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Minimax principles for critical-point theory in
applications to quasilinear boundary-value
problems *

A. R. El Amrouss & M. Moussaoui

Abstract
Using the variational method developed in [7], we establish the exis-
tence of solutions to the equation —A,u = f(z,u) with Dirichlet boundary
conditions. Here A, denotes the p-Laplacian and fos f(z,t)dt is assumed
to lie between the first two eigenvalues of the p-Laplacian.

1 Introduction

Consider the Dirichlet problem for the p-Laplacian (p > 1),

—Apu = f(z,u) in Q (1)
u=0 on0Q,

where Q is a bounded domain in RY with smooth boundary 9. We assume
that f: Q xR — R is a Carathéodory function with subcritical growth; that is,

|f(z,s)] < Als|T '+ B, VscR, ae zc9, (Fp)

and some positive constants A, B, where 1 < q¢ < NN—_’; if N >p+1, and

1<q<ooifl <N <p. It is well known that weak solutions u € Wy"*(Q) of
(1) are the critical points of the C'! functional

B(u) = %/|Vu|pdac—/F(x,u) i,

where F(z,s) = [ f(x,t)dt.

We are interested in the situation where @ is strongly indefinite in the sense
that it is neither bounded from above or from below. Let A\; and A be the first
and the second eigenvalues of —A, on Wy?(Q). It is known that A\; > 0 is a
simple eigenvalue, and that o(—A,)N]A1, A2[= 0, where o(—A,) is the spectrum
of —A,, (cf. [1]).
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We shall assume the following conditions

| l‘im [f(z,s)s —pF(z,s)] = oo uniformly for a.e. z € Q, (FE)
§|—00
F
lim sup m < A, (Fy)
5—00 |3|p

and )
[/ F(z,tp1)dx — =|t|P| = o0, as |t| — o0, (F3)

p

where ¢ is the normalized A;- eigenfunction. We note that ¢; does not change
sign in Q.
Now, we are ready to state our main result.

Theorem 1.1 Assume (Fy), (Fy"), (Fy) and (F3). Then (1) has a weak solution
. 17p
in Wyt (Q).

Similarly, we have

Theorem 1.2 Assume (Fp), (Fy ), (F2) and (F3). Then (1) has a weak solution
. 1,p
in Wy (Q).

As an immediate consequence, we obtain the following corollary.
Corollary 1.1 If F' satisfies (Fy), (Fy ), and

F F
A1 < liminf w < lim sup pF(z,s)

§—00 3| s—00 |5|p

< g, (F3)

then (1) has a solution.

The nonlinear case (p # 2) when the nonlinearity pF'(z, s)/|s|P stays asymp-
totically between A; and Ay has been studied by just a few authors. A contribu-
tion in this direction is [8], where the authors use a topological method to study
the case N = 1. Another contribution was made by D. G. Costa and C.A.-
Magalhaes [5] who studied the case when pF(z,s)/|s|P interacts asymptotically
with the first eigenvalue A;.

We point out, that the variational method used in the linear case (p = 2) can
not be extended to the nonlinear case. To overcome this difficulty, we introduce
the idea of linking and proving an abstract min-max theorem.

2 Preliminaries. An abstract theorem

In this section we prove a critical-point theorem for the real functional ® on a
real Banach space X. Let X* denote the dual of X, and |.|| denote the norm
in X and in X*. For ® a continuously Fréchet differentiable map from X to R,
let ®'(u) denote its Fréchet derivative. For ® € C*(X,R) and ¢ € R, let
K.={x € E:®(z) =c,®(z) =0},
¢ ={r e X:P(u)>c}

Thus K. is the set of critical points of ®, and ® has value c.
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Definition Given ¢ € R, we shall say that ® € C'(X,R) satisfies the condition
(Co), if

i) any bounded sequence (u,) C E such that ®(u,) — ¢ and ®'(u,) — 0
possesses a convergent subsequence;

ii) there exist constants d, R, o > 0 such that
|®' (w)]|||u|| > « for any u € & ([c — §, ¢ + ]) with |lu| > R.
Definition If ® € C!(X,R) satisfies the condition (C.) for every ¢ € R, we
say that ® satisfies (C).
This condition was introduced by Cerami [3], and recently was generalized

by the first author in [7]. It was shown in [2] that condition (C') suffices to get
a deformation lemma.

Lemma 2.1 (Deformation Lemma) Let X be a real Banach space and let
® € CY(X,R) satisfy (C.). Then there exists € > 0, € €]0,Z[ and an homeomor-
phism i : X — X such that:

1. nx)=zifr g tc—&c+&;
2. If K. =0, n(®¢) C dcte.
Now, we define the class of closed symmetric subsets of X as

Y={ACX: Aclosed,A=—A}.

Definition For a non-empty set A in ¥, following Coffman [4], we define the
Krasnoselskii genus as

(4) = inf{m : 3h € C(A,R™\ {0}); h(—z) = —h(z)}
v " | oo if {...} is empty, in particular if 0 is in A.
For A empty we define v(A) = 0.

Next we state the existence of critical points for a class of perturbations of
p-homogeneous real valued C! functionals defined on a real Banach space.

Theorem 2.1 Let ® be a C! functional on X satisfying condition (C), and let
Q be a closed connected subset such that 0Q N (—0Q) # 0. Assume that

i) VK € Ay there exists vk € K and there exists 3 € R such that ®(vi) >
and ®(—vg) > 0

i) a =supyy ® < .
iii) supg @(z) < oo.
Then ® has a critical value ¢ > (3.
For the proof of this theorem, we will use lemma 1.1 and the following lemma.
Lemma 2.2 Under the hypothesis of Theorem 2.1, we have
R(Q)N®° #0; V6,0 <B,Yhel, (Hy),
where I' = {h € C(X, X) : h(z) =z in 0Q}.
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Proof : First we claim that If A is nonempty connected symmetric then
v(A) > 1.

Indeed, if v(A) = 1, then there exists a map h continuous and even such
that h(A) C R\ {0}. Since h is even continuous, h(A) is a symmetric interval.
Therefore, 0 € h(A) which is a contradiction and the claim is proved.

Let h € T and put K = h(Q) U —h(Q). Clearly we have

QN —8Q C h(Q) N —h(Q).

Therefore, K is a closed, connected, symmetric subset, and by the claim above
V(K) > 2.
On the other hand, by i) of Theorem 2.1 there exists vk € K such that

O(vg) > and P(—vk)>p0.
Let § < 3, then there exists vy € h(Q) U —h(Q) such that
®(v1) >0 and P(—wvy) >4.

Indeed, if this is not the case, then for every v € h(Q)U—h(Q) we have ®(v) < &
or ®(—v) < §. Then, since ® is continuous, for every v € K ®(v) < § or
®(—v) < 6. Which is a contradiction. Moreover, h(Q) N ®° # (), and the
conclusion easily follows. &

Proof of Theorem 2.1. Suppose that ¢ = infyersup,cq ®(h(z)) is not a
critical value (i.e. K. = 0). Let € < 8 — a, then by lemma 2.1 there exists
n: X — X an homeomorphism such that

nz)=z ifzgdlec—&c+e],withe<y—a;
n(®eF) C P (2)

By (H1) there exists a sequence (zy,), C @ such that

v <sup®(h(z,)), Vhel.

This implies 8 < ¢. Then by iii) we have 8 < ¢ < co.
On the other hand, since £ < § — a and (8 < ¢, it results from i7) that

b(z)<c—¢, Vredq.

This leads to
n(xz) =z for z in 0Q. (3)

Hence, we have n~! o h € T, and by the definition of ¢ there exists Z € Q such
that
<I)(77_1 oh(i)) >c—e¢.
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Hence, by (2) we obtain
c+e<®(n[ntoh(@)]) = (h(z)).
Therefore, we get the contradiction

< inf sup ®(h(z)) = c.
cte = fuf sup (h(z)) =c

Which completes the present proof. &

3 Proof of Theorem 1.1

In this section we shall use Theorem 2.1 for proving Theorem 1.1. The Sobolev
space Wy P(Q) will be the Banach space X, endowed with the norm |ju| =

(Jo IVul? dm)% and the C! functional ® will be

1
O(u) = —/ |Vul|P de —/ F(z,u)dx.
DJa Q
To apply Theorem 2.1, we shall do separate studies of the “compactness” of ®
and its “geometry”. First, we prove that ® satisfies the condition (C').
Lemma 3.1 Assume F satisfies (Fy), (Fy) and (Fi'). Then for every c € R, ®
satisfies the condition (C.) on Wy (Q).

Proof: We first verify the condition (C..)(7). Let (un)n C Wy (), be bounded
and such that @ (u,,) — 0 in W~ (Q). We have

—Apup — f(z,up) = 0 in W_l’p/(ﬂ).
And as —A, is an homeomorphism from Wy ?(Q) to W1 (Q) (cf [9]), we have
Un — (=A) M [f(,un)] = 0 in WyP(Q). (4)

Since (uy,) is bounded, there is a subsequence (u.,) weakly converging to some
ug € Wol’p(Q). On the other hand, as the map u — f(z,u) is completely
continuous from Wy (Q) to W~ (Q) then

(—2p) M F (1)) = (=8p) " HF (2,u0)]  in WoP(Q). (5)

By (4), (5) we deduce that (u,) converges in Wy (Q).

Let us now prove that the condition (C.)(i7) is satisfied for every ¢ € R.
Assume that F satisfies (Fp), (F»), (F;") and again, by contradiction, let ¢ € R
and (un)n C WyP(Q) such that:

b(up) — ¢ (6)
(@ (un), v)| < enlloll Vo€ Wy (2) (7)
lun|| = 00, en = [Junl|||®'(un)|| = 0, asn — oo,
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where (.,.) is the duality pairing between Wy ?(Q) and W17 (Q). Tt follows
that
lim [(®(un),un) — p®(u,)| = pc.

n—oo

More precisely, we have

lim [ [f(z,un)un(x) — pF (2, un)] dz = pec. (8)
n—oo Q
Put z, = un/||un||, we have ||z,|| = 1 and, passing if necessary to a subsequence,

we may assume that: z, — z weakly in W, ?(Q), z, — z strongly in L?(Q) and
zn(z) = z(x) a.e. in .

On the other hand, note that limsup,_, . pﬁirp’s) < A2 and (Fp) implies
A
F(z,s) < Z2|s|” + b(z), VscR,be LP(Q). 9)
p

Therefore, passing to the limit in the equality
1 1 1

e D(up) = = — ——
Tl 2 = 5~ Tl

/F(ac, Up) dx
and, using (9), it results
1
Pt Aa|lz[lzy) <0
which shows that z # 0. Now, by (F;") and (Fp) there exist M > 0, such that
f(z,s)s —pF(z,s) > —M +bi1(x),Vs € R, a.ex € Q;

hence,
/ [f (z,un)un(z) — pF(z,upn)] do > / f(zyun)un(z) — pF(x,uy) da
Q {z:2(z)#0}
—M|{z e Q:z(x) =0} —||b1]lp:-

An application of Fatou’s lemma yields
/ [f (2, un)un(z) — pF (2, upn)] de — 0o, asn — oo,
Q

which is a contradiction to (8). Thus the proof of lemma 3.1 is complete.

Now, we will show that ® satisfies the geometric conditions ¢), %), i) of
Theorem 2.1.

Lemma 3.2 Assume that F satisfies the hypothesis of Theorem 1.1. Then we
have

i) ®(v) = —o0, as ||v|]| = co with v € X;

ii) VK € A, there exists vk € K, and f € R such that ®(v;) > [ and
(I)(—”UK) 2 /6
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Proof: i) Let X; denote the eigenspace associated to the eigenvalue A;. Since
dim X; =1, we set X7 = {tp1 : t € R}. Thus for every v € X1,v = t¢p1,t € R,
we obtain

1
o(v) = 5/|Vt<p1|p — /F(x,tgol) dx
1
- ]—9|t|p/|w1|p - /F(ac,tapl)dm.
Since [ |[V¢1|P =1, by (F3), we obtain
1
D(v) =— {/ F(z,tpr)dx — —|t|p] — —o00, as |t| = 0.
p
ii) Let us recall that the Lusternik-Schnirelaman theory gives

= 1 p p:
A2 Klggzsup{/|Vu| ,/|u 1,u€K}.

However, for every K € As and € > 0 there exists vg € K such that

(2 —e)/|vK|pdm < /|VUK|”dm. (10)
Indeed, we shall treat the following two possible cases:
Case 1. 0 € K, (10) is proved by setting vxg = 0.
Case 2. 0 ¢ K, we consider

O:K— K,v—

lvllze

Note that II is an odd map. By the genus properties we have v(IL(K)) > 2 and
by the definition of Ao there exists vx € K such that

/|v}<|pda::1 and (A2—6)§/|Vv}<|pda:.

Thus (10) is satisfied by setting vgx = 1171 (3k).

On the other hand, we note that limsup,_, ., pF‘grp’s) < A2 and (Fp) implies
|s[”
F(z,s) S()\Q—QG)?‘FD,VSER (11)

for some constant D > 0. Therefore, by using (10) and (11), we obtain the
estimate

1 -2
D(vg) > 5/|VUK|pdac—¥/|0K|pdac—D|Q|

1{1_@2—

vV

p 266))} /|V’UK|p dx — D|Q]. (12)

(A2 —
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The argument is similar for

1 ()\2 — 26)
(I)(—UK) Z 5 |:1 - 7(/\2 — 6)

It is clear from (12) and (13) that for every K € A, we have

} /|va|de —DlQ. (13)

B(+vg) > —D|Q| = B.

Which completes the proof. O

Proof of theorem 1.1: In view of Lemmas 3.1 and 3.2, we may apply The-
orem 2.1 letting Q = Bg N X1, where, Bg = {u € Wy” : ||u|| < R} with R > 0
being such that sup,csqo ®(v) < 8. It follows that the functional ® has a critical

value ¢ > 8 and, hence, the problem (1) has a weak solution u € W,"?(Q), the
theorem is proved.

Proof of Corollary 1.1: The proof of this corollary follows closely the argu-
ments in [5]. It suffices to prove that (Fy ) and (F3) implies (F3). Let us suppose
that g(z,s) = f(z,s) — A\1|s|P~1s and G(z,s) = F(x,s) — %)\1|s|p. Then, by
(Fy ), for every M > 0 there exists sp; > 0 such that

g(x,8)s — pG(x,s) < —M,V|s| > sy, ae. z € Q. (14)
Using (14) and integrating the relation
d [G(m,s)} _ g(x,8)s — pG(z, s)

ds | Jsf? |sfP+?

over an interval [t,T] C [spr, 00[ which was also explored in [6], we get

G@,T) Glat) _ M[l 1].

T w S p TP W

Therefore, since liminfr_, o % > 0 by (F}), we obtain
M
G(z,t) > — VYt > sy, ae. z €0
p
In the same way we show that G(z,t) > %, for every t < —sp7, and almost

every z € (). By (Fj) and M > 0 being arbitrary, we have (F3) which completes
the proof. o
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