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RESIDUAL MODELS FOR NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS

GARRY PANTELIS

Abstract. Residual terms that appear in nonlinear PDEs that are constructed

to generate filtered representations of the variables of the fully resolved sys-

tem are examined by way of a consistency condition. It is shown that certain
commonly used empirical gradient models for the residuals fail the test of con-

sistency and therefore cannot be validated as approximations in any reliable

sense. An alternate method is presented for computing the residuals. These
residual models are independent of free or artificial parameters and there di-

rect link with the functional form of the system of PDEs which describe the
fully resolved system are established.

1. Introduction

Nonlinear systems of PDEs can generate solutions that exhibit multiscale fluctu-
ations. When numerical methods are used as the solution method the discretization
of the solution domain will result in a loss of resolution of the finer scale fluctu-
ations. The macroscopic equations that are constructed to generate some kind of
filtered representation of the fully resolved variables contain residual terms that
attempt to model mechanisms that are manifestations of some microscopic process.
Here we shall examine a number of residual models for nonlinear PDE systems in
common use today, which we shall refer to as empirical gradient models. It will be
shown on the basis of a consistency condition alone that these models cannot be
regarded as residual approximations in any reasonable sense.

Some of the results presented here appear in [5] but have been recast in a setting
of contact manifolds where the base manifold is space/time/scale. This is done
because in such a setting analysis of nonlinear PDEs appears more natural and a
new level of insight into the derivations is gained from a geometric perspective. We
start with a few preliminary details of contact manifolds that will be adequate for
our purposes. For a more rigorous development of integral manifolds of distributions
on contact manifolds see for instance [9].

Let x = (x1, . . . , xn) represent the cartesian coordinates of the n-dimensional
space domain Rn (n = 1, 2, 3), t ∈ (0, t0) the time, where t0 > 0, and η ∈ (0, η0)
the scale parameter, where 0 < η0 � 1. Set M ⊂ Rm, m = n + 2, such that
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M = Rn × (0, t0) × (0, η0) with coordinates on M represented by (x, t, η) =
(x1, . . . , xn, t, η), where xk (k = 1, . . . , n) are the spatial coordinates, xn+1 = t
is the time coordinate and xn+2 = η is the scale coordinate. It is important to
keep in mind that we use the symbol x to refer only to the spatial component of
(xi) = (x, t, η) = (x1, . . . , xn, t, η).

Let K ⊆ Rm+N+Nm+Nm2
denote the second order contact manifold whose coor-

dinates are given by (xi, uα, uα
i , uα

ij), 1 ≤ α ≤ N , 1 ≤ i, j ≤ m = n+2. We associate
uα as placeholders for the solutions of PDEs and uα

i and uα
ij as the placeholders for

the first and second partial derivatives of uα. As components of the coordinates of
K they are independent variables.

The natural basis for the tangent space T (M) of the base manifold M is {∂i}1≤i≤m

and the natural basis of the tangent space T (K) of K is {∂i, ∂̇α, ∂̇i
α, ∂̇ij

α }1≤i,j≤m;1≤α≤N ,
where we use the notation

∂i =
∂

∂xi
, ∂̇α =

∂

∂uα
, ∂̇i

α =
∂

∂uα
i

, ∂̇ij
α =

∂

∂uα
ij

(1.1)

Let D be an m-dimensional distribution on K (i.e. an m-dimensional subset of
T (K)). Let the distribution admit as a basis {Vi}1≤i≤m where the vector fields Vi

take the form

Vi = ∂i + uα
i ∂̇α + uα

ij ∂̇
j
α + Aα

ijk∂̇jk
α , 1 ≤ i ≤ m (1.2)

for some Aα
ijk ∈ F(K) and where the convention of summation over repeated upper

and lower indices is used throughout. The distributionD is involutive, or completely
integrable, if [D,D] ∈ D, where [·, ·] denotes the Lie brackets. With respect to the
basis {Vi}1≤i≤m the involutive condition for the distribution D is satisfied only if

uα
ij = uα

ji , Aα
ijk = Aα

jik = Aα
jki , Vi〈Aα

jkl〉 = Vj〈Aα
ikl〉 (1.3)

which leads to [D,D] = 0. By the Frobenius theorem we know that if the dis-
tribution D is involutive then through each point p ∈ K there passes an integral
manifold of the same dimension as the distribution D.

Let φ : M → K be a smooth (C∞) map from M to K. The smooth map
φ : M → K induces the pullback map φ∗ : F(K) → F(M) which maps smooth
functions on K to smooth functions on M . We will write F(A) to mean the set
of smooth functions on the manifold A and wherever the map φ : M → K has
been specified and there is no confusion as to which map we a dealing with we will
sometimes use the shorthand notation ∗F = φ∗F = F ◦ φ for F ∈ F(K).

The smooth map φ also induces a smooth differential map φ∗ such that at each
point p ∈ M the differential map φ∗ maps members of Tp(M) (the tangent space
of M at p ∈ M) to members of Tφ(p)(K) (the tangent space of K at φ(p) ∈ K).
Suppose that (M,φ) is an integral manifold of the involutive distribution D and that
at each point p ∈ M the differential map φ∗ maps each member of the natural basis
of Tp(M) to each member of the basis of D at φ(p) ∈ (M,φ), i.e. φ∗(∂i|p) = Vi|φ(p).
Consider the function F ∈ F(K) which upon the action of the pullback of φ is
mapped to ∗F ∈ F(M). By a straightforward calculation

∂i(∗F ) = ∗(∂iF ) +
∂ ∗uα

∂xi
∗(∂αF ) +

∂ ∗uα
j

∂xi
∗(∂j

αF ) +
∂ ∗uα

jk

∂xi
∗(∂jk

α F ) (1.4)
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Since we are using uα
i and uα

ij as place holders for the first and second partial
derivatives of ∗uα we immediately write

∗uα
i =

∂ ∗uα

∂xi
, ∗uα

ij =
∂ ∗uα

j

∂xi
=

∂2 ∗uα

∂xi∂xj
(1.5)

Because we have no place holders for third partial derivatives and we are confined
to K we require that under the action of the pullback of φ,

∗Aα
ijk =

∂ ∗uα
jk

∂xi
=

∂3 ∗uα

∂xi∂xj∂xk
(1.6)

In shorthand notation (1.4) can be written

∂i(∗F ) = ∗(ViF ) (1.7)

We shall call a smooth map φ : M → K a regular map if (M,φ) is an m-dimensional
integral manifold of the involutive distribution D. The distribution D will admit
as a basis {Vi}1≤i≤m, where the vector fields Vi are given in (1.2). Since D is
involutive we can assume the symmetry relations (1.3). Under the action of the
pullback of the map φ we have the identities (1.5) and (1.6) which allow us also to
apply (1.7). We shall say that the map φ : M → K is a bounded regular map if it
is a regular map and uα, uα

i , uα
ij are bounded on the image φ(M) contained in K.

Consider some N functions Pα ∈ F(K) which have the representation given by
Pα(xi, uβ , uβ

i , uβ
ij). Suppose that the map φ : M → K is associated with an integral

manifold of dimension m of the involutive distribution D such that φ annihilates
Pα, i.e. φ∗Pα = 0. Then by the pullback identities (1.5) φ∗Pα = 0 has the
representation

Pα

(
xi, ∗uβ ,

∂ ∗uβ

∂xi
,

∂2 ∗uβ

∂xj∂xi

)
= 0 (1.8)

which can be regarded as a system of N PDEs on the base manifold M for the N
unknown dependent variables ∗uα ∈ F(M). On the other hand consider the point
set Ξ ∈ K defined by Ξ = {p ∈ K : Pα = 0}. The image φ(M) will be contained in
Ξ and existence theorems for solutions can then be transferred to the study of the
properties of the constraints Pα = 0 on the point set Ξ. Crucial to this endeavour
is the establishment of the symmetry conditions (1.3) on the image φ(M) contained
in the point set Ξ.

The question of existence of solutions to PDEs is often attacked by way of the
so called fundamental ideal which contains the contact ideal as a subideal (see for
instance [1], [2]). It turns out that {Vi}1≤i≤m forms a basis for the m-dimensional
module of Cartan annihilators of the closed contact ideal. In [2] yet another ideal
is constructed called the horizontal ideal which contains the contact ideal as a
subideal. The set of all solution maps of the horizontal ideal contains all the so-
lution maps of the closed contact ideal. It is shown that the module of Cauchy
characteristics of the horizontal ideal admits as a basis {Vi}1≤i≤m and that the
horizontal ideal is stable under the Lie transport with respect to the vector fields
Vi. It follows that the closure of the horizontal ideal (integrability condition) is
gauranteed by the symmetry relations (1.3).

It is worth noting that the analysis that follows can be recast on a setting of
the first order contact manifold. To do this one needs to define solution maps as
annihilators of the so called balance ideal whose generators consist of the generators
of the horizontal ideal and the balance m-forms associated with the PDEs under
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consideration [2]. Our objectives here are not concerned with establishing existence
theorems for PDEs but rather to derive certain results for filtered variables of
nonlinear PDEs using space/time/scale as a base manifold. For this purpose the
concept of integral manifolds in relation to involutive distributions will be adequate.
In the most part we will examine the properties of solution maps that we know
exist and in particular solution maps associated with the heat equation. We do
this because the heat equation recast on space/scale rather than space/time can be
directly linked to spatial filters of the fully resolved variables.

2. Macroscopic Equations

We set N = 2N ′ and decompose each of uα, uα
i and uα

ij into two parts

uA = vA, uN ′+A = rA, 1 ≤ A ≤ N ′

uA
i = vA

i , uN ′+A
i = rA

i , 1 ≤ A ≤ N ′, 1 ≤ i ≤ n + 2

uA
ij = vA

ij , uN ′+A
ij = rA

ij , 1 ≤ A ≤ N ′, 1 ≤ i, j ≤ n + 2

(2.1)

where the vA will be associated with place holders for the filtered variables and
the rA will be associated with place holders for the residuals which will be defined
below. In expanded form the coordinates of K become

(xi, uα
i , uα

ij) = (xi, vA, rA, vA
i , rA

i , vA
ij , r

A
ij) (2.2)

Throughout, unless otherwise stated, we use the Latin indices for the range 1 ≤
i, j, k ≤ m = n + 2, the Greek indices for the range 1 ≤ α, β, γ ≤ N = 2N ′ and the
capital Latin indices for the range 1 ≤ A,B,C ≤ N ′. For easier identification of
certain important operators we use the indices t instead of n + 1 and η instead of
n + 2, e.g. we write Vt instead of Vn+1 and Vη instead of Vn+2.

Let PA, (1 ≤ A ≤ N ′), have the representation PA = PA(xi, vB , vB
i , vB

ij) indi-
cating that PA will be independent of the residuals and their partial derivatives.
Suppose that under the pullback of some regular map φ : M → K, there exists a
limiting solution φ∗vA|η=0+ = ṽA, ṽA ∈ F(Rn × (0, t0)), such that

PA

(
xi, ṽB ,

∂ṽB

∂xi
,

∂2ṽB

∂xi∂xj

)
= 0 (2.3)

We define (2.3) as the system of PDEs which define the fully resolved system and
can be represented as the limiting system φ∗PA|η=0+ = 0. Note that given our
agreed range of the Latin indices that (2.3) will contain terms involving ∂/∂η. In
most cases of interest such terms will be redundant. Since these terms will not
effect the calculations in the derivations we leave the general representation of PA

as it is to avoid introducing more notation.
Let 4 denote the spatial Laplacian operator acting on members of F(M)

4 =
n∑

b=1

∂2

∂xb∂xb
(2.4)

and the associated operator acting on members of F(K)

L =
n∑

b=1

VbVb (2.5)
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We shall make repeated use of the vector field

W = ∂η + (Luα)∂̇α + (Luα
i )∂̇i

α + (Luα
ij)∂̇

ij
α (2.6)

where the convention of summation over repeated upper and lower indices of α and
i, j is maintained.

Henceforth, all variables are to be regarded as nondimensional through some
appropriate scaling and we shall assume, without further mention, that for any
bounded regular map φ : M → K, boundedness includes the auxiliary condition
such that on the image φ(M) in K we have lim|x|→∞ uα

i , uα
ij , A

α
ijk = 0. Although

in some cases we need only lim|x|→∞ uα
b = 0 (b = 1, . . . , n), we do this because we

wish, on occasion, to make use of certain fundamental solutions of the heat equation
which, under this auxiliary condition in combination with suitable Cauchy data,
will gaurantee that they are uniquely defined.

Consider φ : M → K to be a bounded regular map that annihilates the N ′

functions FA ∈ F(K) given by

FA = vA
η −

n∑
b=1

vA
bb (2.7)

Under the action of the pullback of φ we have

∂ ∗vA

∂η
−4 ∗vA = 0 on M (2.8)

where ∗vA = φ∗vA. Suppose also that
∗vA|η=0+ = ṽA on Rn × (0, t0) (2.9)

for some bounded ṽA ∈ F(Rn×(0, t0)). The system (2.8) and (2.9) defines a Cauchy
problem for the heat equation on space/scale Rn × (0, η0) whose coordinates are
(x, η) and where the time t ∈ (0, t0) enters the problem only as a parameter. Along
with the requirement of the boundedness of φ and its auxiliary condition, for each
t ∈ (0, t0) the unique solution ∗vA of (2.8) and (2.9) can be written

∗vA(x, t, η) =
∫

Rn

G(x− x′, η)ṽA(x′, t) dnx′ (2.10)

where
G(x, η) = (4πη)−n/2 exp[−|x|2/(4η)] (2.11)

is given in normalized form such that∫
Rn

G(x, η) dnx = 1 . (2.12)

We use the the notation dnx = dx1 . . . dxn. The solution map of (2.7) along with
the Cauchy data (2.9) and the boundedness of φ defines each ∗vA as the spatial
Gaussian filter of each ṽA. The scale parameter η can be expressed as

η = βδ2 (2.13)

where δ is a (nondimensional) characteristic space scale associated with the resolu-
tion and β is a parameter that controls the rate of damping of the filter.

Suppose that for the filter map φ defined above, (ṽA) turns out to be a limiting
solution of the system φ∗PA|η=0+ = 0, which has the representation given by (2.3).
The N ′ equations φ∗PA|η=0+ = 0 define the fully resolved system of PDEs which
is of interest to us if it generates solutions (ṽA) that are highly fluctuating on
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Rn × (0, t0). We cannot in general expect that ∗PA = PA(xi, ∗vB , ∗vB
i , ∗vB

ij) will
vanish everywhere on M . We therefore introduce the residuals ∗rA that quantify
the deviation from zero of φ∗PA when η > 0. The following defines the consistency
condition from which immediately follow the exact macroscopic equations that are
satisfied by the filtered variables and the exact residuals.

Theorem 2.1 (Consistency). Let PA ∈ F(K) have the representation PA =
PA(xi, vB , vB

i , vB
ij) and suppose that there exist ṽA ∈ F(Rn × (0, t0)), bounded on

Rn × (0, t0), such that

PA

(
xi, ṽB ,

∂ṽB

∂xi
,

∂2ṽB

∂xi∂xj

)
= 0 (2.14)

Let FA ∈ F(K) be given by FA = vA
η −

∑n
b=1 vA

bb and let φ : M → K be a bounded
regular map such that

∗FA = 0 on M , ∗vA|η=0+ = ṽA on Rn × (0, t0) . (2.15)

Let EA ∈ F(K) be defined by

EA = rA
η −

n∑
b=1

rA
bb − SA (2.16)

where SA ∈ F(K) is given by

SA = (L −W)PA(xi, vB , vB
i , vB

ij) . (2.17)

and suppose that in addition ∗rA|η=0+ = 0. Then on M

PA

(
xi, ∗vB ,

∂ ∗vB

∂xi
,
∂2 ∗vB

∂xi∂xj

)
+ ∗rA =

∫ η

0

∫
Rn

G(x−x′, η−η′) ∗EA(x′, t, η′) dnx′ dη′

(2.18)
and hence∣∣∣PA

(
xi, ∗vB ,

∂ ∗vB

∂xi
,
∂2 ∗vB

∂xi∂xj

)
+ ∗rA

∣∣∣ ≤ η sup
x∈Rn, η∈(0,η0)

|∗EA| (2.19)

Proof. The system (2.15) defines the Cauchy problem for the heat equation on
space/scale Rn × (0, η0) whose coordinates are (x, η) and where the time t ∈ (0, t0)
appears only as a parameter. Given the existence of ṽA ∈ F(Rn× (0, t0)), bounded
on Rn× (0, t0), we are guaranteed that a bounded regular solution map φ : M → K
associated with (2.15) exists and that ( ∗vA) is unique. We also know that each
∗vA is explicitly given by (2.10) and hence defines ∗vA as the spatial Gaussian filter
of ṽA. We note that the regular map φ : M → K itself is not unique because it
does not as yet place any constraints on the coordinate components rA, rA

i , rA
ij of K

other than through the pullback identities (1.5), (1.6) and the associated involutive
conditions on the distribution D (1.3).

Consider the point set Ξ = {p ∈ K : FA = 0}. The map φ : M → K will map
M to (n + 2)-dimensional integral manifolds of the distribution D on K contained
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in the point set Ξ. We have on K

EA = rA
η −

n∑
b=1

rA
bb − SA

= (Vη − L)rA − (L −W)PA

= (Vη − L)(PA + rA)− (Vη −W)PA

(2.20)

On Ξ we can set Vη = W and hence (2.20) reduces to

(Vη − L)(PA + rA) = EA on Ξ (2.21)

Introducing ZA ∈ F(K) such that ZA = PA + rA it follows that under the action
of the pullback of φ, (2.21) becomes

∂ ∗ZA

∂η
−4 ∗ZA = ∗EA on M (2.22)

Since φ∗PA|η=0+ = 0 and ∗rA|η=0+ = 0 we also have
∗ZA|η=0+ = 0 on Rn × (0, t0) (2.23)

The system (2.22), (2.23) defines a Cauchy problem for the nonhomogeneous heat
equation on space/scale Rn × (0, η0) whose coordinates are (x, η) and where the
time t ∈ (0, t0) enters the problem only as a parameter. Given that φ is a bounded
regular map we can write the solution of (2.22) and (2.23) as [8]

∗ZA(x, t, η) =
∫ η

0

∫
Rn

G(x− x′, η − η′) ∗EA(x′, t, η′) dnx′ dη′ (2.24)

where G(x, η) is defined by (2.11). This is the identity (2.18). It follows that

|∗ZA| = |
∫ η

0

∫
Rn

G(x− x′, η − η′) ∗EA(x′, t, η′) dnx′ dη′|

≤
∫ η

0

∫
Rn

G(x− x′, η − η′)|∗EA(x′, t, η′)| dnx′ dη′

≤
(

sup
x∈Rn, η∈(0,η0)

|∗EA|
) ∫ η

0

∫
Rn

G(x− x′, η − η′) dnx′ dη′

(2.25)

and the inequality (2.19) follows from (2.12) �

The choice of rA that renders EA = 0 on the point set Ξ leads us to the exact
macroscopic equations that are satisfied by the filtered variables ∗vA and the exact
residuals ∗rA:

PA

(
xi,∗ vB ,

∂ ∗vB

∂xi
,
∂2 ∗vB

∂xi∂xj

)
+ ∗rA = 0 on M (2.26)

∂ ∗rA

∂η
−4 ∗rA = ∗SA on M (2.27)

∗rA|η=0+ = 0 on Rn × (0, t0) (2.28)

where SA ∈ F(K) is given by

SA = (L −W)PA(xi, vB , vB
i , vB

ij) . (2.29)

The fully resolved variables are not explicitly contained in the macroscopic equa-
tions but are implied as a limiting solution of (2.26) as η → 0+. As a result the
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macroscopic system (2.26), (2.27) and (2.28), along with the identity (2.29), have
certain useful properties for the purposes of application. In practical application
we wish to generate solutions of the filtered variables only on a single scale slice
Mη=const without the need to access the fully resolved variables. The presence of
the term ∂η

∗rA in (2.27) is the only remaining obstacle to reach this objective. To
overcome this obstacle we resort to approximation methods.

3. Approximation of the Residual

As before consider the point set Ξ = {p ∈ K : FA = 0} and let φ : M → K
be the bounded regular map defined in the consistency theorem. Since φ is regular
it will map M to (n + 2)-dimensional integral manifolds of the distribution D on
K contained in the point set Ξ. As mentioned in the proof of the the consistency
theorem, φ is not unique because it does not as yet place any constraints on the
coordinate components rA, rA

i , rA
ij of K other than through the pullback identities

(1.5), (1.6) and the associated involutive conditions on the distribution D (1.3).
Consider the point set Ξ′ ⊂ Ξ such that Ξ′ = {p ∈ Ξ : rA − ηLrA − ηSA = 0}.
Under the action of the pullback of φ to the constraints rA − ηLrA − ηSA = 0 on
Ξ′ we have

4 ∗rA −
∗rA

η
+ ∗SA = 0 on M (3.1)

Under the definition of EA ∈ F(K) given by (2.16) we obtain

EA = rA
η − rA

η
on Ξ′ (3.2)

Noting that with the additional constraint on φ which requires that ∗rA|η=0+ = 0,
under the action of the pullback of φ (3.2) becomes

∗EA =
∂ ∗rA

∂η
−

∗rA

η
=

∂ ∗rA

∂η
−

∗rA − ∗rA|η=0+

η
=

η

2

[
∂2 ∗rA

∂η2

]
η∈(0,η0)

(3.3)

Hence
|∗EA| ≤ η

2
sup

η∈(0,η0)

| ∗rA
ηη| (3.4)

Since φ is a bounded regular map, as defined in the Section 1, it follows from the
consistency theorem that there is a constant C > 0 such that

|PA

(
xi, ∗vB ,

∂ ∗vB

∂xi
,
∂2 ∗vB

∂xi∂xj

)
+ ∗rA| ≤ Cη2 (3.5)

This demonstrates that for the residual approximation based on (3.1) the exact
filtered variables will satisfy the macroscopic system of PDEs (2.26) to a consistency
error O(η2). On the other hand if we force (2.26) using a residual that is not exact
(i.e. not satisfying (2.27) and (2.28)) we cannot expect that φ will be the filter map
associated with (2.15).

Let φ̂ : M → K be a bounded regular map such that

PA

(
xi, ∗v̂B ,

∂ ∗v̂B

∂xi
,
∂2 ∗v̂B

∂xi∂xj

)
+ ∗r̂A = 0 on M , (3.6)

where ∗v̂A = φ̂∗vA, ∗r̂A = φ̂∗rA and ∗r̂A is an approximation of the exact residual.
Suppose that in addition ∗r̂A|η=0+ = 0 on Rn × (0, t0). The system (3.6) can be
thought of as the N ′ PDEs which generate the N ′ dependent variables ∗v̂A. We
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note that the ∗v̂A cannot be the exact filters of the of the fully resolved variables
ṽA, i.e. the map φ̂ cannot annihilate (2.7), because we have forced (3.6) while using
residuals that are not exact. To generate the N ′ approximations for the residuals
for the above approximation

4 ∗r̂A −
∗r̂A

η
+ ∗ŜA = 0 on M (3.7)

where ∗ŜA = φ̂∗SA and

SA = (L −W)PA (3.8)

We have seen above that with a residual equation error of O(η) we obtain a con-
sistency error of O(η2). While ∗v̂A cannot be the exact filters of the of the fully
resolved variables ṽA we expect that with a consistency error of O(η2) ∗v̂A will be
reasonably good approximations of the exact filtered variables ∗vA. To obtain an
estimate for the error ∗v̂A − ∗vA is of course a stronger validation of the residual
approximation and is very much related, from a geometrical point of view, to the
magnitude of the vector field Vη − W on the image φ̂(M) contained in K. Our
main objective here is to demonstrate the usefulness of the consistency error alone
to examine certain empirically based residual models. It will be seen that consis-
tency will be adequate for this purpose and the stronger validation by way of the
error just mentioned will be presented elsewhere.

4. Application

We consider the equations that describe the motion of an incompressible and
inviscid fluid. Because we also wish to examine certain empirical gradient mod-
els in the next section, we will augment these equations with an equation that
describes the transport of a single conservative solute within the fluid medium.
Before proceeding a few points need to be made: Any consideration of the Euler
or Navier-Stokes equations in the present context may appear problematic because
of the current open question on the existence of regular solutions, particularly in
three spatial dimensions. Because of their wide use in modelling of complex flows it
seems appropriate that they receive some attention although the motivation for the
ideas presented here is much wider. It is important to keep in mind throughout that
the restriction ṽA ∈ F(Rn× (0, t0)) is made for brevity rather than by necessity. If
working in the class of smooth solutions is too restrictive the consistency theorem
could be modified as follows: We replace ṽA ∈ F(Rn × (0, t0)) with ṽA ∈ Lloc

1 (Rn)
for each t ∈ (0, t0) and require that (2.14) be satisfied in a generalized sense (see
for instance [3]). The solution of (2.15) will still be given by (2.10) but the Cauchy
data condition ∗vA|η=0+ = ṽA will be satisfied a.e. on Rn in the limit as η → 0+

for each t ∈ (0, t0). The macroscopic system of equations (2.26)-(2.28), along with
the identity (2.29) for the source term of the residual equation, will still hold.

Let vb (b = 1, . . . , n) be the placeholders on K for the n filtered velocity com-
ponents and vn+1 = p be the placeholder on K for the filtered pressure. We set
vn+2 = ω to denote the mass fraction of some conservative solute in the fluid
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medium. Here N ′ = n + 2. Define

P a = va
t +

n∑
b=1

vbva
b + pa 1 ≤ a ≤ n (4.1)

Pn+1 =
n∑

b=1

vb
b (4.2)

Pn+2 = ωt +
n∑

b=1

vbωb (4.3)

where we shall use the notation pi = vn+1
i , pij = vn+1

ij , ωi = vn+2
i , and ωij = vn+2

ij .
A calculation based on (2.17) and (4.1)-(4.3) yields

Sa = 2
n∑

b,c=1

vb
cv

a
bc 1 ≤ a ≤ n (4.4)

Sn+1 = 0 (4.5)

Sn+2 = 2
n∑

b,c=1

vb
cωbc (4.6)

We should note the following: For a viscous fluid we would introduce the term
−

∑n
b=1 va

bb/Re on the right hand side of (4.1), where Re is the Reynolds number.
Similarly we may also include a molecular diffusion term −κ

∑n
b=1 ωbb on the right

hand side of (4.3), where κ is the molecular diffusion coefficient. Both these terms
have no effect on the residual equation source terms and (4.4)-(4.6) will remain
unchanged.

Since the source term Sn+1 = 0 on K the residual for the continuity equation
will vanish. Under the action of the pullback of φ̂, the system (3.6) and (3.7) for
this application becomes

∂ ∗v̂a

∂t
+

n∑
b=1

∗v̂b ∂ ∗v̂a

∂xb
+

∂ ∗p̂

∂xa
+ ∗r̂a = 0 1 ≤ a ≤ n (4.7)

∂ ∗v̂b

∂xb
= 0 (4.8)

∂ ∗ω̂

∂t
+

n∑
b=1

∗v̂b ∂ ∗ω̂

∂xb
+ ∗r̂n+2 = 0 (4.9)

4 ∗r̂a −
∗r̂a

η
+ ∗Ŝa = 0 1 ≤ a ≤ n (4.10)

4 ∗r̂n+2 −
∗r̂n+2

η
+ ∗Ŝn+2 = 0 (4.11)

where

∗Ŝa = 2
n∑

b,c=1

∂

∂xb

(
∂ ∗v̂b

∂xc

∂ ∗v̂a

∂xc

)
1 ≤ a ≤ n (4.12)

∗Ŝn+2 = 2
n∑

b,c=1

∂

∂xb

(
∂ ∗v̂b

∂xc

∂ ∗ω̂

∂xc

)
(4.13)
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and use has been made of the form invariance of the continuity equation. Since
the system (4.7)-(4.13) contains no terms involving ∂η and no reference to the
fully resolved variables, we can seek a solution on any desired scale slice Mη=const.
The choice of the value of the scale parameter η will be dictated by the level of
refinement in the spatial discretization used in the numerical solution scheme. The
numerical scheme involves also a temporal discretization of the evolution equations
(4.7) and (4.9) from which one obtains an update of the velocities and the solute
mass fraction at each timestep. For incompressible flows a staggered grid is often
used and the velocities updated along with the pressure using a projection method
(see for instance [6]). Within each timestep a finite difference approximation of
elliptic equations (4.10) and (4.11) are solved iteratively to obtain an update of the
residuals. The procedure is repeated until a desired time is reached.

Numerical experiments have been conducted for applications in fluid mechan-
ics by solving (3.6) and (3.7) on single scale slices using finite difference methods
[5]. The computations using this approach are found to be stable despite the com-
plex flow patterns that emerge during the breakdown of hydrodynamic stability.
For compressible flows, energy balance studies on numerical solutions based on the
system (3.6) and (3.7) indicate the presence of some intrinsic property that con-
serves the total energy of the fluid system. This is particularly interesting given
the evidence that the model accommodates the flow of energy both to and from
the smaller scales, i.e. internal energy can flow up from the unresolvable scale into
the macroscopic scale where it appears as kinetic energy. It is also observed that
numerical solutions generated independently on increasing scale slices result in a
corresponding increase in the smoothing of finer scale fluctuations in the complex
flow patterns, indicating that filtering is occurring.

5. Empirical Gradient Models

We shall investigate a class of residual models in common use today in the field
of fluid mechanics. We consider again the flow of an incompressible and inviscid
fluid with a single solute. As such we use the prescription given by (4.1)-(4.3). The
identities (4.4)-(4.6) still hold under any residual approximation used.

Empirical gradient models take the form

ra = −ηνLva 1 ≤ a ≤ n (5.1)

rn+1 = 0 (5.2)

rn+2 = −ηκLω (5.3)

where ν, κ ∈ F(K). The coefficients ν and κ are empirically based and are de-
pendent on constant parameters (assumed to be measurable). In application these
residual models are explicitly defined and hence can be inserted directly into the
system (4.7) and (4.9). The equations (4.10) and (4.11) are of course not applicable
here.

The philosophy behind these models is that large scale fluctuations interact in a
diffusion like fashion analagous to those at the molecular level. The residuals (5.1)
are meant to capture the turbulence stresses in the fluid and the residual (5.3) is
meant to capture the solute dispersion in the turbulent fluid medium. The form
invariance of the continuity equation is assumed (note that the form invariance of
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the continuity equation of the previous section is not assumed but follows imme-
diately from the vanishing of the source term Sn+1). A useful coverage on current
practices and applications of these type of residual models can be found in [4].

In early applications of these models the coefficients µ and κ were assumed to be
constants. Due to their failure to predict observations later variants of these models
were proposed such that µ and κ are some functions of the dependent variables. We
need not investigate any particular case here because it can be shown by consistency
alone that empirical gradient type models are flawed in the general case given above
and cannot be regarded as approximations of the residuals in any reasonable sense.

Consider the point set Ξ = {p ∈ K : FA = 0}. The map φ : M → K of the
consistency theorem will map M to (n + 2)-dimensional integral manifolds of the
distribution D on K contained in the point set Ξ. On the basis of (5.1)-(5.3) we
have on K

Ea = −νLva − Sa − η(Vη − L)(νLva) (5.4)

En+1 = 0 (5.5)

En+2 = −κLω − Sn+2 − η(Vη − L)(κLω) (5.6)

On the point set Ξ, (5.4) and (5.6) can be written

Ea = −νLva − Sa − η(W −L)(νLva) (5.7)

En+2 = −κLω − Sn+2 − η(W −L)(κLω) (5.8)

where we use the fact that Vη = W on the point set Ξ. Note that in the case that
the coefficients ν and κ are constants the O(η) terms vanish under the action of
the pullback of φ. However, whether they are assumed as constants or not, the
troublesome zeroth order terms remain. Noting the identities (4.4) and (4.6) we
require that

ν

n∑
b=1

va
bb ∼ −2

n∑
b,c=1

vb
cv

a
bc 1 ≤ a ≤ n (5.9)

κ
n∑

b=1

ωbb ∼ −2
n∑

b,c=1

vb
cωbc (5.10)

where we use the symbol ∼ to denote equality to within an error O(η). We see
that there do not exist choices for the coefficients ν, κ ∈ F(K) that maintain the
diffusion like character of the residuals on which the formulas (5.1) and (5.3) are
motivated.

Under the action of the pullback of φ, the residual equation error ∗EA = Os(1)
with respect to the scale parameter η. It follows from the consistency theorem
that we have a consistency error |∗PA + ∗rA| = Os(η). Since the magnitudes of
the residuals ∗ra and ∗rn+2 are Os(η) we can expect that in application there
will be some contamination of the proposed residual model (5.1)-(5.3) by unwanted
terms. It can also be expected that the free parameters that are often contained
in explicit formulas for the coefficients ν and κ are not measurable and any fine
tuning of these parameters will not improve the order of magnitude estimate of the
consistency error.
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Attempts have been made to generalize the empirical gradient models by way of

ra = −η
n∑

b,c=1

Vb(νbcVcv
a) 1 ≤ a ≤ n (5.11)

rn+2 = −η
n∑

b,c=1

Vb(κbcVcω) (5.12)

where now νbc, κbc ∈ F(K) are second order symmetric tensors. Choices of their
functional dependence on the filtered variables and their partial derivatives have
been tried containing additional free parameters that are adjusted to the specific
application being considered. However, repeating the above procedure for these
residual models reveals that the only choices that can ensure a consistency error
O(η2) are given by

νbc ∼ −2vb
c (5.13)

κbc ∼ −2vb
c (5.14)

The residual based on (5.11) and (5.13) is well known in large eddy simulation and
has been derived by series expansion of the integral representation of the Gaussian
filter (2.10). Numerical experiments indicate that this model correlates reason-
ably well with the fluid turbulence stresses and strains inferred by direct numerical
simualtions [7]. Unfortunately, computations of turbulent fluid flows using this
residual model are highly unstable and therefore the model is of little use in nu-
merical simulation.

While focus has been given here on spatial Gaussian filters by way of the spatial
Laplacian differential operator (2.4), it is important to keep in mind observations
made in [7] that the residual models are very much dependent on the type of filter
being used. However, there appears no reason why the spatial Laplacian differential
operator could not be replaced by any other elliptic operator on space/time. This
will widen the range of the type of filters that can be studied by the methods
presented here and could include spatial, spacio-temporal or temporal only filters.
While for these general elliptic operators explicit representations for the consistency
error as in (2.18) may not be possible it can be expected that similar order of
magnitude estimates of the form (2.19) can be obtained.
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Addendum posted on July 2, 2007.

Both equations (2.3) and (2.14) are meant to represent the expanded form of the
statement PA|η=0+ = 0. To avoid confusion (2.3) and (2.14) should be written

PA(x, t, 0, v̂B ,
∂v̂B

∂xi
,

∂2v̂B

∂xi∂xj
) = 0.

The statement following equation (2.20) should read:
On Ξ we can set VηPA = WPA and hence (2.20) reduces to . . .

The statement following equations (5.7)–(5.8) should read: where we use the
fact that Vη(νLva) = W(νLva) and Vη(κLω) = W(κLω) on the point set Ξ.
End of Addendum.
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