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INFINITELY MANY SOLUTIONS FOR A SEMILINEAR
PROBLEM ON EXTERIOR DOMAINS WITH NONLINEAR

BOUNDARY CONDITION

JANAK JOSHI, JOSEPH A. IAIA

Communicated by Jerome A. Goldstein

Abstract. In this article we prove the existence of an infinite number of

radial solutions to ∆u + K(r)f(u) = 0 with a nonlinear boundary condition
on the exterior of the ball of radius R centered at the origin in RN such that

limr→∞ u(r) = 0 with any given number of zeros where f : R→ R is odd and
there exists a β > 0 with f < 0 on (0, β), f > 0 on (β,∞) with f superlinear

for large u, and K(r) ∼ r−α with 0 < α < 2(N − 1).

1. Introduction

In this article we study radial solutions to

∆u+K(|x|)f(u) = 0 for R < |x| <∞, (1.1)
∂u

∂η
+ c(u)u = 0 when |x| = R and lim

|x|→∞
u(x) = 0, (1.2)

where u : RN → R with N ≥ 2, R > 0, c : [0,∞)→ (0,∞) is continuous, ∂
∂η is the

outward normal derivative, f is odd and locally Lipschitz. We assume:
(H1) f ′(0) < 0, there exists β > 0 such that f(u) < 0 on (0, β), f(u) > 0 on

(β,∞).
(H2) f(u) = |u|p−1u+ g(u) where p > and limu→∞

|g(u)|
|u|p = 0.

(H3) Denoting F (u) ≡
∫ u
0
f(t) dt we assume there exists γ with 0 < β < γ such

that F < 0 on (0, γ) and F > 0 on (γ,∞).
(H4) K and K ′ are continuous on [R,∞) with K(r) > 0, 2(N − 1) + rK′

K > 0
and there exists α ∈ (0, 2(N − 1)) such that limr→∞

rK′

K = −α.
(H5) There exist positive d1, d2 such that d1r

−α ≤ K(r) ≤ d2r
−α for r ≥ R.

Note that (H4) implies r2(N−1)K is increasing. Our main result reads as follows.

Theorem 1.1. Assume (H1)–(H5), N ≥ 2, and 0 < α < 2(N − 1). Then for each
nonnegative integer n there exists a radial solution, un, of (1.1)-(1.2) such that un
has exactly n zeros on (R,∞).
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The radial solutions of (1.1) on RN and K(r) ≡ 1 have been well-studied. These
include [1, 2, 3, 10, 12, 14]. Recently there has been an interest in studying these
problems on RN\BR(0). These include [5, 6, 7, 11, 13]. In [6] positive solutions
of a similar problem were studied for N < α < 2(N − 1). There the authors use
the mountain pass lemma to prove existence of positive solutions. Here we use a
scaling argument as in [9, 12] to prove the existence of infinitely many solutions.

2. Preliminaries

Since we are interested in radial solutions of (1.1)-(1.2), we denote r = |x| and
write u(x) = u(|x|) where u satisfies

u′′ +
N − 1
r

u′ +K(r)f(u) = 0 for R < r <∞, (2.1)

u(R) = b > 0, u′(R) = bc(b) > 0. (2.2)

We will occasionally write u(r, b) to emphasize the dependence of the solution on
b. By the standard existence-uniqueness theorem [4] there is a unique solution of
(2.1)-(2.2) on [R,R+ ε) for some ε > 0. We next consider

E(r) =
1
2
u′2

K(r)
+ F (u). (2.3)

It is straightforward using (2.1) and (H4) to show that

E′(r) = − u′2

2rK
[2(N − 1) +

rK ′

K
] ≤ 0. (2.4)

Thus E is non-increasing. Therefore

1
2
u′2

K(r)
+ F (u) = E(r) ≤ E(R) =

1
2
b2c2(b)
K(R)

+ F (b) for r ≥ R. (2.5)

Since F is bounded from below by (H3), it follows from (2.5) that u and u′

are uniformly bounded wherever they are defined from which it follows that the
solution of (2.1)-(2.2) is defined on [R,∞).

Lemma 2.1. Assume (H1)–(H5) and N ≥ 2. Let u(r, b) be the solution of (2.1)-
(2.2) and suppose 0 < α < 2(N − 1). If b > 0 and b is sufficiently small then
u(r, b) > 0 for all r > R.

Proof. We proceed as in [9]. Since u(R, b) = b > 0 and u′(R, b) = bc(b) > 0 we see
that u(r, b) > 0 on (R,R + δ) for some δ > 0. If u′(r, b) > 0 for all r ≥ R then
u(r, b) > 0 for all r > R and so we are done in this case.

If u is not increasing for all r > R then there exists a local maximum at some Mb

with Mb > R and u′(r, b) > 0 on [R,Mb). If u(Mb, b) < γ then E(r) ≤ E(Mb) < 0
for r > Mb since E is non-increasing. It follows then that u(r, b) cannot be zero
for any r > Mb for if there were such a zb > Mb then 0 ≤ 1

2
u′2(zb)
K(zb)

= E(zb) ≤
E(Mb) < 0 which is impossible. Also, since u′(r, b) > 0 on [R,Mb) it follows then
that u(r, b) > 0 on (R,∞) if u(Mb, b) < γ. So if u(r, b) has a local maximum at Mb

with u(Mb, b) < γ then we are done in this case as well.
In addition, if E(R) = 1

2
b2c2(b)
K(R) +F (b) ≤ 0 then E(t) < 0 for t > R and a similar

argument shows that u(r, b) cannot be zero for t > R.
So for the rest of this proof we assume that u(r, b) has a local maximum at Mb,

u(Mb, b) ≥ γ, u′(r, b) > 0 on [R,Mb), and E(R) = 1
2
b2c2(b)
K(R) + F (b) > 0 for all
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sufficiently small b > 0. From this it then follows from (H1) and (H3) that there
exists rb and rb1 with R < rb < rb1 < Mb such that u(rb, b) = β and u(rb1 , b) = β+γ

2 .
From (H5) and from rewriting (2.5) we see that

|u′|√
b2c2(b)
K(R) + 2F (b)− 2F (u)

≤
√
K ≤

√
d2r
−α2 for r ≥ R. (2.6)

On [R, rb] we have u′ > 0 and so integrating (2.6) on [R, rb] when α 6= 2 gives∫ β

0

dt√
b2c2(b)
K(R) + 2F (b)− 2F (t)

=
∫ rb

R

u′(r) dr√
b2c2(b)
K(R) + 2F (b)− 2F (u(r))

≤
√
d2

α
2 − 1

(
R1−α2 − rb1−

α
2
)
.

(2.7)

In the case α = 2 the right-hand side of (2.7) is replaced by:√
d2 ln(rb/R). (2.8)

As b→ 0+ the left-hand side of (2.7) goes to +∞ since by (H1) and the definition
of F , √

b2c2(b)
K(R)

+ 2F (b)− 2F (t) ≤

√
b2c2(b)
K(R)

+ 2F (b) + 2|f ′(0)|t2

for small positive t thus∫ ε

0

dt√
b2c2(b)
K(R) + 2F (b)− 2F (t)

≥
∫ ε

0

dt√
b2c2(b)
K(R) + 2F (b) + 2|f ′(0)|t2

→∞ (2.9)

as b→ 0+.
Combining (2.7) and (2.9) we see that if 2 < α < 2(N − 1) then

√
d2

α
2 − 1

R1−α2 ≥
√
d2

α
2 − 1

(
R1−α2 − rb1−

α
2
)
→∞ as b→ 0+

which is impossible since R is fixed. Thus it follows that u(Mb, b) < γ if b > 0
is sufficiently small and as indicated earlier in this lemma it then follows that
u(r, b) > 0 for r > R if b > 0 is sufficiently small.

For the case 0 < α ≤ 2 a lengthier argument is required and the details are
carried out in [9]. There it is shown that E(rb1) < 0 for sufficiently small b > 0 and
therefore u(r, b) cannot be zero for any zb > rb1 as indicated earlier in this lemma.
This completes the proof. �

Lemma 2.2. Assume (H1)–(H5) and N ≥ 2. Let u(r, b) be the solution of (2.1)-
(2.2) and suppose 0 < α < 2(N − 1). Given a positive integer n then u(r, b) has at
least n zeros on (0,∞) if b > 0 is chosen sufficiently large.

Proof. Let v(r) = u(r +R). Then v satisfies,

v′′(r) +
N − 1
R+ r

v′(r) +K(R+ r)f(v) = 0, (2.10)

v(0) = b, v′(0) = bc(b). (2.11)

Now let
vλ(r) = λ−

2
p−1 v

( r
λ

)
for λ > 0. (2.12)



4 J. JOSHI, J. A. IAIA EJDE-2018/108

Then

v′λ(r) = λ−
2
p−1−1v′

( r
λ

)
,

v′′λ(r) = λ−
2
p−1−2v′′

( r
λ

)
.

Thus

v′′
( r
λ

)
+
N − 1
R+ r

λ

v′
( r
λ

)
+K(

r

λ
+R)f

(
v
( r
λ

))
= 0

and so it then follows that

v′′λ +
N − 1

(Rλ+ r)
v′λ +

K( rλ +R)

λ
2p
p−1

f(λ
2
p−1 vλ) = 0. (2.13)

From (H2) we have f(u) = |u|p−1u + g(u) and limu→∞
|g(u)|
|u|p = 0 so rewriting

(2.13) gives

v′′λ +
N − 1

(Rλ+ r)
v′λ +

K( rλ +R)

λ
2p
p−1

[
λ

2p
p−1 |vλ|p−1vλ + g(λ

2
p−1 vλ)

]
= 0. (2.14)

Thus

v′′λ +
N − 1

(Rλ+ r)
v′λ +K(

r

λ
+R)

[
|vλ|p−1vλ +

g(λ
2
p−1 vλ)

λ
2p
p−1

]
= 0, (2.15)

vλ(0) = λ
−2
p−1 b, (2.16)

v′λ(0) = λ
−2
p−1−1bc(b) = λ−

p+1
p−1 bc(b). (2.17)

Now let

Eλ(r) =
v′2λ

2K( rλ +R)
+
F (λ

2
p−1 vλ)

λ
2p
p−1

. (2.18)

A straightforward calculation using (H4) and (2.13) gives

E′λ(r) = − v′2λ
2( rλ +R)K( rλ +R)

[ ( rλ +R)K ′( rλ +R)
K( rλ +R)

+ 2(N − 1)
]
≤ 0

for 0 < α < 2(N − 1). Thus for r ≥ 0,

v′2λ
2K( rλ +R)

+
F (vλ)

λ
2p
p−1

= Eλ(r) ≤ Eλ(0) =
b2c2(b)

2λ
2(p+1)
p−1 K(R)

+
F (λ

−2
p−1 b)

λ
2p
p−1

. (2.19)

We now divide the rest of the proof into two cases.

Case 1: c(b)

b
p−1
2
≤ C0 for all sufficiently large b for some constant C0. In this case

we choose b = λ
2
p−1 so that (2.16)-(2.17) become vλ(0) = 1 and

v′λ(0) = λ
−2
p−1−1bc(b) =

c(b)
λ

=
c(b)

b
p−1
2

≤ C0.

Next using (H2)-(H3) it follows that

F (u) =
|u|p+1

p+ 1
+G(u) (2.20)

where G(u) =
∫ u
0
g(s) ds and from L’Hôpital’s rule it follows that G(u)

|u|p+1 → 0 as
u→∞.
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So from (2.12), (2.19)-(2.20) and since b = λ
2
p−1 we obtain

v′2λ
2K( rλ +R)

+
|vλ|p+1

p+ 1
+
G(λ

2
p−1 vλ)

λ
2(p+1)
p−1

≤ b2c2(b)

2λ
2(p+1)
p−1 K(R)

+
F (1)

λ
2p
p−1

(2.21)

=
1

2K(R)

( c(b)
b
p−1
2

)2

+
F (1)
λ 2p
p−1

≤ C2
0

2K(R)
+
F (1)
λ 2p
p−1

. (2.22)

So since G(u)
|u|p+1 → 0 as u → ∞ it follows that |G(u)|

|u|p+1 ≤ 1
2(p+1) for say u > T .

Also, |G(u)| ≤ G0 for |u| ≤ T since G is continuous on the compact set [0, T ]
and thus |G(u)| ≤ 1

2(p+1) |u|
p+1 +G0 for all u. Similarly using (H2) it follows that

|g(u)| ≤ 1
2 |u|

p + g0 for all u for some constant g0 where |g(u)| ≤ g0 on [0, T ].
Therefore for λ > 0 it follows from (2.21)-(2.22) that

v′2λ
2K( rλ +R)

+
|vλ|p+1

2(p+ 1)
≤ C2

0

2K(R)
+
F (1)

λ
2p
p−1

+λ
−2(p+1)
p−1 G0 ≤

C2
0

2K(R)
+F (1)+G0 for λ > 1.

It follows from this that vλ(r) and v′λ(r) are uniformly bounded on [0,∞) for large
λ. It then follows that

(
N−1
Rλ+r

)
v′λ is uniformly bounded on [0,∞) and also K( rλ +

R)
[
|vλ|p−1vλ+ g(λ

2
p−1 vλ)

λ
2p
p−1

]
is uniformly bounded on [0,∞). Then from (2.15) we see

that v′′λ is uniformly bounded on [0,∞) for large λ. Therefore by the Arzela-Ascoli
theorem it follows that there is a subsequence (still denoted vλ) and continuous
functions v0 and v′0 such that vλ → v0 and v′λ → v′0 uniformly on compact subsets
of [0,∞) to a solution of

v′′0 +K(R)vp0 = 0,

v0(0) = 1, v′0(0) = d0 = lim
b→∞

c(b)

b
p−1
2

≤ C0.
(2.23)

It is now straightforward to show that v0 has infinitely many zeros on [0,∞). Thus
vλ has at least n zeros for sufficiently large λ and so u(r, b) has at least n zeros for
sufficiently large b. This concludes the proof in Case 1.

Case 2: c(b)

b
p−1
2
→∞ for some subsequence as b→∞. Then for these b we let

λ = (bc(b))
p−1
p+1 that is bc(b) = λ

p+1
p−1 . (2.24)

From (2.17) and (2.24) we see that

vλ(0) = λ−
2
p−1 b =

[b p−1
2

c(b)

] 2
p+1 → 0 as b→∞ and v′λ(0) = 1.

As in case (1) we can show there exist continuous functions v0 and v′0 such that for
some subsequence vλ → v0 and v′λ → v′0 as λ → ∞ uniformly on compact subsets
of [0,∞) and v0 is a solution of

v′′0 +K(R)vp0 = 0,

v0(0) = 0, v′0(0) = 1.
(2.25)

And again it is easy to show that v0 has infinitely many zeros on [0,∞). Thus
it follows that vλ(r) and hence u(r, b) has at least n zeros on [0,∞) when b is
sufficiently large. This completes the proof. �
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3. Proof of the main theorem

Proof. We proceed as we did in [9]. It follows from Lemma 2.1 that

{b > 0 : u(r, b) > 0 on (R,∞)}
is nonempty and from Lemma 2.2 it follows that this set is bounded from above.
Hence we set

b0 = sup{b|u(r, b) > 0 on (R,∞)}.
We next show that u(r, b0) > 0 on (R,∞). This follows because if there is a z > R
such that u(z, b0) = 0 then u′(z, b0) < 0 (by uniqueness of solutions of initial
value problems) and so u(r, b0) becomes negative for r slightly larger than z. By
continuity with respect to initial conditions it follows that u(r, b) becomes negative
for b slightly smaller than b0 contradicting the definition of b0. Thus u(r, b0) > 0 on
(R,∞). Next it follows by the definition of b0 that if b > b0 then u(r, b) must have
a zero, zb, where zb > R. We now show that zb →∞ as b→ b+0 . If not then the zb
are uniformly bounded and so a subsequence of them (still denoted zb) converges
to some z0 ≥ R. Then since E′ ≤ 0:

1
2
u′2(r, b)
K(r)

+ F (u(r, b)) ≤ 1
2
b2c2(b)
K(R)

for r ≥ R (3.1)

and since F is bounded from below (by (H3)) it follows that u(r, b) and u′(r, b) are
uniformly bounded on [R,∞) for b near b0. In addition it follows from (2.1) that
u′′(r, b) is also uniformly bounded on [R,∞) for b near b0. Then by the Arzela-
Ascoli theorem a subsequence (still denoted u(r, b) and u′(r, b)) converges uniformly
to u(r, b0) and u′(r, b0) and so we obtain u(z0, b0) = 0. But we know u(r, b0) > 0
for r > R and so we get a contradiction. Thus zb →∞ as b→ b+0 .

We now show that E(r, b0) ≥ 0 on [R,∞). If not then there is an r0 > R
such that E(r0, b0) < 0. By continuity E(r0, b) < 0 for b slightly larger than
b0. Also for b > b0 the function u(r, b) has a zero, zb, (by definition of b0) and
E(zb) = 1

2
u′2(zb,b)
K(zb)

≥ 0. But E is non-increasing so zb < r0 which contradicts
zb →∞ as b→ b+0 . Thus, E(r, b0) ≥ 0 on [R,∞).

Next either: (i) u(r, b0) has a local maximum at some Mb0 > R, or (ii) u′(r, b0) >
0 for r > R and since u(r, b0) is bounded by (3.1) then there is an L > 0 such that
u(r, b0) → L as r → ∞. We show now that (ii) is not possible. Suppose therefore
that (ii) occurs. We divide this into three cases.
Case 1: 0 < α < N . Multiplying (2.1) by rN−1 and integrating on (R, r) gives

− rN−1u′ = −RN−1b0 +
∫ r

R

tN−1K(t)f(u) dt. (3.2)

Dividing (3.2) by rNK → ∞ as r → ∞ since 0 < α < N and taking limits using
L’Hôpital’s rule and (H4) gives

− u′

rK
= lim
r→∞

∫ r
R
tN−1K(t)f(u) dt

rNK
= lim
r→∞

f(u)
N + rK′

K

=
f(L)
N − α

. (3.3)

Thus since 0 < α < N and u′ > 0, it follows that f(L) ≤ 0 so that

0 < L ≤ β < γ. (3.4)

On the other hand integrating the identity

(r2(N−1KE)′ = (r2(N−1K)′F
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on (R, r) and using L’Hôpital’s rule gives

lim
r→∞

E(r, b0) = lim
r→∞

1
2
u′2

K
+ F (u)

= lim
r→∞

1
2
R2(N−1)b20
r2(N−1)K

+

∫ r
R

(t2(N−1)K)′F (u(t, b0)) dt
r2(N−1)K

= F (L).

Since we showed earlier that E(r, b0) ≥ 0 we see then that

0 ≤ lim
r→∞

E(r, b0) = F (L). (3.5)

Thus L ≥ γ which contradicts (3.4). Therefore it must be the case that u(r, b0) has
a local maximum at some Mb0 . This completes Case 1.
Case 2: α = N . In this case as well it follows that f(L) ≤ 0 for suppose f(L) > 0.
Then by (H5) the integral on the right-hand side of (3.2) grows like f(L) ln(r)→∞
as r → ∞ and thus the right-hand side of (3.2) becomes arbitrarily large but the
left hand side is negative. Thus it must be that f(L) ≤ 0 and as in Case 1 we get
a contradiction.
Case 3: N < α < 2(N − 1). For b > b0 we know that there is an zb > R such
that u(zb, b) = 0 so there is an Mb with R < Mb < zb such that u(r, b) has a local
maximum at Mb. If the Mb are bounded as b → b+0 then a subsequence of the
Mb converge to some Mb0 < ∞ and then u(r, b0) has a local maximum at Mb0

contradicting our assumption that u′(r, b0) > 0 for r > R. So let us assume that
Mb →∞ as b→ b+0 .

Since E is non-increasing, it follows that E(r) ≤ E(Mb) for r ≥Mb. Thus

1
2
u′2

K
+ F (u) ≤ F (u(Mb)) for r ≥Mb. (3.6)

Rewriting and integrating (3.6) on [Mb, zb] (using (H5)) gives

0 ≤
∫ u(Mb)

0

1√
2
√
F (u(Mb))− F (t)

dt

=
∫ zb

Mb

|u′(t)|√
2
√
F (u(Mb))− F (u(t))

dt

≤
∫ zb

Mb

√
K dt ≤

√
d2(M1−α2

b − z1−α2
b )

α
2 − 1

.

(3.7)

Since α > N ≥ 2 and Mb → ∞ as b → b+0 (thus zb → ∞) we see that the right-
hand side of (3.7) goes to 0 as b→ b+0 . On the other hand, since u(r, b)→ u(r, b0)
uniformly on compact subsets of [R,∞) we see then that u(Mb) → L as b → b+0 .
Taking limits in (3.7) then gives:∫ L

0

1√
2
√
F (L)− F (t)

dt = 0

which is impossible. Thus the Mb must be bounded as b → b+0 which contradicts
our assumption that Mb → ∞. Thus u(r, b0) must have a local maximum Mb0 .
This completes Case 3.

Since we know u(r, b0) > 0 for r > R and u(r, b0) has a local maximum Mb0 it
follows that u(r, b0) cannot have a local minimum at mb0 with mb0 > Mb0 for at
such a point we would have u(mb0 , b0) > 0, u′(mb0 , b0) = 0, and u′′(mb0) ≥ 0. Thus
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from (2.1) we see that f(u(mb0 , b0)) ≤ 0 which implies 0 < u(mb0 , b0) ≤ β. On the
other hand since E(r, b0) ≥ 0 for all r ≥ R then E(mb0 , b0) = F (u(mb0 , b0)) ≥ 0 and
so β ≥ u(mb0 , b0) ≥ γ > β which is impossible. Thus it must be that u′(r, b0) < 0
for r > Mb0 and hence there is an L ≥ 0 such that u(r, b0)→ L as r →∞. Recalling
(3.5) we have E(r, b0)→ F (L) ≥ 0 as r →∞. Thus L = 0 or L ≥ γ.

Finally we want to show L = 0. There are again three cases to consider.
Case 1: 0 < α < 2. First suppose f(L) 6= 0. Recalling (3.3) it then follows that
u′

rK → −
f(L)
N−α . Thus for large r we have u′ ∼ − f(L)

N−αrK and from (H5) we have
rK ∼ r1−α so

|u(r)− u(r0)| ∼ | f(L)
N − α

[
r2−α − r2−α0

2− α
]| → ∞ as r →∞ since 0 < α < 2

contradicting that u is bounded. Thus f(L) = 0 so L = 0 or L = β. But we also
know from (3.5) that F (L) ≥ 0 so L = 0 or L ≥ γ > β. Thus we see that L 6= β
and so we must have L = 0.
Case 2: α = 2. Suppose again f(L) 6= 0. This is similar to case 1 but now we
have |u(r) − u(r0)| ∼ | f(L)

N−α ln(r/r0)| → ∞ contradicting that u is bounded. Thus
f(L) = 0 so L = 0 or L = β. Since we also know F (L) ≥ 0 so L = 0 or L ≥ γ > β.
So again we see that L 6= β and thus L = 0.
Case 3: 2 < α < 2(N − 1). Here we let

u(r) = u1(r2−N ).

This transforms (2.1) to

u′′1(t) + h(t)f(u1(t)) = 0 for 0 < t < R2−N (3.8)

where

u1(R2−N ) = 0, u′1(R2−N ) = −bR
N−1

N − 2
< 0

and where h(t) = 1
(N−2)2 t

2(N−1)
2−N K(t1/(2−N)). From (H4) we have h′(t) < 0 and we

see that for small positive t we have h(t) ∼ 1
tq where q = 2(N−1)−α

N−2 . We note also
that for 2 < α < 2(N − 1) we have 0 < q < 2. Now let

E1 =
1
2
u′21
h(t)

+ F (u1).

Then

E′1 = −u
′2
1 h
′

2h2
≥ 0

since h′ < 0. We see then from (3.8) that when u1 > β then u′′1 < 0 and when
0 < u1 < β then u′′1 > 0. Now for b > b0 we know that u(r, b) has a zero (by
definition of b0) and thus u1(t, b) has a zero, z1,b, with 0 < z1,b < R2−N for b > b0.
Therefore u1 has a local maximum at some M1,b and an inflection point at some
t1,b with 0 < z1,b < t1,b < M1,b < R2−N . Since E1(z1,b) > 0 and E1 is non-
decreasing then it follows that F (u1(M1,b, b)) = E1(M1,b) ≥ E1(z1,b) > 0 and so
u1(M1,b, b) > γ. Note also that u1(t1,b, b) = β. Since u1(t, b) is concave up on
(z1,b, t1,b) we see then that u1(t, b) lies above the line through (t1,b, β) with slope
u′1(t1,b, b) > 0. Thus:

u1(t, b) ≥ β + u′1(t1,b, b)(t− t1,b) on [z1,b, t1,b].



EJDE-2018/108 INFINITELY MANY SOLUTIONS 9

Evaluating this at t = z1,b and rewriting yields

t1,b ≥ t1,b − z1,b ≥
β

u′(t1,b, b)
. (3.9)

In addition, E1(t1,b) ≤ E1(M1,b) so that there is a constant c1 such that for b close
to b0,

1
2
u′21 (t1,b, b)
h(t1,b)

+ F (β) ≤ F (u1(M1,b), b) ≤ c1

and thus
0 < u′1(t1,b) ≤ c2

√
h(t1,b) (3.10)

where c2 =
√

2[c1 + |F (β)|]. Combining (3.9)-(3.10) gives

β ≤ t1,bu′1(t1,b, b) ≤ c2t1,b
√
h(t1,b) ≤ c3t

2−q
2

1,b (3.11)

for some constant c3 for b close to b0. Since 0 < q < 2 we see from (3.11) that
t1,b is bounded from below by a positive constant. It then follows by continuous
dependence on initial conditions that t1,b0 is also bounded from below by a pos-
itive constant. In addition, u′1(t1,b0 , b0) ≥ 0 and in fact u′1(t1,b0 , b0) > 0 for if
u′1(t1,b0) = 0 then since f(u1(t1,b0)) = f(β) = 0 then u′′1(t1,b0 , b0) = 0 implying by
uniqueness of solutions of initial value problems that u1(t, b0) ≡ β contradicting that
u′1(R2−N , b0) = − b0R

N−1

N−2 > 0. Thus u′1(t1,b0) > 0 and this implies u1(t, b0) < β for
0 < t < t1,b0 . Thus L = limt→0+ u1(t, b0) ≤ β. But recall from (3.5) that F (L) ≥ 0
so if L > 0 then in fact β ≥ L ≥ γ > β which is impossible so we see it must be the
case that L = 0. Thus limt→0+ u1(t, b0) = 0 and therefore limr→∞ u(r, b0) = 0.

Next, [12, Lemma 4] states that if u(r, bk) is a solution of (2.1)-(2.2) with k zeros
on (0,∞) then if b is sufficiently close to bk then u(r, b) has at most k + 1 zeros
on (0,∞). Also [8, Lemma 2.7] proves a similar result on (R,∞). Applying this
lemma with b = b0 we see that u(r, b) has at most one zero on (R,∞) for b close
to b0. On the other hand, by the definition of b0 if b > b0 then u(r, b) has at least
one zero on (R,∞). Therefore: {b > b0|u(r, b) has exactly one zero on (R,∞)} is
nonempty and by Lemma 2.2 this set is bounded above. Then we let:

b1 = sup{b > b0|u(r, b) has exactly one zero on (R,∞)}.

In a similar fashion we can show that u(r, b1) has exactly one zero on (R,∞) and
u(r, b1)→ 0 as r →∞. Similarly we can find u(r, bn) which has exactly n zeros on
(R,∞) and u(r, bn)→ 0 as r →∞. This completes the proof. �
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