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ABSTRACT

When computers communicate via connection-oriented protocols like TCP, upon
receipt of a segment of information, the recipient sends an acknowledgment back to
the sender. This facilitates two important traits of connection-oriented protocols:
being aware of which segments have been lost in the transfer, and the exact round
trip times (RTT). By observing previous RTT values, algorithms are used to
estimate what future retransmission time-out (RTO) values should be set to, i.e., if
an acknowledgement is not received within the RTO window after sending a
segment, then the segment should be considered lost and resent. This paper
proposes a neural networks approach to prediction RTTs. By comparing an
RNN-LSTM, and a CNN-LSTM, versus Jacobson's Algorithm, both the
RNN-LMST and the CNN-LSTM was shown to provide a better RTT estimate. By
replacing the predictor used by Jacobson's Algorithm with a neural network
predictor, the number of segment retransmissions was reduced by more than 90%.
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I. MOTIVATION AND BACKGROUND

In connection-oriented transport protocols such as Transmission Control Protocol

(TCP) (1), when a message is sent to a recipient, an acknowledgment packet is sent

back from the recipient to the sender. The total time between the the original

packet being sent and the acknowledgment packet being received by the sender is

known as the Round-Trip Time (RTT). Depending on the the speci�c

implementation of the protocol, a variable known as the Retransmission Time-Out

(RTO) threshold is calculated; this RTO threshold de�nes how long the sender

should wait for the acknowledgment packet before it can assume the segment is lost

and resend the segment. By analyzing previous RTTs, the sender can anticipate an

unusually high RTT time which, for example, could indicate a lost segment.

Depending on the implementation of a connection-oriented transport protocol, the

forecasted RTT values, and optionally various other parameters, such as a minimum

bound on the RTO, are used to generate the RTO values for future segments. The

predominantly popular algorithms used in transport protocols are Jacobson's

Algorithm and modi�cations of it.

Thesis Structure

This thesis is organized into 8 main chapters. Chapter 1, titled "Motivation and

Background" provides an overview of previous and similar research on the topic of

retransmission time-out manipulation, and a brief description of Jacobson's

Algorithm. Chapter 2, titled "Collecting Data" describes the methodology used to

collect the data used to train and benchmark the proposed algorithm against
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existing algorithms. Chapter 3, titled "Using RNN-LSTM to predict RTT", gives an

overview of what a RNN-LSTM is and how one was designed to predict RTT values.

Chapter 4, titled "Using CNN-LSTM to Predict RTT", describes what a

CNN-LSTM is and how one was designed to predict RTT values. Chapter 5, titled

"Modifying Jacobson's Algorithm", describes how Jacobson's Flow Control

Algorithm was modi�ed to use the proposed LSTM predictors in lieu of the vanilla

time series predictor. Chapter 6, titled "Results", presents the RNN-LSTM and

CNN-LSTM performances against the vanilla Jacobson Algorithm's performance

over several di�erent benchmarks. Chapter 7, titled "Conclusion", wraps up the

previous chapters. Finally, Chapter 8, "Future Works", outlines possible

implications and opportunities in this �eld of research.

Literature Review

The following section gives an overview of the research upon which this thesis builds.

We then proceed to compare the di�erent approaches suggested by the research.

Manipulating RTO-Min to Reduce SCTP's Time to Complete

In (2), the author provides insight into optimization techniques for SCTP's

retransmission mechanisms. The author presents a novel algorithm to dynamically

determine minimum bounds for RTO thresholds, which improves performance and

reduces retransmissions. This research describes the Fast Retransmission Mechanism

and the Time-Out Mechanism. The Fast Retransmission Mechanism does the

following: whenever four Selective Acknowledgments (SACKs) report the same

missing chunk during a transmission stream, the client bundles the chunk with the

next available packet for retransmission. The Fast Retransmission Mechanism,
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however, is optimized for congestion avoidance. In contrast, the Time-Out

Mechanism focuses on detecting link failures. Where the Fast Retransmission

Mechanism cannot distinguish between link error and congestion, the Time-Out

mechanism handles congestion and link error di�erently. However, the author

highlights that a major problem with the Time-Out Mechanism is that the lower

bound on RTOs - the RTO-min, is set too high. Speci�cally, the author concludes

that the RTO-min should be set just above where the Fast Retransmission

mechanism becomes ine�ective.

Using Machine Learning to Improve Congestion Control

In (3), the authors present a machine learning solution to congestion control in

wireless networks. Congestion is when routers are unable to process the volume of

data that arrive to them quickly enough which leads to bu�er over�ows and

ultimately loss of packets. The only way to relieve congestion is to reduce network

load. Currently, TCP congestion protocol operates in the following manner: increase

tra�c rates steadily until loss occurs, at which point reduce it suddenly (1). This

works well for wired connections since loss occurs almost entirely because of bu�er

over�ows, but for wireless networks, this occurs mostly because of signal fading.

This paper presents several machine learning solutions to create classi�cation

models for signal loss causes. Using the results of the experimentation, the group

creates a modi�ed TCP kernel module that is optimized to account for the signal

loss models. Their module is shown to perform with higher throughput as compared

to the original unmodi�ed TCP module.
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Enhancement of TCP using Packet Loss Classi�ers

In (4), the authors highlight how TCP cannot di�erentiate between losses due to

congestion and losses due to link errors. The authors modify neither TCP's

congestion control mechanism, nor TCP's error recovery mechanism. Using the

classi�cation method proposed, packet losses due to link error are ignored by TCP's

congestion control, but packet losses classi�ed as congestion loss trigger both

congestion control and error recovery mechanisms. This research serves to provide a

reasonable basis for the assumption that di�erent loss types warrant di�erent

approaches for mitigation. However, where this research does not modify TCP's

congestion control mechanism, this thesis will attempt to modify SCTP's RTT

forecasting method.

Estimating Retransmission Timeouts in IP-Based Transport Protocols

In (5), the authors look at how TCP and SCTP protocols use previous round trip

times to estimate future round trip times and so creates a maximum waiting time

before attempting to retransmit. Estimation of the maximum round trip time is

done by the Jacobson algorithm, which leads to loss in performance due to a

"mismatch between theory and the application area." With every chunk of SCTP

data transmitted, a retransmission timer is started that is calculated via the

Jacobson Algorithm. The author compares the Jacobson Algorithm, the Eifel

Algorithm, and a modi�ed Jacobson algorithm and compares the performances.

4



Jacobson's Algorithm and Causes of Retransmission

Jacobson's Algorithm uses the Chebyshev Bound (6) to create a reasonable RTO

value. Chebyshev's Bound guarantees that for any statistical distribution, 75% of

data values will lie within two standard deviations from the mean and 89% of all

data values will lie between three standard deviations from the mean. There are two

main reasons for retransmission: when a packet is legitimately lost in transit, and

when, due to delay, the RTT exceeds the RTO bound created by Jacobson's

Algorithm using the Chebyshev inequality. However useful this mechanism is for

estimating bounds for RTO, Jacobson pointed out that packets were retransmitted

due to delays in transit and not lost packets when loads exceeded 30%, leading to

poor performance.

As described in (1), Jacobson's Algorithm involves four steps to generate RTO

values. First, using Equation 1.1, the error (ERR) is calculated as the di�erence in

the observed RTT and the last predicted RTT or Smooth Round Trip Time

(SRTT):

ERR = |RTTn − SRTTn−1)| (1.1)

Next, the new prediction is generated utilizing Equation 1.2.

SRTTn = 0.85(SRTTn−1) + 0.125(RTTn) (1.2)

The variance (VAR) is then calculated with Equation 1.3.

V ARn = 0.75(SRTTn−1) + 0.25(ERR) (1.3)

5



Figure 1.1: RTO adjusting as RTT increases.

Chebyshev's inequality uses the running mean and the standard deviation derived

from the variance to state the probability of the di�erence between the expected

value and RTT. Also, it is important to note that provided a distribution has a

known variance and known �nite mean, Chebyshev's Inequality can be applied to

it (6). The RTO is thus generated Equation 1.4 (1)

RTO = SRTTn + 4(V ARn) (1.4)

Figure 1.1 shows a sample of recorded RTT and the subsequent RTO calculations

obtained by using Jacobson's Algorithm. As can be seen, Jacobson's Algorithm is

purely reactive by changing RTO values only when it sees a change in RTT.

RTOmin and RTOmax are bounding parameters for RTO and can also be used to

manipulate congestion control e�ciency.
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Since TCP's implementation in 1988, one form or another of Jacobson's Algorithm

has been used for congestion control. However, as useful as it may have proved to

be, Jacobson's Algorithm is designed to be fast, but yields accuracy to be so. For

example, when the retransmission timer expires, the next RTO is increased

exponentially. In the case of a congested network with high latencies, this helps to

decrease congestion caused by multiple copies of a segment being sent, but in the

case of a link error, the TCP stack will �nd itself wasting large amounts of time

waiting for an acknowledgement. Also, Equation 1.2 which calculates the new

predicted RTT, steps up and down gradually, and therefore leads to large amounts

of resent segments when RTT spikes dramatically.

With a better predictor algorithm, i.e., a neural network forecaster, patterns in

dramatic latency increases can be learned. Instead of stepping up predicted RTT

slowly, as with Jacobson's Algorithm, it can immediately set the RTT prediction

according to patterns it has seen before. If done correctly, when a segment exceeds

the RTO time and is retransmitted, the RTO estimate will be immediately set as

high as needed, and the algorithm will wait a longer time for a response. Though

this will provide an optimized, less-wasteful sequence of communication, the

computational complexity of a large neural network can be too slow for a

kernel-level communication module. However, as specialized application-speci�c

integrated circuits (ASICs)(7) are being developed for faster neural networks

computation, once unfeasible methods for RTO calculation may soon become a

reality. Where the Jacobson's Algorithm is designed to operate fast enough to

calculate RTO estimates in between TCP transmissions, it is becoming more and

more possible for advanced neural networks to forecast RTO values in similar time.
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II. COLLECTING DATA

To compare any proposed solutions to existing TCP implementations, greatly varied

control data had to be created. To capture the data, several data transfer patterns

were recorded. First, a multiplayer �rst-person shooter game was started alongside

Wireshark, a network packet analyzer. Several minutes of the network data were

captured using Wireshark (8). This data included RTT information. The data

collected while communicating with the multiplayer game server showed few lag

spikes but had slowly increasing and slowly decreasing RTT patterns. Next, a

remote �le transfer was initiated, and the RTT data of the transfer was recorded.

The RTT data collected in this manner showed patterns of periodic and thus

predictable latency spikes. Then, several hours of data were collected from

interactive web browsing on a single site, and once analyzed, yielded RTT data that

was very noisy(9).

Finally, as shown in �gure 2.1, to simulate a highly congested network, a File

Transfer Protocol (FTP)(10) �le transfer was initiated between the Host and Client

computers connected via a network switch with varying chunk sizes. While this

large �le transfer was running, Device A and Device B initiated a Stream Control

Transmission Protocol (SCTP)-Test benchmark. SCTP(11) is a computer

networking communication protocol similar to TCP and UDP, in the way that it is

message oriented like UDP and o�ers congestion control for in-sequence messages

like TCP. These SCTP chunks' RTTs were then recorded. From these RTT values,

Jacobson's Algorithm was used to create the RTO values that the TCP and SCTP

protocols should be using. Since each communication pattern used was very

di�erent in nature, it helped to train the Recurrent Neural Network Long

8



Figure 2.1: Congestion Data Collection.

Short-Term Memory (RNN-LSTM) and Convolutional Neural Network Long

Short-Term Memory (CNN-LSTM) models to be able to recognize each pattern. For

example, when identifying the leading edge of a latency spike, an LSTM must

"remember" what the maximum RTT value was for previous latency spikes but

must be able to forget these maximum values when di�erently shaped latency spikes

caused by di�erent communication patterns emerged. Also, the frequency with

which latency spikes occur may change over time, and to be able to identify

long-term patterns in the data, it needs many di�erent communication patterns in

the input data set. Figure 2.2 shows what the entire RTT dataset looks like with the

various communication patterns included.

The data collected were combined into one time series and used as the training set

(9). The data collection process was run three more times to collect the testing data

sets. However, when collecting the testing sets, the order of each communication

pattern was changed. This was done to make sure that the testing scores of each

LSTM were not a�ected by the order in which each communication pattern

appeared in the time series.

9



Figure 2.2: Entire RTT dataset.
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III. USING RNN-LSTM TO PREDICT RTT

Long short-term memory (LSTM)(12) is a Recurrent Neural Network (RNN)(12)

architecture that uses feedback connections that allow it to solve many kinds of

general computing problem. They excel at classi�cation and forecasting for

time-series data while overcoming the vanishing gradient problem. As shown in

(13), since estimating optimal RTO values from previous RTT values is a univariate

time-series forecasting task, an RNN-LSTM is well-suited for making such accurate

estimates(12).

RNN-LSTM Architecture

As shown in Figure 3.1, a 'Neuron' in an LSTM is actually a logical block that in

which a sigmoid activation unit triggers one of three possible gates: a 'forget' gate

can remove old information from the block, an input gate can decide which

information from the input to store in the block, and an output gate that creates an

output using the input and the current information held in the block. By its nature,

an RNN is recurrent; hence, information stored in it is kept with minor linear

changes. As shown in Figure 3.2, the logical block of the LSTM passes the

information stored in it and the last output as inputs to the next iteration.

Depending on the combination of inputs, i.e. the last output, the next input, and

the current information in the block, the block is then triggered to either store new

information, to drop the old information, or to keep the information stored in it. In

this manner, patterns in univariate data can be remembered or selectively forgotten,

allowing the algorithm to operate with very long time-series.
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Figure 3.1: An LSTM Block.
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Figure 3.2: RNN-LSTM Architecture.

RNN-LSTM Hyperparameters

All time-series forecasting methods require a look-back variable. The look-back

variable determines how many previous inputs to consider when predicting the next

output. By increasing the look-back, more accurate predictions can be made, at the

cost of computational complexity. Due to the high density of the RTT data, the

look-back size had to be relatively large, as too small of a look-back would not allow

the LSTM to recognize patterns. However, since dramatic changes in RTT values

occurred infrequently, increasing look-back was not a good way to identify patterns

either. As shown in Table 3.1, various look-back sizes were tested, and ultimately,

an input layer of size 188 was chosen. One hundred eighty-eight input nodes allowed

the LSTM to identify patterns in sparse data while still requiring a reasonable

computational complexity. Starting at 10, the number of input nodes was

13



Table 3.1: RNN-LSTM Hyperparameters

Parameter Value

Batch Size 200

Input Layer Nodes 188

Hidden Layer Nodes 36

Output Layer Nodes 1

Learning Rate 0.020

incremented, and accuracy was recorded. Below 188 input nodes, the model's

accuracy was still increasing and the past 188 input nodes, the model was not

performing any more accurately.

Table 3.1 shows the hyperparameters for the RNN LSTM. The batch size of a

network is the number of samples that can be shown to the network before a weight

is updated. The batch size was kept at 200 samples, since smaller values led to

over�tting and more volatile learning and larger values led to the network not

learning to recognize patterns quickly enough. The learning rate of a network

controls the rate at which a model learns from input data - more speci�cally, the

amount that weights are updated by back-propagation. Low learning rates lead to

linear improvement in accuracy. Higher learning rates lead to faster decay of loss

but generally converge to lower accuracy. The learning rate was initialized at 1.0

and decreased by decrements of 0.1 until the optimal learning rate was achieved.

Since the number of test samples was relatively high, the optimal learning rate

converged to 0.020.

14



IV. USING CNN-LSTM TO PREDICT RTT

A CNN-LSTM uses a convolutional neural network (CNN) for feature extraction

and feeds them to an LSTM which then carries out the sequence prediction.

CNN-LSTMs are best for time-series prediction problems involving computer vision,

but they are powerful univariate forecasters as well. As shown in �gure 3.1, a

CNN-LSTM involves a convolutional neural that feeds extracted data into an

LSTM, which then forecasts the univariate data. The key di�erence between an

RNN-LSTM and a CNN-LSTM is the convolution block that can take minimally

preprocessed data, creates its own �lters that would otherwise have to be

hand-engineered and identify patterns. A CNN can be particularly useful when data

sizes are massive - which makes it great for analyzing patterns in RTT data from

hundreds of thousands of segments, similar to time series forecasting techniques

detailed in (14).

CNN-LSTM Architecture

The structure of the CNN portion of the CNN-LSTM is shown in Figure 3.2.

Applying a convolution operation to the input data allows a neural network to learn

features and classify data with only a few neurons in a shallow architecture, where a

fully-connected feedforward neural network would have to be very deep with many

more neurons to match the accuracy performance of a CNN. The �rst convolution

layer e�ectively extracts low-level features. In 2D image recognition problems, the

�rst convolution layer helps to identify features such as edges; in time-series

forecasting, they help to identify edges in the data patterns of a univariate dataset.

15



Figure 4.1: CNN-LSTM Architecture.

Subsequent convolution layers help to extract higher-level features, which, in this

case, is the long-term patterns in between latency spikes. Each down-sampling layer

suppresses noise in the data, i.e., there are minor �uctuations in RTT data that the

CNN should not be focusing on; instead, with down-sampling, only the signi�cant

latency spikes are analyzed. Furthermore, down-sampling reduces the

dimensionality, allowing the next layer to analyze patterns over a longer time-scale.

The fully-connected (dense) layers allows the CNN to learn non-linear combinations.

Table 3.1 shows the �nal CNN-LSTM hyperparameters.

LSTM Block

The CNN-LSTM is essentially an encoder-decoder model with the CNN as the

encoder and the LSTM as the decoder. The CNN is responsible for encoding the

entire time-series into a single very long context vector. The LSTM, being the

decoder, is responsible for stepping through the context vector and analyzing the

16



Figure 4.2: CNN-LSTM Architecture.

17



Table 4.1: CNN-LSTM Hyperparameters

Parameter Value

Batch Size 650

Input Layer Nodes 196

MaxPool-1 Size 3x3

MaxPool-2 Size 3x3

Hidden Layer Nodes 105

Output Layer Nodes 1

Learning Rate 0.010

data in time steps. As in the RNN-LSTM, the LSTM stage used after the CNN is

essentially the same.

18



V. MODIFYING JACOBSON'S ALGORITHM

Simply forecasting RTT values does not help the congestion problems when creating

a Flow Control algorithm. Rules must be set that decide what happens when an

RTO timer expires. The Chebyshev Bound dictates that the probability for a

random value exceeding a range around a mean depends on the standard deviation.

Jacobson's Algorithm uses the Chebyshev Bound to produce reasonable RTO values

as shown in (5). However, since conventional parameter estimation algorithms

require complex calculations and storage for historic values, Jacobson's Algorithm

uses simple prediction algorithms to predict mean and standard deviation (5). Since

abrupt changes in RTT causes Jacobson's Algorithm to overshoot RTO estimations,

replacing the predictor with a much more accurate predictor can help a �ow control

algorithm to anticipate latency spikes that would otherwise be unpredictable. As

shown in the following equation, the PREDn is the output of the LSTM predictor:

PREDn = LSTM(PREDn−188, ..., PREDn−1) (5.1)

The PREDn dictates the error as shown in the following equation:

ERR = |RTTn − PREDn−1)| (5.2)

The error changes the variance in the following equation:

V ARn = 0.75(SRTTn−1) + 0.25(ERR) (5.3)
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This ultimately generates the RTO in as shown in the following equation:

RTO = PREDn + 4(V ARn) (5.4)

20



VI. RESULTS

Jacobson's Algorithm uses the Chebyshev Bound to predict expected RTO values.

By replacing the predictor used in Jacobson's Algorithm with a neural network, two

important traits emerged in the results: the LSTMs were both able to identify

latency spikes by the starting edge of the spike and, to a certain degree, predict the

time intervals between spikes. The CNN even "remembered" the maximum RTT

values and preemptively set the prediction high when it identi�ed the leading edges.

RNN-LSTM Performance

The RNN-LSTM was able to identify patterns in the data best when only one

communication pattern was present. This model would be best in a hypothetical

situation where a new RNN-LSTM is trained for each new data stream. For

example, after the �rst 188 segments in a new connection, the RNN-LSTM can

begin training and forecasting the subsequent segments' RTTs in the stream.

However, when the stream is closed, the RNN-LSTM state information is discarded

as it will not be relevant for a di�erent kind of data-stream. As shown in �gure 6.1,

the RNN-LSTM was best at predicting RTT when only one data pattern was

observed - in this case, the data pattern is recorded RTT values from a stream

captured during multiplayer gameplay. Figure 6.2 shows a closer view at the

algorithm correctly anticipating the periodic changes in RTT. The RNN-LSTM was

able to also identify a data pattern characteristic of a sine wave, as shown in �gure

6.3. Figures 6.4 and 6.5 show the RNN-LSTM able to predict triangle waves and

square waves respectively.
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Figure 6.1: RNN-LSTM Predicting MMORPG stream RTT
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Figure 6.2: Closeup of Figure 6.1: RNN-LSTM Anticipating Period of RTT Change
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Figure 6.3: RNN-LSTM Estimating RTT Change of Sine Wave
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Figure 6.4: RNN-LSTM Estimating RTT Change of Triangle Wave

25



Figure 6.5: RNN-LSTM Estimating RTT Change of Square Wave
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Figure 6.6: RNN-LSTM Estimating RTT Change of Random Permutation
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Finally, several permutations of patterns were joined together and were used to

train the RNN-LSTM. And example data pattern and the RNN-LSTM's RTT

estimations are shown in �gure 6.6.

As shown in �gure 6.7, a closeup of �gure 6.6, as soon as the training dataset ended

and the random permutation of patterns began (in this example with a random

MMO stream's RTT dataset), the RNN-LSTM was quick to remember the pattern

and adjust the RTT estimations accordingly. However, when the pattern changed to

a triangle wave, the RNN-LSTM was slow to recognize the pattern and adjust. Also,

as shown in �gure 6.8, though the RNN-LSTM was able to recognize and adjust its

estimations for the square wave pattern, at the end of the "low" phase of the square

wave at around packet number 2000, the neural network expected the leading edge

of a square wave, and not �nding said leading edge, was slow to recognize the sine

wave.
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Figure 6.7: Closeup of Figure 6.6: MMO to Triangle Wave

CNN-LSTM Performance

The CNN-LSTM was able to identify patterns over a wide variety of communication

patterns. In the case of the high-congestion environment shown in �gure II.1, it was

able to estimate the maximum RTT values for each latency spike and was able to

immediately set the RTO as high as previous maxima instead of stepping it up

slowly. Then, when the communication pattern changed to multiplayer gaming, the

gradually increasing and decreasing RTT values were properly predicted, and RTO
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Figure 6.8: Closeup of Figure 6.6: RNN-LSTM Estimating RTT Change

values were set accordingly.

The CNN-LSTM was able to also identify a data pattern characteristic of a sine

wave, as shown in �gure 6.9. Figures 6.10 and 6.11 show the CNN-LSTM able to

predict triangle waves and square waves respectively.
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Figure 6.9: CNN-LSTM Estimating RTT Change of Sine Wave
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Figure 6.10: CNN-LSTM Estimating RTT Change of Triangle Wave
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Figure 6.11: CNN-LSTM Estimating RTT Change of Square Wave

Finally, several permutations of patterns were joined together and were used to

train the CNN-LSTM. And example data pattern and the CNN-LSTM's RTT

estimations are shown in �gure 6.12.
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Figure 6.12: CNN-LSTM Estimating RTT Change of Random Permutation
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As shown in �gure 6.13, a closeup of �gure 6.12, as soon as the training dataset

ended and the random permutation of patterns began (in this example with a

random MMO stream's RTT dataset), the CNN-LSTM was quick to remember the

pattern and adjust the RTT estimations accordingly. Notably, when the pattern

changed to a triangle wave, the CNN-LSTM was much faster than the RNN-LSTM

to recognize the pattern and adjust. Also, as shown in �gure 6.14, the CNN-LSTM

was able to recognize and adjust its estimations for the square wave pattern, but

performed similarly to the RNN-LSTM at recognizing the sine wave.
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Figure 6.13: CNN MMO to Triangle Wave Closeup
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Figure 6.14: CNN-LSTM Estimating RTT Change of Random Permutation

Accuracy versus Jacobson's Algorithm

Since there was a total of three training sets (each communication pattern's order of

appearance was changed), the CNN-LSTM's and RNN-LSTM's ability to detect

patterns varied. Table 6.1 shows the CNN-LSTM's ability to detect long term

patterns in latency spikes and therefore decrease the number of retransmissions and

the RNN-LSTM's ability to predict short term patterns in increasing and decreasing

RTT changes and reduce the number of retransmissions in that manner. As shown,

Jacobson's Algorithm modi�ed to use a CNN-LSTM forecaster instead of the

Chebyshev Bound showed signi�cantly fewer RTO expirations, albeit requiring

around 100 epochs of training. However, as the number of epochs was increased to

200, severe over�tting became a problem and many more segments were dropped.
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Table 6.1: Number of False Retransmissions (Lower is Better)

Epochs

10 50 100 200

TCP

Implementation

of Jacobson's

Algorithm

First

Testing Set
1088 1088 1088 1088

Second

Testing Set
1211 1211 1211 1211

Third

Testing Set
1036 1036 1036 1036

Modi�ed

Jacobson's

Algorithm

with RNN

-LSTM

First

Testing Set
891 1255 1510 28144

Second

Testing Set
914 1045 1165 30271

Third

Testing Set
810 1250 1440 21033

Modi�ed

Jacobson's

Algorithm

with CNN

-LSTM

First

Testing Set
671 325 101 1812

Second

Testing Set
671 441 86 666

Third

Testing Set
840 610 223 1545

The Jacobson's Algorithm that was modi�ed to use an RNN-LSTM forecaster

instead of the Chebyshev Bound showed a minor improvement in RTO expirations

when given a combination of each communication pattern. It was able to decrease

the number of RTO expirations only in the �rst two communication patterns, after

which over�tting led to a high number of dropped segments when transitioning to

the third communication pattern. This was compounded when put through higher

epochs of training. Since the unmodi�ed Jacobson's Algorithm is deterministic, the

number of RTO expirations were the exact same no matter how many times it was

applied to the same data set, and therefore was a constant for each individual data

set.
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Table 6.2: Error Calculations for Combination Dataset (Lower is Better)

Combination Test

Jacobson CNN-LSTM RNN-LSTM

Mean Square Error (dB) -15.736628166 -32.117609026 -17.143076981

RMSE (dB) -7.8683114682 -15.9889081 -8.5715332612

Weighted MSE (dB) -14.129212981 -15.071865493 -16.973184865

Table 6.3: Error Calculations for FTP Dataset (Lower is Better)

FTP Test

Jacobson CNN-LSTM RNN-LSTM

Mean Square Error (dB) -62.510371387 -62.494916051 -62.494916051

RMSE (dB) -31.255187621 -31.247459527 -31.247458369

Weighted MSE (dB) -61.676188398 -62.358238676 -61.821042428

Figure 6.15: Error Rates in dB

Conclusion

Accurate prediction of RTT using neural networks can optimize network

communication and better control congestion in connection-oriented network
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Table 6.4: Error Calculations for Sine Dataset (Lower is Better)

Sine Test

Jacobson CNN-LSTM RNN-LSTM

Mean Square Error (dB) -48.941833626 -56.546262694 -55.684754158

RMSE (dB) -24.470906167 -28.272625401 -27.842392762

Weighted MSE (dB) -24.158710411 -27.760938407 -26.753313796

Table 6.5: Error Calculations for Square Wave Dataset (Lower is Better)

Square Test

Jacobson CNN-LSTM RNN-LSTM

Mean Square Error (dB) -7.1115897861 -24.194572805 -10.164030366

RMSE (dB) -6.5564380177 -12.097286182 -5.0820151777

Weighted MSE (dB) -3.9791015738 -10.623853553 -3.8379228942

protocols. By reducing the number of segment retransmissions caused by inaccurate

prediction models, congestion can be greatly reduced. Jacobson's Algorithm uses the

Chebyshev Bound to predict RTO times by predicting mean and standard deviation

of previous RTT times. However, the technique used does not store historic values

and thus cannot retain long term trends; therefore, it is not useful for �nding long

term patterns in RTT trends. This often leads to insu�cient RTO predictions that

causes a higher number of RTO expirations and thus retransmissions. RTT data for

di�erent communication patterns were collected from various applications using

TCP and used to train an RNN-LSTM and a CNN-LSTM to forecast RTT times.

The RNN-LSTM was able to estimate peak RTT values for a latency spike best

when the communication pattern stayed constant. The CNN-LSTM was able to

isolate patterns in the frequency of latency spikes as well as the peak RTT values.

Jacobson's Algorithm was modi�ed to use these prediction methods instead of a

linear classi�er. Armed with a more accurate predictor, RTO values were set

accordingly and greatly decreased the number of retransmissions.
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Table 6.6: Error Calculations for Triangle Wave Dataset (Lower is Better)

Triangle Test

Jacobson CNN-LSTM RNN-LSTM

Mean Square Error (dB) -27.800413245 -38.88273859 -33.927498405

RMSE (dB) -13.900206372 -19.441376771 -16.963749592

Weighted MSE (dB) -27.256336009 -07.2274250723 -33.861560648

Table 6.7: Error Calculations for MMORPG Dataset (Lower is Better)

MMO Dataset

Jacobson CNN-LSTM RNN-LSTM

Mean Square Error (dB) -24.580936608 -27.098865546 -33.206593345

RMSE (dB) -12.290468242 -18.549432621 -16.603297572

Weighted MSE (dB) -23.988264391 -6.801503947 -32.915621024

Future Work

The datasets used to train the neural networks may introduce unwanted bias. For

example, in the congestion datasets, patterns were repetitive and inherently

predictable but only in the context of the speci�c conditions of the experiment;

every time the congestion experiment parameters (i.e. the size of the chunks, the size

of the �les, etc.) were changed, the intervals between high latency spikes changed

accordingly. This meant that if the LSTM models were trained with congestion

datasets with one set of parameters, it was able to predict RTT patterns with test

sets with the same parameters; when tested with congestion datasets with di�erent

parameters, over�tting led to slower pattern recognition. Further exploration into

diversifying arti�cially generated training sets to include RTT patterns from

multiple parameters could lead to faster pattern recognition with unseen parameters.

In the current stage of this research, almost all of the experimentation has been

done o�ine. Wireshark is used to collect RTT values into a time-series, the LSTM
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models are used for time-series forecasting, and the performances of Jacobson's

Algorithm and the modi�ed Jacobson's Algorithm presented in this document have

been compared. However, actual implementation of this algorithm onto hardware

has not been explored by this research. The experimentation done for this document

was done using an NVIDIA RTX 2080 graphics card, and after optimization was

able to perform the necessary calculations in real time; however, it is hardly feasible

due to power usage and cost to a�ord a top-of-the-line graphics card for network

calculations. Looking at past trends can give insight to the future of this research:

network controllers were once implemented as expansion cards due to the amount of

processing and the application-speci�c electronic circuitry required to connect

computers to computer networks. However, following the trend of integrating

System-On-Chips (SOCs), Ethernet network cards have been implemented on

Application Speci�c Integrated Circuits (ASICs) and absorbed onto the

motherboard. One possible future for this research may be its implementation onto

an ASIC and integrated onto the motherboard on future edge devices.
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APPENDIX SECTION

APPENDIX A

Github page: https://github.com/BikramjitD/Thesis

Example RNN-LSTM Setup:

model = Sequential()

model.add(LSTM(100, input_shape=(1, look_back)))

model.add(Dense(20))

model.add(Dense(10))

model.add(Dense(6))

model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam')

model.�t(trainX, trainY, epochs=10, batch_size=1, verbose=2)

# make predictions

trainPredict = model.predict(trainX)

testPredict = model.predict(testX)
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Table 6.8: Example Subset of RTT Dataset

1st 25 entries 2nd 25 entries 3rd 25 entries 4th 25 entries 6th 25 entries

0.003221765 0.003500046 0.001843604 0.004661366 0.021

0.003440795 0.00328224 0.002031672 0.004527655 0.022

0.003654389 0.003060954 0.002231683 0.004375102 0.023

0.003859913 0.002838916 0.002441169 0.004205591 0.024

0.004054831 0.002618864 0.002657547 0.004021211 0.025

0.00423674 0.002403513 0.002878149 0.001 0.026

0.004403396 0.002195519 0.003100254 0.002 0.027

0.004552744 0.001997446 0.003321122 0.003 0.028

0.004682942 0.001811738 0.00353803 0.004 0.029

0.004792384 0.001640684 0.003748302 0.005 0.03

0.004879721 0.001486395 0.003949346 0.006 0.031

0.004943876 0.001350773 0.004138681 0.007 0.032

0.004984056 0.001235491 0.004313973 0.008 0.033

0.004999768 0.001141971 0.00447306 0.009 0.034

0.004990816 0.001071366 0.004613979 0.01 0.035

0.004957311 0.001024546 0.004734994 0.011 0.036

0.004899667 0.00100209 0.00483461 0.012 0.037

0.004818595 0.001004274 0.004911601 0.013 0.038

0.004715094 0.001031071 0.004965016 0.014 0.039

0.00459044 0.001082151 0.004994196 0.015 0.04

0.004446172 0.001156884 0.004998782 0.016 0.001

0.004284068 0.001254348 0.004978716 0.017 0.002

0.004106127 0.001373341 0.004934248 0.018 0.003

0.003914545 0.001512396 0.004865924 0.019 0.004

0.003711684 0.001669797 0.004774588 0.02 0.005

# invert predictions

trainPredict = scaler.inverse_transform(trainPredict)

trainY = scaler.inverse_transform([trainY])

testPredict = scaler.inverse_transform(testPredict)
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Example CNN-LSTM Setup:

raw_seq = rtt

n_steps = 100

X, y = split_sequence(raw_seq, n_steps)

n_seq = 10

n_steps = 10

X = X.reshape((X.shape[0], n_seq, n_steps, n_features))

model = Sequential()

model.add(TimeDistributed(Conv1D(�lters=64, kernel_size=1, activation='relu'),

input_shape=(None, n_steps, n_features)))

model.add(TimeDistributed(MaxPooling1D(pool_size=2)))

model.add(TimeDistributed(Flatten()))

model.add(LSTM(50, activation='relu'))

model.add(Dense(1))

model.compile(optimizer='adam', loss='mse')

model.�t(X, y, epochs=10, verbose=2)

yhat2=[]
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