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ABSTRACT

Population growth and sprawling urbanization have resulted in higher
perturbations of susceptible landscapes and more people and infrastructure exposed to
hazardous landslides in southern California. This, in turn, has resulted in an increase in
both frequency and magnitude of landslide disasters in the region. Landslides impact
thousands of people and damage billions of dollars of infrastructure each year. Mitigation
and response to these disasters can be difficult and expensive especially when reliable,
high-resolution risk and hazard exposure maps are rarely available to local planners and
managers at scales that can be efficiently utilized for local decision-making. Several
methods for assessing landslide hazards have been proposed and implemented over the
years. However, a portable, high-resolution method of assessing and visualizing landslide
risk and hazard exposure remains elusive. This research provides a two-step method,
enabled by geographic information systems (GIS) and multi-criteria quantitative analysis,
to produce a high-resolution spatial analysis of both geophysical landslide risk and
landslide hazard exposure for the built environment. Phase I of this study develops and
deploys a GIS-based method for landslide risk assessment using selected geophysical
attributes, including past landslide and wildfire experience, to model landslide risk within
the study area of Ventura County and Santa Barbara County, California. Phase II
leverages the high-resolution quantitative risk results from Phase I to develop a landslide
hazard exposure model that illustrates the likelihood of landslides interacting with

features of the built environment within the study area. The resulting hazard exposure

XV



model provides a reliable, efficient ranking of potential landslide hazard exposure for
each building parcel within the study area based on the integrated geophysical risk model,
the geomorphological attributes of the study area and the spatial density of the built
environment. This research demonstrates that, by leveraging a multi-tiered modeling
process that involved both primary and secondary data, Geoscientists and hazards
managers can develop high-resolution landslide risk and hazard assessments suitable for
land-use and settlement planning at the local scale. In applying this approach, hazard
exposure mapping can play a renewed role in assessing areas with high landslide hazards

and helping mitigate the associated risks.
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I. INTRODUCTION

Landslides and other forms of mass movements have become more problematic
for urban planners and property owners as population growth and sprawling urbanization
push land development into more geomorphologically dynamic environments. In the US
alone, landslides and other forms of mass movement cause damages of more than US$ 1-
2 billion and 25-50 deaths annually (National Research Council 2004, Ahuja 2011 and
Iwamoto 2018). More recently, changing climatic conditions, including extreme rates of
precipitation, greater propensity for drought, and rampant wildfires have acted as
triggering mechanisms producing a spike in the frequency of landslide incidents,
especially in southern California. For instance, the Tuesday, January 9%, 2018 mudslide
in Walloped Montecito, Santa Barbara resulted in the death of 20 people, destroyed 65
homes, and damaged over 460 other residence (Santa Barbara County's emergency
management report, 2018). To address these trends, urban and city planners must be able
to select suitable locations for future development projects such as housing, hotel resorts,
and roads.

Complex landslide susceptibility mapping models (LSMM) have emerged over
the years to assess landslide susceptibility for different regions of the world. However,
these assessments are often conducted at broad spatial scales making their application
difficult at local scales for neighborhood planning. To help address this problem, this
research selects an urbanized, landslide-prone study area, specifically Ventura and Santa
Barbara counties along the southern California coastline (Figure 1) and develops a two-
tiered method for generating quantitatively robust, neighborhood-scale landslide hazard

assessments that meet the needs of local planners and land managers responsible for



managing land parcels in landslide susceptible and hazardous environments. This
research is informed by and extends current scholarship in GIScience-based landslide
modeling and contributes to an improved understanding of landslide hazards from a

human-environment perspective.

— akilometers N

= %.: Legend
Study Site

I:I Study Area Boundary

Figure 1. Illustrates the Map of Study Site.

Overall, the objective of this study is to put forward a GIScience-based method
for developing neighborhood-scale assessments of environmental landslide hazards in
landslide-prone regions. However, like most other areas of the United States, there is a
lack of high-resolution, geophysical landslide risk data that is necessary to conduct
human-environment hazards analysis for this region. In particular, there are no spatially
and temporally robust datasets available that would enable a high-resolution assessment

appropriate for hazard analysis at the scale of building parcels, individual structures, and



small neighborhoods. Therefore, the first phase of this research develops, validates and
operationalizes a GIScience-based methodology for generating high-resolution spatial
landslide susceptibility models using multiple environmental causative factors, as shown
by current geophysical landslide literature. The second phase of this research illustrates
the utility of the landslide susceptibility model in developing hazard exposure models at a

building parcel level or neighborhood-scale.

1.1. PHASE ONE: COMPLEX LANDSLIDE SUSCEPTIBILITY MODELING

A successful realization of landslide susceptibility and hazard exposure
modeling requires a data-driven model of landslide frequency, and a knowledge base
model (KBM) of fuzzy operators to be integrated or combined. The underlying principles
of this approach is a combination of fuzzy set theory and fuzzy logic. Fuzzy set theory
employs a membership function (MF) that expresses the degree of membership of a value
concerning a specific attribute of interest. The attribute of interest is measured at discrete
intervals usually between 1 and 0. Fuzzy membership functions (MF) can be expressed as
a table relating map classifications to membership values (Pradhan 2010; 2011, and
Feizizadeh et al. 2014). Fuzzy logic, on the other hand, is straightforward and easy to
implement. This approach can be successfully integrated with GIS — multi-criteria
analysis (MCA) and used to model imprecise objectives such as landslide susceptibility
(Akgun et al. 2012). The fuzzy logic technique is ideal because it leads to a flexible
combination of weighted criteria that can subsequently be implemented through a GIS-
MCA, to further improve the accuracy of model results (Pradhan 2010; Pourghasemi et
al., 2012). Fuzzy logic permits the input of vague, imprecise, and ambiguous information

(Balezentiene et al. 2013). It is commonly used in spatial planning to treat spatial objects



within a study area on a map as either member of a set or not; for example, an object can
either belong to the set (1) or the set (0). This approach is unique in that it uses the
location of known landslides to estimate weightings or coefficients for the GIS-MCA.

A sample of 599 landslide locations within the study area was identified through
visual interpretation of aerial imagery from National Agriculture Imagery Program
(NAIP) and digitized. From the sum of 599 digitized landslide locations, a sample of 150
landslide locations are randomly selected and extracted using a geographic information
system software (GIS) randomization tool. The sampled landslide datasets are
subsequently used as validation data, while the remaining 499 landslide locations data
used as training data.

Eleven landslide criteria factors were extracted from each landslide location
including; slope, aspect, curvature, elevation, precipitation, soils, proximity to fault lines,
proximity to roads, land use/land cover, fire experience, and terrain roughness. The
landslide occurrence frequency for each class of criteria factors were computed. The
fuzzy membership values were calculated for each criteria factor using the landslide
occurrence frequency for the respective classes of all eleven criteria factors. Index maps
of landslide susceptibility were created for each criteria factor and included in the GIS.
Fuzzy membership classes for the conditioning factors of landslide hazards were
integrated, resulting in a landslide susceptibility map classified from very low to very
high. The 499 training and 150 cross-validations landslide locations mentioned earlier
were used to train and validate the model quantitatively. Once the model was validated,
the landslide susceptibility GIS layer was generated, illustrating the overall geophysical

risk of landslides in the study area. This new, high-resolution GIS layer was then used



below in Phase (II) to derive a proximity-based exposure model, illustrating the

hazardousness of the built environment within the study area.

1.2. PHASE TWO: PROXIMITY-BASED LANDSLIDE HAZARD MODELING
The second phase of this study develops and deploys a proximity-based exposure,
or hazard model by analyzing the intersection between the high-resolution susceptibility
model developed in Phase (I) with the spatial features of the human-built environmental
systems. Phase (II) is a four-step process in which the hazard exposure of the building
parcels within the study area are quantified and ranked from low — high risk based on
landslide proximity and landslide impact likelihood respectively. Step 1 calculated the
Euclidean proximity distance of exposed building parcels to classified zones of landslide
susceptibility (Thrust distance). Step 2 calculated potential debris flow impacts to
buildings, taking into consideration the horizontal, vertical and linear characteristics of
possible debris flow. Step 3 computed building exposure patterns using weighted
proximity measures against landslide susceptibility zones. Step 4 integrated the landslide
susceptibility model achieved in Phase (I) with the proximity-based hazard exposure
model from steps 1-3 above to illustrate the spatially diverse patterns of landslide hazard

within the study site.

1.3. DISSERTATION OUTLINE

This study produces high-resolution landslide risk and hazards exposure maps that
can serve as guides to urban planners and decision makers, ensuring effective and
efficient use of space for urbanization while reducing potential hazard exposure and cost

effects associated with landslide hazards. Chapter (I), introduces the general concept(s) of



landslides and hazards. It summarizes the principles of landslides and the instability of
the slopes of Southern California as well as presents the two main phases of the analysis,
phase (I) and phase (II), highlighting the general issues associated with both. Chapter (II),
begins with a general overview of the study area background. It states the research
objectives of the study with some intended questions to be answered. It describes the site
and situation of the study area and provides general information on the type and
abundance of landslides, including the geomorphology, lithology, structure, climate, and
other physiographic characteristics. Furthermore, this chapter provides information on the
nature and extent of the damage caused by landslides in this area. Chapter (III), describes
the processes associated with phase (I) — landslide susceptibility model in detail and
discusses the literature review. The literature review involves a study of the principal
methods of assessment (old, new and hybrid), from the process of choosing a mapping
scale to determining the relationship between a preferred mapping scale and the suitable
method for modeling. This chapter also addresses concepts and definitions useful for
landslide susceptibility modeling, including literature guided discussions on the
differences between probabilistic (quantitative) and heuristic (qualitative) approaches. |
weigh the strengths and weaknesses of each of the approaches proposed in the literature
and the problems associated with their application and the limitations of the results
obtained. I review the various applications of fuzzy logic and multi-criteria, their
strengths, weaknesses and how to overcome some of its non-linearity issues. Here, I also
discuss the conceptual and theoretical framework for the geophysical risk model,
providing a rationale for the criteria employed in this analysis process. I also briefly

outline the criteria used to recognize and map landslides from stereoscopic aerial



photographs and the assumptions made in this analysis as well as present descriptions and
explanations for the topographic, environmental and thematic datasets used to perform
the susceptibility analysis. Further, I elaborate on the data and methodology applied to
phase (I) of this study, I explain the procedure of data collection, data preparation, data
analysis, model validation and the subsequent development, and implementation of the
landslide susceptibility model on a neighborhood scale. Chapter (IV), describes the
processes associated with phase (II) — Proximity-based hazard exposure model in detail
and discusses the problem statement and literature review. The literature review process
involves a detailed analysis of the various research methods and advancements that have
been made in the vast body of knowledge in the field of hazards and recent efforts at
hazard quantification and risk calculation. This chapter, also discusses the conceptual
framework for phase (II), the data preparations, methodology and the final hazard
exposure results. Chapter (V), presents the limitations encountered in-phase (I) and phase
(IT) of this study, elaborating on their applicability and suggested recommendations. The
chapter concludes with some general discussions in hazards literature and outlines the

various literatures cited.



II. GEOGRAPHIC SETTING

2.1. BACKGROUND

A landslide can be defined as the movement of a mass of rock, debris, or soil
down a slope, under the influence of gravity (Nemcok et al. 1972; Varnes 1978;
Hutchinson 1988; Cruden 1991; Cruden and Varnes 1996). Landslides are triggered by a
variety of geomorphic, environmental, climatic and anthropogenic phenomena including
intense or prolonged rainfall, earthquakes, rapid snow melting, and a variety of human
activities. Landslide processes can occur in the following forms; flows, slides, falling
movements, and many landslides exhibit a combination of two or more types of
movements (Varnes 1978; Crozier 1986; Hutchinson 1988; Cruden and Varnes 1996;
Dikau et al. 1996). Landslides occur when the destabilizing forces acting on a hillside are

more significant than the counter stabilizing forces (See Figure 2) below.

TR et s g B, WG €2 B
Figure 2. La Conchita Landslide, 2005 California. - Courtesy of Mark Reid, USGS

The ratio referred to as the safety factor, indicates slope instability in the sense

that when the ratio is less than 1.0, the slope is unstable and will likely fail if triggering



factors exceed thresholds that have caused similar slopes to fail in the past (Randall et al.
2005). Landslides are assessed by the magnitude of their respective triggering factors;
depth of the area of impact, the volume of rock and soil material involved in the slide
process, the frequency of occurrence, the speed and the triggering factors such as
earthquakes, tremors, anthropogenic activities, as well as precipitation. Rising damages to
human environmental systems from landslides and other forms of mass movements
resulted in increasing human activity on landslide susceptible landscapes around the
world such as in Maierato in Southern Italy, Santa Barbara and Ventura, Southern
California (Brenning et al. 2015).

Worldwide, landslides are responsible for billions of dollars in damages and
thousands of deaths and injuries each year (Smith et al. 2009). Due to limited funding and
the scarcity of high-resolution data for modeling, most landslide risks analysis are
conducted at large, regional and medium geographic scales (Ward et al. 1981; Wilson
and Keefer 1983; Terlien et al. 1995; Jibson et al. 1998; Jibson 2001; Collins and
Znidarcic 2004; He and Beighley 2008). Landslide risk models of large and medium
scale (1:10,000-1: 50,000) are usually problematic for urban development and hazard
mitigation agencies because of the lack of homogeneity in landslide inventory datasets,
terrain morphology, and composition (Van Westen et al. 2006).There are ongoing efforts
to develop two and three-dimensional models of landslide risk and hazard exposure
maps, as land development patterns in many remote communities push infrastructure and
people further into landslide-prone environments (Wieczorek 1984; Gritzner 2001;
Ayalew 2004; Booth 2009). So far, the modeling efforts have not delivered the high-

resolution modeling techniques and maps that can be easily replicated and implemented



by local development planners. When high-resolution building parcel level, and or
neighborhood, landslide susceptibility and hazard exposure maps are too expensive for
local planners or unavailable to the public, hazard mitigation can be difficult and costly.

Over the past 116 years, the coastal population of Southern California has
increased from approximately 794,817 in 1910 to 22,422,614 in 2015 (US Census
Bureau, 2016). The rate of anthropogenic activities (construction of roads and other
hillside utilities) under the banner of development has followed population growth,
resulting in the emergence of numerous residential settlements at the base of, or on,
unstable slopes along the Southern California Coastline (Zell and Lurie 2002). These
trends have pushed infrastructure further into landslide-prone environments and placed a
growing number of people into evermore precarious locations (see Figure 3). Some sites
are more susceptible to landslides than others. Settlement areas at greater risk are those
closer to steep slopes, road cuts and or excavations, areas of historical or existing
landslides, and areas where human development has altered slopes. In the Californian
Southern Coastline, residents often settled in areas known as debris cones, where steep
mountain streams debouched onto the valley floor (Rice 1985). These areas are attractive
because of the abundant water supply, but pose a grave risk of landslides, particularly as
expanding development perturbs these landscapes.

The ability to identify areas prone to landslides, and the relative probability of
landslide occurrence at resolutions that can be leveraged by local planners and
homeowners, is a critical step in gaining control over landslide hazard. Previous research

has identified the need for high-resolution landslide mapping as indicated below:

10



(...) Land sliding is a worldwide problem that probably results in thousands of
deaths and tens of billions of dollars of damage each year. Much of this loss
would be avoidable if the problems were recognized early, but less than one
percent of the world has landslide inventory maps that show where landslides
have been a problem in the past, and even smaller areas have landslide
susceptibility maps that show the severity of landslide problems in terms decision
makers understand. Landslides are more manageable and predictable than
earthquakes, volcanic eruptions, and some storms, but only a few countries have
taken advantage of this knowledge to reduce landslide hazards. Land sliding is
likely to become more important to decision makers in the future as more people
move into urban areas in mountain environments and as the interaction between
deforestation, soil erosion, stream-habitat destruction, and land sliding become
more apparent. (...) (Brabb 1991, p.60).

State environmental agencies such as the United State Geological Survey
(USGS) have led the way in landslide and hazard mitigation through assessments and
publication of landslide information (Olshansky 2006). Nonetheless, their efforts have
been limited because of insufficient funding and budgetary cuts in recent years. The

Californian legislature approved the "Landslide Hazard Identification Program," which
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was instrumental in producing several maps that helped local planners with landslide
hazard planning (Olshansky and Rogers 1986).

Unfortunately, the program was replaced in the 1990s by the Seismic Hazard
Mapping Act, which has failed to provide sufficient detail for quality planning because it
produces low-resolution hazard maps for large regions which turn to be unhelpful to local
planners at a building parcel level. While the USGS now believes it has established a new
means of identifying landslide hazard zones with greater detail than ever before, the
necessary funding for a comprehensive program has yet to be approved (Olshansky and
Rogers 1987).

The purpose of this research is to generate high-resolution, site-specific hazard
exposure maps of building parcels that can be used to illustrate geospatially-diverse

hazard risk at a scale that can be used by local planners and emergency managers.

2.2. RESEARCH OBJECTIVES

Hazards scholars and researchers, including geomorphologists and
environmental engineers, have yet to reach a consensus on some of the crucial concepts
in landslide and hazard research. Some of the concepts above include; the scale of
analysis for visualization, suitable methods for collecting data, model training and model
validation as well as appropriate inventory estimates. For example, the term “landslide” is
often used to describe a different aspect of the mass wasting phenomena namely; the
process, the movement, and the deposit of debris (Guzzetti et al. 1999).

This research builds on recent efforts by hazards scholars to advance current
modeling methods and develop new approaches to more precisely assess, model, and

visualize environmental risks and hazards. This study, aims at promoting a unique
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approach to mapping landslide susceptibility and hazard exposure using a combination of
deterministic and probabilistic approaches in association with an array of environmental
and infrastructural datasets that can be leveraged by hazards researchers, emergency
response teams, urban developers and local planners to assess risk and hazard patterns at
a very high resolution and geospatial scale.

The objectives of this study are two-fold: 1) develop a fuzzy-based geophysical,
high-resolution predictive landslide susceptibility model for use by local planners and
urban developers in prioritizing U.S. hazard emergency and mitigation response, road
management activities and settlement planning. This objective employs a hybrid
combination of qualitative and quantitative approaches to model shallow and deep-seated
landslides using high-resolution (local/neighborhood) datasets for Ventura and Santa
Barbara counties in Southern California. 2) Develop a high resolution, efficient, Cost
effective and replicable proximity-based hazard exposure model (PBHEM) for use in
prioritizing settlement and developments along the Southern Californian Coastline.

The research objectives and related geoprocessing questions outlined above was
achieved in two Phases. The first Phase (I), focuses on generating high-resolution
geophysical landslide susceptibility models of the study area. In phase (I), a geophysical
landslide susceptibility model is developed, applied and evaluated within the context of
the tumultuous geomorphology of the southern Californian coastline region. The
geophysical risk model in this study was created by constructing a database containing
various geospatial, topographical, environmental and geomorphological terrain
parameters contributing to past landslide occurrence. Terrain attributes at mapped

landslide locations are assessed through a variety of GIS techniques and used in
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combination with likelihood ratio and fuzzy logic systems to evaluate relative likelihood
of landslide occurrence within the study area. The final geophysical risk model’s output
performance is then evaluated for accuracy using the area under the curve statistical
technique (AUC).

Phase (II), focuses on the integration of the geophysical landslide susceptibility
model created in Phase (I) with selected and weighted infrastructural (developed land
parcels) and topographical attributes (surface cover, slope angle and debris flow direction
and cost) to assess and quantify hazard exposure of the human-built environmental
systems within the study site based on the respective proximities of building parcels to

the landslide zones.

2.3. STUDY AREA
2.3.1. Mapping Unit Site and Situation

The study covers an area 15,532.16 sq. Km. (5,997.00 sq. mi.) and is comprised
of Ventura and Santa Barbara counties illustrated in (Figure 4) below.

As 0of 1990, Southern California hosts approximately 28% urban land, 66%
undeveloped areas and 6% agricultural land (Yiping and Beighley 2008). From 1980 to
2000, the population of Southern California exploded to about 55% almost 18.7 million
people according to the 1980 - 2000 censuses (Yiping and Beighley 2008). Towns like
Ventura, Orange, San Diego Santa Barbara and Los Angeles counties experienced the
most significant population growths. With the population growth juxtaposed with the
highly hazardous nature of the geophysical landscape, “The question is not if, but when

the next landslide will impact the community” (Gurrola 2005).
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Figure 4. Study Area Mapping Unit

Landslides within this region are also triggered by heavy rains fueled by the
Mediterranean climate, which usually causes abundant precipitation in specific regions
resulting in rapid superficial mudflows. A combination of triggers such as seismic
activity, tectonic uplifting within rocks of weak density and local underground springs,
create an immensely precarious landslide sensitive area. Most of the soils and rocks in
this region have been weakened by natural or human causes such as previous earthquakes

and urban development of hillsides. Southern California lies astride a significant tectonic
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plate boundary defined by the San Andreas Fault and other structurally related faults that
are spread across a broad region. This dynamic tectonic environment has created a
spectacular landscape of rugged mountains and steep-walled valleys that compose much
of the region’s scenic beauty. Unfortunately, this extraordinary landscape also presents
serious geologic hazards. Just as tectonic forces are steadily pushing the landscape
upward, gravity is relentlessly tugging it downward. When gravity prevails, landslides do

occur (USGS Factsheet 2005).

2.3.2. Physical Landscape

The study area illustrated in Figure 4 above is bounded by the Mojave Desert to
the east and the Pacific Ocean to the west. This area has diverse geomorphology and
complex geology form due to the subduction of the Pacific and North American tectonic
plates. Interactions between these two plates can create earthquakes of varying intensities
that can trigger mass movements, such as landslides. Earthquake-induced landslides have
been documented from as early as 372 BC and are responsible for thousands of deaths
and billions of dollars of damages (Keefer 1984). The coastal mountain ranges and
coastal settlements along the San Andreas Fault are some of the most hazardous
geomorphic regions in the entire country due to their geographic setting. Most of the
landslides occurring in Southern California are a small portion of a much larger complex
landslide region (USGS Factsheet, 2004). The mean elevation is about 615.67m
(2,019.92 ft) above sea level. Approximately half of the area has ground slope higher
than 50% (27°), and a third has a slope higher than 70% (35°) (Yiping and Beighley
2008). The ocean and continental air masses (maritime tropical and humid subtropical

respectively) interact with the regional topography and display a broad diversity of
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weather and climate. Mean annual precipitation is 432mm (17in), ranging from as low as
229mm (91n) to 1295mm (51in).

Slope failure in this region is from the Holocene Paleo sea cliff which is the
seaward edge of an ancient landslide that has produced slumps, debris, and
mudflows. Two examples of such landslides are the 1995 and 2005 La Conchita
landslides. The rock formations on the cliff include marine sediments from the Monterey
and Pico formation (Jibson 2005). In the top sections of the slopes, the rocks consist of
siliceous shale, siltstone and sandstone of the Middle to Upper Miocene Monterey
formation, while the lower parts of the slope consist of siltstone, sand, and mudstone of
the Pliocene Pico formation which covers the entire cliff face. Studies show that most
landslides in the Southern Coast of California began a few thousand years ago but are

younger than the subsurface coastal marine-terrace (Goldberg 2006).

2.3.3. Human Landscape

The earliest occupants of Coastal Southern California were American Indians
(Keeley 2002). However, on September 28, 1542, Juan Rodriguez Cabrillo and his crew,
the first Europeans to visit California entered the San Diego Bay and named it Alta
California. In 1821, Mexico gained independence from Spain, and Alta California
became a Mexican province rather than a Spanish colony (Hoover 1992). Twenty-seven
years later, in 1848 gold was discovered at Sutter's Mill, catalyzing a period that was
referred to as the “Gold Rush” (Johnson 2001), this event dramatically altered the course
of California's history as miners rushed into the area and California earned its statehood
on September 9, 1850 (McCurdy et al. 1976). The Gold Rush brought thousands of

immigrants, both foreign and domestic, to southern California (Mei 1984; Rohrbough
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1997; Holliday and Lamar 2015). This mass migration into the coastal regions, combined
with the state's natural riches, assured California’s success as it developed its diversified
agriculture, fisheries, forestry, mining, aircraft plants, shipyards, tourism, and recreation
industries (Nash 1998; Rawls and Smith 1999).

The increase in the population of southern California was almost invariably
associated with intensive and locally excessive exploitation of the land, including gold
mining, urban sprawl and construction of roads and railways. These activities resulted in
rapid growth of the built environment, including dense metropolitan and residential zones
(Parker 1937). In many areas along the southern Californian coastline including counties
such as Orange, Buenaventura, and Santa Barbara, due to its local physiographical
setting, new settlements and infrastructure expand into dangerous or potentially
hazardous areas, such as those damaged in La Conchita (Jibson 2005; Murphy and Stover
2008).

Based on 1990s land use/land cover data, the southern region of California is
comprised of approximately 28% urban lands, 66% undeveloped areas and 6%
agricultural lands. In recent decades, Southern California has experienced substantial
population growth. Based on census data from 1980 and 2000, 18.7 million people (55%
of California’s total population) reside in this region. From 1980 to 2000, the population
increased at a rate of 41%, including, Riverside at 113%, San Diego at 51%, Orange at
47%, Ventura at 42%, Santa Barbara at 34% and Los Angeles Counties at 21. Population
growth, urbanization, expansion of settlements, and life-lines over hazardous areas, have
caused an increase in landslide activities and other forms of mass wasting (Selby 2000).

The tables (Tables 1-4) and bar graphs (Figures 5-8) below illustrate changes in total
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population and annual population change from 1870 to 2016 for the state of California,

City of Los Angeles, Ventura County, and Santa Barbara County.

Table 1. California State Population Change from 1870-2016.
Source: California Quick Facts - US Census Bureau.

State Census Year Population Population Change %
California 1870 560,247 47.70%
1880 864,694 54.30%
1890 1,213,398 40.30%
1900 1,485,053 22.40%
1910 2,377,549 60.10%
1920 3,426,861 44.10%
1930 5,677,251 65.70%
1940 6,907,387 21.70%
1950 10,586,223 53.30%
1960 15,717,204 48.50%
1970 19,953,134 27.00%
1980 23,667,902 18.60%
1990 29,760,021 25.70%
2000 33,871,648 13.80%
2010 37,253,956 10.00%
2016 39,250,017 5.40%
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Figure 5. Bar Graph Illustrating Population and Population Change % of California
from 1870-2016. Source: California Quick Facts - US Census Bureau.
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Table 2. Los Angeles, California Population Change from 1870-2015.

Source: Census of Population and Housing - Census.gov.

State Census Year Population Population Change %

Los Angeles, CA 1870 5,725 30.60%
1880 11,183 95.20%
1890 50,395 350.60%
1900 102,479 103.40%
1910 319,198 211.50%
1920 576,673 80.70%
1930 1,238,048 114.70%
1940 1,504,277 21.50%
1950 1,970,358 31%
1960 2,479,015 25.80%
1970 2,811,801 13.40%
1980 2,968,528 5.60%
1990 3,485,398 17.40%
2000 3,694,820 6%
2010 3,792,621 2.60%
2015 3,971,883 4.70%
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Figure 6. Bar Graph Illustrating Population and Population Change % for Los Angeles,
California from 1870-2015. Source: Census of Population and Housing - Census.gov.
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Table 3. Ventura County, California Population Change from 1900-2015.
Source: Census of Population and Housing - Census.gov.

State Census Year Population Population Change %

Ventura County, CA 1900 2,370 6.50%
1910 2,901 17.40%
1920 4,156 43.30%
1930 11,603 179.20%
1940 13,264 14.30%
1950 16,534 24.70%
1960 29,114 76.10%
1970 57,964 99.10%
1980 73,774 27.30%
1990 92,576 25.50%
2000 100,916 9.00%
2010 809,080 5.50%
2015 840,833 3.3%
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Figure 7. Bar Graph Illustrating Population and Population Change % for Ventura
County, California from 1900 — 2015.
Source: Census of Population and Housing - Census.gov.
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Table 4. Santa Barbara County, California Population Change from 1870-2015.
Source: Census of Population and Housing - Census.gov.

State Census Population Population Change %

Year

Santa Barbara County 1870 7,784 199.70%
1880 9,513 22.20%
1890 15,754 65.60%
1900 18,934 20.20%
1910 27,738 46.60%
1920 41,097 48.20%
1930 65,167 58.60%
1940 70,555 8.30%
1950 98,220 39.20%
1960 168,962 72%
1970 264,324 56.40%
1980 298,694 13%
1990 369,608 23.70%
2000 399,347 8%
2010 423,895 6.10%
2015 444,789 4.90%
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Figure 8. Bar Graph Illustrating Population and Population Change % for Santa Barbara
County, California from 1870 — 2015.
Source: Census of Population and Housing - Census.gov.

Human intervention has played a vital role in stimulating the natural antecedents
of the hazards mentioned above by disturbing some of the very fragile natural equilibria
of the unstable landscapes (Alexander 1992). For example, in Buenaventura, La Conchita
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and Santa Barbara, agrarian grapevine activities, road constructions, coastal settlement
expansions, wildfire soil surface glazing, and deforestation have resulted in frequent
mudflow and mudslides whenever soil saturation values exceed certain stability
thresholds (Coates 1985; Chaudhary 2005). As a result, the region provides an ideal

setting for studying landslides.
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I11. PHASE ONE:
COMPLEX LANDSLIDE SUSCEPTIBILITY MODELING
Landslides are recognized as critical geomorphologic processes due to the role
they play in the development of hill slopes in mountainous regions, and to related socio-
economic consequences. There are many causes of landslides, and their distribution
varies with the changing conditioning factors. Slope stability depends on many causative
factors, and the knowledge of these variables can help to predict the volume and types of
landslides to expect in the future. In this study, past landslide activity and triggering
factors were used to assess landslide susceptibility along the southern Californian
coastline. The geospatial attributes of the study area were analyzed in regard to their
vulnerability to landslides and the corresponding output susceptibility maps used for the
for development of urban settlement plans and disaster mitigation activities. One of the
most critical stages in landslide susceptibility mapping is the selection of landslide
causal, conditioning and triggering factors as well as the weighting of the selected
causative factors in accordance to their influence on slope stability (Mukenga et al.
2017). High-resolution aerial imageries helped with the delineation of past and present
landslide activity, and a geographic information system (GIS) was used for the derivation
of static factors (slope, aspect and surface curvature) and time-dependent factors (annual
precipitation) that are needed to produce landslide susceptibility maps. The high
susceptibility to landslides in southern California is mainly due to the complex geological
setting with the contemporary crustal adjustments, varying slopes and relief, heavy snow
and rainfall along with ever-increasing human interference (Nagarajan et al. 1998). To

implement strategic planning and safe mitigation measures, identification of landslide-
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prone areas and Landslide Susceptibility Zonation (LSZ) is crucial. Determining the
probability or likelihood of dynamic events such as landslides is a multifaceted process
that considers a variety of factors. A comparison of the distribution of various landslide
criteria factors results in the identification of areas with different landslide probabilities
which is a complex task because the occurrence of the landslide is dependent on many
factors (Park et al. 2013).

Due to the complex nature of landslide susceptibility models, the disconnect
between the appreciation of crucial landslide information and the related landslide hazard
decision-making process is made even more pronounced. To address this problem, a new
approach is needed to facilitate the generation and dissemination of information about
landslide potential. Consequently, this work presents a practical, efficient, cheap and
readily replicable approach to the development of a high-resolution parcel scale landslide
predictive model using a geographic information system (GIS). In this next chapter, I
discuss the various methods and techniques used in landslide assessment over the years
as recorded in multiple landslide review articles, and the new contributions that have
been added to the vast literature. Then, I present a high-resolution landslide susceptibility
assessment of the study area at a building parcel level that can be used by urban

developers and local planners for settlement and hazard mitigation purposes.

3.1. LITERATURE REVIEW

A successful landslide susceptibility and hazard assessment involve a mixture of
several quantitative and qualitative approaches (Aleotti and Chowdhury 1999). Landslide
susceptibility and hazard mapping methods can be grouped into three distinct categories

namely; deterministic, heuristic and statistical (Clerici et al. 2006). These main categories
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can be further subdivided into the following; engineering or geotechnical, new soft
computing model or expert-based and probabilistic methods (Guzzetti et al. 1999). The
determinist approach relies heavily on the physical laws governing slope instability
(Okimura and Kawatani 1986; Montgomery and Dietrich 1994; Dietrich et al. 1995).
According to Ercanoglou and Gokceoglou (2004), the deterministic approach is
frequently used for relatively small homogenous areas and requires detailed geotechnical
and hydrological data. In order to apply this method to regional and medium scales, the
data will have to be oversimplified. In the heuristic approach, the conditioning factors
(instability factors) are ranked and weighted according to their likelihood of causing
slope failure. This method is sometimes criticized because it entails a considerable degree
of subjectivity.

Many localized studies have been conducted evaluating the relevance of the
factors affecting landslides using expert dependent systems and data-driven approaches
(Suzen and Kaya 2012). Data-dependent approaches aim at assessing the statistical
significance of each landslide conditioning factor based on the existing landslide
inventory data or available historical landslide inventory data. These data-driven
approaches of bivariate statistical analysis including methods such as weights of evidence
(Neuhauser and Terhorst 2007; Dahal et al. 2007; Van et al. 2009 and Martha et al.
2013), landslide index, and multivariate statistical analysis methods such as discriminant
analysis (Carrara et al. 1991; Guzzetti et al. 2005), factor analysis (Maharaj 1993;
Ercanoglu et al. 2004) and logistic regression (Ohlmacher and Davis 2003; Ayalew and
Yamagishi 2004; Suzen and Kaya 2011; Gorsevski et al. 2006) have emerged as reliable

statistical modeling approaches. So far, statistical methods are the most appropriate for
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landslide susceptibility assessments at the regional and medium scale levels (Gunther et
al. 2013). These approaches are highly favored because of their objectivity and efficiency
in creating landslide predictive models. One core principle and guiding theory
surrounding landslide mapping using the above methods is the assumption that future
landslide occurrence stands in relation to the present ones (Carrara et al. 1994). This
means that slope failure in the future will be more likely to occur under the same
conditions that led to the past and present instability (Clerici et al. 2006). Hence, a
statistical combination of parameters or factors that led to slope failure and landslides in
the past can lead to quantitative predictions of landslides in areas currently free of
landslides (Gunther et al. 2013).

Generally, landslide criteria factors are known and can be categorized into the
following major groups: geological, topographical, geotechnical and environmental
(Suzen and Kaya 2011). In most cases, some of these factors are statistically significant
in the model while others are not. A causal factor can be relevant to a multivariate
susceptibility analysis in one location and not in another adjacent area. This variance can
be due to the differences in scale and spatial resolution of datasets between the two sites.
Spatial resolutions are more readily confronted than are temporal resolutions for
examining issues germane to geomorphology (Walsh and Butler 1998). Over large areas,
the spatial resolution of data is usually lower than over smaller areas. The differences in
scale and spatial resolution of datasets is significant in landslide and hazard modeling
(Bayr and Dommenget 2014). Small-scale analyses are most useful when they produce
high spatial resolution models, but the datasets are rarely available if they are available at

all, their formats are sometimes inconsistent across all necessary landscape attributes.
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This inconsistency in dataset formats introduces unwanted errors to the modeling process.

The influence of each variable on the occurrence of a landslide is evaluated
independently and variables combined into an equation (Guzzetti et al. 1999; Suzen and
Doyuran 2004; Aterberg and Cheng 2002; Thiart et al. 2003 and Conoscenti et al. 2008).
Among the multivariate statistical methods, logistic regression has the advantage of less
rigorous data distribution requirements and can handle a variety of datasets such as
continuous, categorical and binary (Lee and Min 2001; Lulseged and Hiromitsu 2004;
Yesilnacar and Topal 2005; Nefeslioglu 2008). A detailed synthesis of these statistical
approaches, their potential application and limitations have been substantially elaborated
in the following scholarly literature over the years (Brabb et al. 1972; Carrara et al. 1977,
Carrara et al. 1990; Greco et al. 2010). The above-discussed approaches are inefficient at
modeling landslide susceptibility at small scales. This inefficiency is because the
landslide conditioning factors require a considerable number of high-resolution datasets,
which is usually not available for large areas in most parts of the world.

Recently, new soft computing methods have been applied to landslide suitability
assessment studies, using evidential belief function models (Althuwaynee et al. 2012).
These soft computing approaches have been reviewed in many articles in recent years
(Alexander 2008; VanWesten et al. 2008). For in-depth Knowledge of the leading soft
computing methods, see the following articles on artificial neural network model (Lee et
al. 2004; Pradhan and Lee 2007, 2009, 2010), neuro-fuzzy high-tech mapping techniques
(Kanungo et al. 2005; Lee et al. 2009; Pradhan et al. 2010d; Vahidnia et al. 2010; Sezer
et al. 2011; Oh and Pradhan 2011), support vector machine (SVM) (Yao et al. 2008;

Yilmaz 2010) , decision-tree (Nefeslioglu et al. 2010) and finally fuzzy logic (Ercanoglu
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and Gokceoglu 2002, 2004; Lee 2007; Pradhan and Lee 2009; Pradhan 2011; Gemitzi et
al. 2011; Akgun et al. 2012; Osna et al. 2014; Alharbi et al. 2014; Chalkias et al. 2014).

Regional landslide susceptibility assessment methods encounter statistical
problems due to the complexity of the landscape under investigation. The analytical
approaches have the problem of terrain and data variability introducing in some cases of
uncertainties to the analysis. Therefore, it is imperative to adopt a strategy that minimizes
these uncertainties to provide a realistic model. Recent advancements in geographic
information science (GIS) has improved the decision-making process significantly and
revolutionized geospatial analytical processes using sophisticated approaches like multi-
criterial probability distribution function (MCPDF) which can conduct an effective and
efficient analysis and can be used to guide decisions of urban planners (Feizizadeh and
Blaschke 2001). MCPDF is an intelligent approach used to convert spatial and non-
spatial data into information that can together with expert knowledge be used to assist in
making critical environmental and settlement decisions (Sumathi et al. 2008; Chen et al.
2010; Gbanie et al. 2013). It has the capability of handling different aspects of various
elements of a complex decision-making problem such as organizing multiple aspects into
hierarchical structures and studying the relationship between the individual components
of the problem.

The fuzzy multi-criteria probability distribution function techniques involve a
set of quantifiable spatial criteria: First data standardization in which the values of the
datasets being analyzed are re-scaled between (0-1), where the mean is (0), and the
standard deviation is (1). Secondly determination of relative importance of criteria. Here

the individual criteria datasets are assigned weights based on their respective influence on
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landslides and slope instability. Thirdly Geospatial data integration. Here, weighted
criteria values are aggregation or combined resulting in an overall landslide evaluation
score for each spatial location in the study site.

The above techniques make multiple-criteria decision evaluation approach
attractive for incorporation into a GIS (Malczewski 2004; Chakhar and Mousseau 2008;
Chen and Paydar 2012). When it comes to landslide susceptibility models, multi-criteria
decision analysis encounters the problem of non - linearity. This problem of uncertainty
or (non-linearity) can be addressed by introducing the concept of fuzzy memberships
(FM) or fuzzy measures (FM). Fuzzy measures are border concepts that include fuzzy
set memberships. The standardization factor of MCPDF comes from a class of fuzzy
measures and more specifically, instances of fuzzy set membership. It can be argued that
this perspective provide a strong theoretical base for the standardization of landslide
controlling factors and their subsequent aggregation (Jiang and Eastman 2000;
Marjanovic et al. 2011). Fuzzy memberships (FM) can be integrated into multi-criteria
probability distribution function (MCPDF) to deal with the problems of uncertainty and
improve the accuracy of model results. The uniqueness of the (MCPDF) approach as
compared to other statistical approaches such as logistic regression is that it uses the
location of known objects such as landslides and expert knowledge base (EKB) to
estimate weights or coefficients (Pradhan 2011; Pourghasemi et al. 2012). The
combination of (FM) and (MCPDF) permits greater flexibility in the assessment of
outputs and decision making. A fuzzy multi-criteria probability distribution function
(FMCPDF) still retains all the uniqueness and advantages of the (MCDA) specifically

the way this approach handles multiple criteria and combination of qualitative and
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quantitative data. It creates a hierarchical structure making decomposition and pairwise
comparison easy, hence generating priority vectors and reducing inconsistencies. This
approach somewhat reflects human thought in that it processes and uses appropriate
information as well as uncertainty to create maps that support decision making
(Kahraman et al. 2004). These capabilities make (FMCPDF) a proper and efficient tool
for creating landslide susceptibility and subsequently hazard risk maps that can assist in
making complex decisions in environmental management systems.

The models created in this study exploited information obtained from landslide
inventory maps created for the study area indicating areas where landslides have occurred
in the past. Such information was used to predict possible areas where landslides may
occur in the future. Finally, considering that landslide susceptibility and hazard
assessments models using a combination of fuzzy multi-criteria decision analysis
(FMCDA) and a probability distribution function (PDF) at a parcel level scale has not yet

been created for the study area, this contribution provides originality to this study.

3.2. THEORETICAL FRAMEWORK

This research hinges on a variety of integrated quantitative methods. Therefore,
it is essential to establish a framework to describe the progression of methods and the
subsequent integration of each technique’s results. A successful landslide inventory
analysis generally depends on a set of widely accepted assumptions that act as guiding
principles for the theoretical framework of the analysis (Radbruch-Hall and Varnes 1976;
Varnes et al. 1984; Carrara et al. 1991; Hutchinson and Chandler 1991; Hutchinson 1995;
Dikau et al. 1996; Turner and Schuster 1996; Guzzetti et al. 1999). The assumptions

herein include:
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)

1)

1)

When landslides occur, they leave unique discernable features on the surface
of origin showing the zone of rupture that can be recognized, classified and
cataloged as inventory data in the field or through spatial analysis of high-
resolution aerial imageries. In the field, most landslides can be identified as
exposure scars, vegetation, and canopy break points. These signs are
morphological as they indicate changes in the form, position, and appearance
of a topographical surface.

The nature, magnitude, trigger mechanism and type of landslide (fall, flow,
slide, complex and compound) usually dictates the morphological signature
and rate of movement of slope failure (Varnes 1978; Cruden and Varnes
1996). In general, under the same morphological and physical condition, a
landslide will have a somewhat similar and predictable morphological
behavior. From the morphological signature of a landslide, the areal extent of
failure, as well as impact and movement type can be determined. The physical
characteristic and appearance of a landslide scar in the field can shed light on
its age, the degree of activity and depth of failure. However, caution should be
taken when classifying landslides through visual interpretations of field
characteristics of exposure scars, because landslides especially, complex falls
can be a combination of different morphological landslide failure types and
may have multiple signatures.

Landslides are a result of geophysical processes triggered by mechanical and
physical processes that can be empirical, statistically and deterministically

inferred, calculated and modeled (Aleotti and Chowdhury 1999; Guzzetti et al.
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1999).

IV)  Landslides are governed by the principle of uniformitarianism, a principle that
states ‘the past and the present are keys to the future’. This principle can be
interpreted as landslides in the future will occur under the same conditions in
which they occurred in the past and present or slope failures in the future will
be more likely to occur under the same conditions which led to the past and
present instability. Mapping of current slope failures is imperative to
comprehend the spatial distribution and arrangement of historic landslides.
Sophisticated landslide inventory maps containing historical landslide datasets
can provide crucial information that can be used to forecast zones of future
landslide occurrence (Carrara et al. 1991; Hutchinson 1995; Aleotti and
Chowdhury 1999; Guzzetti et al. 1999).

The above assumptions are crucial to achieving a successful model with a high
predictive capacity and accuracy. Failure to consider the above assumptions can
undoubtedly limit the applicability of an inventory map and their derivative products such
as landslide susceptibility and hazard exposure quantification regardless of the approach
employed. The assumptions outlined above are generally agreed upon by landslide
scholars. However, there is still some disagreement amongst geoscientist as to the degree
of influence between each assumption and how best to incorporate them into modeling
landslide susceptibility (Guzzetti et al. 1999). For this research, all the above-stated

interpretations are assumed to be true.
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3.3. CONCEPTUAL FRAMEWORK

The landslide susceptibility or geophysical risk model was accomplished in five
steps; (I) the preparation of landslide inventory location data collected from visual
analysis of aerial photographs. (II) the identification of landslide conditioning or
causative factors and determination of the frequency of landslide occurrence for each
class of the conditioning factors. (III) Fuzzification (Standardization) of conditioning
factors into fuzzy membership groups. (IV) Production of landslide factor fuzzy maps or
weighted index maps within a GIS and Finally, (V) validation of landslide susceptibility
index maps by conducting statistical analysis such as the receiver operating characteristic
curves (ROC) and calculating the area under the curve (AUC). A schematic flowchart of
the conceptual framework for the landslide susceptibility modeling process is illustrated
in (Figure 9) below.

The primary criteria factors for this landslide susceptibility analysis included
slope, aspect, topographic elevation, curvature, terrain ruggedness, land use land cover
(LULC), precipitation, fires, proximity to roads, proximity to fault lines and soils.
Landslide location points within the study area were identified and digitized from a 2016
I-meter resolution aerial imagery downloaded from the National Agriculture Imagery
Program (NAIP). Each criteria factor was then processed and converted into a raster data
layer within a geographic information system (GIS) and projected into the appropriate
coordinate system, in this case, NAD 1985-UTM-Zone-11N. A total of 599 landslide
points were identified through surface scars and soil debris flow directions and
subsequently digitized into vector polygons. The landslide sample data was randomly

split into two groups using a sample randomization subset function in ArcMap. One
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group of 499 landslides were used to model the spatial structure and produce a landslide
susceptibility model (training data) and the second group of 150 landslides was used to
compare and validate the landslide susceptibility model (validation data).

To assess the degree to which a location in the study area is susceptible to
landslides using data from multiple conditioning factors, a multi-criteria evaluation
approach is employed which involves the aggregation of weighted criteria factors. It is
important to note that this analysis operates under the underlying assumptions that
landslides occur because of the influence of causative and triggering factors as backed by
geomorphological literature and that landslides will happen in the future under similar
conditions as in the past (Carrara et al. 1991; Hutchinson 1995; Aleotti and Chowdhury
1999; Guzzetti et al. 1999). Therefore, landslides occurrence within the study area will
occur under conditions that can be characterized by the spatial distribution of criteria
factor datasets, which are considered as predisposing or conditioning factors. In order to
reflect reality in the output of the model and to make the analysis more objective, fuzzy
membership values, or weights, were calculated based on the frequency of landslide
occurrence on all raster class intervals of the landslide related criteria factors and expert
opinion as per the expert knowledge laid down by the United States Department of
Agriculture (USDA) as well as the Natural Resources Conservation Service (NRCS) in

regards to vulnerability of soil types to landslides.
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Figure 9. Conceptual Framework, Flowchart for the Geophysical Risk Model.

3.4. DATA AND ANALYSIS

A concise but extensive inventory of the causative factors is essential for

improving our understanding of landslide susceptibility and hazards. In this study,

extensive aerial photo interpretation and GIS techniques were used to characterize the

landslides and construct thematic data layers. Due to the absence of prior landslide

location data for the study area, a total of 599 landslides were mapped within the study
area to assemble a database of landslides. Landslide points and exposure scarps were

digitized into vector polygons and used to analyze the relationships between landslide

occurrence and landslide causative or conditioning factors. These landslides were

detected from aerial photographs by visually interpreting breaks in the forest canopy,

bare soil and typical geomorphic characteristics of landslide scars. Using the full
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movement of the landslides can introduce noise to the data and therefore result in
inaccurate susceptibility maps. Care must be taken to accurately delineate the rupture
zone to establish a statistical relationship with causal factors.

To precisely identify the position of landslide scars, a high-resolution color four
band Im X Im cell size resolution Naip aerial imagery of the study area was used to
determine landslide scars, which were subsequently digitized into vector polygons. The
input data comprises of several layers of map information outlined in (Table 5). Slope,
curvature, elevation, terrain roughness and aspect were calculated from a high pixel cell
size resolution 9 m x 9 m Digital Elevation Model (DEM). The lithology data were
acquired from the United States Department of Agricultural (USDA) Web Soil Survey
and roads and fault lines were extracted from the United State Geological Survey
(USGS). After processing all datasets, the vectors layers were converted into a cell-based
database, and the whole study area consisted of over 64,710,274 pixels with each pixel
corresponding to a 9 m x 9 m cell size on the ground. The datasets were converted into
one unified coordinate system NAD 1983 UTM Zone 11 using ArcGIS 10.4. Given that
landslides are strongly related to environmental factors, multi-source spatial data
collection and processing have proven crucial to assessing landslide susceptibility
(Ruiqing et al. 2013). The landslide causative datasets were grouped into three primary
categories namely; topographic, geologic and seismic datasets which can further be
subdivided into other fundamental factors as shown in the table below (see Table 5). The
essential factors are usually the environmental factors and include elevation, slope,

aspect, curvature proximity to the road, proximity to fault lithology and slope roughness.
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Table 5. Datasets

1/3 arc-second (10m)
1/3 arc-second (10m)
1/3 arc-second (10m)

Spatial database Data Scale Data Types
Landslide Data Landslide location polygon
coverage
Topographic Data Sets 1/3 arc-second (10m) Slope
1/3 arc-second (10m) Slope Aspect

Slope Elevation

Slope Curvature

Terrain Roughness

Geologic Data Sets

1:12,000 to 1: 63,360

Lithology (Soils)

Seismic Data Sets 1:100,000 Proximity to Faults
Lineation Datasets 1:100,000 Proximity to Roads
Hydrological Data 1:100,000 Precipitation

Surface cover Datasets 1:100,000 Land use land cover
Cal Fire 1:1,000,000 Wildfires

3.4.1. Soil Map Unit Symbols and Soil Descriptions

The lithology layer is one of the most vital landslide conditioning factors in this
study area. The study area is covered by 89 different soil types with varying codes of soil

and vulnerabilities to landslides. Table 6 illustrates the various lithological compositions,

characteristics and their description.

Table 6. Soil Map Unit Symbols and Soil Descriptions

Soil Group

Soil Symbol

Soil Component Name/ Slope percentage

Group 1

GxG/BdG/CaF/LaF/SnG

Gullied land, Badland, Calleguas (50%),
Landslide, Sedimentary rock land.
- Very Unstable Soils with 30 — 50% slope
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Table 6. Continued.

Soil Group Soil Symbol Soil Component Name/ Slope percentage
Group 2 MaF/HuD2/Cc/OsE2/OsD2 | Malibu (85%), Huerhuero (85%),
Camarillo (85%),
Ojai (85%), Unstable soils with 30 — 50%
slope

Group 3 NaD2/DbD/LeE2/SoE2/Se | Nacimiento (85%), Diablo (85%), Linne
F/SeE/DbE/ScE2/HuC2/S | (85%), Sespe (85%), Santa Lucia (85%),
wC Diablo (85%), San Benito (85%),
LoF/GaC/RcE2/LeD2/ChD | Huerhuero (85%), Sorrento (85%), Los
2/LoD2/SzD/LoE2/ Osos (85%), Garretson (85%), Rincon
AcC/CyC/GeB/MoC/HuE3 | (85%)

/McC/SoF/GbC/PcC/CnB/ | Chesterton (85%), Sorrento Variant (85%),
LkF/T Anacapa (85%), Cropley (85%), Mocho
(85%),
Huerhuero (70%), Mets (85%), Pico (85%),
Coastal Beaches (95%), Lodo (70%)
- Moderately unstable soils with 9 — 30%
slope eroded
Group 4 Rw/XA/W/DA Sandy alluvial land, Xerorthents (100%),
Water (100%), Dam (100%)

Group 5 ScG/ScF2/MaE2/LeF2/Mh | San Benito (85%), Malibu (85%), Linne
F/DbF/NaE2/CfD2/AuD/A | (85%), Millsholm (45%), Diablo (85%),
uC2/ScD2/ZmC/SvF2/ShF | Nacimiento (85%),
2/SsE2 Castaic (45%), Azule (85%), Zamora

(85%),
Soper (85%), Saugus (85%),

Group 6 SoG/CbF2/CfF2/NaF/CfE/ | Sespe (85%), Calleguas (50%), Castaic
MmF2/PxG/NaG/AsF (45%), Millsholm (45%), Sandy alluvium

land (5%),
Nacimiento (85%), Arnolds (85%)

3.4.2. Landslide Identification and Recognition

Landslides can be identified and mapped using a variety of techniques and tools,

including but not limited to the following: geomorphologyogical field mapping
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(Brunsden 1999), interpretation of vertical or oblique stereoscopic high-resolution aerial
photographs (air photo interpretation, API) (Turner and Schuster 1996), surface and sub-
surface monitoring geographic terrains (Petley 1984; Franklin 1984) and the use of
innovative remote sensing technologies such as the interpretation of high-resolution
multispectral images (Zinck et al. 2001; Cheng et al. 2004).

Over the years, a more traditional approach to the visual interpretation of
stereoscopic aerial photographs has been at the forefront of identification and mapping of
landslides (Turner and Schuster 1996). National and local governments, geological
surveyors, environmental protection agencies, research organizations and private
companies have long obtained stereoscopic aerial photographs for a variety of purposes
and across a wide range of landscapes and have made the datasets available for public
use. Because of such convenience, aerial photograph visual interpretation techniques
have long been the most utilized technique to recognize, identify, and collect landslide
training datasets as well as map landslide inventory data for the majority of landslide

assessment research and certainly for this analysis.

3.4.3. Mapping of Landslide Inventory Datasets

A crucial aspect of any landslide susceptibility assessment is the mapping of
existing landslides. The presence of prior landslide data is imperative for creating the
statistical relationship between landslide distribution and the conditioning factors.
Considering that detail or extensive data of previous landslides is absent for the area of
study, an approximate sum of 599 landslide scars or exposure surfaces were digitized
through visual interpretation using high-resolution aerial imagery in a GIS environment

to serve as landslide training and validation point data. From the visual analysis of aerial
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imagery of the study area, most of the landslides or slope failures identified were related
to rotational slides, debris, and earthflow in accordance with the forms of slope failure
types suggested by Varnes (1978) (Figure 10). From a collected sample of approximately
599 landslide locations acquired from the aerial imagery, 499 of the mapped landslides
were randomly selected for use as susceptibility model training datasets while the

remaining 150 landslides, were used to verify and validate the accuracy and predictability

of the final landslide susceptibility model.

Legend
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Figure 10. Hill Shaded Map Indicating Landslide Locations and Landslide Examples
Visually Interpreted and Identified on a High-Resolution Aerial Imagery.

3.4.4. Thematic Data Layers of Criteria Factors

The elements that affect slope stability are numerous and interact in complex and
often subtle ways. The selection of conditioning factors and preparation of corresponding
thematic data layers is a crucial component of any landslide susceptibility assessment.
According to Wu and Sidle (1995), these factors can be grouped into intrinsic factors

which actively contribute to landslides (e.g., topography, geology, and hydrology) and
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extrinsic factors that serve as landslide triggers such as precipitation, earthquakes, and
landscape modification (e.g., road construction, urbanization, and mining). In the case of
Southern California, an obvious trigger mechanism of landslides is precipitation.
Precipitation frequently causes landslides and mudslides in this area by saturating the
colluvium bedrock interface. Precipitation within the study area is generated by
atmospheric moisture emerging from the southwest (offshore to onshore). The steep
mountains around the coastal landscape contribute to significant orographic rainfall in the
region. Rainfall increases as elevation increase towards the south and west facing slopes
(Beighey et al. 2003). On the lee side of the mountain (north and east facing slopes)
precipitation decreases. It is obvious that precipitation is one of the dominant landslide
triggering factors and is responsible for most of the slides that occur in the study area.
The instability governing factors used in this study included; geology, slope angle, slope
aspect, curvature, elevation, lithology, terrain roughness, proximity to roads,
Precipitation, wildfires, and proximity to fault lines. The selection of these factors and
their corresponding classes were based on observation of landslide occurrence frequency

and associated terrain factors.

3.4.4.1. Slope Angle

A principal landslide causative factor is slope degree (Ercanoglu and Gokceoglu 2001;
Lee and Min 2001 and Porghasemi et al. 2012). Steeper slopes have direct influence
because of their higher shear forces (Dai et al. 2001; Neifeslioglu et al. 2008). Because of
its relationship with landslides, slope angle is a crucial factor in landslide susceptibility
assessment as such it is frequently used in creating landslide susceptibility maps (Clerici

et al. 2002; Lee et al. 2004 and Lee 2005). In this study, a slope degree map was
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generated from a high-resolution Digital Elevation Model (DEM), and in accordance with
the conditions and configurations of landslide occurrence, the study area was divided into
5 slope categories: (0° — 7°), (8°—17°), (18°—26°), (27° — 35°) and (36° — 68°) Shown on
(Figure 11a). In this study, substantial attention was given to factors such as slope and
lithology. The configuration and steepness of slope in conjunction with lithology were

most significant for the susceptibility model.

{A) Slope Angle
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Figure 11A. Slope Angle

3.4.4.2. Slope Aspect

Slope aspect as a landslide conditioning factor has been considered in several
other studies (Ercanoglu and Gokceoglu 2004; Lee et al. 2004; Yalcin 2005 and
Pourghasemi et al. 2012). According to (Ercanoglu et al. 2001), in the early 1990’s there
were debates about the relationship between slope aspect and mass movement as there
was no general agreement on such relationship (Carrara et al. 1991). Some scholars in
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their research considered aspect as a factor (Carrara et al. 1991; Maharaj 1993;
Gokceoglu and Aksoy 1996 and Nagarajan et al. 2000) while other scholars did not
(Uromeihy and Mahdavifar 2000). Slope aspect gravely affects hydrological processes
such as evapotranspiration, weathering, and vegetation growth particularly in arid
environments and areas with weak soil types (Sidle and Ochiai 2006). Meteorological
events and characteristics such as rainfall and rain direction, amount of sunshine
respectively have a tremendous impact on the propensity of landslides. Slopes that
receive intense amounts of rainfall reach soil saturation faster. During this process, the
pore water pressure of the slope forming materials change, resulting in slope failure. The
slope aspect for the study area was divided into ten categories with each aspect falling
with a specific range: Flat (-1), North (0-22.5), Northeast (22.5-67.5), East (67.5-112.5),
Southeast (112.5-157.5), South (157.5-202.5), Southwest (202.5-247.5), West (247.5-

292.5), Northwest (292.5-337.5), and North (337.5-360) (Figure 11b).

(B) Slope Aspect
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Figure 11B. Slope Aspect
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3.4.4.3. Slope Curvature

The curvature is a parameter commonly used in landslide susceptibility modeling
that needs further investigation (Ohlmacher 2007). It is the curvature of a hillside in a
horizontal plane. Hillsides can be divided into concave outward plan curvatures called
hollows and convex outward plan curvatures called noses. The curvature value can be
evaluated by calculating the reciprocal value of the radius of curvature of that direction
(Nefeslioglu et al. 2008). When curvature values of broad curves are small, the tights

ones have higher values.

(C) Slope Curvature
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Figure 11C. Slope Curvature
Plan curvature contributes to slope failure by influencing erosion processes such
as convergence and divergence of water during downhill flow (Ercanoglu and Gokceoglu

2002 and Oh and Pradham 2011). Because of its influence on erosion processes, it was
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considered as one of the conditioning factors to landslide hazards or slope failure

susceptibility. A thematic map of plan curvature is shown on (Figure 11c).

3.4.4.4. Lithology (Soils)

Sedimentary rocks of Cretaceous-era including shale, mudstone and sandstone,
Tertiary igneous rocks batholiths of granodiorite and multiple deposits of the Quaternary
geological epoch such as alluvium, colluvium, clays and mixed deposits include the
principal lithologies of the study area. Colluvium occurs on the gentle slopes, bedrocks
along some of the steep ridges and fluvial deposits occupy the valleys. Lithology is a
critical component in landslide susceptibility and slope failure. Under the influence of
rainfall and seismic activities, various lithological units within the study area units show
substantial differences in landslide susceptibility (Dai et al. 2001; Yalcin 2005, and Song
et al. 2012). A lithological map of the study area was obtained from the United States
Department of Agricultural (USDA), Natural Resource Conservation Service (Soil
Survey) and designated into specific types of soil using the USDA textural classification
regarding unique characteristics including texture, cohesion, slope and erosion class.
Multiple types of lithological formations cover the area. The geological setting of the
lithology of the study area thematic map is shown in (Figure 11d), and the characteristics

and properties are shown on (Table 6).
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Figure 11D. Lithology (Soils)

3.4.4.5. Slope Elevation

The elevation is significant in landslide susceptibility modeling because weather
and climate vary at different elevations. This variation can cause differences in soil
formation, soil types, and vegetation (Aniya 1885). Elevation controls multiple geologic
and geomorphological processes such as freeze and thaw at high altitudes increase
weathering of rock while lower elevations turn to accumulate thicker colluvium and other
deposits (Dai and Lee 2001; Ayalew et al. 2005 and Pourghasemi 2008). Elevation-
derived from the high-resolution DEM was classified into six categories: (-0.6 - 59.27),
(59.28 - 160.78), (160.79 - 249.28), (249.29 - 340.38), (340.39 - 447.1) and (447.11 -
663.13) in meters. An elevation thematic map was derived from a 9m x9m resolution

DEM as shown in (Figure 11e)
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Figure 11E. Slope Elevation

3.4.4.6. Terrain Ruggedness

(E) Slope Elevation
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Surface roughness reflects geophysical parameters of a landform such as the

distribution of crenulations and degree of erosivity. A considerable number of methods

have been developed to calculate surface roughness based on different parameters

(Grohman et al. 2011). For this study, terrain roughness was calculated on bases of

surface area ratio because it measures topographic roughness and convolutedness. It was

calculated using the equation below;

Where:

Equation (1)

A is the surface area of region and Ag is planimetric area (Jennes 2002).

The analysis showed that high roughness slopes were more susceptible to slope failure
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because the changes in slope gradient favored infiltration of surface runoff water into the

soils, thus increasing instability. The Terrain roughness thematic map is shown on

(Figure 111).
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Figure 11F. Terrain Ruggedness
3.4.4.7. Proximity to Roads

Road networks constructed along the sides of slopes in mountainous areas can
cause a decrease in the load on both the topography and on the toe of the slope. The
steepening of a slope due to excavation, additional load, change in hydrology and
drainage may affect stress state and slope equilibrium. For this reason, road proximity
can be considered as a parameter for the generation of a landslide susceptibility model
(Yacin 2008). During the analysis, it was observed that many landslides scares were
found in close proximity to road networks. Subsequently, a 150 meters Euclidean

distance buffer composed of two categories was created to determine the frequency of
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landslide occurrence to road network proximity classes. The Euclidean distance was
divided into two categories: (0 — 49) and (50 — 99) in meters with a frequency of

landslides scares appearing closest to the sloped walls of the road network as shown in

(Figure 11g).
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Figure 11G. Roads

3.4.4.8. Proximity to Fault-Lines

Distance to fault lines is an obvious causal factor for landslide manifestation. In
most cases, fault lines act as triggers to landslides in already unstable slopes.
Topographic movements along fault lines result in the weakening of rocks and compact
soil triggering landslide incidents (Foumelis et al. 2004). To designate the influence of
fault lines on slope stability in the study area, a 150-meter Euclidean distance buffer
divided into two classes (0 —49) and (49.1 - 98.9). The fault lines data for this study was

acquired from exposed and unexposed fault lines from the United States Geological
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Survey map service. A considerable number of landslides were found in the area with the
closest proximity to fault lines and decreased as we move further away from the fault
lines. This is because of the selective erosive nature of surface flow along fault lines
planes which promote a weakening of slopes. A Faultline proximity thematic model is

shown on (Figure 11h).
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Figure 11H. Fault-Lines
3.4.4.9. Wildfires

Wildfires can have profound effects on the hydrologic response of watersheds.
Consumption of the rainfall-intercepting canopy, soil-mantling litter, intensive drying of
the soil, combustion of soil-binding organic matter, and the enhancement of water-
repellent soils can change the infiltration characteristics and erodibility of soil, leading to

decreased rainfall infiltration and exacerbating overland flow, runoff in channels and

51



movement of soil (Wondzell and King 2003). Removal of obstructions by wildfires
through consumption of vegetation can also enhance the erosive power of overland, flow
resulting in accelerated erosion of material from hillslope. The wildfire thematic map is

shown below (Figure 111).
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Figure 111. Fires
3.4.4.10. Land Use and Land Cover

Land use and land cover play a significant role in influencing landslides. A
considerable number of landslides occurred on slopes with sparse vegetation or bare
surfaces as compared to other urban or developed and mixed vegetation surfaces. Rapid
changes in land use and land cover, as well as land degradation processes, are precursors
to mass movement events (Alcantara-Ayala 2006). The land use land cover thematic map

is shown below (Figure 11;).
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Figure 11J. Land Use and Land Cover

In this study, landcover classes were extracted from a Landsat ETM image using
object-based classification approach. The segmentation function and classification
method were performed using the image analysis software eCognition, which has been
determined to produce better landcover classes with parameters at different data
resolutions. The object-oriented segmentation not only segregates pixel groups using
their spectral characteristics but can also distinguish various classes in the images based
on other attributes such as shape and texture. A Landsat imagery for the study area was
classified into a variety of different land cover types and classes. Identified land cover
types that were reclassified included the following; open water, Developed Open space,
Barren land, Deciduous forest, Evergreen forest, Mixed forest, Shrub/Scrub, Herbaceous,
Hay/Pasture, Cultivated Crops, Woody Wetlands, Emergent Herbaceous Wetlands,

sparse forest, settlements. A segmentation technique is used to build up a hierarchical
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network of image objects. This spectral image analysis software allows the advanced
automatic image analysis, relying on image objects by using tools for object-oriented
classification including details such as contextual and shape information. The spectral
image analysis software differs from other pixel-based classification techniques in that it
does not classify single pixels, but rather image objects, which are extracted in a previous
image segmentation step. This spectral analysis technique makes a better argument for
analyzing groups of spectral pixel signatures as objects instead of using the conventional
pixel-based classification unit. This will reduce the local spectral variation caused by

crown textures, gaps, and shade.

3.4.4.11. Precipitation

Spatial patterns of precipitation (Rainfall) are always associated with landslides
initiation and occurrence (Glade 1998). High precipitation rates always bring about an
increased risk of landslide occurrence. Excessive precipitation throughout Southern
California, especially in October, usually is a source of concern for local governments
and residents living in landslide susceptible regions. Precipitation is a significant trigger
or causative agent of landslides and earth flows. This is because rainfall has the effect of
changing the hydrodynamic state and characteristics of soils. When precipitation occurs,
and the soil becomes saturated, the adhesive force that binds soil particles together is lost
or weakened. As a result, any changes in slope angle or tremors can initiate landslides.
Also, the absence of precipitation can leave the soil particles dry and lose hence
susceptible to landslides Prior research on rainfall data in Southern California indicated

that when monthly precipitation exceeds about 150 percent of the average, the occurrence
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of landslides becomes more likely throughout the coastline region. The thematic map of

rainfall is illustrated below (Figure 11k).
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Figure 11K. Precipitation

Determining the suitable driving factors that affect landslides is crucial in
analyzing slope instability and failures. Any such analysis needs a spatial database of
both spatial and temporal datasets. The above criteria factors and their thematic maps

below represents such a spatial database that has been designed for this study.

3.5. METHODOLOGY
3.5.1. Geophysical Landslide Susceptibility Modeling
A multi-criteria analysis (MCA) functions by selectively choosing and combining

several criteria ensuring continuity and consistency to generate a complex evaluation
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index. The functionality of the criteria is primarily controlled by the influence of criteria
components such as; factors (which can decrease or increase suitability) and constraints
(which provides exclusion and limitation of factors). The most prominent advantages of
the multi-criteria analysis (MCA) approach is its ability to maneuver, manage and
incorporate both qualitative and quantitative data types (Feizizadeh et al. 2014). One such
approach is a fuzzy set theory, introduced by Zadeh (1965). This method has been widely
employed in susceptibility analysis over the years especially for modeling complex
systems that are difficult to define in precise values. The main strength of this approach is
its ability to deal with vague, imprecise, and ambiguous data that most often contains
some uncertainty (Balezentiene et al. 2013). For a fuzzy set with two objects (A, Z), if Z
denotes a space of objects, then the fuzzy set (A) in (Z) is a set of ordered pairs expressed
mathematically as;

A A{Z,MF (2)}, Z €EZ oot Equation (2)

- Where the membership function MF (z) is the set A’s degree of membership to Z.

Fuzzy logic considers spatial objects on a map as members of a set. In classical
set theory, an object has a membership of 1 if it belongs to a set and 0 if it does not.
While in fuzzy set theory, membership can take on any value between 1 and 0 reflecting
the degree of certainty of membership (Zadeh 1965). This concept is important to the
categorization of data and for decision making because it produces results with specific
degrees of accuracy. Regarding the relevance and applicability of fuzzy measures in
decision-making processes, any decision takes into consideration two sets (suitability and
nonsuitability). To arrive at an appropriate conclusion, the degree to which a decision

belongs to a set ‘suitable’ is determined from the assessment of suitability range. In this
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case, suitability is expressed in varying degrees of fuzzy membership with respect to
some attribute of interest. When geospatial raster data types are involved, the attributes of
interest are analyzed over discrete raster class intervals, and membership functions
expressed as tables or graphs of raster class intervals against membership functions
(Pradhan 2011). A fuzzy logic approach is attractive because it is simple to understand
and implement. It can be used with data of various scales, and the assignment of fuzzy
membership weights is entirely depended on the frequency of landslide occurrence and
general interaction of the evidence collected for each site as well as field specialist
opinion, (Ayalew et al. 2004; Kritikos and Davies 2011). Its ability to accommodate and
accurately analyze complex combinations of weighted maps within a GIS has made this
approach increasingly popular among geospatial analyst interested in Landslide
suitability modeling.

In a multi-criteria decision analysis (MCDA) process, similar to a multicriteria
analysis (MCA) and the fuzzy set theory, a data series reflecting different objectives is
scrutinized with the aim of extracting alternative possibilities from the data sets given
various criteria. A multi-criteria decision analysis, functions by selectively choosing and
combining several criteria ensuring continuity and consistency to generate a complex
evaluation index. The functionality of the criteria is primarily controlled by the influence
of criteria components such as criteria factors which impacts (decrease or increase of
suitability) and constraints (which provides exclusion and limitation of alternatives of
factors under study).

For this study, a series of qualitative (expert-derived datasets) and quantitative

datasets (appreciation of observed relationships between raster class intervals and
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frequency of landslide occurrence) were employed. The spatial relationship between each
landslide criteria factor, the frequency of landslide occurrence for raster each class

interval and the assigned fuzzy membership values are illustrated in Table 7 below.

Table 7. The Spatial Relationship between each Landslide Related Criteria Factor and
Landslide Frequency and Fuzzy Membership Values.

Criteria Class No. of No. of Attribute | FM Value of
pixels in Landslides | Ranking Classes
Class
Slope (°) 0-71 30911108 12 0 0.001
7.2-16.2 26694097 30 25 0.25
16.3 -24.9 29297260 75 50 0.5
25-33.7 24891363 114 78 0.78
33.8- 859 12684327 90 100 1
Aspect Flat (-1) 11614979 0 1 0.001
N (0-22) 10959990 85 68 0.68
NE (22-67) 10384964 34 30 0.30
E (67-112.) 12344281 14 1 0.01
SE (112-157) 16045099 96 75 0.75
S (157-202) 15870007 245 100 1
SW (202-247) 13592870 82 50 0.50
W (247-292) 12577240 65 50 0.25
NW (292-337) 12417460 12 1 0.01
N (337- 360) 13756459 7 1 0.01
Curvature Concave (-37-1) 11196212 246 100 1
Convex (2 —36) 12716565 77 50 0.5
Elevation (m) -10.8 - 231 31062435 23 25 0.25
231.1-526.2 29576304 326 100 1
526.3 - 884.5 21114979 87 78 0.78
884.6 - 1242.9 17382206 12 1 0.01
1243 - 1622.3 16277034 6 1 0.01
1622.4- 2686 6155641 2 1 0.01
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Table 7. Continued

Criteria Class No. of No. of Attribute | FM Value of
pixels in Landslides Ranking Classes
Class
Terrain 0-0.341 7770975 36 25 0.25
Roughness 0.342 - 0.447 49114223 78 50 0.50
0.448 - 0.525 30356574 152 78 0.78
0.621 -1 9184188 186 100 1
Precipitation 74-173 4179 46 25 0.25
17.4-23 2017 121 100 1
23.1-29.7 3303 94 78 0.78
29.8 -38.3 5399 58 50 0.50
38.4-54.3 4179 23 1 0.00001
Soils Group 1 354070 173 100 1
Group 2 57733 126 90 0.9
Group 3 511086 69 78 0.78
Group 4 22202 32 50 0.5
Group 5 414130 28 30 0.3
Group 6 554097 17 0 0
Road proximity 0-49 13783271 78 100 1
50-99 12344069 52 78 0.78
Fault-line 0-49 2768581 36 50 0.50
Proximity 50-99 2859357 14 25 0.25
Wildfires 1 0 0 0 0.0001
1.01 -2 19855515 168 78 0.78
2.01-3 24553926 | 256 100 1

3.5.2. Application of Fuzzy Membership Functions (fmf)

For this study, all criteria raster pixel values associated with landslides were
converted into fuzzy scores or values. The membership of each raster pixel was
standardized and normalized on a scale of (0-1) based on the fuzzy and crisp membership
function, where 0 represented least susceptible and 1 represents most susceptible. Prior to
fuzzification of criteria factors, the classes of each conditioning factor were statistically

ranked. Then the scores of each raster pixel were computed and ranked in increasing
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order, to determine the order of rank of assigned scores. Pixels with the smallest scores
had a value of 0 while the pixels with highest scores had a value of 1. These pixels were
then statistically normalized so that the pixels with the highest predictive capacity were
assigned a value of 1 or 100. While there are no standard rules for choosing fuzzy
memberships for criteria factors, some researchers have defined their fuzzy membership
values based on expert opinion (Bonham-Carter 1994) while others are based on
statistical analysis of data (Ercanoglu and Gokceoglu 2002). For this study, the assigned
fuzzy membership function values for each criteria raster class interval was based on a
linearized sigmoidal membership function (monotonically decreasing and increasing) in
association with user-defined linear membership functions for selected parameters. A
linearized sigmoidal function was chosen because of its ability to deal with data that had
problems of non-linearity efficiently. In the linearization process of a sigmoidal function,
a log-logit function is used to transform a sigmoidal curve with a single inflection into a
straight line. The linearized sigmoidal function is expressed mathematically below;

Wx)=0ifx <min, P(X)=11fX > MaX, ..ccceccerrierrrriierireiieneeeenn Equation (3)

(x—min)

Otherwise (X)) = o e e e Equation (4)

(max - min)
- Where min and max are user inputs.
Lower susceptibility values were assigned to areas with less suitable criteria data
formation and high susceptibility values assigned to an area with high suitability criteria
data formations. Subsequently, the classes of all fuzzified criteria raster datasets were

classified on the basis of landslide susceptibilities.
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3.5.3. Landslide Frequency and Fuzzy Membership Graphs for Criteria Factors
Frequency graphs were created for each landslide related criteria factor showing
the number of observed landslides in each raster class interval. From these frequency
values, each criteria factor’s raster class interval was quantified into appropriate
membership values of susceptibility, ranging between 0 (low susceptibility) to 1 (high
susceptibility). The membership function landslide frequency graphs for each criteria

factor analyzed for the study area is illustrated from Figure 12a - Figure 12j below.
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Figure 12B. Aspect Landslide Frequency Graph
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Curvature Landslide Frequency Graph
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Slope Roughness Landslide Frequency Curve Graph
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Figure 12F. Soils Landslide Frequency Graph
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Road Proximity Landslide Frequency

100
80
60
40
20

0-4944 4945-98.88

Landslide Frequency

Euclidean Distance range
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Figure 12H. Fault-line Proximity Landslide Frequency Graph

64



Wild fires Landslide Frequency Graph
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3.5.4. User Defined If-Then Rules Used for this Analysis

and correctly datasets that appear to be ambiguous and vague (Juang et al. 1992). With
that concept in mind, the fuzzified frequency graphs of landslide-related criteria factors

above were used to create the following user-defined If-Then Rules for the fuzzy analysis

(See Table 8).
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Table 8. User-defined If-Then Rules Used in Study Area

Criteria Antecedent Condition Antecedent Consequence
Factor
Slope If slope is very low Landslide susceptibility is low
If slope is moderate Landslide susceptibility is very high
If slope is high Landslide susceptibility is high
If slope is very high Landslide susceptibility is very low
Aspect If aspect is flat - E Landslide susceptibility is non-susceptible
If aspect is East - SE Landslide susceptibility is low - moderate
Ifaspectis S - W Landslide susceptibility very High
If aspect is NW - W Landslide susceptibility is low
Elevation If elevation is very low Landslide susceptibility is non-susceptible
If elevation is low Landslide susceptibility is very high
If elevation is moderate Landslide susceptibility is high
If elevation is high or very high | Landslide susceptibility is very low
Curvature If curvature is concave Landslide susceptibility is low
If curvature is convex Landslide susceptibility is high- very high
Terrain If terrain is smooth and flat Landslide susceptibility is low
Ruggedness | If terrain is rough and steep Landslide susceptibility is high
Soils If lithology is (Group 1) Landslide susceptibility is very high
If lithology is (Group 2) Landslide susceptibility is high
If lithology is (Group 3) Landslide susceptibility is moderate-high
If lithology is (Group 4) Landslide susceptibility is moderate
If lithology is (Group 5) Landslide susceptibility is low
If lithology is (Group 6) Landslide susceptibility is very low
Precipitation | If precipitation is high Landslide susceptibility is high
If precipitation is low Landslide susceptibility is low
Fault-line If proximity to fault is small or | Landslide susceptibility is very high
Proximity very small

If proximity to fault is moderate
If proximity to fault is high
If proximity to fault is very

high

Landslide susceptibility is high
Landslide susceptibility is low

Landslide susceptibility is very low

66




Table 8. Continued

Criteria Antecedent Condition Antecedent Consequence
Factor
Road If proximity to roads is high/very high Landslide susceptibility is very low
Proximity | If proximity to roads is moderate Landslide susceptibility is moderate-high

If proximity to roads is small/ very small | Landslide susceptibility is very high

Wildfires | If wildfires are present Landslide susceptibility moderate to high
If wildfires are not present Landslide susceptibility is low
Land Use | If covered by pavement Landslide susceptibility is low
Land If covered by mixed vegetations Landslide susceptibility is moderate to
cover high
(LULC)

These if-then rules in association with landslide occurrence frequency data were
subsequently used to generate landslide susceptibility maps for the individual

conditioning factors as shown in (Figure 13 a - k) below.
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Figure 13F. Terrain Ruggedness Fuzzy Membership
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