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Finite difference approximation of control via the

potential in a 1-D Schrodinger equation ∗

K. Kime

Abstract

We consider the problem of steering given initial data to given termi-
nal data via a time-dependent potential, the control, in a 1-D Schrodinger
equation. We determine a condition for existence of a transferring poten-
tial within our approximation. Using Maple, we give equations for the
control and also examples in which the potential is restricted to be cen-
tralized and to be a step potential.

1 Introduction

In this paper we allow time-dependence of the potential, considered to be a
control, in a numerical approximation of a 1-D Schrodinger equation obtained
from the Crank-Nicolson method [1]. Our purpose is to examine the following
question: Given a discretized initial state and a discretized final state, is there a
discretized time-varying potential which steers the initial state to the terminal
state? We consider an example in which the potential is restricted to be ”cen-
tralized”, thus having the nature of a barrier, and one in which it is restricted
to be a step potential.
Square potential barriers and wells are basic examples in quantum physics

and arise in many physical models, among them nanostructures [11]. Po-
tential barriers which oscillate in time have been studied in several scientific
works [2, 5, 6, 14, 13, 17], although apparently have had less attention per se in
the area of numerical analysis. There is interest in the question of how quantum
wells may be driven or controlled [4] involving various formulations. Here we
focus on a simple set-up with a time-dependent potential which may be a pre-
cursor to understanding more complicated situations. Our results indicate that
approaching the control problem described above would have been prohibitively
complicated until the recent advent of computer algebra systems such as Maple.
In Sec. 2 we consider the Crank-Nicolson method as in [1] and apply it to the

Schrodinger equation with a time-dependent potential. The difference equations
that result reduce, in the case of a time-independent potential, to those obtained
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in a classic numerical approximation [3] (see [15]), which we discuss. That this
should be so is indicated in [8], although we are unaware of whether or not the
correspondence that we find appears in the literature. Crank-Nicolson methods
are considered one of the main types of methods used for the time-dependent
Schrodinger equation [12, 16, 18].
In Sec. 3, we write the system of difference equations in the form of a

matrix equation and determine a condition on the components of an initial-
terminal pair under which we have existence of a potential which steers the
initial data at time step n = 0 to the terminal data at time step n = 1. Under
this condition we may obtain equations for the potential in question in terms
of the initial and terminal data, thereby allowing construction of the desired
control. However these equations grow increasingly complicated as the number
of space steps increases. We use Maple to obtain the equations for the case of
seven space steps.
In Sec. 4 we first impose the restriction on the potential that it be central-

ized. We give an example of localized initial data being transferred to localized
terminal data, using Maple. A well-known aspect of quantum theory is the
spreading of wavepackets; thus one expects difficulty in transferring localized
initial data to localized terminal data. Such difficulty surfaces in our treatment,
and to more of an extent when we impose the second requirement that the po-
tential have the nature of steps. We give an example of an initial-terminal pair
which can be steered via a step potential.

2 Difference Equations

2.1 Crank-Nicolson

We consider the C-N method as in [1], where it is used for parabolic equations.
Writing the Schrodinger equation with time-dependent potential in the form

∂Ψ

∂t
− i

[
∂2

∂x2
− V (x, t)

]
Ψ(x, t) = 0, 0 < x < L, t > 0, (1)

with
Ψ(0, t) = Ψ(L, t) = 0, Ψ(x, 0) = Ψ0(x),

we apply the C-N method as follows. We denote the mesh width in x by h
(the space step) and the mesh width in t by k (the time step). The x values
are jh with j = 0, 1, . . . J , the t-values nk, n=0,1. . . . We average the Forward-
Difference method at the nth step in t,

Ψn+1j −Ψnj
k

− i
Ψnj+1 − 2Ψ

n
j +Ψ

n
j−1

h2
+ iV nj Ψ

n
j = 0 (2)

and the Backward-Difference approximation at the (n+ 1)st step in t,

Ψn+1j −Ψnj
k

− i
Ψn+1j+1 − 2Ψ

n+1
j +Ψn+1j−1

h2
+ iV n+1j Ψn+1j = 0, j = 1..J − 1. (3)
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This gives the difference equations

−i

2h2
Ψn+1j+1 +

(
1

k
+
i

h2
+
iV n+1j

2

)
Ψn+1j −

i

2h2
Ψn+1j−1

=
i

2h2
Ψnj+1 +

(
1

k
−
i

h2
−
iV nj
2

)
Ψnj +

i

2h2
Ψnj−1, j = 1 . . . J − 1 . (4)

Here, Ψnj approximates Ψ(xj , tn), j = 1..J−1, n > 0, and we take Ψ
n
0 = Ψ

n
J = 0

for all n and Ψ0j = Ψ
0(xj), j = 1..J − 1.

2.2 A Classic Approach

Next we discuss the work of [3], which treats the quantum-mechanical scat-
tering problem of a localized wave packet impinging on potential barriers and
wells. The computer-generated motion pictures obtained show reflection and
transmission and are quite illustrative. Similar motion pictures in the case of a
well are later given in [7], using the “leap-frog” method in [16]. We note that
work in [9, 10] starts with the approach of [3] and adds a potential due to the
external electric field to the potential profile of a square quantum well. How-
ever the final potential is only discretized with respect to space in the difference
equations.
In [3], the Schrodinger equation with time-independent potential

i
∂Ψ

∂t
= −

[
∂2

∂x2
− V (x)

]
Ψ(x, t) = HΨ(x, t) (5)

is considered, where H is the Hamiltonian. Here the mesh width in x will again
be denoted by h (the space step) and the mesh width in t by k (the time step).
The standard finite difference expression for the Hamiltonian is

HΨj = (1/h
2)[Ψj+1 − 2Ψj +Ψj−1]− VjΨj . (6)

The Cayley form
1− 12 ikH

1 + 12 ikH

is a unitary approximation to e−ikH . Replacing e−ikH with the Cayley form in
Ψn+1j = e−ikHΨnj , one obtains

Ψn+1j =

[
1− 12 ikH

1 + 12 ikH

]
Ψn+1j (7)

Letting λ = 2h2/k, one has the difference equation

Ψn+1j+1 +(iλ−h
2Vj −2)Ψ

n+1
j +Ψn+1j−1 = −Ψ

n
j+1+(iλ+h

2Vj +2)Ψ
n
j −Ψ

n
j−1, (8)

and takes Ψn0 = Ψ
n
J = 0 for all n. The system of difference equations for

j = 1..J − 1 is then solved recursively.
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If we now multiply (4), obtained via C-N, through by 2h2i we obtain

Ψn+1j+1 +(iλ−2−h
2V n+1j )Ψn+1j +Ψn+1j−1 = −Ψ

n
j+1+(iλ+2+h

2V nj )Ψ
n
j −Ψ

n
j−1 (9)

Comparing (8) and (9), we see that if we remove time dependence of the poten-
tial in (9), i.e. let V nj = V

n+1
j = Vj , equations equivalent to (8) result.

3 Matrix Equations

In the following we take k = 2 and h = 1 for simplicity in writing. Starting by
expressing (9) in matrix form as in [1], for j = 1 . . . J − 1, we have


i− 2 1 0 · · · 0
1 i− 2 1 · · · 0
0 1 i− 2 · · · 0
. . .

. . . 1
0 1 i− 2

−


V n+11 0

0
. . . 0

. . . 0
0 V n+1J−1







Ψn+11
...

...
Ψn+1J−1



=




i+ 2 −1 0 · · · 0
−1 i+ 2 −1 · · · 0
0 −1 i+ 2 · · · 0
. . .

. . . 1
0 −1 i+ 2

+

V n1 0

0
. . . 0

. . . 0
0 V nJ−1






Ψn1
...

...
ΨnJ−1


(10)

We next separate real and imaginary parts. Let Ψlj = R
l
j + iM

l
j, l = 0, 1, . . .

and

R̂l =

 Rl1
...

RlJ−1

 , M̂ l =
 M l1

...
M lJ−1

 .
Let

A =


−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 1
. . .

. . .

1 −2

 and V̂ l =

V l1 0

0
. . . 0

. . . 0
0 V lJ−1


We have

(iI +A− V̂ n+1)(R̂n+1 + iM̂n+1) = (iI − A+ V̂ n)(R̂n + iM̂n). (11)

The real part of (11) gives

AR̂n+1 − M̂n+1 − V̂ n+1R̂n+1 = −AR̂n − M̂n + V̂ nR̂n. (12)
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The imaginary part of (11) gives

R̂n+1 +AM̂n+1 − V̂ n+1M̂n+1 = R̂n −AM̂n + V̂ nM̂n. (13)

Now we rewrite the above systems in block matrix form:


A −I

I A

−


V̂ n+1 0

0 V̂ n+1







Rn+11
...

Rn+1J−1

Mn+11
...

Mn+1J−1



=




−A −I

I −A

+


V̂ n 0

0 V̂ n







Rn1
...

RnJ−1
Mn1
...

MnJ−1


(14)

Let S =

[
A −I

I A

]
. Then we have

S



Rn+11
...

Rn+1J−1

Mn+11
...

Mn+1J−1


+ ST



Rn1
...

RnJ−1
Mn1
...

MnJ−1



=


V̂ n+1 0

0 V̂ n+1





Rn+11
...

Rn+1J−1

Mn+11
...

Mn+1J−1


+


V̂ n 0

0 V̂ n





Rn1
...

RnJ−1
Mn1
...

MnJ−1



=



Rn+11 0

0
. . . 0

Rn+1J−1

Mn+11

. . . 0
0 Mn+1J−1





V n+11
...

V n+1J−1

V n+11
...

V n+1J−1


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+



Rn1 0

0
. . . 0

RnJ−1
Mn1
. . . 0
0 MnJ−1





V n1
...
V nJ−1
V n1
...
V nJ−1


(15)

=



Rn+11 0 Rn1 0

0
. . .

. . .

Rn+1J−1 RnJ−1
Mn+11 0 Mn1 0

0
. . .

. . .

Mn+1J−1 MnJ−1





V n+11
...

V n+1J−1
V n1
...
V nJ−1


≡ EV .

Letting B denote the left-most term in (15), we have the system of linear alge-
braic equations EV=B.

Proposition: The matrix E is invertible exactly when

det

[
Rn+1j Rnj

Mn+1j Mnj

]
6= 0, (16)

for j = 1 . . . J − 1.

Proof. The matrix E is invertible if and only if the only solution of

EC ≡



Rn+11 0 Rn1 0

0
. . .

. . .

Rn+1J−1 RnJ−1
Mn+11 0 Mn1 0

0
. . .

. . .

Mn+1J−1 MnJ−1





C1
...

CJ−1
CJ
...

C2(J−1)


= 0 (17)

is the trivial solution. This is true if and only if the homogeneous linear systems
with coefficient matrices [

Rn+1j Rnj

Mn+1j Mnj

]
,

j = 1 . . . J − 1, have only trivial solutions. This is equivalent to (16) for j =
1 . . . J − 1.
Thus, if an initial-terminal pair satisfies (16), we may solve (15) for the

potential which transfers initial to terminal. The solution in this case is unique
and thus we only consider at this stage starting at an initial time, say n = 0
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and passing to the terminal time in one time step. If previous time steps are
allowed, a more complicated situation results.

Now working in the case in which (16) holds, we give the equations for
the components of the potential in terms of the components of the initial and
terminal data in the case of J=7, from Maple. We consider n = 0 to n = 1
and denote R1j and M

1
j by Rj and Mj respectively, R

0
j and M

0
j by rj and mj ,

respectively and V 1j and V
0
j by Vj and vj , respectively. Then

[V1, . . . V6, v1 . . . , v6]
T

(18)

=



−(−M2r1 +m1r2 +R2m1 −M1m1 +m21−
R1r1 + 2M1r1 − 2R1m1 + r21 −m2r1)/(M1r1 −R1m1)

−(R1m2 −M1r2 + 2M2r2 −M2m2 +m22 + r
2
2 − 2R2m2 +R3m2

+m2r1 + r3m2 −R2r2 −M3r2 −m1r2 − r2m3)/(M2r2 −R2m2)

−(R4m3 +m3r4 −R3r3 + r23 − 2R3m3 +m
2
3 −M2r3 −M4r3

−r3m2 −m4r3 +R2m3 + 2M3r3 −M3m3 + r2m3)/(−R3m3 +M3r3)

−(−M3r4 − 2R4m4 −M5r4 + r24 + 2M4r4 −M4m4 +m
2
4 +R3m4

+R5m4 +m4r3 + r5m4 −R4r4 −m3r4 − r4m5)/(M4r4 −R4m4)

−(R6m5 + 2M5r5 −M5m5 −M4r5 −M6r5 − r5m4 − r5m6 +R4m5
+r6m5 + r4m5 −R5r5 + r25 − 2R5m5 +m

2
5)/(−R5m5 +M5r5)

−(−M6m6 − r6m5 −R6r6 −M5r6 + r26
+R5m6 − 2R6m6 + 2M6r6 + r5m6 +m26)/(−R6m6 +M6r6)

(M1r2 +M1R2 −M21 − 2M1r1 −R
2
1

+M1m1 −R1M2 −R1m2 +R1r1 + 2R1m1)/(M1r1 −R1m1)

(R2r2 +R1M2 +M2R3 −M22 +M2r1 − 2M2r2 +M2r3 +M2m2
−R2M3 −R22 −M1R2 + 2R2m2 −R2m1 −R2m3)/(M2r2 −R2m2)

(M3r2 −R23 −M2R3 −R3M4 +R3r3 −R3m2 + 2R3m3 −R3m4
+M3R4 +R2M3 +M3r4 −M23 − 2M3r3 +M3m3)/(−R3m3 +M3r3)

(R4r4 +R3M4 +M4R5 −M24 +M4r3 − 2M4r4 +M4r5 +M4m4
−R4M5 −R24 −M3R4 + 2R4m4 −R4m3 −R4m5)/(M4r4 −R4m4)

(M5r4 −R25 −M4R5 −M6R5 +R5r5 −R5m4 + 2R5m5 −R5m6
+R6M5 +R4M5 +M5r6 −M25 − 2M5r5 +M5m5)/(−R5m5 +M5r5)

−(R6m5 +R26 +R6M5 −R6r6 −M6R5
−2R6m6 +M26 −M6m6 −M6r5 + 2M6r6)/(−R6m6 +M6r6)


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4 Restrictions on the Potential

In the following we consider the case J = 7. First we centralize the potential
by imposing V1 = V6 = v1 = v6 = 0 in (18). Then we look for initial and
terminal data satisfying (16) for which the initial data is localized to the left
and the terminal data is localized to the right. By localized to the left we refer
to the fact that the terms r2j +m

2
j have a maximum at j = 2 and decrease as

j increases. Thus a graph of F (j) = r2j +m
2
j , an approximation of |Ψ(xj , 0)|

2

for j = 1 . . . 6, peaks to the left and tails off to the right. Similarly, localized
to the right refers to a tail coming from the left rising to a peak on the right;
for the example below the tail is flat from j = 2 to j = 3. Some attempts
result in computational grid lock with Maple and it is not clear if this is due
to insufficient specification or over-specification of components. We obtain the
following example:

V =



V1
...
V6
v1
...
v6


=



0
−14.11436950
2.27272727273
3.518181818

5.5
0
0

1.111436950
1

−5.272727273
−24
0



,



r1
...
r6
m1
...
m6


=



1
2
1
0.8
0.5
0.3
0.5
1.9

.3545454545
0.6
0.5
0.3



,



R1
...
R6
M1
...
M6


=



0.2
0.2
0.2
1
1.6
0.4
0.3
0.5
0.5
1
2
1


Second, we both centralize and require that the potential be single steps.

Now, however, it is more difficult to also require localized initial and terminal
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data. We obtain the example:

V =



V1
...
V6
v1
...
v6


=



0
0

−0.9145379212
−0.9145379212

0
0
0
0

2.266495745
2.266495745

0
0



,



r1
...
r6
m1
...
m6


=



1
2
1
0.8
0.8
0.5
1

−1.413689775
1.265154420
1.8
0.8
0.5



,



R1
...
R6
M1
...
M6


=



1.078281860
0.1957046498
4.140506990

5
2.1
0.7

−0.9608590700
1.413689775

0.5
1
2
1



.
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