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ABSTRACT 

Population growth and sprawling urbanization have resulted in higher 

perturbations of susceptible landscapes and more people and infrastructure exposed to 

hazardous landslides in southern California. This, in turn, has resulted in an increase in 

both frequency and magnitude of landslide disasters in the region. Landslides impact 

thousands of people and damage billions of dollars of infrastructure each year. Mitigation 

and response to these disasters can be difficult and expensive especially when reliable, 

high-resolution risk and hazard exposure maps are rarely available to local planners and 

managers at scales that can be efficiently utilized for local decision-making. Several 

methods for assessing landslide hazards have been proposed and implemented over the 

years. However, a portable, high-resolution method of assessing and visualizing landslide 

risk and hazard exposure remains elusive. This research provides a two-step method, 

enabled by geographic information systems (GIS) and multi-criteria quantitative analysis, 

to produce a high-resolution spatial analysis of both geophysical landslide risk and 

landslide hazard exposure for the built environment. Phase I of this study develops and 

deploys a GIS-based method for landslide risk assessment using selected geophysical 

attributes, including past landslide and wildfire experience, to model landslide risk within 

the study area of Ventura County and Santa Barbara County, California. Phase II 

leverages the high-resolution quantitative risk results from Phase I to develop a landslide 

hazard exposure model that illustrates the likelihood of landslides interacting with 

features of the built environment within the study area. The resulting hazard exposure 
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model provides a reliable, efficient ranking of potential landslide hazard exposure for 

each building parcel within the study area based on the integrated geophysical risk model, 

the geomorphological attributes of the study area and the spatial density of the built 

environment. This research demonstrates that, by leveraging a multi-tiered modeling 

process that involved both primary and secondary data, Geoscientists and hazards 

managers can develop high-resolution landslide risk and hazard assessments suitable for 

land-use and settlement planning at the local scale. In applying this approach, hazard 

exposure mapping can play a renewed role in assessing areas with high landslide hazards 

and helping mitigate the associated risks.  
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I. INTRODUCTION 

Landslides and other forms of mass movements have become more problematic 

for urban planners and property owners as population growth and sprawling urbanization 

push land development into more geomorphologically dynamic environments. In the US 

alone, landslides and other forms of mass movement cause damages of more than US$ 1- 

2 billion and 25-50 deaths annually (National Research Council 2004, Ahuja 2011 and 

Iwamoto 2018).  More recently, changing climatic conditions, including extreme rates of 

precipitation, greater propensity for drought, and rampant wildfires have acted as 

triggering mechanisms producing a spike in the frequency of landslide incidents, 

especially in southern California. For instance, the Tuesday, January 9th, 2018 mudslide 

in Walloped Montecito, Santa Barbara resulted in the death of 20 people, destroyed 65 

homes, and damaged over 460 other residence (Santa Barbara County's emergency 

management report, 2018). To address these trends, urban and city planners must be able 

to select suitable locations for future development projects such as housing, hotel resorts, 

and roads.  

Complex landslide susceptibility mapping models (LSMM) have emerged over 

the years to assess landslide susceptibility for different regions of the world. However, 

these assessments are often conducted at broad spatial scales making their application 

difficult at local scales for neighborhood planning. To help address this problem, this 

research selects an urbanized, landslide-prone study area, specifically Ventura and Santa 

Barbara counties along the southern California coastline (Figure 1) and develops a two-

tiered method for generating quantitatively robust, neighborhood-scale landslide hazard 

assessments that meet the needs of local planners and land managers responsible for 
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managing land parcels in landslide susceptible and hazardous environments. This 

research is informed by and extends current scholarship in GIScience-based landslide 

modeling and contributes to an improved understanding of landslide hazards from a 

human-environment perspective.   

 
Figure 1. Illustrates the Map of Study Site. 

 

Overall, the objective of this study is to put forward a GIScience-based method 

for developing neighborhood-scale assessments of environmental landslide hazards in 

landslide-prone regions. However, like most other areas of the United States, there is a 

lack of high-resolution, geophysical landslide risk data that is necessary to conduct 

human-environment hazards analysis for this region. In particular, there are no spatially 

and temporally robust datasets available that would enable a high-resolution assessment 

appropriate for hazard analysis at the scale of building parcels, individual structures, and 
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small neighborhoods. Therefore, the first phase of this research develops, validates and 

operationalizes a GIScience-based methodology for generating high-resolution spatial 

landslide susceptibility models using multiple environmental causative factors, as shown 

by current geophysical landslide literature. The second phase of this research illustrates 

the utility of the landslide susceptibility model in developing hazard exposure models at a 

building parcel level or neighborhood-scale.  

 

1.1. PHASE ONE: COMPLEX LANDSLIDE SUSCEPTIBILITY MODELING  

A successful realization of landslide susceptibility and hazard exposure 

modeling requires a data-driven model of landslide frequency, and a knowledge base 

model (KBM) of fuzzy operators to be integrated or combined. The underlying principles 

of this approach is a combination of fuzzy set theory and fuzzy logic. Fuzzy set theory 

employs a membership function (MF) that expresses the degree of membership of a value 

concerning a specific attribute of interest. The attribute of interest is measured at discrete 

intervals usually between 1 and 0. Fuzzy membership functions (MF) can be expressed as 

a table relating map classifications to membership values (Pradhan 2010; 2011, and 

Feizizadeh et al. 2014). Fuzzy logic, on the other hand, is straightforward and easy to 

implement. This approach can be successfully integrated with GIS – multi-criteria 

analysis (MCA) and used to model imprecise objectives such as landslide susceptibility 

(Akgun et al. 2012). The fuzzy logic technique is ideal because it leads to a flexible 

combination of weighted criteria that can subsequently be implemented through a GIS-

MCA, to further improve the accuracy of model results (Pradhan 2010; Pourghasemi et 

al., 2012). Fuzzy logic permits the input of vague, imprecise, and ambiguous information 

(Balezentiene et al. 2013). It is commonly used in spatial planning to treat spatial objects 
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within a study area on a map as either member of a set or not; for example, an object can 

either belong to the set (1) or the set (0). This approach is unique in that it uses the 

location of known landslides to estimate weightings or coefficients for the GIS-MCA.   

 A sample of 599 landslide locations within the study area was identified through 

visual interpretation of aerial imagery from National Agriculture Imagery Program 

(NAIP) and digitized. From the sum of 599 digitized landslide locations, a sample of 150 

landslide locations are randomly selected and extracted using a geographic information 

system software (GIS) randomization tool. The sampled landslide datasets are 

subsequently used as validation data, while the remaining 499 landslide locations data 

used as training data.  

Eleven landslide criteria factors were extracted from each landslide location 

including; slope, aspect, curvature, elevation, precipitation, soils, proximity to fault lines, 

proximity to roads, land use/land cover, fire experience, and terrain roughness. The 

landslide occurrence frequency for each class of criteria factors were computed. The 

fuzzy membership values were calculated for each criteria factor using the landslide 

occurrence frequency for the respective classes of all eleven criteria factors. Index maps 

of landslide susceptibility were created for each criteria factor and included in the GIS. 

Fuzzy membership classes for the conditioning factors of landslide hazards were 

integrated, resulting in a landslide susceptibility map classified from very low to very 

high. The 499 training and 150 cross-validations landslide locations mentioned earlier 

were used to train and validate the model quantitatively. Once the model was validated, 

the landslide susceptibility GIS layer was generated, illustrating the overall geophysical 

risk of landslides in the study area. This new, high-resolution GIS layer was then used 
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below in Phase (II) to derive a proximity-based exposure model, illustrating the 

hazardousness of the built environment within the study area. 

 

1.2. PHASE TWO: PROXIMITY-BASED LANDSLIDE HAZARD MODELING  

The second phase of this study develops and deploys a proximity-based exposure, 

or hazard model by analyzing the intersection between the high-resolution susceptibility 

model developed in Phase (I) with the spatial features of the human-built environmental 

systems. Phase (II) is a four-step process in which the hazard exposure of the building 

parcels within the study area are quantified and ranked from low – high risk based on 

landslide proximity and landslide impact likelihood respectively. Step 1 calculated the 

Euclidean proximity distance of exposed building parcels to classified zones of landslide 

susceptibility (Thrust distance). Step 2 calculated potential debris flow impacts to 

buildings, taking into consideration the horizontal, vertical and linear characteristics of 

possible debris flow. Step 3 computed building exposure patterns using weighted 

proximity measures against landslide susceptibility zones. Step 4 integrated the landslide 

susceptibility model achieved in Phase (I) with the proximity-based hazard exposure 

model from steps 1-3 above to illustrate the spatially diverse patterns of landslide hazard 

within the study site.   

 

1.3. DISSERTATION OUTLINE 

This study produces high-resolution landslide risk and hazards exposure maps that 

can serve as guides to urban planners and decision makers, ensuring effective and 

efficient use of space for urbanization while reducing potential hazard exposure and cost 

effects associated with landslide hazards. Chapter (I), introduces the general concept(s) of 
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landslides and hazards. It summarizes the principles of landslides and the instability of 

the slopes of Southern California as well as presents the two main phases of the analysis, 

phase (I) and phase (II), highlighting the general issues associated with both. Chapter (II), 

begins with a general overview of the study area background. It states the research 

objectives of the study with some intended questions to be answered. It describes the site 

and situation of the study area and provides general information on the type and 

abundance of landslides, including the geomorphology, lithology, structure, climate, and 

other physiographic characteristics. Furthermore, this chapter provides information on the 

nature and extent of the damage caused by landslides in this area. Chapter (III), describes 

the processes associated with phase (I) – landslide susceptibility model in detail and 

discusses the literature review. The literature review involves a study of the principal 

methods of assessment (old, new and hybrid), from the process of choosing a mapping 

scale to determining the relationship between a preferred mapping scale and the suitable 

method for modeling. This chapter also addresses concepts and definitions useful for 

landslide susceptibility modeling, including literature guided discussions on the 

differences between probabilistic (quantitative) and heuristic (qualitative) approaches. I 

weigh the strengths and weaknesses of each of the approaches proposed in the literature 

and the problems associated with their application and the limitations of the results 

obtained. I review the various applications of fuzzy logic and multi-criteria, their 

strengths, weaknesses and how to overcome some of its non-linearity issues. Here, I also 

discuss the conceptual and theoretical framework for the geophysical risk model, 

providing a rationale for the criteria employed in this analysis process. I also briefly 

outline the criteria used to recognize and map landslides from stereoscopic aerial 
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photographs and the assumptions made in this analysis as well as present descriptions and 

explanations for the topographic, environmental and thematic datasets used to perform 

the susceptibility analysis. Further, I elaborate on the data and methodology applied to 

phase (I) of this study, I explain the procedure of data collection, data preparation, data 

analysis, model validation and the subsequent development, and implementation of the 

landslide susceptibility model on a neighborhood scale.  Chapter (IV), describes the 

processes associated with phase (II) – Proximity-based hazard exposure model in detail 

and discusses the problem statement and literature review. The literature review process 

involves a detailed analysis of the various research methods and advancements that have 

been made in the vast body of knowledge in the field of hazards and recent efforts at 

hazard quantification and risk calculation. This chapter, also discusses the conceptual 

framework for phase (II), the data preparations, methodology and the final hazard 

exposure results. Chapter (V), presents the limitations encountered in-phase (I) and phase 

(II) of this study, elaborating on their applicability and suggested recommendations. The 

chapter concludes with some general discussions in hazards literature and outlines the 

various literatures cited. 
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II. GEOGRAPHIC SETTING 

2.1. BACKGROUND 

A landslide can be defined as the movement of a mass of rock, debris, or soil 

down a slope, under the influence of gravity (Nemčok et al. 1972; Varnes 1978; 

Hutchinson 1988; Cruden 1991; Cruden and Varnes 1996). Landslides are triggered by a 

variety of geomorphic, environmental, climatic and anthropogenic phenomena including 

intense or prolonged rainfall, earthquakes, rapid snow melting, and a variety of human 

activities. Landslide processes can occur in the following forms; flows, slides, falling 

movements, and many landslides exhibit a combination of two or more types of 

movements (Varnes 1978; Crozier 1986; Hutchinson 1988; Cruden and Varnes 1996; 

Dikau et al. 1996). Landslides occur when the destabilizing forces acting on a hillside are 

more significant than the counter stabilizing forces (See Figure 2) below. 

 
             Figure 2. La Conchita Landslide, 2005 California. - Courtesy of Mark Reid, USGS 

 

The ratio referred to as the safety factor, indicates slope instability in the sense 

that when the ratio is less than 1.0, the slope is unstable and will likely fail if triggering 
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factors exceed thresholds that have caused similar slopes to fail in the past (Randall et al. 

2005). Landslides are assessed by the magnitude of their respective triggering factors; 

depth of the area of impact, the volume of rock and soil material involved in the slide 

process, the frequency of occurrence, the speed and the triggering factors such as 

earthquakes, tremors, anthropogenic activities, as well as precipitation. Rising damages to 

human environmental systems from landslides and other forms of mass movements 

resulted in increasing human activity on landslide susceptible landscapes around the 

world such as in Maierato in Southern Italy, Santa Barbara and Ventura, Southern 

California (Brenning et al. 2015).  

Worldwide, landslides are responsible for billions of dollars in damages and 

thousands of deaths and injuries each year (Smith et al. 2009). Due to limited funding and 

the scarcity of high-resolution data for modeling, most landslide risks analysis are 

conducted at large, regional and medium geographic scales (Ward et al. 1981; Wilson 

and Keefer 1983; Terlien et al. 1995; Jibson et al. 1998; Jibson 2001; Collins and 

Znidarcic 2004; He and Beighley 2008). Landslide risk models of large and medium 

scale (1:10,000-1: 50,000) are usually problematic for urban development and hazard 

mitigation agencies because of the lack of homogeneity in landslide inventory datasets, 

terrain morphology, and composition (Van Westen et al. 2006).There are ongoing efforts 

to develop two and three-dimensional models of landslide risk and hazard exposure 

maps, as land development patterns in many remote communities push infrastructure and 

people further into landslide-prone environments (Wieczorek 1984; Gritzner 2001; 

Ayalew 2004; Booth 2009). So far, the modeling efforts have not delivered the high-

resolution modeling techniques and maps that can be easily replicated and implemented 
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by local development planners. When high-resolution building parcel level, and or 

neighborhood, landslide susceptibility and hazard exposure maps are too expensive for 

local planners or unavailable to the public, hazard mitigation can be difficult and costly.  

Over the past 116 years, the coastal population of Southern California has 

increased from approximately 794,817 in 1910 to 22,422,614 in 2015 (US Census 

Bureau, 2016). The rate of anthropogenic activities (construction of roads and other 

hillside utilities) under the banner of development has followed population growth, 

resulting in the emergence of numerous residential settlements at the base of, or on, 

unstable slopes along the Southern California Coastline (Zell and Lurie 2002). These 

trends have pushed infrastructure further into landslide-prone environments and placed a 

growing number of people into evermore precarious locations (see Figure 3). Some sites 

are more susceptible to landslides than others. Settlement areas at greater risk are those 

closer to steep slopes, road cuts and or excavations, areas of historical or existing 

landslides, and areas where human development has altered slopes. In the Californian 

Southern Coastline, residents often settled in areas known as debris cones, where steep 

mountain streams debouched onto the valley floor (Rice 1985). These areas are attractive 

because of the abundant water supply, but pose a grave risk of landslides, particularly as 

expanding development perturbs these landscapes.  

The ability to identify areas prone to landslides, and the relative probability of 

landslide occurrence at resolutions that can be leveraged by local planners and 

homeowners, is a critical step in gaining control over landslide hazard. Previous research 

has identified the need for high-resolution landslide mapping as indicated below:  

 



 

11 

 

   
Figure 3. Landslide & Debris Flow Scars, San Gabriel Mountains - Courtesy of USGS 

 

(…) Land sliding is a worldwide problem that probably results in thousands of 

deaths and tens of billions of dollars of damage each year. Much of this loss 

would be avoidable if the problems were recognized early, but less than one 

percent of the world has landslide inventory maps that show where landslides 

have been a problem in the past, and even smaller areas have landslide 

susceptibility maps that show the severity of landslide problems in terms decision 

makers understand. Landslides are more manageable and predictable than 

earthquakes, volcanic eruptions, and some storms, but only a few countries have 

taken advantage of this knowledge to reduce landslide hazards. Land sliding is 

likely to become more important to decision makers in the future as more people 

move into urban areas in mountain environments and as the interaction between 

deforestation, soil erosion, stream-habitat destruction, and land sliding become 

more apparent. (…) (Brabb 1991, p.60). 

 

State environmental agencies such as the United State Geological Survey 

(USGS) have led the way in landslide and hazard mitigation through assessments and 

publication of landslide information (Olshansky 2006). Nonetheless, their efforts have 

been limited because of insufficient funding and budgetary cuts in recent years. The 

Californian legislature approved the "Landslide Hazard Identification Program," which 
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was instrumental in producing several maps that helped local planners with landslide 

hazard planning (Olshansky and Rogers 1986).   

Unfortunately, the program was replaced in the 1990s by the Seismic Hazard 

Mapping Act, which has failed to provide sufficient detail for quality planning because it 

produces low-resolution hazard maps for large regions which turn to be unhelpful to local 

planners at a building parcel level. While the USGS now believes it has established a new 

means of identifying landslide hazard zones with greater detail than ever before, the 

necessary funding for a comprehensive program has yet to be approved (Olshansky and 

Rogers 1987). 

 The purpose of this research is to generate high-resolution, site-specific hazard 

exposure maps of building parcels that can be used to illustrate geospatially-diverse 

hazard risk at a scale that can be used by local planners and emergency managers. 

 

2.2. RESEARCH OBJECTIVES 

Hazards scholars and researchers, including geomorphologists and 

environmental engineers, have yet to reach a consensus on some of the crucial concepts 

in landslide and hazard research. Some of the concepts above include; the scale of 

analysis for visualization, suitable methods for collecting data, model training and model 

validation as well as appropriate inventory estimates. For example, the term “landslide” is 

often used to describe a different aspect of the mass wasting phenomena namely; the 

process, the movement, and the deposit of debris (Guzzetti et al. 1999). 

This research builds on recent efforts by hazards scholars to advance current 

modeling methods and develop new approaches to more precisely assess, model, and 

visualize environmental risks and hazards. This study, aims at promoting a unique 
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approach to mapping landslide susceptibility and hazard exposure using a combination of 

deterministic and probabilistic approaches in association with an array of environmental 

and infrastructural datasets that can be leveraged by hazards researchers, emergency 

response teams, urban developers and local planners to assess risk and hazard patterns at 

a very high resolution and geospatial scale.  

The objectives of this study are two-fold: 1) develop a fuzzy-based geophysical, 

high-resolution predictive landslide susceptibility model for use by local planners and 

urban developers in prioritizing U.S. hazard emergency and mitigation response, road 

management activities and settlement planning. This objective employs a hybrid 

combination of qualitative and quantitative approaches to model shallow and deep-seated 

landslides using high-resolution (local/neighborhood) datasets for Ventura and Santa 

Barbara counties in Southern California. 2) Develop a high resolution, efficient, Cost 

effective and replicable proximity-based hazard exposure model (PBHEM) for use in 

prioritizing settlement and developments along the Southern Californian Coastline. 

The research objectives and related geoprocessing questions outlined above was 

achieved in two Phases. The first Phase (I), focuses on generating high-resolution 

geophysical landslide susceptibility models of the study area. In phase (I), a geophysical 

landslide susceptibility model is developed, applied and evaluated within the context of 

the tumultuous geomorphology of the southern Californian coastline region. The 

geophysical risk model in this study was created by constructing a database containing 

various geospatial, topographical, environmental and geomorphological terrain 

parameters contributing to past landslide occurrence. Terrain attributes at mapped 

landslide locations are assessed through a variety of GIS techniques and used in 
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combination with likelihood ratio and fuzzy logic systems to evaluate relative likelihood 

of landslide occurrence within the study area. The final geophysical risk model’s output 

performance is then evaluated for accuracy using the area under the curve statistical 

technique (AUC). 

Phase (II), focuses on the integration of the geophysical landslide susceptibility 

model created in Phase (I) with selected and weighted infrastructural (developed land 

parcels) and topographical attributes (surface cover, slope angle and debris flow direction 

and cost) to assess and quantify hazard exposure of the human-built environmental 

systems within the study site based on the respective proximities of building parcels to 

the landslide zones.      

 

2.3. STUDY AREA 

2.3.1. Mapping Unit Site and Situation 

The study covers an area 15,532.16 sq. Km. (5,997.00 sq. mi.) and is comprised 

of Ventura and Santa Barbara counties illustrated in (Figure 4) below. 

As of 1990, Southern California hosts approximately 28% urban land, 66% 

undeveloped areas and 6% agricultural land (Yiping and Beighley 2008). From 1980 to 

2000, the population of Southern California exploded to about 55% almost 18.7 million 

people according to the 1980 - 2000 censuses (Yiping and Beighley 2008). Towns like 

Ventura, Orange, San Diego Santa Barbara and Los Angeles counties experienced the 

most significant population growths. With the population growth juxtaposed with the 

highly hazardous nature of the geophysical landscape, “The question is not if, but when 

the next landslide will impact the community” (Gurrola 2005).  
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Figure 4. Study Area Mapping Unit 

 
Landslides within this region are also triggered by heavy rains fueled by the 

Mediterranean climate, which usually causes abundant precipitation in specific regions 

resulting in rapid superficial mudflows. A combination of triggers such as seismic 

activity, tectonic uplifting within rocks of weak density and local underground springs, 

create an immensely precarious landslide sensitive area. Most of the soils and rocks in 

this region have been weakened by natural or human causes such as previous earthquakes 

and urban development of hillsides. Southern California lies astride a significant tectonic 
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plate boundary defined by the San Andreas Fault and other structurally related faults that 

are spread across a broad region. This dynamic tectonic environment has created a 

spectacular landscape of rugged mountains and steep-walled valleys that compose much 

of the region’s scenic beauty. Unfortunately, this extraordinary landscape also presents 

serious geologic hazards. Just as tectonic forces are steadily pushing the landscape 

upward, gravity is relentlessly tugging it downward. When gravity prevails, landslides do 

occur (USGS Factsheet 2005). 

 

2.3.2. Physical Landscape 

 The study area illustrated in Figure 4 above is bounded by the Mojave Desert to 

the east and the Pacific Ocean to the west. This area has diverse geomorphology and 

complex geology form due to the subduction of the Pacific and North American tectonic 

plates. Interactions between these two plates can create earthquakes of varying intensities 

that can trigger mass movements, such as landslides. Earthquake-induced landslides have 

been documented from as early as 372 BC and are responsible for thousands of deaths 

and billions of dollars of damages (Keefer 1984). The coastal mountain ranges and 

coastal settlements along the San Andreas Fault are some of the most hazardous 

geomorphic regions in the entire country due to their geographic setting. Most of the 

landslides occurring in Southern California are a small portion of a much larger complex 

landslide region (USGS Factsheet, 2004). The mean elevation is about 615.67m 

(2,019.92 ft) above sea level. Approximately half of the area has ground slope higher 

than 50% (27°), and a third has a slope higher than 70% (35°) (Yiping and Beighley 

2008). The ocean and continental air masses (maritime tropical and humid subtropical 

respectively) interact with the regional topography and display a broad diversity of 
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weather and climate. Mean annual precipitation is 432mm (17in), ranging from as low as 

229mm (9in) to 1295mm (51in).         

Slope failure in this region is from the Holocene Paleo sea cliff which is the 

seaward edge of an ancient landslide that has produced slumps, debris, and 

mudflows. Two examples of such landslides are the 1995 and 2005 La Conchita 

landslides. The rock formations on the cliff include marine sediments from the Monterey 

and Pico formation (Jibson 2005). In the top sections of the slopes, the rocks consist of 

siliceous shale, siltstone and sandstone of the Middle to Upper Miocene Monterey 

formation, while the lower parts of the slope consist of siltstone, sand, and mudstone of 

the Pliocene Pico formation which covers the entire cliff face. Studies show that most 

landslides in the Southern Coast of California began a few thousand years ago but are 

younger than the subsurface coastal marine-terrace (Goldberg 2006).   

2.3.3. Human Landscape  

The earliest occupants of Coastal Southern California were American Indians 

(Keeley 2002). However, on September 28, 1542, Juan Rodriguez Cabrillo and his crew, 

the first Europeans to visit California entered the San Diego Bay and named it Alta 

California. In 1821, Mexico gained independence from Spain, and Alta California 

became a Mexican province rather than a Spanish colony (Hoover 1992). Twenty-seven 

years later, in 1848 gold was discovered at Sutter's Mill, catalyzing a period that was 

referred to as the “Gold Rush” (Johnson 2001), this event dramatically altered the course 

of California's history as miners rushed into the area  and California earned its statehood 

on September 9, 1850 (McCurdy et al. 1976). The Gold Rush brought thousands of 

immigrants, both foreign and domestic, to southern California (Mei 1984; Rohrbough 
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1997; Holliday and Lamar 2015). This mass migration into the coastal regions, combined 

with the state's natural riches, assured California’s success as it developed its diversified 

agriculture, fisheries, forestry, mining, aircraft plants, shipyards, tourism, and recreation 

industries (Nash 1998; Rawls and Smith 1999). 

The increase in the population of southern California was almost invariably 

associated with intensive and locally excessive exploitation of the land, including gold 

mining, urban sprawl and construction of roads and railways. These activities resulted in 

rapid growth of the built environment, including dense metropolitan and residential zones 

(Parker 1937). In many areas along the southern Californian coastline including counties 

such as Orange, Buenaventura, and Santa Barbara, due to its local physiographical 

setting, new settlements and infrastructure expand into dangerous or potentially 

hazardous areas, such as those damaged in La Conchita (Jibson 2005; Murphy and Stover 

2008).  

 Based on 1990s land use/land cover data, the southern region of California is 

comprised of approximately 28% urban lands, 66% undeveloped areas and 6% 

agricultural lands. In recent decades, Southern California has experienced substantial 

population growth. Based on census data from 1980 and 2000, 18.7 million people (55% 

of California’s total population) reside in this region. From 1980 to 2000, the population 

increased at a rate of 41%, including, Riverside at 113%, San Diego at 51%, Orange at 

47%, Ventura at 42%, Santa Barbara at 34% and Los Angeles Counties at 21. Population 

growth, urbanization, expansion of settlements, and life-lines over hazardous areas, have 

caused an increase in landslide activities and other forms of mass wasting (Selby 2000). 

The tables (Tables 1-4) and bar graphs (Figures 5-8) below illustrate changes in total 
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population and annual population change from 1870 to 2016 for the state of California, 

City of Los Angeles, Ventura County, and Santa Barbara County. 

 

Table 1. California State Population Change from 1870-2016.  
Source: California Quick Facts - US Census Bureau. 

State Census Year Population Population Change % 

California 1870 560,247 47.70% 

 1880 864,694 54.30% 

 1890 1,213,398 40.30% 

 1900 1,485,053 22.40% 

 1910 2,377,549 60.10% 

 1920 3,426,861 44.10% 

 1930 5,677,251 65.70% 

 1940 6,907,387 21.70% 

 1950 10,586,223 53.30% 

 1960 15,717,204 48.50% 

 1970 19,953,134 27.00% 

 1980 23,667,902 18.60% 

 1990 29,760,021 25.70% 

 2000 33,871,648 13.80% 

 2010 37,253,956 10.00% 

 2016 39,250,017 5.40% 

 
 

 
Figure 5. Bar Graph Illustrating Population and Population Change % of California  

from 1870-2016. Source: California Quick Facts - US Census Bureau. 
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Table 2. Los Angeles, California Population Change from 1870-2015.  
Source: Census of Population and Housing - Census.gov.  

State Census Year Population Population Change % 

Los Angeles, CA 1870 5,725 30.60% 

 1880 11,183 95.20% 

 1890 50,395 350.60% 

 1900 102,479 103.40% 

 1910 319,198 211.50% 

 1920 576,673 80.70% 

 1930 1,238,048 114.70% 

 1940 1,504,277 21.50% 

 1950 1,970,358 31% 

 1960 2,479,015 25.80% 

 1970 2,811,801 13.40% 

 1980 2,968,528 5.60% 

 1990 3,485,398 17.40% 

 2000 3,694,820 6% 

 2010 3,792,621 2.60% 

 2015 3,971,883 4.70% 

 

 

 
Figure 6. Bar Graph Illustrating Population and Population Change % for Los Angeles,  

California from 1870-2015.  Source: Census of Population and Housing - Census.gov. 
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Table 3. Ventura County, California Population Change from 1900-2015.  
Source: Census of Population and Housing - Census.gov.  

State Census Year Population Population Change % 

Ventura County, CA 1900 2,370 6.50% 

 1910 2,901 17.40% 

 1920 4,156 43.30% 

 1930 11,603 179.20% 

 1940 13,264 14.30% 

 1950 16,534 24.70% 

 1960 29,114 76.10% 

 1970 57,964 99.10% 

 1980 73,774 27.30% 

 1990 92,576 25.50% 

 2000 100,916 9.00% 

 2010 809,080 5.50% 

 2015 840,833 3.3% 

 

 

 
Figure 7. Bar Graph Illustrating Population and Population Change % for Ventura  

County, California from 1900 – 2015.  
Source: Census of Population and Housing - Census.gov.  
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Table 4. Santa Barbara County, California Population Change from 1870-2015. 
Source: Census of Population and Housing - Census.gov.  

State Census 

Year 

Population Population Change % 

Santa Barbara County 1870 7,784 199.70% 

 1880 9,513 22.20% 

 1890 15,754 65.60% 

 1900 18,934 20.20% 

 1910 27,738 46.60% 

 1920 41,097 48.20% 

 1930 65,167 58.60% 

 1940 70,555 8.30% 

 1950 98,220 39.20% 

 1960 168,962 72% 

 1970 264,324 56.40% 

 1980 298,694 13% 

 1990 369,608 23.70% 

 2000 399,347 8% 

 2010 423,895 6.10% 

 2015 444,789 4.90% 

 

 

 
Figure 8. Bar Graph Illustrating Population and Population Change % for Santa Barbara  

County, California from 1870 – 2015.  
Source: Census of Population and Housing - Census.gov.  

 

Human intervention has played a vital role in stimulating the natural antecedents 

of the hazards mentioned above by disturbing some of the very fragile natural equilibria 

of the unstable landscapes (Alexander 1992). For example, in Buenaventura, La Conchita 
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and Santa Barbara, agrarian grapevine activities, road constructions, coastal settlement 

expansions, wildfire soil surface glazing, and deforestation have resulted in frequent 

mudflow and mudslides whenever soil saturation values exceed certain stability 

thresholds (Coates 1985; Chaudhary 2005). As a result, the region provides an ideal 

setting for studying landslides. 
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III. PHASE ONE: 

COMPLEX LANDSLIDE SUSCEPTIBILITY MODELING 

Landslides are recognized as critical geomorphologic processes due to the role 

they play in the development of hill slopes in mountainous regions, and to related socio-

economic consequences. There are many causes of landslides, and their distribution 

varies with the changing conditioning factors. Slope stability depends on many causative 

factors, and the knowledge of these variables can help to predict the volume and types of 

landslides to expect in the future. In this study, past landslide activity and triggering 

factors were used to assess landslide susceptibility along the southern Californian 

coastline. The geospatial attributes of the study area were analyzed in regard to their 

vulnerability to landslides and the corresponding output susceptibility maps used for the 

for development of urban settlement plans and disaster mitigation activities. One of the 

most critical stages in landslide susceptibility mapping is the selection of landslide 

causal, conditioning and triggering factors as well as the weighting of the selected 

causative factors in accordance to their influence on slope stability (Mukenga et al. 

2017). High-resolution aerial imageries helped with the delineation of past and present 

landslide activity, and a geographic information system (GIS) was used for the derivation 

of static factors (slope, aspect and surface curvature) and time-dependent factors (annual 

precipitation) that are needed to produce landslide susceptibility maps. The high 

susceptibility to landslides in southern California is mainly due to the complex geological 

setting with the contemporary crustal adjustments, varying slopes and relief, heavy snow 

and rainfall along with ever-increasing human interference (Nagarajan et al. 1998). To 

implement strategic planning and safe mitigation measures, identification of landslide-
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prone areas and Landslide Susceptibility Zonation (LSZ) is crucial. Determining the 

probability or likelihood of dynamic events such as landslides is a multifaceted process 

that considers a variety of factors. A comparison of the distribution of various landslide 

criteria factors results in the identification of areas with different landslide probabilities 

which is a complex task because the occurrence of the landslide is dependent on many 

factors (Park et al. 2013).  

Due to the complex nature of landslide susceptibility models, the disconnect 

between the appreciation of crucial landslide information and the related landslide hazard 

decision-making process is made even more pronounced. To address this problem, a new 

approach is needed to facilitate the generation and dissemination of information about 

landslide potential. Consequently, this work presents a practical, efficient, cheap and 

readily replicable approach to the development of a high-resolution parcel scale landslide 

predictive model using a geographic information system (GIS). In this next chapter, I 

discuss the various methods and techniques used in landslide assessment over the years 

as recorded in multiple landslide review articles, and the new contributions that have 

been added to the vast literature. Then, I present a high-resolution landslide susceptibility 

assessment of the study area at a building parcel level that can be used by urban 

developers and local planners for settlement and hazard mitigation purposes. 

 

3.1. LITERATURE REVIEW 

A successful landslide susceptibility and hazard assessment involve a mixture of 

several quantitative and qualitative approaches (Aleotti and Chowdhury 1999). Landslide 

susceptibility and hazard mapping methods can be grouped into three distinct categories 

namely; deterministic, heuristic and statistical (Clerici et al. 2006). These main categories 
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can be further subdivided into the following; engineering or geotechnical, new soft 

computing model or expert-based and probabilistic methods (Guzzetti et al. 1999). The 

determinist approach relies heavily on the physical laws governing slope instability 

(Okimura and Kawatani 1986; Montgomery and Dietrich 1994; Dietrich et al. 1995). 

According to Ercanoglou and Gokceoglou (2004), the deterministic approach is 

frequently used for relatively small homogenous areas and requires detailed geotechnical 

and hydrological data. In order to apply this method to regional and medium scales, the 

data will have to be oversimplified. In the heuristic approach, the conditioning factors 

(instability factors) are ranked and weighted according to their likelihood of causing 

slope failure. This method is sometimes criticized because it entails a considerable degree 

of subjectivity. 

 Many localized studies have been conducted evaluating the relevance of the 

factors affecting landslides using expert dependent systems and data-driven approaches 

(Suzen and Kaya 2012). Data-dependent approaches aim at assessing the statistical 

significance of each landslide conditioning factor based on the existing landslide 

inventory data or available historical landslide inventory data. These data-driven 

approaches of bivariate statistical analysis including methods such as weights of evidence 

(Neuhauser and Terhorst 2007; Dahal et al. 2007; Van et al. 2009 and Martha et al. 

2013), landslide index, and multivariate statistical analysis methods such as discriminant 

analysis (Carrara et al. 1991; Guzzetti et al. 2005), factor analysis (Maharaj 1993; 

Ercanoglu et al. 2004) and logistic regression (Ohlmacher and Davis 2003; Ayalew and 

Yamagishi 2004; Suzen and Kaya 2011; Gorsevski et al. 2006) have emerged as reliable 

statistical modeling approaches. So far, statistical methods are the most appropriate for 
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landslide susceptibility assessments at the regional and medium scale levels (Gunther et 

al. 2013). These approaches are highly favored because of their objectivity and efficiency 

in creating landslide predictive models. One core principle and guiding theory 

surrounding landslide mapping using the above methods is the assumption that future 

landslide occurrence stands in relation to the present ones (Carrara et al. 1994). This 

means that slope failure in the future will be more likely to occur under the same 

conditions that led to the past and present instability (Clerici et al. 2006). Hence, a 

statistical combination of parameters or factors that led to slope failure and landslides in 

the past can lead to quantitative predictions of landslides in areas currently free of 

landslides (Gunther et al. 2013).  

 Generally, landslide criteria factors are known and can be categorized into the 

following major groups: geological, topographical, geotechnical and environmental 

(Suzen and Kaya 2011). In most cases, some of these factors are statistically significant 

in the model while others are not. A causal factor can be relevant to a multivariate 

susceptibility analysis in one location and not in another adjacent area. This variance can 

be due to the differences in scale and spatial resolution of datasets between the two sites. 

Spatial resolutions are more readily confronted than are temporal resolutions for 

examining issues germane to geomorphology (Walsh and Butler 1998). Over large areas, 

the spatial resolution of data is usually lower than over smaller areas. The differences in 

scale and spatial resolution of datasets is significant in landslide and hazard modeling 

(Bayr and Dommenget 2014). Small-scale analyses are most useful when they produce 

high spatial resolution models, but the datasets are rarely available if they are available at 

all, their formats are sometimes inconsistent across all necessary landscape attributes.  
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This inconsistency in dataset formats introduces unwanted errors to the modeling process.  

The influence of each variable on the occurrence of a landslide is evaluated 

independently and variables combined into an equation (Guzzetti et al. 1999; Suzen and 

Doyuran 2004; Aterberg and Cheng 2002; Thiart et al. 2003 and Conoscenti et al. 2008). 

Among the multivariate statistical methods, logistic regression has the advantage of less 

rigorous data distribution requirements and can handle a variety of datasets such as 

continuous, categorical and binary (Lee and Min 2001; Lulseged and Hiromitsu 2004; 

Yesilnacar and Topal 2005; Nefeslioglu 2008). A detailed synthesis of these statistical 

approaches, their potential application and limitations have been substantially elaborated 

in the following scholarly literature over the years (Brabb et al. 1972; Carrara et al. 1977; 

Carrara et al. 1990; Greco et al. 2010). The above-discussed approaches are inefficient at 

modeling landslide susceptibility at small scales. This inefficiency is because the 

landslide conditioning factors require a considerable number of high-resolution datasets, 

which is usually not available for large areas in most parts of the world.  

Recently, new soft computing methods have been applied to landslide suitability 

assessment studies, using evidential belief function models (Althuwaynee et al. 2012). 

These soft computing approaches have been reviewed in many articles in recent years 

(Alexander 2008; VanWesten et al. 2008). For in-depth Knowledge of the leading soft 

computing methods, see the following articles on artificial neural network model (Lee et 

al. 2004; Pradhan and Lee  2007, 2009, 2010), neuro-fuzzy high-tech mapping techniques 

(Kanungo et al. 2005; Lee et al. 2009; Pradhan et al. 2010d; Vahidnia et al. 2010; Sezer 

et al. 2011; Oh and Pradhan 2011), support vector machine (SVM) (Yao et al. 2008; 

Yilmaz 2010) , decision-tree (Nefeslioglu et al. 2010) and finally fuzzy logic (Ercanoglu 
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and Gokceoglu 2002, 2004; Lee 2007; Pradhan and Lee 2009; Pradhan 2011; Gemitzi et 

al. 2011; Akgun et al. 2012; Osna et al. 2014; Alharbi et al. 2014; Chalkias et al. 2014).  

Regional landslide susceptibility assessment methods encounter statistical 

problems due to the complexity of the landscape under investigation. The analytical 

approaches have the problem of terrain and data variability introducing in some cases of 

uncertainties to the analysis. Therefore, it is imperative to adopt a strategy that minimizes 

these uncertainties to provide a realistic model. Recent advancements in geographic 

information science (GIS) has improved the decision-making process significantly and 

revolutionized geospatial analytical processes using sophisticated approaches like multi-

criterial probability distribution function (MCPDF) which can conduct an effective and 

efficient analysis and can be used to guide decisions of urban planners (Feizizadeh and 

Blaschke 2001). MCPDF is an intelligent approach used to convert spatial and non-

spatial data into information that can together with expert knowledge be used to assist in 

making critical environmental and settlement decisions (Sumathi et al. 2008; Chen et al. 

2010; Gbanie et al. 2013). It has the capability of handling different aspects of various 

elements of a complex decision-making problem such as organizing multiple aspects into 

hierarchical structures and studying the relationship between the individual components 

of the problem.  

The fuzzy multi-criteria probability distribution function techniques involve a 

set of quantifiable spatial criteria: First data standardization in which the values of the 

datasets being analyzed are re-scaled between (0-1), where the mean is (0), and the 

standard deviation is (1). Secondly determination of relative importance of criteria. Here 

the individual criteria datasets are assigned weights based on their respective influence on 
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landslides and slope instability. Thirdly Geospatial data integration. Here, weighted 

criteria values are aggregation or combined resulting in an overall landslide evaluation 

score for each spatial location in the study site.  

The above techniques make multiple-criteria decision evaluation approach 

attractive for incorporation into a GIS (Malczewski 2004; Chakhar and Mousseau 2008; 

Chen and Paydar 2012). When it comes to landslide susceptibility models, multi-criteria 

decision analysis encounters the problem of non - linearity. This problem of uncertainty 

or (non-linearity) can be addressed by introducing the concept of fuzzy memberships 

(FM) or fuzzy measures (FM). Fuzzy measures are border concepts that include fuzzy 

set memberships. The standardization factor of MCPDF comes from a class of fuzzy 

measures and more specifically, instances of fuzzy set membership. It can be argued that 

this perspective provide a strong theoretical base for the standardization of landslide 

controlling factors and their subsequent aggregation (Jiang and Eastman 2000; 

Marjanovic et al. 2011). Fuzzy memberships (FM) can be integrated into multi-criteria 

probability distribution function (MCPDF) to deal with the problems of uncertainty and 

improve the accuracy of model results. The uniqueness of the (MCPDF) approach as 

compared to other statistical approaches such as logistic regression is that it uses the 

location of known objects such as landslides and expert knowledge base (EKB) to 

estimate weights or coefficients (Pradhan 2011; Pourghasemi et al. 2012). The 

combination of (FM) and (MCPDF) permits greater flexibility in the assessment of 

outputs and decision making. A fuzzy multi-criteria probability distribution function 

(FMCPDF) still retains all the uniqueness and advantages of the (MCDA) specifically 

the way this approach handles multiple criteria and combination of qualitative and 
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quantitative data. It creates a hierarchical structure making decomposition and pairwise 

comparison easy, hence generating priority vectors and reducing inconsistencies. This 

approach somewhat reflects human thought in that it processes and uses appropriate 

information as well as uncertainty to create maps that support decision making 

(Kahraman et al. 2004). These capabilities make (FMCPDF) a proper and efficient tool 

for creating landslide susceptibility and subsequently hazard risk maps that can assist in 

making complex decisions in environmental management systems. 

 The models created in this study exploited information obtained from landslide 

inventory maps created for the study area indicating areas where landslides have occurred 

in the past. Such information was used to predict possible areas where landslides may 

occur in the future. Finally, considering that landslide susceptibility and hazard 

assessments models using a combination of fuzzy multi-criteria decision analysis 

(FMCDA) and a probability distribution function (PDF) at a parcel level scale has not yet 

been created for the study area, this contribution provides originality to this study. 

 

3.2. THEORETICAL FRAMEWORK   

 This research hinges on a variety of integrated quantitative methods. Therefore, 

it is essential to establish a framework to describe the progression of methods and the 

subsequent integration of each technique’s results. A successful landslide inventory 

analysis generally depends on a set of widely accepted assumptions that act as guiding 

principles for the theoretical framework of the analysis (Radbruch-Hall and Varnes 1976; 

Varnes et al. 1984; Carrara et al. 1991; Hutchinson and Chandler 1991; Hutchinson 1995; 

Dikau et al. 1996; Turner and Schuster 1996; Guzzetti et al. 1999). The assumptions 

herein include: 
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I) When landslides occur, they leave unique discernable features on the surface 

of origin showing the zone of rupture that can be recognized, classified and 

cataloged as inventory data in the field or through spatial analysis of high-

resolution aerial imageries. In the field, most landslides can be identified as 

exposure scars, vegetation, and canopy break points. These signs are 

morphological as they indicate changes in the form, position, and appearance 

of a topographical surface. 

II) The nature, magnitude, trigger mechanism and type of landslide (fall, flow, 

slide, complex and compound) usually dictates the morphological signature 

and rate of movement of slope failure (Varnes 1978; Cruden and Varnes 

1996). In general, under the same morphological and physical condition, a 

landslide will have a somewhat similar and predictable morphological 

behavior. From the morphological signature of a landslide, the areal extent of 

failure, as well as impact and movement type can be determined. The physical 

characteristic and appearance of a landslide scar in the field can shed light on 

its age, the degree of activity and depth of failure. However, caution should be 

taken when classifying landslides through visual interpretations of field 

characteristics of exposure scars, because landslides especially, complex falls 

can be a combination of different morphological landslide failure types and 

may have multiple signatures. 

III) Landslides are a result of geophysical processes triggered by mechanical and 

physical processes that can be empirical, statistically and deterministically 

inferred, calculated and modeled (Aleotti and Chowdhury 1999; Guzzetti et al. 
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1999). 

IV) Landslides are governed by the principle of uniformitarianism, a principle that 

states ‘the past and the present are keys to the future’. This principle can be 

interpreted as landslides in the future will occur under the same conditions in 

which they occurred in the past and present or slope failures in the future will 

be more likely to occur under the same conditions which led to the past and 

present instability. Mapping of current slope failures is imperative to 

comprehend the spatial distribution and arrangement of historic landslides. 

Sophisticated landslide inventory maps containing historical landslide datasets 

can provide crucial information that can be used to forecast zones of future 

landslide occurrence (Carrara et al. 1991; Hutchinson 1995; Aleotti and 

Chowdhury 1999; Guzzetti et al. 1999). 

The above assumptions are crucial to achieving a successful model with a high 

predictive capacity and accuracy. Failure to consider the above assumptions can 

undoubtedly limit the applicability of an inventory map and their derivative products such 

as landslide susceptibility and hazard exposure quantification regardless of the approach 

employed. The assumptions outlined above are generally agreed upon by landslide 

scholars. However, there is still some disagreement amongst geoscientist as to the degree 

of influence between each assumption and how best to incorporate them into modeling 

landslide susceptibility (Guzzetti et al. 1999). For this research, all the above-stated 

interpretations are assumed to be true.   
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3.3. CONCEPTUAL FRAMEWORK 

The landslide susceptibility or geophysical risk model was accomplished in five 

steps; (I) the preparation of landslide inventory location data collected from visual 

analysis of aerial photographs. (II) the identification of landslide conditioning or 

causative factors and determination of the frequency of landslide occurrence for each 

class of the conditioning factors. (III) Fuzzification (Standardization) of conditioning 

factors into fuzzy membership groups. (IV) Production of landslide factor fuzzy maps or 

weighted index maps within a GIS and Finally, (V) validation of landslide susceptibility 

index maps by conducting statistical analysis such as the receiver operating characteristic 

curves (ROC) and calculating the area under the curve (AUC). A schematic flowchart of 

the conceptual framework for the landslide susceptibility modeling process is illustrated 

in (Figure 9) below. 

The primary criteria factors for this landslide susceptibility analysis included 

slope, aspect, topographic elevation, curvature, terrain ruggedness, land use land cover 

(LULC), precipitation, fires, proximity to roads, proximity to fault lines and soils. 

Landslide location points within the study area were identified and digitized from a 2016 

1-meter resolution aerial imagery downloaded from the National Agriculture Imagery 

Program (NAIP). Each criteria factor was then processed and converted into a raster data 

layer within a geographic information system (GIS) and projected into the appropriate 

coordinate system, in this case, NAD 1985-UTM-Zone-11N. A total of 599 landslide 

points were identified through surface scars and soil debris flow directions and 

subsequently digitized into vector polygons. The landslide sample data was randomly 

split into two groups using a sample randomization subset function in ArcMap. One 
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group of 499 landslides were used to model the spatial structure and produce a landslide 

susceptibility model (training data) and the second group of 150 landslides was used to 

compare and validate the landslide susceptibility model (validation data). 

To assess the degree to which a location in the study area is susceptible to 

landslides using data from multiple conditioning factors, a multi-criteria evaluation 

approach is employed which involves the aggregation of weighted criteria factors. It is 

important to note that this analysis operates under the underlying assumptions that 

landslides occur because of the influence of causative and triggering factors as backed by 

geomorphological literature and that landslides will happen in the future under similar 

conditions as in the past (Carrara et al. 1991; Hutchinson 1995; Aleotti and Chowdhury 

1999; Guzzetti et al. 1999). Therefore, landslides occurrence within the study area will 

occur under conditions that can be characterized by the spatial distribution of criteria 

factor datasets, which are considered as predisposing or conditioning factors. In order to 

reflect reality in the output of the model and to make the analysis more objective, fuzzy 

membership values, or weights, were calculated based on the frequency of landslide 

occurrence on all raster class intervals of the landslide related criteria factors and expert 

opinion as per the expert knowledge laid down by the United States Department of 

Agriculture (USDA) as well as the Natural Resources Conservation Service (NRCS) in 

regards to vulnerability of soil types to landslides. 
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Figure 9. Conceptual Framework, Flowchart for the Geophysical Risk Model. 

 

3.4. DATA AND ANALYSIS 

A concise but extensive inventory of the causative factors is essential for 

improving our understanding of landslide susceptibility and hazards. In this study, 

extensive aerial photo interpretation and GIS techniques were used to characterize the 

landslides and construct thematic data layers. Due to the absence of prior landslide 

location data for the study area, a total of 599 landslides were mapped within the study 

area to assemble a database of landslides. Landslide points and exposure scarps were 

digitized into vector polygons and used to analyze the relationships between landslide 

occurrence and landslide causative or conditioning factors. These landslides were 

detected from aerial photographs by visually interpreting breaks in the forest canopy, 

bare soil and typical geomorphic characteristics of landslide scars. Using the full 
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movement of the landslides can introduce noise to the data and therefore result in 

inaccurate susceptibility maps. Care must be taken to accurately delineate the rupture 

zone to establish a statistical relationship with causal factors.  

To precisely identify the position of landslide scars, a high-resolution color four 

band 1m × 1m cell size resolution Naip aerial imagery of the study area was used to 

determine landslide scars, which were subsequently digitized into vector polygons. The 

input data comprises of several layers of map information outlined in (Table 5). Slope, 

curvature, elevation, terrain roughness and aspect were calculated from a high pixel cell 

size resolution 9 m × 9 m Digital Elevation Model (DEM). The lithology data were 

acquired from the United States Department of Agricultural (USDA) Web Soil Survey 

and roads and fault lines were extracted from the United State Geological Survey 

(USGS). After processing all datasets, the vectors layers were converted into a cell-based 

database, and the whole study area consisted of over 64,710,274 pixels with each pixel 

corresponding to a 9 m × 9 m cell size on the ground. The datasets were converted into 

one unified coordinate system NAD 1983 UTM Zone 11 using ArcGIS 10.4. Given that 

landslides are strongly related to environmental factors, multi-source spatial data 

collection and processing have proven crucial to assessing landslide susceptibility 

(Ruiqing et al. 2013). The landslide causative datasets were grouped into three primary 

categories namely; topographic, geologic and seismic datasets which can further be 

subdivided into other fundamental factors as shown in the table below (see Table 5). The 

essential factors are usually the environmental factors and include elevation, slope, 

aspect, curvature proximity to the road, proximity to fault lithology and slope roughness.  
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Table 5. Datasets  

Spatial database                     Data Scale                       Data Types 

Landslide Data  Landslide location polygon 

coverage 

Topographic Data Sets 1/3 arc-second (10m) 

1/3 arc-second (10m) 

1/3 arc-second (10m) 

1/3 arc-second (10m) 

1/3 arc-second (10m) 

Slope 

Slope Aspect 

Slope Elevation 

Slope Curvature 

Terrain Roughness 

Geologic Data Sets 1:12,000 to 1: 63,360 Lithology (Soils) 

Seismic Data Sets 1:100,000 Proximity to Faults 

Lineation Datasets 1:100,000 Proximity to Roads 

Hydrological Data 1:100,000 Precipitation 

Surface cover Datasets 1:100,000 Land use land cover 

Cal Fire 1:1,000,000 Wildfires 

 

3.4.1. Soil Map Unit Symbols and Soil Descriptions 

The lithology layer is one of the most vital landslide conditioning factors in this 

study area. The study area is covered by 89 different soil types with varying codes of soil 

and vulnerabilities to landslides. Table 6 illustrates the various lithological compositions, 

characteristics and their description. 

 
Table 6. Soil Map Unit Symbols and Soil Descriptions 

Soil Group Soil Symbol Soil Component Name/ Slope percentage 

Group 1 GxG/BdG/CaF/LaF/SnG Gullied land, Badland, Calleguas (50%), 

Landslide, Sedimentary rock land. 

- Very Unstable Soils with 30 – 50% slope 
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Table 6. Continued. 

Soil Group 

 

Soil Symbol 

 

Soil Component Name/ Slope percentage 

 

Group 2 MaF/HuD2/Cc/OsE2/OsD2 Malibu (85%), Huerhuero (85%), 

Camarillo (85%), 

Ojai (85%), Unstable soils with 30 – 50% 

slope 

 

Group 3 NaD2/DbD/LeE2/SoE2/Se

F/SeE/DbE/ScE2/HuC2/S

wC 

LoF/GaC/RcE2/LeD2/ChD

2/LoD2/SzD/LoE2/ 

AcC/CyC/GcB/MoC/HuE3

/McC/SoF/GbC/PcC/CnB/

LkF/T 

 

Nacimiento (85%), Diablo (85%), Linne 

(85%), Sespe (85%), Santa Lucia (85%), 

Diablo (85%), San Benito (85%), 

Huerhuero (85%), Sorrento (85%), Los 

Osos (85%), Garretson (85%), Rincon 

(85%) 

Chesterton (85%), Sorrento Variant (85%), 

Anacapa (85%), Cropley (85%), Mocho 

(85%), 

Huerhuero (70%), Mets (85%), Pico (85%), 

Coastal Beaches (95%), Lodo (70%) 

-  Moderately unstable soils with 9 – 30% 

slope eroded 

Group 4 Rw/XA/W/DA 

 

Sandy alluvial land, Xerorthents (100%), 

Water (100%), Dam (100%) 

 

Group 5 ScG/ScF2/MaE2/LeF2/Mh

F/DbF/NaE2/CfD2/AuD/A

uC2/ScD2/ZmC/SvF2/ShF

2/SsE2 

San Benito (85%), Malibu (85%), Linne 

(85%), Millsholm (45%), Diablo (85%), 

Nacimiento (85%), 

Castaic (45%), Azule (85%), Zamora 

(85%), 

Soper (85%), Saugus (85%), 

 

Group 6 SoG/CbF2/CfF2/NaF/CfE/

MmF2/PxG/NaG/AsF 

 

Sespe (85%), Calleguas (50%), Castaic 

(45%), Millsholm (45%), Sandy alluvium 

land (5%), 

Nacimiento (85%), Arnolds (85%) 

 

 

3.4.2. Landslide Identification and Recognition  

Landslides can be identified and mapped using a variety of techniques and tools, 

including but not limited to the following: geomorphologyogical field mapping 
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(Brunsden 1999), interpretation of vertical or oblique stereoscopic high-resolution aerial 

photographs (air photo interpretation, API) (Turner and Schuster 1996), surface and sub-

surface monitoring geographic terrains (Petley 1984; Franklin 1984) and the use of 

innovative remote sensing technologies such as the interpretation of high-resolution 

multispectral images (Zinck et al. 2001; Cheng et al. 2004). 

Over the years, a more traditional approach to the visual interpretation of 

stereoscopic aerial photographs has been at the forefront of identification and mapping of 

landslides (Turner and Schuster 1996). National and local governments, geological 

surveyors, environmental protection agencies, research organizations and private 

companies have long obtained stereoscopic aerial photographs for a variety of purposes 

and across a wide range of landscapes and have made the datasets available for public 

use. Because of such convenience, aerial photograph visual interpretation techniques 

have long been the most utilized technique to recognize, identify, and collect landslide 

training datasets as well as map landslide inventory data for the majority of landslide 

assessment research and certainly for this analysis. 

 

3.4.3. Mapping of Landslide Inventory Datasets  

A crucial aspect of any landslide susceptibility assessment is the mapping of 

existing landslides. The presence of prior landslide data is imperative for creating the 

statistical relationship between landslide distribution and the conditioning factors. 

Considering that detail or extensive data of previous landslides is absent for the area of 

study, an approximate sum of 599 landslide scars or exposure surfaces were digitized 

through visual interpretation using high-resolution aerial imagery in a GIS environment 

to serve as landslide training and validation point data. From the visual analysis of aerial 
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imagery of the study area, most of the landslides or slope failures identified were related 

to rotational slides, debris, and earthflow in accordance with the forms of slope failure 

types suggested by Varnes (1978) (Figure 10). From a collected sample of approximately 

599 landslide locations acquired from the aerial imagery, 499 of the mapped landslides 

were randomly selected for use as susceptibility model training datasets while the 

remaining 150 landslides, were used to verify and validate the accuracy and predictability 

of the final landslide susceptibility model.   

Figure 10. Hill Shaded Map Indicating Landslide Locations and Landslide Examples  

Visually Interpreted and Identified on a High-Resolution Aerial Imagery. 

 

3.4.4. Thematic Data Layers of Criteria Factors 

The elements that affect slope stability are numerous and interact in complex and 

often subtle ways. The selection of conditioning factors and preparation of corresponding 

thematic data layers is a crucial component of any landslide susceptibility assessment. 

According to Wu and Sidle (1995), these factors can be grouped into intrinsic factors 

which actively contribute to landslides (e.g., topography, geology, and hydrology) and 
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extrinsic factors that serve as landslide triggers such as precipitation, earthquakes, and 

landscape modification (e.g., road construction, urbanization, and mining). In the case of 

Southern California, an obvious trigger mechanism of landslides is precipitation. 

Precipitation frequently causes landslides and mudslides in this area by saturating the 

colluvium bedrock interface. Precipitation within the study area is generated by 

atmospheric moisture emerging from the southwest (offshore to onshore). The steep 

mountains around the coastal landscape contribute to significant orographic rainfall in the 

region. Rainfall increases as elevation increase towards the south and west facing slopes 

(Beighey et al. 2003). On the lee side of the mountain (north and east facing slopes) 

precipitation decreases. It is obvious that precipitation is one of the dominant landslide 

triggering factors and is responsible for most of the slides that occur in the study area. 

The instability governing factors used in this study included; geology, slope angle, slope 

aspect, curvature, elevation, lithology, terrain roughness, proximity to roads, 

Precipitation, wildfires, and proximity to fault lines. The selection of these factors and 

their corresponding classes were based on observation of landslide occurrence frequency 

and associated terrain factors. 

 

3.4.4.1. Slope Angle 

A principal landslide causative factor is slope degree (Ercanoglu and Gokceoglu 2001; 

Lee and Min 2001 and Porghasemi et al. 2012). Steeper slopes have direct influence 

because of their higher shear forces (Dai et al. 2001; Neifeslioglu et al. 2008). Because of 

its relationship with landslides, slope angle is a crucial factor in landslide susceptibility 

assessment as such it is frequently used in creating landslide susceptibility maps (Clerici 

et al. 2002; Lee et al. 2004 and Lee 2005). In this study, a slope degree map was 
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generated from a high-resolution Digital Elevation Model (DEM), and in accordance with 

the conditions and configurations of landslide occurrence, the study area was divided into 

5 slope categories: (0º – 7º), (8º – 17º), (18º – 26º), (27º – 35º) and (36º – 68º) Shown on 

(Figure 11a). In this study, substantial attention was given to factors such as slope and 

lithology. The configuration and steepness of slope in conjunction with lithology were 

most significant for the susceptibility model. 

 
Figure 11A. Slope Angle 

 

3.4.4.2. Slope Aspect 

Slope aspect as a landslide conditioning factor has been considered in several 

other studies (Ercanoglu and Gokceoglu 2004; Lee et al.  2004; Yalcin 2005 and 

Pourghasemi et al. 2012). According to (Ercanoglu et al. 2001), in the early 1990’s there 

were debates about the relationship between slope aspect and mass movement as there 

was no general agreement on such relationship (Carrara et al. 1991). Some scholars in 
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their research considered aspect as a factor (Carrara et al. 1991; Maharaj 1993; 

Gokceoglu and Aksoy 1996 and Nagarajan et al. 2000) while other scholars did not 

(Uromeihy and Mahdavifar 2000).  Slope aspect gravely affects hydrological processes 

such as evapotranspiration, weathering, and vegetation growth particularly in arid 

environments and areas with weak soil types (Sidle and Ochiai 2006). Meteorological 

events and characteristics such as rainfall and rain direction, amount of sunshine 

respectively have a tremendous impact on the propensity of landslides. Slopes that 

receive intense amounts of rainfall reach soil saturation faster. During this process, the 

pore water pressure of the slope forming materials change, resulting in slope failure. The 

slope aspect for the study area was divided into ten categories with each aspect falling 

with a specific range: Flat (-1), North (0-22.5), Northeast (22.5-67.5), East (67.5-112.5), 

Southeast (112.5-157.5), South (157.5-202.5), Southwest (202.5-247.5), West (247.5-

292.5), Northwest (292.5-337.5), and North (337.5-360) (Figure 11b). 

 
Figure 11B. Slope Aspect 
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3.4.4.3. Slope Curvature 

The curvature is a parameter commonly used in landslide susceptibility modeling 

that needs further investigation (Ohlmacher 2007). It is the curvature of a hillside in a 

horizontal plane. Hillsides can be divided into concave outward plan curvatures called 

hollows and convex outward plan curvatures called noses. The curvature value can be 

evaluated by calculating the reciprocal value of the radius of curvature of that direction 

(Nefeslioglu et al. 2008). When curvature values of broad curves are small, the tights 

ones have higher values.  

 
Figure 11C. Slope Curvature 

 

Plan curvature contributes to slope failure by influencing erosion processes such 

as convergence and divergence of water during downhill flow (Ercanoglu and Gokceoglu 

2002 and Oh and Pradham 2011). Because of its influence on erosion processes, it was 
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considered as one of the conditioning factors to landslide hazards or slope failure 

susceptibility. A thematic map of plan curvature is shown on (Figure 11c). 

 

3.4.4.4. Lithology (Soils) 

Sedimentary rocks of Cretaceous-era including shale, mudstone and sandstone, 

Tertiary igneous rocks batholiths of granodiorite and multiple deposits of the Quaternary 

geological epoch such as alluvium, colluvium, clays and mixed deposits include the 

principal lithologies of the study area. Colluvium occurs on the gentle slopes, bedrocks 

along some of the steep ridges and fluvial deposits occupy the valleys. Lithology is a 

critical component in landslide susceptibility and slope failure. Under the influence of 

rainfall and seismic activities, various lithological units within the study area units show 

substantial differences in landslide susceptibility (Dai et al. 2001; Yalcin 2005, and Song 

et al.  2012). A lithological map of the study area was obtained from the United States 

Department of Agricultural (USDA), Natural Resource Conservation Service (Soil 

Survey) and designated into specific types of soil using the USDA textural classification 

regarding unique characteristics including texture, cohesion, slope and erosion class. 

Multiple types of lithological formations cover the area. The geological setting of the 

lithology of the study area thematic map is shown in (Figure 11d), and the characteristics 

and properties are shown on (Table 6). 
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Figure 11D. Lithology (Soils) 

 

3.4.4.5. Slope Elevation  

The elevation is significant in landslide susceptibility modeling because weather 

and climate vary at different elevations. This variation can cause differences in soil 

formation, soil types, and vegetation (Aniya 1885). Elevation controls multiple geologic 

and geomorphological processes such as freeze and thaw at high altitudes increase 

weathering of rock while lower elevations turn to accumulate thicker colluvium and other 

deposits (Dai and Lee 2001; Ayalew et al. 2005 and Pourghasemi 2008). Elevation-

derived from the high-resolution DEM was classified into six categories: (-0.6 - 59.27), 

(59.28 - 160.78), (160.79 - 249.28), (249.29 - 340.38), (340.39 - 447.1) and (447.11 - 

663.13) in meters. An elevation thematic map was derived from a 9m ×9m resolution 

DEM as shown in (Figure 11e) 
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Figure 11E. Slope Elevation 

 

3.4.4.6.  Terrain Ruggedness  

Surface roughness reflects geophysical parameters of a landform such as the 

distribution of crenulations and degree of erosivity. A considerable number of methods 

have been developed to calculate surface roughness based on different parameters 

(Grohman et al. 2011). For this study, terrain roughness was calculated on bases of 

surface area ratio because it measures topographic roughness and convolutedness. It was 

calculated using the equation below;  

                        SAR (
A

AS
)  .................................................................................. Equation (1)  

Where: 

           𝐴 is the surface area of region and 𝐴𝑆 is planimetric area (Jennes 2002). 

The analysis showed that high roughness slopes were more susceptible to slope failure 
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because the changes in slope gradient favored infiltration of surface runoff water into the 

soils, thus increasing instability. The Terrain roughness thematic map is shown on 

(Figure 11f). 

 
Figure 11F. Terrain Ruggedness 

 

3.4.4.7.  Proximity to Roads 

Road networks constructed along the sides of slopes in mountainous areas can 

cause a decrease in the load on both the topography and on the toe of the slope. The 

steepening of a slope due to excavation, additional load, change in hydrology and 

drainage may affect stress state and slope equilibrium. For this reason, road proximity 

can be considered as a parameter for the generation of a landslide susceptibility model 

(Yacin 2008). During the analysis, it was observed that many landslides scares were 

found in close proximity to road networks. Subsequently, a 150 meters Euclidean 

distance buffer composed of two categories was created to determine the frequency of 
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landslide occurrence to road network proximity classes. The Euclidean distance was 

divided into two categories: (0 – 49) and (50 – 99) in meters with a frequency of 

landslides scares appearing closest to the sloped walls of the road network as shown in 

(Figure 11g). 

 
Figure 11G. Roads 

 

3.4.4.8.  Proximity to Fault-Lines 

Distance to fault lines is an obvious causal factor for landslide manifestation. In 

most cases, fault lines act as triggers to landslides in already unstable slopes. 

Topographic movements along fault lines result in the weakening of rocks and compact 

soil triggering landslide incidents (Foumelis et al. 2004). To designate the influence of 

fault lines on slope stability in the study area, a 150-meter Euclidean distance buffer 

divided into two classes (0 – 49) and (49.1 - 98.9). The fault lines data for this study was 

acquired from exposed and unexposed fault lines from the United States Geological 



 

51 

 

Survey map service. A considerable number of landslides were found in the area with the 

closest proximity to fault lines and decreased as we move further away from the fault 

lines. This is because of the selective erosive nature of surface flow along fault lines 

planes which promote a weakening of slopes. A Faultline proximity thematic model is 

shown on (Figure 11h). 

 
Figure 11H. Fault-Lines 

 

3.4.4.9.  Wildfires 

Wildfires can have profound effects on the hydrologic response of watersheds. 

Consumption of the rainfall-intercepting canopy, soil-mantling litter, intensive drying of 

the soil, combustion of soil-binding organic matter, and the enhancement of water-

repellent soils can change the infiltration characteristics and erodibility of soil, leading to 

decreased rainfall infiltration and exacerbating overland flow, runoff in channels and 
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movement of soil (Wondzell and King 2003). Removal of obstructions by wildfires 

through consumption of vegetation can also enhance the erosive power of overland, flow 

resulting in accelerated erosion of material from hillslope. The wildfire thematic map is 

shown below (Figure 11i). 

 
Figure 11I. Fires 

 

3.4.4.10. Land Use and Land Cover 

Land use and land cover play a significant role in influencing landslides. A 

considerable number of landslides occurred on slopes with sparse vegetation or bare 

surfaces as compared to other urban or developed and mixed vegetation surfaces. Rapid 

changes in land use and land cover, as well as land degradation processes, are precursors 

to mass movement events (Alcántara-Ayala 2006). The land use land cover thematic map 

is shown below (Figure 11j).  
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Figure 11J. Land Use and Land Cover 

 

In this study, landcover classes were extracted from a Landsat ETM image using 

object-based classification approach. The segmentation function and classification 

method were performed using the image analysis software eCognition, which has been 

determined to produce better landcover classes with parameters at different data 

resolutions. The object-oriented segmentation not only segregates pixel groups using 

their spectral characteristics but can also distinguish various classes in the images based 

on other attributes such as shape and texture. A Landsat imagery for the study area was 

classified into a variety of different land cover types and classes. Identified land cover 

types that were reclassified included the following; open water, Developed Open space, 

Barren land, Deciduous forest, Evergreen forest, Mixed forest, Shrub/Scrub, Herbaceous, 

Hay/Pasture, Cultivated Crops, Woody Wetlands, Emergent Herbaceous Wetlands, 

sparse forest, settlements. A segmentation technique is used to build up a hierarchical 
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network of image objects. This spectral image analysis software allows the advanced 

automatic image analysis, relying on image objects by using tools for object-oriented 

classification including details such as contextual and shape information. The spectral 

image analysis software differs from other pixel-based classification techniques in that it 

does not classify single pixels, but rather image objects, which are extracted in a previous 

image segmentation step. This spectral analysis technique makes a better argument for 

analyzing groups of spectral pixel signatures as objects instead of using the conventional 

pixel-based classification unit. This will reduce the local spectral variation caused by 

crown textures, gaps, and shade. 

 

3.4.4.11. Precipitation 

Spatial patterns of precipitation (Rainfall) are always associated with landslides 

initiation and occurrence (Glade 1998). High precipitation rates always bring about an 

increased risk of landslide occurrence. Excessive precipitation throughout Southern 

California, especially in October, usually is a source of concern for local governments 

and residents living in landslide susceptible regions. Precipitation is a significant trigger 

or causative agent of landslides and earth flows. This is because rainfall has the effect of 

changing the hydrodynamic state and characteristics of soils. When precipitation occurs, 

and the soil becomes saturated, the adhesive force that binds soil particles together is lost 

or weakened. As a result, any changes in slope angle or tremors can initiate landslides. 

Also, the absence of precipitation can leave the soil particles dry and lose hence 

susceptible to landslides Prior research on rainfall data in Southern California indicated 

that when monthly precipitation exceeds about 150 percent of the average, the occurrence 
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of landslides becomes more likely throughout the coastline region. The thematic map of 

rainfall is illustrated below (Figure 11k).  

 
Figure 11K. Precipitation 

 

 Determining the suitable driving factors that affect landslides is crucial in 

analyzing slope instability and failures. Any such analysis needs a spatial database of 

both spatial and temporal datasets. The above criteria factors and their thematic maps 

below represents such a spatial database that has been designed for this study. 

 

3.5. METHODOLOGY 

3.5.1. Geophysical Landslide Susceptibility Modeling 

A multi-criteria analysis (MCA) functions by selectively choosing and combining 

several criteria ensuring continuity and consistency to generate a complex evaluation 
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index. The functionality of the criteria is primarily controlled by the influence of criteria 

components such as; factors (which can decrease or increase suitability) and constraints 

(which provides exclusion and limitation of factors). The most prominent advantages of 

the multi-criteria analysis (MCA) approach is its ability to maneuver, manage and 

incorporate both qualitative and quantitative data types (Feizizadeh et al. 2014). One such 

approach is a fuzzy set theory, introduced by Zadeh (1965). This method has been widely 

employed in susceptibility analysis over the years especially for modeling complex 

systems that are difficult to define in precise values. The main strength of this approach is 

its ability to deal with vague, imprecise, and ambiguous data that most often contains 

some uncertainty (Balezentiene et al. 2013). For a fuzzy set with two objects (A, Z), if Z 

denotes a space of objects, then the fuzzy set (A) in (Z) is a set of ordered pairs expressed 

mathematically as;  

                              A {z, MF (z)}, z ∈Z ............................................................ Equation (2) 

      - Where the membership function MF (z) is the set A’s degree of membership to Z. 

 

Fuzzy logic considers spatial objects on a map as members of a set. In classical 

set theory, an object has a membership of 1 if it belongs to a set and 0 if it does not. 

While in fuzzy set theory, membership can take on any value between 1 and 0 reflecting 

the degree of certainty of membership (Zadeh 1965). This concept is important to the 

categorization of data and for decision making because it produces results with specific 

degrees of accuracy. Regarding the relevance and applicability of fuzzy measures in 

decision-making processes, any decision takes into consideration two sets (suitability and 

nonsuitability). To arrive at an appropriate conclusion, the degree to which a decision 

belongs to a set ‘suitable’ is determined from the assessment of suitability range. In this 
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case, suitability is expressed in varying degrees of fuzzy membership with respect to 

some attribute of interest. When geospatial raster data types are involved, the attributes of 

interest are analyzed over discrete raster class intervals, and membership functions 

expressed as tables or graphs of raster class intervals against membership functions 

(Pradhan 2011). A fuzzy logic approach is attractive because it is simple to understand 

and implement. It can be used with data of various scales, and the assignment of fuzzy 

membership weights is entirely depended on the frequency of landslide occurrence and 

general interaction of the evidence collected for each site as well as field specialist 

opinion, (Ayalew et al. 2004; Kritikos and Davies 2011). Its ability to accommodate and 

accurately analyze complex combinations of weighted maps within a GIS has made this 

approach increasingly popular among geospatial analyst interested in Landslide 

suitability modeling. 

 In a multi-criteria decision analysis (MCDA) process, similar to a multicriteria 

analysis (MCA) and the fuzzy set theory, a data series reflecting different objectives is 

scrutinized with the aim of extracting alternative possibilities from the data sets given 

various criteria. A multi-criteria decision analysis, functions by selectively choosing and 

combining several criteria ensuring continuity and consistency to generate a complex 

evaluation index. The functionality of the criteria is primarily controlled by the influence 

of criteria components such as criteria factors which impacts (decrease or increase of 

suitability) and constraints (which provides exclusion and limitation of alternatives of 

factors under study).  

For this study, a series of qualitative (expert-derived datasets) and quantitative 

datasets (appreciation of observed relationships between raster class intervals and 
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frequency of landslide occurrence) were employed. The spatial relationship between each 

landslide criteria factor, the frequency of landslide occurrence for raster each class 

interval and the assigned fuzzy membership values are illustrated in Table 7 below. 

Table 7. The Spatial Relationship between each Landslide Related Criteria Factor and 

Landslide Frequency and Fuzzy Membership Values. 

Criteria Class No. of 

pixels in 

Class 

No.  of 

Landslides 

Attribute 

Ranking 

FM Value of 

Classes 

Slope (°) 0 – 7.1 

7.2 - 16.2 

16.3 - 24.9 

25 - 33.7 

33.8 -  85.9 

30911108 

26694097 

29297260 

24891363 

12684327 

12 

30 

75 

114 

90 

0 

25 

50 

78 

100 

0.001 

0.25 

0.5 

0.78 

1 

Aspect Flat (-1) 

N (0-22) 

NE (22-67) 

E (67-112.) 

SE (112-157) 

S (157-202) 

SW (202-247) 

W (247- 292) 

NW (292- 337) 

N (337- 360) 

11614979 

10959990 

10384964 

12344281 

16045099 

15870007 

13592870 

12577240 

12417460 

13756459 

0 

85 

34 

14 

96 

245 

82 

65 

12 

7 

1 

68 

30 

1 

75 

100 

50 

50 

1 

1 

0.001 

0.68 

0.30 

0.01 

0.75 

1 

0.50 

0.25 

0.01 

0.01 

Curvature Concave (-37-1) 

Convex (2 – 36) 

11196212 

12716565 

246 

77 

100 

50 

1 

0.5 

Elevation (m) -10.8 - 231 

231.1 - 526.2 

526.3 - 884.5 

884.6 - 1242.9 

1243 - 1622.3 

1622.4- 2686 

31062435 

29576304 

21114979 

17382206 

16277034 

6155641 

23 

326 

87 

12 

6 

2 

25 

100 

78 

1 

1 

1 

0.25 

1 

0.78 

0.01 

0.01 

0.01 
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Table 7. Continued 
Criteria Class No. of 

pixels in 

Class 

No.  of 

Landslides 

Attribute 

Ranking 

FM Value of 

Classes 

Terrain 

Roughness 

0 - 0.341 

0.342 - 0.447 

0.448 - 0.525 

0.621 - 1 

7770975 

49114223 

30356574 

9184188 

36 

78 

152 

186 

25 

50 

78 

100 

0.25 

0.50 

0.78 

1 

Precipitation 7.4 - 17.3 

17.4 - 23 

23.1 - 29.7 

29.8 - 38.3 

38.4 - 54.3 

4179 

2017 

3303 

5399 

4179 

46 

121 

94 

58 

23 

25 

100 

78 

50 

1 

0.25 

1 

0.78 

0.50 

0.00001 

Soils Group 1 

Group 2 

Group 3 

Group 4 

Group 5 

Group 6 

354070 

57733 

511086 

22202 

414130 

554097 

173 

126 

69 

32 

28 

17 

100 

90 

78 

50 

30 

0 

1 

0.9 

0.78 

0.5 

0.3 

0 

Road proximity 0 - 49 

50 - 99 

13783271 

12344069 

78 

52 

100 

78 

1 

0.78 

Fault-line 

Proximity 

0 - 49 

50 - 99 

2768581 

2859357 

36 

14 

50 

25 

0.50 

0.25 

Wildfires 1 

1.01 - 2 

2.01 - 3 

0 

19855515 

24553926 

0 

168 

256 

0 

78 

100 

0.0001 

0.78 

1 

 

3.5.2. Application of Fuzzy Membership Functions (fmf) 

For this study, all criteria raster pixel values associated with landslides were 

converted into fuzzy scores or values. The membership of each raster pixel was 

standardized and normalized on a scale of (0-1) based on the fuzzy and crisp membership 

function, where 0 represented least susceptible and 1 represents most susceptible. Prior to 

fuzzification of criteria factors, the classes of each conditioning factor were statistically 

ranked. Then the scores of each raster pixel were computed and ranked in increasing 
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order, to determine the order of rank of assigned scores. Pixels with the smallest scores 

had a value of 0 while the pixels with highest scores had a value of 1. These pixels were 

then statistically normalized so that the pixels with the highest predictive capacity were 

assigned a value of 1 or 100. While there are no standard rules for choosing fuzzy 

memberships for criteria factors, some researchers have defined their fuzzy membership 

values based on expert opinion (Bonham-Carter 1994) while others are based on 

statistical analysis of data (Ercanoglu and Gokceoglu 2002). For this study, the assigned 

fuzzy membership function values for each criteria raster class interval was based on a 

linearized sigmoidal membership function (monotonically decreasing and increasing) in 

association with user-defined linear membership functions for selected parameters. A 

linearized sigmoidal function was chosen because of its ability to deal with data that had 

problems of non-linearity efficiently. In the linearization process of a sigmoidal function, 

a log-logit function is used to transform a sigmoidal curve with a single inflection into a 

straight line. The linearized sigmoidal function is expressed mathematically below;  

               μ(x) = 0 if x < min,  μ(x) = 1 if x > max, ..........................................  Equation (3) 

              Otherwise        μ(x) = 
(x−min)

(max − min )
  ........................................................ Equation (4) 

-  Where min and max are user inputs. 

Lower susceptibility values were assigned to areas with less suitable criteria data 

formation and high susceptibility values assigned to an area with high suitability criteria 

data formations. Subsequently, the classes of all fuzzified criteria raster datasets were 

classified on the basis of landslide susceptibilities.  
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3.5.3. Landslide Frequency and Fuzzy Membership Graphs for Criteria Factors 

Frequency graphs were created for each landslide related criteria factor showing 

the number of observed landslides in each raster class interval. From these frequency 

values, each criteria factor’s raster class interval was quantified into appropriate 

membership values of susceptibility, ranging between 0 (low susceptibility) to 1 (high 

susceptibility). The membership function landslide frequency graphs for each criteria 

factor analyzed for the study area is illustrated from Figure 12a - Figure 12j below. 

 
Figure 12A. Slope Landslide Frequency Graph 

 

 
Figure 12B. Aspect Landslide Frequency Graph 
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Figure 12C. Curvature Landslide Frequency Graph 

 

 

 
Figure 12D. Elevation (Altitude) Landslide Frequency Graph 
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Figure 12E. Slope Roughness Landslide Frequency Graph 

 

 

 

Figure 12F. Soils Landslide Frequency Graph 
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Figure 12G. Road Proximity Landslide Frequency Graph 

 

 
Figure 12H. Fault-line Proximity Landslide Frequency Graph 
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Figure 12I. Wildfires Landslide Frequency Graph 

  

 
Figure 12J. Precipitation Landslide Frequency Graph 

 

3.5.4. User Defined If-Then Rules Used for this Analysis  

The use of fuzzy set functions has made it possible to represent more accurately 

and correctly datasets that appear to be ambiguous and vague (Juang et al. 1992). With 

that concept in mind, the fuzzified frequency graphs of landslide-related criteria factors 

above were used to create the following user-defined If-Then Rules for the fuzzy analysis 

(See Table 8). 
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Table 8. User-defined If-Then Rules Used in Study Area 
Criteria 

Factor 

Antecedent Condition Antecedent Consequence 

Slope If slope is very low 

If slope is moderate 

If slope is high 

If slope is very high 

Landslide susceptibility is low 

Landslide susceptibility is very high 

Landslide susceptibility is high 

Landslide susceptibility is very low 

Aspect If aspect is flat - E 

If aspect is East - SE 

If aspect is S - W 

If aspect is NW - W 

Landslide susceptibility is non-susceptible 

Landslide susceptibility is low - moderate 

Landslide susceptibility very High 

Landslide susceptibility is low 

Elevation If elevation is very low 

If elevation is low 

If elevation is moderate 

If elevation is high or very high 

Landslide susceptibility is non-susceptible 

Landslide susceptibility is very high 

Landslide susceptibility is high 

Landslide susceptibility is very low 

Curvature If curvature is concave 

If curvature is convex 

Landslide susceptibility is low 

Landslide susceptibility is high- very high 

Terrain 

Ruggedness 

If terrain is smooth and flat 

If terrain is rough and steep 

Landslide susceptibility is low 

Landslide susceptibility is high 

Soils If lithology is (Group 1) 

If lithology is (Group 2) 

If lithology is (Group 3) 

If lithology is (Group 4) 

If lithology is (Group 5) 

If lithology is (Group 6) 

Landslide susceptibility is very high 

Landslide susceptibility is high 

Landslide susceptibility is moderate-high 

Landslide susceptibility is moderate 

Landslide susceptibility is low 

Landslide susceptibility is very low 

Precipitation If precipitation is high 

If precipitation is low 

Landslide susceptibility is high 

Landslide susceptibility is low 

 

Fault-line 

Proximity 

 

If proximity to fault is small or 

very small 

If proximity to fault is moderate 

If proximity to fault is high 

If proximity to fault is very 

high 

 

Landslide susceptibility is very high 

 

Landslide susceptibility is high 

Landslide susceptibility is low 

Landslide susceptibility is very low 
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Table 8. Continued 
 

Criteria 

Factor 

 

 

Antecedent Condition 

 

 

Antecedent Consequence 

 

Road 

Proximity 

If proximity to roads is high/very high 

If proximity to roads is moderate 

If proximity to roads is small/ very small 

Landslide susceptibility is very low 

Landslide susceptibility is moderate-high 

Landslide susceptibility is very high 

Wildfires If wildfires are present 

If wildfires are not present 

Landslide susceptibility moderate to high 

Landslide susceptibility is low 

Land Use 

Land 

cover 

(LULC) 

If covered by pavement 

If covered by mixed vegetations 

Landslide susceptibility is low 

Landslide susceptibility is moderate to 

high 

These if-then rules in association with landslide occurrence frequency data were 

subsequently used to generate landslide susceptibility maps for the individual 

conditioning factors as shown in (Figure 13 a - k) below. 

 

 
Figure 13A. Slope Angle Fuzzy Membership  
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Figure 13B. Slope Aspect Fuzzy Membership 

 

 
Figure 13C. Slope Curvature Fuzzy Membership 
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Figure 13D. Lithology (Soils) Fuzzy Membership 

  

 
Figure 13E. Slope Elevation Fuzzy Membership 
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Figure 13F. Terrain Ruggedness Fuzzy Membership 

 

 

 
Figure 13G. Roads Proximity Fuzzy Membership 
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Figure 13H. Fault-line Proximity Fuzzy Membership 

 

 

 
Figure 13I. Wildfires Fuzzy Membership 
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Figure 13J. Land Use and Land Cover Fuzzy Membership 

 

 
Figure 13K. Precipitation Fuzzy Membership 

 



 

73 

 

To obtain a final landslide susceptibility map, a fuzzy overlay technique of multi-

criteria aggregation was used to combine the weighted fuzzified raster layers of criteria 

factors. Several fuzzy operators can be employed to efficiently integrate or overlay the 

weighted membership classes of criteria factor layers. For this analysis, the following 

data integration operators were tested:  Fuzzy (And), Fuzzy (Or), Fuzzy algebraic 

Product, Fuzzy algebraic Sum and Fuzzy Gamma (Bonham-Carter 1994; Jiang and 

Eastman 2000; Pradham et al. 2009). These operators were selected over other statistical 

combination techniques because they provide greater flexibility than other statistical 

techniques, for example, the weighted-sum or weighted-overlay techniques let the expert 

incorporate greater sensitivity based on knowledge of how the evidence interacts. The 

Fuzzy (And) and Fuzzy (Or) operators are very popular but have limitations in that, one 

of both operators significantly influences the results of the output combination while the 

other does not influence the combination. This analysis assessed all five fuzzy operators 

with the goal of identifying the operator that produces the best results for the model. The 

Fuzzy (And) is similar to the Boolean AND (logical intersection). In this operator, the 

minimum of all the values defined the output of the model and is expressed 

mathematically by equation (5) below.  

μ(x) = min (μa, μb,μc,, … … . μd), ........................................................... Equation (5) 

Where: 

 μ(x) is the calculated fuzzy membership function,  μa, is the membership value 

of map A at a particular location and μb, is the membership value of map B at a particular 

location.                                                   

The Fuzzy (Or), Similar to the Boolean OR (logical union), the output model is 
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determined by the maximum score or value of any of the input data as expressed 

mathematically by equation (2) below. 

μ(x) = max (μa, 𝜇𝑏 , 𝜇𝑐 … … 𝜇𝑑) .......................................................... Equation (6) 

Where: μ(x) is the calculated fuzzy membership function,  μa, is the membership value of 

map A at a particular location and μb, is the membership value of map B at a particular 

location etc.  

The Fuzzy Algebraic Product produces output functions lower or equal to the lowest 

function given and expressed mathematically by equation (3) below, 

μ(x) =  πa=1
n μa ................................................................................... Equation (7) 

Where: μa is the fuzzy membership function for the a-th map, and a = (1, 2, 3….n) maps 

are to be combined. 

The Fuzzy Algebraic Sum compliments the algebraic product by producing output 

functions higher than the values of the input data but never above 1. Expressed 

mathematically in equation (4) below, 

μ(x) =  1 − πa=1
n μa(1 − μa) .............................................................. Equation (8) 

Finally, a fuzzy gamma operator was assessed. This operator function is defined 

regarding the fuzzy algebraic product and fuzzy algebraic sum. This final operator allows 

for optimization of the membership combination. On one extreme of this operator for 

example when gamma is 1 (𝛾 = 1), the combination is the same as in algebraic sum and 

when (𝛾 = 0), the combination is the same as in the algebraic product as expressed in 

equation (5) below, 

μ(x) = (FuzzySum)γ  -  (FuzzyProduct)1−γ  .................................... equation (9)    

Where: γ is a user input gamma value chosen in the range between (0, 1) 
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The raster data values in between (0, 1) allow for the combination of evidence between 

two extremes and possibly different than Fuzzy (Or) or Fuzzy (And). Fuzzy Gamma 

operator is a compromise between the increasing effect of Fuzzy Sum and the decreasing 

effect of Fuzzy Product. The Fuzzy Gamma operator generates a relationship between 

multiple input criteria factors and does not merely return the value of a single 

membership as does Fuzzy (Or) and Fuzzy (And) operators.  

To successively combine the overlaid fuzzy memberships of the different criteria 

factors using the various operators discussed above, the extreme membership values of (0 

and 1) were replaced with approximations such as (0.1 and 0.9) using a raster calculator 

tool. Then the criteria factor memberships were combined using various fuzzy gamma 

operators. In this combination process, the paired attributes of similar origin are grouped 

together. An equal interval cut-off point was used for the categorization of pixel 

distribution  

 

3.5.5. Results and Model Validation 

Initial landslide susceptibility model results indicated that the gamma operator 

had the best model results. To fine-tune and optimize the results, the fuzzy gamma 

operator values between (𝛾 = 0.7 − 0.9) were further analyzed to improve accuracy. The 

accuracy of these models was determined by calculating their respective Areas Under the 

Curve (AUC) using the Relative Operating Characteristics (ROC) (Fawcett 2006; Nandi 

& Shakoor 2009) and observing the number of landslides that fall within the various 

categories of the landslide susceptibility model. The ROC operator characteristic is useful 

in representing the quality of the deterministic or probabilistic detection and forecast 

system while the AUC characterizes the quality of the forecast system by demonstrating 
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the system’s ability to anticipate accurately the occurrence or non- occurrence of a pre-

defined event, (Negnevitsky 2002; Brenning 2005). In an ROC curve, the false positive 

rate is plotted on the x- axis and false negative rate plotted on the y- axis. When 

calculating the ROC value, AUC values close to 1.0 indicate high levels of accuracy of 

the model while results close to 0.5 indicate inaccuracies in the overall model (Yilmaz 

2010). When the validation landslide data were overlaid onto the landslide susceptibility 

model at different fuzzy gamma values (𝛾 –values), different AUC values were achieved. 

The tested AUC values for the fuzzy gamma operator ranged from (𝛾 = 0.7 − 0.9)  and 

the AUC value results were between 0.79 to 0.882 (See Table 9). 

 

3.5.6.  Results Verification Using ROC and AUC Curves           

Table 9. Verification Results Using Area Under the Curve (AUC). 
Fuzzy Operator Prediction Accuracy (%) 

Fuzzy And 77.5 

Fuzzy Or 77.6 

Fuzzy Algebraic Sum 75.9 

Fuzzy Algebraic Product 81.4 

Gamma (γ) = 0.7 73.2 

Gamma (γ) = 0.8 79.9 

Gamma (𝛄) = 0.9 88.2 

 

The AUC values were verified using the 150 landslide points set aside at the 

beginning of the analysis as data to be used for validation of the final landslide 

susceptibility model (LSM).    The best model performance regarding the (AUC-value) 

prediction output was achieved at (𝛾 = 0.9) and the AUC value was 0.882 and a standard 
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error of 0.006.  The result showed that about 60% to 80% of the landslides occurred in 

areas of high (H) or very high (VH) susceptibility zones, thus making it the parameter of 

choice for the final landslide susceptibility model (LSM). The resulting Final landslide 

susceptibility model was generated by ranging the continual values into five categories of 

relative susceptibility namely: Very Low – VL, Low – L, Moderate – M, High- H and 

Very High- VH, illustrated in (Figure 14) and (Figure 15a-b). 

                                
Figure 14. Landslide Susceptibility Model at Fuzzy Gamma Function Value of (γ=0.9) 
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LA CONCHITA LANDSLIDE SUSCEPTIBILITY ILLUSTRATION    

 

 
Figure 15A. Detail Landslide Model Illustration 

 

 
Figure 15B. Model Sample Showing La Conchita Landslide Site. 

The southern Californian coastal region has experienced and will likely continue 

to experience, a rather bewildering variety of landslide hazards. Different landslide 
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scenarios are likely to occur because of different specific rainfall conditions, and no part 

of the local community can be considered safe from landslides. Landslide susceptibility 

maps have proven to be crucial and informative in the decision-making process for urban 

development. Unfortunately, cuts in funding of environmental agencies have resulted in 

prioritization of hazard response as such leaving some communities exposed to hazards. 

Local planners, urban developers and hazard mitigation teams currently do not have 

regional parcel level high-resolution landslide susceptibility maps, extensive high-

resolution landslide analysis, pre-historic landslide data inventory and the understanding 

to accurately forecast what might happen in the future regarding possible changing 

rainfall scenario. Considering the nexus between past landslide hazards events and 

extreme climate thresholds, prudence will undoubtedly dictate, however, that there will 

be renewed landslide activity during or after future periods of prolonged and (or) intense 

rainfall and earthquakes (Jibson 1995). Hence, a comprehensive landslide susceptibility 

analysis at a parcel level scale is vital to both community and city planners in making 

decisions regarding hazard assessment, settlement, and mitigation. These hazard 

mitigation decisions can be in the form of technical countermeasures, regulatory 

management or combination of both. The results of this study can help local developers, 

community planners, and slope management engineers by providing them with efficient, 

effective, cheap and readily replicable landslide susceptibility maps of high resolution. 

Also, this susceptibility map can change the community’s approach to landslide hazards 

from mitigation and response to prevention by creating landslide predictive maps ahead 

of hazardous events as opposed to localized site-specific geotechnical analysis after a 

landslide has occurred. The landslide susceptibility map results of this study can 
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efficiently reduce the constraints of geotechnical slope analysis such as data 

requirements, associated cost, and location specificity. This contribution has the potential 

of helping the communities and local planners change their overall action framework to 

landslide hazards from mitigation and response to warning and deterrence. This change 

will bolster better development and settlement decisions’ given the hazardous nature of 

the southern coastal region of California. 
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IV. PHASE TWO: 

LANDSLIDE HAZARD EXPOSURE MODELING 

Natural hazards are geophysical processes that, when encroached upon by human 

development, have the potential to cause loss of life or destruction to property. By 

definition, “natural hazards constitute a threat to society” (Montz et al. 2017, p.9). 

Although the potential for an adverse event to occur may be recognized, there is often 

uncertainty as to the timing and magnitude of the event. Thus, the threat from landslide 

hazards is usually expressed in terms of likelihood or probability of occurrence of a given 

event of a specific magnitude and over particular area and time. In quantitative terms, the 

level of risk is a combination of the likelihood of something hazardous or adverse 

occurring and the consequences of the impact of the adverse event if it does occur. The 

risk exposure levels emerge from the intersection of the adverse event with the elements 

at risk, in this case (human-built environmental systems) usually expressed in terms of 

vulnerability as illustrated in (Figure 16a - b) below.  

                                                                                           
 

 

 

Figure 16A. Montecito, CA. Mudslide 

Hazard, Jan.10, 2018. Courtesy of AP 

Courtesy of Matt Udkow /AP 

Figure 16B. Camarillo Springs, CA, Dec. 

2014 Mudslide Hazard, Courtesy of 

Jonathan/Reuters 
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Landslides generate a small but essential component of the spectrum of hazards 

and increasing risk that faces mankind (Alcántara-Ayala 2002). In an ideal scenario, 

people would settle in areas that are safe and far away from landslides, earthquakes, earth 

tremors and environmentally unstable zones. However, in most areas, for example, the 

Pacific coastline settlements of southern California, there is no guarantee that there is 

sufficient knowledge of hazards and risk to allow people to make informed decisions. 

Often, the residents are placed at the mercy of nature because of population growth and 

pressure, shrinking resources, urbanization and economic structures (cheaper land parcel 

prices in hazardous regions). The threats posed by landslides have driven national and 

international assessment and discussions about hazard risk reduction. In most cases, these 

threats are difficult to calculate or record because of the absence of historically recorded 

data. This failure can be attributed to changing population density, settlement patterns, 

variability in observational techniques and social awareness. The ultimate test of a 

landslide hazard prediction model is predicting places where and when an adverse event 

will occur as well as what its impacts will be. The difficulties of quantifying the spatial 

conditions and the complexity of the temporal conditions severely limit our ability to 

forecast landslide hazards effectively. For this reason, landslide hazard exposure models 

are usually expressed in terms of the probability and likelihood of hazard occurrence 

relative to the built environment.  

Increasingly, choropleth maps are being used to communicate risks to the public 

especially those that are environmental by nature depicting information such as potential 

exposure to hazards. In research, the terms risk and hazard are often used interchangeably 

and often contextualized improperly (Blaikie et al. 2014; Gorokhovich et al. 2016; 
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Baumert 2016). Risk is the likelihood of something adverse occurring while a hazard is a 

phenomenon that has the potential to cause damage or loss to an element at risk (e.g., 

buildings or people). Proximity hazard exposure maps are useful tools for planning and 

mitigation because they illustrate the geographic distribution of risk and hazards allowing 

managers to make spatial decisions in response to assessed risks, to avoid hazards 

(Severton and Vatovec 2012). The purpose of this research, is to create a GIS hazard 

model, that will offer local community managers landslide hazard exposure maps at a 

high enough resolution to enable neighborhood-scale decision-making when it comes to 

settlement and development.  

 

4.1. PROBLEM STATEMENT 

The current state of hazards especially landslides, mudslides, and rockfalls in southern 

California are of primary interest to the public, local communities and various 

governmental entities in the state of California. Although this preliminary analysis and 

evaluation of landslide hazards do not cover the entire southern Californian region, 

reasonable observations and inferences can be learned from the area currently modeled in 

this study and the results extrapolated to the different areas of the state. Historical 

accounts and geologic evidence show that hazards of various types and scales have been 

occurring at and near the southern Californian coastal region for many thousands of years 

and on a relatively frequent basis for example Dec. 10th Montecito, Santa Barbara, 

California mudslides that killed 20 people. Considering the radical changes in climatic 

conditions in recent years, there is no reason to assume or believe that this pattern of 

hazard occurrence will change. Even in the absence of additional significant rainfall, the 

remnants of prior landslide hazards could still remobilize, especially slides such as the 
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deep slump earth flows of La Conchita in 1995. These forms of mass movements are 

usually slow but still could pose severe hazards to property and perhaps, life. If rainfall 

values significantly exceed the average thresholds, several landslides scenarios are 

possible; 1) earth flows on adjacent hillsides, 2) mobilization of deposits into rapid debris 

flows from nearby slopes particularly in ravines and 3) triggering of subsidiary landslides 

from accumulated deposits or scarps. These landslide scenarios highlighted above could 

potentially be hazardous to the communities within these regions as evident by past and 

most recent hazards in southern California. Hence the modeling of the hazardous nature 

of the southern Californian coastal region and the quantification of the hazard exposure 

of the elements at risk (human-built environments) based on their respective proximities 

to the landslides zones can be crucial in improving the hazard consequence on the 

elements at risk. 

 

4.2. LITERATURE REVIEW 

Population growth and the expansion of human settlement over hazard 

susceptible regions have increased exposure to the impact of natural hazards such as 

landslides, both in the developed and third world countries (Rosenfeld 1994; Alexander 

1995). The economic loss and casualties due to landslide hazards are more significant 

than recognized and generated a yearly loss of property more substantial than from many 

another natural hazard (Schuster and Fleming 1986; Alexander 1989; Swanston and 

Schuster 1989; Olshansky 1990; Glade 1998). According to Schuster and Fleming 1986, 

casualties as a result of slope failures are more pronounced in third world countries, 

because of the difficulty affording the high cost of controlling and managing landslide 

hazards through major engineering ventures and rational land use planning. While 
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economic losses are more severe in developed nations due to structural investment 

reluctance to risk reduction. However, recent trends in landslide hazard response has been 

geared towards the development of warning systems and the utilization of regulations 

aimed at minimizing the loss of life and damage to property without investing in long-

term, costly projects of slope stabilization (U.S. Geological Survey 1982; Kockelman 

1986; Schuster and Fleming 1986; Schuster 1995). Despite the realization of the 

importance of landslide planning strategies, minimal attempts have been advanced to 

introduce landslide hazard exposure considerations in building codes or civil protection 

strategies (Brabb and Harrod 1989) with a few recognizable examples including; San 

Francisco Bay area (Nilsen and Brabb 1977; Brabb 1995) and the Los Angeles area in the 

United States. Adoption of a suitable and flexible hazard framework can be vital in 

mitigating the associated hazard risk by providing much-needed context and aid to the 

progress that has been achieved so far. 

Research in quantitative hazard assessments indicate that many developments 

have taken place in the last decade, and that quantitative hazard risk assessments on a site 

investigation scale or for the evaluation of linear features such as pipelines and roads is 

feasible (Wu et al. 1996; Morgenstern 1997; Einstein 1997; Fell and Hartford 1997; 

Hardingham 1998; Lee and Jones 2004). However, the generation of quantitative high-

resolution proximity-based landslide hazard exposure maps still seems a step too far, 

especially at a parcel level scale. Beyond the general complex nature of the hazard 

exposure quantification process, many hazard researchers question whether there is a 

need for such types of information at the parcel level scale. Considering that risks maps 

produced at medium scales have been successfully used in the past for the development 
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of settlement planning and emergency response decisions. Analysis of hazard exposure 

for urban and local settlements in quantitative and spatial frameworks are essential for 

urban and rural public safety. Hazard exposure in quantitative terms is consistent with the 

standard notion of risk in actuarial principles and leads to cost-effective analysis as a 

basis for evaluating hazard risk mitigation options. When conducting a spatial hazard 

exposure assessment (framework), there is usually acknowledgment that exposure to 

hazards is a geospatial process that has considerable spatial variations in environmental 

factors driving the likelihood and the intensity of dangerous phenomenon as well as the 

human and asset vulnerability (Salvi and Debray 2006). Increasingly, quantitative and 

spatial frameworks are being employed by countries with major sophistication like China, 

to make informed hazard risk related management decisions (Zhao and Chen 2014). The 

natural situation of human settlement in hazardous areas is primarily a geospatial issue 

and refers to the spatial patterns and natural geographical conditions of urban and local 

systems. As the availability of high-resolution geospatial data (temporal, spatial scales) 

increases over time, research in hazard risk, risk calculation, model quantifications and 

mapping have increased significantly as well. The spatial technology software (GIS), 

increasingly has played an essential role in geospatial information processing of vast 

datasets and evaluating hazard risk at different geospatial scales (Delvosalle et al. 2006; 

Sebos et al. 2010; Herrero-Corral et al. 2012; La Rosa and Martinico 2013; Thompson et 

al. 2015). 

In recent years, a series of techniques have been developed and tested to access 

potential landslide hazard risk from different perspectives. When it comes to urban and 

settlement planning, three main approaches of possible hazard evaluation can be used; (i) 
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generic separation distance, (ii) consequence-based approach and (iii) risk-based 

approach (Christou and Mattarelli 2000; Kontić and Kontić 2009; Sebos et al. 2010; 

Pasman and Reniers 2014). In literature reviews of the above approaches, the risk-based 

methodology has proven to be the most widely accepted, efficient and comprehensive in 

regard to quantifying potential hazard risk of an element exposed to a hazard 

(Bottelberghs 2000; Cozzani et al. 2006; Kontić and Kontić 2009; Sebos et al. 2010; 

Pasman and Reniers 2014). The risk-based method is a quantitative probabilistic 

approach (QPA) that focuses on assessing the likelihood of potential hazard occurrence 

and the consequences of that hazard occurrence on the element exposed to the underlying 

hazard. In the QPA, individual hazard risk focuses on the potential hazard risk of a 

specified location on the geospatial landscape. The results of the QPA are usually 

presented as particular risk and or location specific risk. The level of risk or risk index is 

determined based on risk exposure, specific risk acceptability, and vulnerability for each 

site on the geospatial landscape (Christou and Mattarelli 2000). From the QPA results, 

countermeasures and risk mitigation can be implemented in the form of reducing hazard 

incident probability and implementing effective settlement deterrence plans around 

hazardous landscapes (Kontić and Kontić 2009; Zhao and Chen 2015). Despite the 

advancements of the above approaches in hazard assessment, hazard assessment like 

most research frameworks have their limitations. This approach fails to appreciate the 

fact that other factors can influence the spatial distribution pattern of risk and hazard 

vulnerability such as the relative importance of each exposed target and the heterogeneity 

of different risk targets around the hazardous terrain. These attributes are seldom 

considered in hazard assessment, as such their integration will, therefore, represent a 
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contribution to the body of knowledge (Salvi and Debray 2006; Tixier et al. 2006).  

Quantifying the hazard exposure of an element at risk at a parcel level scale and 

producing risk maps of higher resolutions is essential for evaluating the potential 

exposure of urban, and local communities to adjacent landslides. Such analysis is 

significant for public safety and environmental protection. 

Hazard exposure internally is the degree of vulnerability and potential loss of an 

element at risk within a landslide threatened area (Fell 1994). Hazard exposure 

characterizations are usually based on the geographic location of an element at risk in 

space and the vulnerability of the element at risk. Landslide hazard exposure 

quantification research is still very preliminary as compared to other hazard phenomena. 

Hazard exposure index classes can be assigned to structural analysis of buildings but 

require expert knowledge (Leone et al. 1996; Spencer et al. 2004). Techniques and 

procedures for assessing landslide geophysical risk and vulnerability to landslides are 

relatively well established, accepted and documented. On the contrary, assessment of 

hazard exposure of elements at risk specifically (building parcels and persons) in relation 

to landslides still requires significant efforts. The primary loads that a landslide can exert 

on an exposed element at risk (building parcel) depend on displacement and related 

deformations in the form of tilting, impact pressure, accumulation from transport and 

undercutting from erosion (Leone et al. 1996). 

Within an extensive landslide geospatial landscape, there are delicate areas 

where the consequence (damage) is going to be enormous irrespective of the forces and 

processes associated with the landslide displacement. This noticeably occurs along 

landslide boundaries (heads and scarps) where tensile stresses build up creating tension 
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cracks and rotational slides. During this process, an exposed building may be able to 

resist the impact of falling blocks but won’t be able to avoid the expansion of the tension 

cracks due to displacement from translational slides (Fell 1994; Fell and Hartford 1997). 

The scope of a landslide hazard problem usually determines the approach used 

to analyze hazard exposure. In terms of assessment, the approach used in a regional 

hazard analysis differs from that employed in discreet high-risk site analysis. The nature 

of the information used to assess hazards may also vary depending on whether 

susceptibility sites have natural or artificial slopes. Also, the presence or absence of 

prehistoric landslides (site inventory data) allows for the utilization of different 

methodologies. Irrespective of the approach employed, the initial concern is to determine 

the problem and model what physical hazards exist (landslide risk) and how they are 

likely to behave in relation to the elements at risk (landslide hazard).  

It is imperative to distinguish between landslide probability models and 

landslide hazard exposure models. Both concepts have different objectives within the 

framework of landslide risk and management. A landslide probability model is a 

document that is not directly intended for use in urban development and settlement 

planning because they reflect the current situation of damage but not the spatial 

distribution of the hazardous zones (Cascini et al. 2005). When modeling landslide 

probability, as was done in Phase (I) of this research, the conditioning (preparatory) 

factors which make the slope susceptible to failure need to be considered (Brabb 1984; 

Hervas and Bobrowsky 2009). Landslide hazard modeling, on the other hand, takes into 

consideration the Spatio-temporal probability of land sliding (Brabb 1984; Chacon et al. 

2006). Landslide hazard maps identify the most exposed and vulnerable elements and 
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assess the level of risk of the element. Based on the information provided by these maps, 

protection and reinforcement works can be envisioned to minimize the subsequent levels 

of risk (Cascini et al. 2005). When modeling landslide hazards, both the conditioning 

factors and triggering mechanisms, which initiate movement, should be considered 

(Hervas and Bobrowsky 2009). In landslide hazard assessments, non -urbanized areas are 

often classified as low-risk zones or low hazard zones, irrespective of the presence of 

landslides. The time dimension of a landslide hazard is usually established by studying 

the frequency of landslides or the trigger mechanisms (Wilson and Wieczorek 1995; 

Soeters and Van West 1996; Zezere et al. 2004, 2005, 2008; Guzzetti et al. 2005, 2007). 

The activation process of a landslide can significantly influence the size and type of the 

resulting landslide, which in turn has implications for landslide hazard mapping (Chacon 

et al. 2010).  

When it comes to analyzing natural hazards caused by the intersection of 

landslide zones and the human-built environmental systems especially in southern 

California, a mixture of empirical and process-based approaches can be utilized. 

Empirical and process-based approaches are used to model behaviors, intersection, and 

character of debris flow paths, flow directions and flow speeds in relation to human-built 

environmental systems (Glade 2004, and Jensen 2004). Using a deterministic or 

geotechnical probability framework, the probability of failure of individual slope areas 

can be determined. Depending on the adopted hazard assessment approach, this 

information can be used in combination with other factors to produce hazard exposure 

maps. The calculation of the safety factor (F) of slope areas (probability of failure) is a 

crucial component of the quantitative process of hazard assessment. Although research 
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has been conducted regarding proximity to natural phenomena especially in social and 

behavioral sciences (Zhang et al. 2004; Arlikatti et al. 2006; Cutter 2008), modeling the 

hazard exposure of human-built environmental systems based on proximity to landslides 

still remains vastly uninvestigated especially in landslide hazards susceptible areas like 

Ventura and Santa Barbara counties of Southern California. This study aims at 

contributing by creating a proximity-based landslide hazard exposure quantification 

model for building parcels within the hazardous regions of southern California. 

 

4.3. CONCEPTUAL FRAMEWORK. 

Proximity-based hazard exposure analysis can be quantified in a series of ways 

using the following as guiding principles; 1) creation of buffer zones quantifying the 

distance between high landslide susceptibility zones in relation to exposed building 

parcels, 2) Identification and digitization of building parcels within the hazard area, 3) 

calculation of the linear distance (Euclidean distance assessment) between landslide 

raster pixels and building parcel raster pixels within the hazardous area and 4) assessment 

of adjusted distance of debris flow using a distance decay function. 

A combination of the above guiding principles were used as the basis for the 

proximity-based hazard exposure analysis. The hazard zones were determined based on 

the intersection between the landslide geophysical risk zones and the human-built 

environmental systems, or elements at risk. The proximity-based hazard exposure 

assessment involved a four-step process model in which the hazard exposure of the 

human-built environmental systems or building parcels within the study area were 

quantified and ranked on a scale from low – high representing risk exposure levels based 

on landslide proximity to building parcels and impact probability as illustrated on the 



 

92 

 

conceptual framework below (see Figure 17). This model assumes that there is always 

enough sediment stored on slope surfaces or in gullies that will be available for flow 

during a landslide incident. (Glade 2004). 

  
Figure 17. Proximity-Based Hazard Exposure Conceptual Model and Schematic  

Work Flow.  

 

4.4. DATA AND METHODOLOGY 

The above four-step schematic workflow of the proximity-based hazard exposure 

analysis (PBHEA) process can be further elaborated on as follows; 
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Step (I) -  Involves calculation of the Geophysical landslide risk of the study 

area. The result of the geophysical risk model is a landslide susceptibility raster 

layer classified from low to high landslide occurrence probability. 

Step (II) -  Involves calculation of the Euclidean proximity distance from the 

human-built environmental systems or building Parcels to the landslide 

probability risks classes. 

Step (III) - Involves calculation of the weighted areal proximity analysis of slope 

debris flow, flow-cost, and terrain flow path cost taking into consideration the 

horizontal cost (Speed of debris movement), vertical cost (surface friction 

affecting debris movement) and linear cost factors for high landslide probability 

classes. 

Step (IV) - Involves a statistical integration or overlay of the calculated weighted 

aerial proximity of the human-built environmental systems or building parcels 

and flow path cost of slope debris over the landslide geophysical risk probability 

classes.  

The proximity-based hazard exposure model (PBHEM) discussed above, takes 

into consideration the combined surrounding risk, respective distances from the human-

built environmental systems and geospatial situation within the landslide terrain. The 

PBHE model assesses the combined associated risk of each location within the study 

area, in this case (raster cells) based on the combined sum of mapped risks in that area. 

Hazard risk was represented as a continuous field controlled by risk measurements (Sum) 

taken for each raster pixel or cell location and at each point in space. Each location on the 

map was assigned a numerical geophysical risk value. When the locations with assigned 
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risk values were used as input datasets in the hazard exposure assessment, the input 

numerical geophysical risk dataset values ended up defining the hazard exposure values 

of the output. The results of the combination of the proximity-based hazard exposure 

model (PBHE) with the geophysical risk (landslide susceptibility or probabilistic) model 

as input data, is an index risk map categorized from low to high. This proximity-based 

hazard exposure model makes a series of assumptions; 1) each hazard location has a 

direct complimentary relationship to the surrounding hazards, 2) the hazard magnitude 

for any raster pixel or cell location must reflect the mapped hazard value and may not 

have a higher classification than the sum of the combined hazard value for that specific 

location and 3) the relative intensity and influence of a hazard risk and exposure 

decreases with increasing distance from its nucleus. 

In step three of this analysis, the areal weighted proximity analysis of slope debris 

flow, debris flowcost, and terrain flow path cost was calculated which accounted for the 

horizontal cost, vertical cost and linear cost of debris movement. The weighting 

technique employed for this analysis is expressed mathematically below; 

                         PHB(x, y) =
∑ Hn

i=1 (Xi,Yi)W (Xi,Yi,Xi,Yi,)

∑ Wn
i=1  (Xi,Yi,Xi,Yi,)

  ........................................ Equation (10) 

Where a set of risks or hazards of values Hi defined at n locations ( xi , yi), i =1,2,3,4…. 

n. From this, a set of Wi weights were used to assign hazard intensities values to (x, y) 

locations. Since the value of Wi varies from one location to another on the geospatial 

landscape, the values of the proximity-based hazard exposure map will equally vary from 

place to place in association with surrounding hazard combination values. 

Hazard exposure is typically expressed as (vulnerability  ×  amount/cost). However, for 
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this analysis, an adapted version of the hazard exposure equation mathematically 

illustrated below was used, (Varnes 1984; Fell 1994; Leroi 1996; Lee and Jones 2004; 

and Van. et al. 2006).  

               Hazard Exposure = ∑ ( R ×10) ∑V) ............................................... (Equation 11) 

Where; 

R – Geophysical Risk (landslide probability) expressed as the probability of landslide 

occurrence within a reference period (Spatial and temporal probabilities) 

10 – In this case 10 is a multiplier to keep code simple and thus allows a quick attribution 

to the respective exposures 

V - the Physical vulnerability of building parcels based on proximity to geophysical risk 

ranked from (0 – 1). 

 

4.5. RESULTS 

The results of the above analysis are a building parcel hazard exposure map that 

has been classified, categorized and ranked from low hazard exposure to high hazard 

exposure. The final exposure model shows each building parcel’s hazard exposures in 

geographic space, based on their respective proximities to landslides probabilities (see 

(Figures 18a - b), (Figure 19a – b, c) and (Figure 20)) below. This analysis subsequently 

forms the basis for risk reduction, transfer and preparedness planning (Lee and Jones 

2004). 
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Figure 18A. Study Site Block Group Building Parcels 

 

 

 
Figure 18B. Illustrates a Proximity-Based Hazard Exposure Model of Building Parcels  

Draped Over an Aerial Imagery of Study Site. 
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Figure 19A. Study Area Building Parcel Hazard Exposure Model Site One 

 

 
Figure 19B. Study Area Building Parcel Hazard Exposure Model Site Two 

 

 
Figure 19C. Study Area Building Parcel Hazard Exposure Model Site Three 
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Figure 20. Illustrates a Proximity-Based Hazard Exposure Model of Building Parcels Draped  

Over a Landslide Susceptibility Model of Study Area. 

 

It is important to note that proximity-based hazards exposure models (PBHEM), 

assess hazard risk of specific locations on a map based on the visual and spatial 

representation of hazards. For each location on a map, the mapped hazard values are used 

rather than the actual hazard data for that location. Given the complex nature of the 

geophysical landscape of study, the analysis did not consider many complex factors that 

may influence spatial variations in the distribution of various types of risk and hazards. For 

example, sub-surface soil water behavior and transport. Soil water may contain 

contaminants which may influence complex hydraulic processes such as hydraulic 

conductivity, which intern may affect slope and slope debris stability, landslide 

susceptibility as well as hazard exposure. 

This study has demonstrated how the analysis of the exposure to landslide hazards 

has evolved from simple coincidence analysis and discrete buffer zones to more 
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sophisticated techniques that are based on precise distance and terrain morphometric 

dynamics between landslide hazard locations and human-built environmental systems.  

The results of this analysis suggest that local governmental agencies consider 

similar studies and findings in siting roads, public facilities, and residential areas. The 

proximity-based hazard exposure index map above provides sufficient justification for 

the application of precautionary steps to protect people from the deleterious effects of 

living near landslide hazard susceptible landscapes. Although economic and political 

forces will require stringent evidence that specific recommendations such as the creation 

of protective buffer zones around areas in close proximity to hazards will be effective, 

some practical ideas should be obvious such as prohibiting the siting of residential 

locations, and other sensitive land uses in close proximity to hazardous landscapes. 
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V. LIMITATIONS OF ANALYSIS 

5.1. PHASE ONE: LANDSLIDE SUSCEPTIBILITY MODELING LIMITATIONS 

Most successful landslide susceptibility mapping approaches are not without limitations. 

These limitations influence modeling processes by constraining researchers to a specific 

dataset, regions of study, methodologies, analysis and validation techniques. Although 

research limitations can affect research results, they can also act as guiding pillars or 

springboards for future or further research.  In the case of this study, the following 

limitations were encountered;1) unavailability of pre-historic and current landslide 

inventory datasets for the study area. To address this problem, the high-resolution aerial 

imagery was used to identify and digitized old and fresh landslides through visual 

interpretation techniques. 2) The natural problem of geospatial terrain heterogeneity 

which makes interpolation of analysis a challenge. 3) Difficulties identifying landslide 

exposure scares and determining their respective ages through visual interpretation of 

aerial imagery. Despite the impressive advancements of the remote sensing technique, the 

identification, and interpretation of landslide features are not without limitations, because 

the appropriate completion of the landslide inventories still relies on immensely on expert 

opinion. 4) The analysis relies on assumptions based on the concept of uniformitarianism 

which states that current and future landslides will occur under the same conditions in 

which they occurred in the past. This assumption, however, is challenged by the fact that 

landslides are dynamic. When landslides occur, they change the geomorphic structure 

and morphology of that landscape such that preceding landslides may have different 

structures and morphology making replication or regional generalization of results 

challenging. Finally, 5) the analysis process was very laborious and time-consuming. 
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5.2. PHASE TWO: HAZARD EXPOSURE MODELING LIMITATIONS 

It is imperative to mention here that despite the simplistic mathematical 

representation of the quantification of hazard exposure as expressed in (equation .11) 

above, the quantification of specific risk to a building or a person(s) in a building within a 

land parcel quickly becomes a complicated task. This complexity results from the 

difficulty in precisely locating the elements at risk versus the possible location and 

probability of landslide occurrence. The spatial and temporal probabilities that a landslide 

will impact a particular person(s) or building must be evaluated to identify the specific 

risk (Van. et al. 2006).  Temporal probability can be determined by correlating landslide 

occurrence data to triggering factors provided such data is available (Van 2002). Spatial 

probability comes from evaluating the relationship between locations of past landslide 

incidents and a set of environmental factors to predict areas of landslide initiation with 

similar environmental factors. The lack of both complete, reliable and high-resolution 

data sets especially temporal, and associated ancillary building parcel datasets in many 

landslides threatened urban areas is a significant constraint to the achievement of high 

predictive maps. The modeling process also experienced some limitations in terms of 

analytical specificities for example, for a building structure, the expected damage may 

depend on three factors; (i) the type of landslide mechanism (rockfall, debris flows and 

slides), (ii) intensity (velocity and volume), and (iii) and the relative location of the 

exposed element at risk (building parcel) in relation to the trajectory of the landslide 

within the hazard threatened or affected area. When landslide risk zones are combined 

with spatial and temporal probabilities, the result is a landslide hazard map. Therefore, 

any hazard exposure map is limited by compounding assumptions embedded in the 
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geophysical risk modeling technique, the hazard exposure model and the quality of data 

available.  

 

5.3. DISCUSSION  

Landslides and other forms of mass wasting have been a concern for 

communities living along the coastline of southern California for generations. Even a 

simple rainfall event, imperative for the region’s agricultural industries, can bring about 

adverse mass wasting events, be it mudslides, flows and rock-falls. With expanding 

urbanization and decreasing funding at the state and federal level for hazard modeling, it 

is vital to develop a comprehensive, neighborhood-scale landslide analysis and a hazard 

exposure assessment for local communities and city planners. It is also important that 

these models be designed using publicly available data to ensure that they can be 

deployed across a variety of communities with equal confidence in the assessment. In this 

way, local planners, landowners and environmental agencies will be armed with the tools 

needed to make informed decisions regarding hazard prediction, evaluation, and 

mitigation. These decisions are usually in the form of technical countermeasures, 

regulatory management or combination of both. An example of such measures would be 

to create hazard zonation maps limiting habitation in very high susceptible zones or 

enforcing specific standards for occupancy in such regions. 

In recent years, both the U.S. federal government and the State of California have 

reduced funding for landslide hazard and terrain analysis. These cuts were implemented 

under the auspices of saving money for higher priority programs. These cuts have 

weighed heavily on environmental agencies and their programs through reduction of 

work hours and personnel. Consequently, there has been a decline in the ability of most 
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environmental assessment agencies to provide extensive analysis of hazard susceptible 

regions. Because the limited resources and personnel are focused on priority situations, 

potentially hazardous, underprioritized areas remain open to communities interested in 

settlement. For this reason, a comprehensive landslide susceptibility, and a hazard risk 

exposure quantification analysis on a fine resolution scale is vital to community and city 

planners. Such analysis will equip them with the tools they need to make decisions 

regarding hazard prediction, assessment, and mitigation. These hazard response decisions 

are usually in the form of technical countermeasures, regulatory management or a 

combination of both. 

This study begins with the assumption that future landslides will occur under 

similar conditions in which they occurred in the past and present. To achieve the goals 

and objectives of this study, fuzzy measure techniques (F) were integrated into multi-

criteria probability distribution function (MCPDF) technique to create landslide 

probability or susceptibility models (LSM). The landslide occurrence frequency was used 

as a calibration criterion for the fuzzy measures to develop fuzzy membership classes of 

criteria factors. The results showed that the fuzzy multi-criteria probability distribution 

function’s (FMCPDF) did produce not only models with reasonable accuracy values but 

also introduced more flexibility in judgment and decision making as compared to other 

statistical techniques. In this process landslide occurrence frequency data were used to 

standardize and weight criteria factors. This technique overcomes the issues of 

uncertainty by using fuzzy membership functions (FMF) to assign memberships to 

criteria data. This method was desirable because it mirrors how a human brain processes 

criteria data.  
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The fuzzy approach is also capable of accommodating data of various scales and 

leaves the expert in control of criteria weighting and standardization processes. After a 

detailed analysis of the various fuzzy functions, the gamma operator at the gamma 𝛾 

value of (𝛾 = 0.9) had the highest accuracy value. When the model was validated using 

landslide validation data using the operating receiver characteristics ROC function and 

the Area Under the Curve (AUC) values calculated, it was determined that the model had 

an acceptable accuracy value of 0.885, (88.5%). From the results of this study, it can be 

fairly argued that the effects of choosing different gamma values from (0 – 1) is not large. 

Because the other gamma values (𝛾 = 0.7, 0.8) had AUC values ranging from (78.2% to 

80.2%) showing close similarities to the gamma (𝛾 = 0.9) which was the best LSM 

model with the highest area under the curve as well as accuracy. The overall verification 

showed a satisfactory agreement between the LSM or probability model and existing data 

from landslide locations. 

The second phase of this study was to assess the extent of hazard exposure as a 

result of the interaction between highly landslide-susceptible landscapes and human-built 

environmental systems, as well as to quantify hazard exposure into various index levels 

of exposure based on distances of the human-built environments or building parcels to 

highly landslide-susceptible landscapes. To achieve this goal, a proximity-based hazard 

exposure model was created. This model assessed the risk associated with every map 

location based on a totality of mapped risks (geophysical and environmental) in the study 

area. For each raster cell in the study area, a calculated numerical value was assigned to 

represent the geophysical risk for that raster pixel or cell location. The hazard exposure as 

a result of the interaction between the landslide geophysical risk and the human-built 
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environmental systems was modeled using a four-step process. The four steps included 

the following; calculation of landslide susceptibility (landslide probability), calculation of 

the Euclidean proximity distance between high susceptibility landslide locations and 

human-built environments, calculation of a weighted aerial proximity analysis of slope, 

debris flow, flow cost, and statistical overlay weighted datasets. Since the output products 

of the weighted raster layers varied from one raster cell (pixel) to the next, so too did the 

surrounding map hazards from one location to another. Even with a fixed set of hazards, 

the pattern of hazards from various locations is always different, thus hazard proximity 

(like hazard exposure) will vary over geographic space. The proximity-based hazard 

exposure model produced a continuous field of risk measurements taken at discrete points 

and specific distances in a geographic area. The final model output successfully 

quantified the hazard exposure of the building parcels in their respective geographic 

spaces, based on their proximities to highly landslide locations and categorized the model 

output into levels of exposure from high to low. 

Landslide hazard and hazard exposure maps can help planners, engineers and 

citizens by substantially reducing or preventing financial loss and loss of life that may 

likely occur as a consequence of failure to prepare for future landslides and mudflows in 

the coastline region of southern California through mitigation, prevention, and (or) 

avoidance. 

5.4. CONCLUSION 

Over the last decades, several strategies for landslide and hazard risk 

management have been developed in response to the consequences of such disasters. The 

most pronounced of the above strategy include hazard and risk assessment methods. Past 
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landslide incidents, knowledge gained from hazard literature and information obtained 

from several countries around the world have encouraged the use of hazard and risk 

assessment maps to improve urban development planning as well as minimizing the 

associated risk to human systems. Given the deadly nature of landslide hazards in 

southern California, a need exist for standardization and development of replicable, easy 

to read and use methods for assessing hazard exposure and hazard risk components. For 

some time now, the disaster response to landslide hazards in southern California has been 

reactionary. The inadequate-ability of the hazard response has been as a result of cuts in 

environmental and hazard research-related funds by the government. This action resulted 

in a prioritization type style of hazard research which for the most part has been 

reactionary.  Non – structural hazard prevention measures such as prohibition or 

restrictions of buildings in hazardous areas and the establishment of warning systems in 

locations where hazards cannot be avoided have been a constraint because such 

countermeasures can only be put into practice if high-resolution landslide predictive 

models and hazard exposure maps are available for the area in question. Figure 21a and 

21b below illustrates the difficulties associated with conducting an effective hazard 

response with hazard maps of low resolution. A side by side comparison between the 

resolution of the available CGS and USGS landslide hazard map and the resolution of the 

landslide susceptibility map from this study in southern California is illustrated below; 
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The hazard exposure map developed from this study can be used to make critical 

developmental, settlement planning, disaster warning and evacuations decisions in 

southern California. These evacuation and disaster warning systems can represent 

valuable safeguard measures for populations living in hazardous landslide regions. 

To ensure continual progress and efficiency in future hazard modeling endeavors, 

experimental observations must be tested in specific sample sites, and investigations 

carried out using advanced statistical approaches with the aim of individuating reliable 

threshold values of rainfall, debris flow, and debris displacement. 

Finally, this study has successfully demonstrated that it is possible to model 

landslide susceptibility for a geospatial terrain and the resulting geophysical risk maps 

utilized to quantify or estimate the potential hazard exposure of an element at risk 

(building parcel) based on its location in a geographic space relative to a hazardous 

landslide landscape. This development is an essential step within the comprehensive 

research field of landslide hazard risk assessment. Future studies should focus on the 

detailed evaluation of spatially distributed information on landslide magnitude and 

Figure 21B. Illustrates Resolution of 

Landslide Susceptibility Model from the 

CGS/ USGS - Courtesy of C.J. Wills, F.G. 
Perez, C. I. Gutierrez. Source: California 
Geological Survey (CGS) | Earthstar 
Geographics 

Figure 21A. Illustrates Resolution of 

Landslide Susceptibility Model  

for this Study 
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frequency to perform a sound landslide hazard calculation which can then be used within 

a landslide risk analysis. Nevertheless, hazard exposure analysis that is related to other 

hazards would undoubtedly enrich the attempts towards a more sustainable planning 

approach. 
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