approximately 7 J, 35 ns in duration, focused tosyrface roughness measurements. The lower integrated dose
~2.5 mm. The laser wavelength was 1.0f. Annealing in the thermally annealed sample is due to out diffusion of
was observed in a circular area approximately 1 cm in diamporon at the surface during annealing. Corresponding doses
eter centered on the laser focal spéfforts to increase the for the preamorphized sample are 9.80*cm 2 for the as-
annealed area are currently being performed. Secondary iQH\pIanted, 9.% 10"cm 2 for the athermally annealed, and
mass spectrometr§5IMS) and infrared absorption measure- 4 gx 10 cm 2 for the thermally annealed sample. By con-
ments were then performed on all of the samples. trast, the amount of diffusion in the athermally annealed

SIMS results for as-implanted, thermally annealed, andsgmples is significantly lower than in the thermally annealed
athermally annealed samples are shown in Fig. 1. For thegmples. In fact, the profile of the athermally annealed
samples is very similar to the as-implanted profile. In the
dElectronic mail: donnelly@swt.edu nonpreamorphized sample, the depth at which the concentra-
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10%'y Sample B03, 1 keV boron, 3.3x10" cm?

Sample B03, 1 keV B, 3.3x10" cm?
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FIG. 1. SIMS profiles for both types of sample under different processingrier effective mass, ani is the free carrier concentration. In

conditions.(a) Subamorphizing boron implant onlgb) Boron implant after this concentration regime, the effective mass is relatively
preamorphization with germanium. The dopant profile is spread substan- '

; ; 14
tially by thermal annealing in both cases, but is changed very little by theconStant!_ a_nd is equal to apprOX|mat(_aIyrﬁ®3 The _absor-
athermal process. bance minima were determined by fitting a function to the

spectrum using nonlinear least squares methods, and taking
tion reached X 108cm 2 increased from 28.2 nm in the the derivative of the fitted function to find the minimum. For

as-implanted sample to 32 nm in the athermally annealef’® athermally annealed sample, th?l absorbance minimum
sample. In the preamorphized sample, the depth increas&$CUrs ata frequency of 151%®.5cm ~. This corrgequgds
from 71.4 nm in the as-implanted sample to 74.9 nm in thd® & free carrier concentration of 819.01x 10 cm =
athermally annealed sample. For comparison, rapid thermaih's number cqrrelates well Wlth .the SIMS results, indicat-
annealing leads to an approximately 30% increase in deptfi9 that the active concgntratlon in the athermally annealed
depending on annealing paramet&r<? samples_|s close to the implanted concentrgtlon.

In order to assess the active concentration, infrared ab- 1€ infrared spectra for the preamorphized samples are
sorption measurements were performed. At the concentr&NOWn in Fig. 3. In addition to the as-implanted, thermally
tions present in these samples, individual donor excitation?nnealed' and athermally annealed samples,_a fourth sample
cannot be observed, because the impurities have formed'$ included that was heated at 550°Q fb h in order to
band. However, by measuring free carrier absorption, onkecrystallize the amorphous layer. The as-implanted and re-
can assess the active carrier concentration. In fact, the mini-
mum in the free carrier absorption is determined by the free Sample BG05
carrier concentration and the hole effective madsfrared Ge 5 keV, 1x10™ cm™, B 3 keV, 1x10"° cm™
spectra for the boron implants are shown in Fig. 2. The as-
implanted sample exhibits the characteristic infrared spec-
trum for intrinsic silicon. The peaks at low frequency are due
to interstitial oxygen and lattice vibrations. There is no evi-
dence of free carrier absorption in the spectrum of the ther-
mally annealed sample. Free carriers in a sample cause an
increase in the absorption with decreasing frequency, and the
frequency at which the increase begins is related to the
plasma frequency for the carriers. We speculate that signifi- 0
cant amounts of the implanted boron diffused out of the sur- 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
face during thermal annealing, leading to a reduced active Frequency (cm”)
concentration of boron in the sample. This conclusion is con- . , . o

. . FIG. 3. Infrared spectra of boron implant with germanium preamorphization
sistent with the SIMS data as well. The athermally annealegqer dgifferent processing conditions. Free carrier absorption is observed in
sample shows an increase in the absorbance with decreasibgh the thermally annealed and athermally annealed samples.
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