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ABSTRACT 

 With global warming becoming a major concern worldwide, forest degradation 

impacts on environmental services, especially those related to climate regulation through 

carbon sequestration, have received increasing attention among the scientific 

community. However, monitoring forest degradation has not been easy to accomplish 

due to the non-discrete nature of the process, in which changes are subtle and alter 

vegetation gradually. This research proposes an algorithm to detect forest degradation 

using Moderate Resolution Imaging Spectroradiometer (MODIS) images collected over 

Central Mexico (tile h08v06) between 2002 and 2017. The underlying assumption of a 

constant negative relationship between vegetation greenness and surface temperature, 

which has guided several studies that aim to identify ecosystem disturbances, was 

discarded as a foundation on which to build the algorithm. An evaluation of the annual 

and intraseasonal relationship between Leaf Area Index (LAI) and Land Surface 

Temperature (LST) demonstrated that the relationship between these two variables in 

the study area is not constant and its nature (i.e., sign) varies depending on the temporal 

scale and forest type under analysis. The use of LAI was proposed to facilitate 

consideration of the structural changes evident from degradation though not necessarily 

observable through widely used vegetation spectral indices, such as Normalized 

Difference Vegetation Index (NDVI)and Enhanced Vegetation Index (EVI). Thus, the 

proposed algorithm focused on vegetation greenness and overcame the challenge of 

detecting subtle and gradual vegetation changes through a trend analysis of LAI. Overall, 

the results indicate that 52% of the study area has experienced increasing LAI trends, 

37% has remained unchanged, and 11% exhibits some level of forest degradation (i.e., 

decreasing LAI trends). Particularly, the algorithm estimated that 0.6% (385 km2) is highly 

degraded, 5.3% (3,406 km2) moderately degraded, and 5.1% (3,245 km2) slightly 

degraded. The non-degraded (89%) and degraded (11%) areas served as scenarios to 
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investigate the effect of precipitation on LAI in the context of forest degradation 

conditions. The results showed that the response of LAI to precipitation is predominantly 

positive and its occurrence is higher in non-degraded pixels (43%) than in degraded pixels 

(28%). This dissertation contributes to the body of knowledge focused on monitoring 

forest degradation and comprehending vegetation-climate feedbacks at regional scales.  
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1. INTRODUCTION 

1.1. Background   

 With global warming becoming a major concern worldwide, forest degradation 

impacts on environmental services, especially those related to climate regulation through 

carbon sequestration, have received increasing attention among the scientific community 

(Jenkins and Schaap 2018). However, monitoring forest degradation has not been easy to 

accomplish due to the non-discrete nature of the process, in which changes are subtle 

and alter vegetation gradually. This slow transition from a healthy to an unhealthy 

condition slightly modifies the spectral response of vegetation across remotely sensed 

observations. Detecting the trajectory of those slight spectral variations has been a 

challenging task for environmental remote sensing specialists. 

1.1.1. Forest and forest degradation  

 The understanding of forest degradation strongly depends on what is considered 

“forest”. National and international organizations, countries, and private institutions have 

established different forest definitions that respond to particular purposes and specific 

criteria (Table 1.1). International forest policy has been ruled by the definition of the 

United Nations Food and Agriculture Organization (FAO; Chazdon et al. 2016), which 

describes forests as lands, not primarily classified under agricultural or urban land use, of 

more than 0.5 hectares, with a tree canopy cover of more than 10%, and trees capable to 

reach a minimum height of 5 meters in situ (FAO 2001). The United Nations Framework 

Convention on Climate Change (UNFCC) follows similar parameters, but allows each 
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country participating in the Clean Development Mechanisms (CDM) of the Kyoto Protocol 

to select minimum thresholds of canopy cover (10-30%), area (0.05-1.0 hectares), and 

height (2-5 meters; Putz and Redford 2010). Despite being widely used, these definitions 

have been criticized because considerable quantities of carbon and other environmental 

values could be lost if some areas remain classified as forest even if 70% of their canopy 

cover is removed or the entire tree cover is replaced by plantations that technically 

qualify as forest (Chazdon et al. 2016; Sasaki and Putz 2009).   

Table 1.1. Forest definitions established by selected national and international 
organizations 

Institution Definition Source 

United Nations Food 

and Agriculture 

Organization (FAO) 

“…includes natural forests and forest plantations. It is used to 

refer to land with a tree canopy cover of more than 10 percent 

and area of more than 0.5 ha. Forests are determined both by 

the presence of trees and the absence of other predominant land 

uses. The trees should be able to reach a minimum height of 5 m. 

Young stands that have not yet but are expected to reach a 

crown density of 10 percent and tree height of 5 m are included 

under forest, as are temporarily unstocked areas. The term 

includes forests used for purposes of production, protection, 

multiple-use or conservation (i.e. forest in national parks, nature 

reserves and other protected areas), as well as forest stands on 

agricultural lands (e.g. windbreaks and shelterbelts of trees with 

a width of more than 20 m), and rubberwood plantations and 

cork oak stands. The term specifically excludes stands of trees 

established primarily for agricultural production, for example 

fruit tree plantations. It also excludes trees planted in 

agroforestry systems” 

FAO 2001 

United Nations 

Framework 

Convention on Climate 

Change (UNFCC) 

“… minimum area of land of 0.05-1.0 hectares with tree crown 

cover (or equivalent stocking level) of more than 10-30 per cent 

with trees with the potential to reach a minimum height of 2-5 

meters at maturity in situ. A forest may consist either of closed 

forest formations where trees of various storeys and 

undergrowth cover a high proportion of the ground or open 

forest. Young natural stands and all plantations which have yet to 

reach a crown density of 10-30 per cent or tree height of 2-5 

meters are included under forest, as are areas normally forming 

part of the forest area which are temporarily unstocked as a 

result of human intervention such as harvesting or natural causes 

but which are expected to revert to forest”  

Kant 2006  
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Table 1.1. Continued 

 While a robust definition is required for local forest assessment, a simple 

definition grounded in basic parameters is acceptable, and even needed, for regional and 

global studies (Sasaki and Putz 2009; Putz and Redford 2010). In this context, and to be 

consistent with the input Moderate Resolution Imaging Spectroradiometer (MODIS) data, 

this research adopts the definition used by the MODIS land cover product, which  states 

Institution Definition Source 

International Union of 

Forestry Research 

Organizations (IUFRO)  

“A land area with a minimum 10 % tree crown coverage (or 

equivalent stocking level), or formerly having such tree cover and 

that is being naturally or artificially regenerated or that is being 

afforested” 

IUFRO 

1994 

United Nations 

Convention on 

Biological Diversity 

(UN-CBD) 

“… a forest is a land area of more than 0.5 ha, with a tree canopy 

cover of more than 10%, which is not primarily under agricultural 

or other specific non-forest land use.  In the case of young forests 

or regions where tree growth is climatically suppressed, the trees 

should be capable of reaching a height of 5 m in situ, and of 

meeting the canopy cover requirement” 

 

CBD 2001 

Mexico´s National 

Forest Comission 

(Comisión Nacional 

Forestal; CONAFOR) 

“Vegetation, generally in temperate zones, with a prevalence of 

woody perennial species, a tree canopy cover of more than 10 

percent, and an area of more than 1,500 square meters” 

 

DOF 2005 

United States 

Department of 

Agriculture/Forest 

Service (US Forest 

Service) 

“Land that has at least 10 percent crown cover by live tally trees 

of any size or has had at least 10 percent canopy cover of live 

tally species in the past, based on the presence of stumps, snags, 

or other evidence. To qualify, the area must be at least 1.0 acre 

in size and 120.0 feet wide. Forest land includes transition zones, 

such as areas between forest and nonforest lands that meet the 

minimal tree stocking/cover and forest areas adjacent to urban 

and built—up lands. Roadside, streamside, and shelterbelt strips 

of trees must have a width of at least 120 feet and continuous 

length of at least 363 feet to qualify as forest land. Unimproved 

roads and trails, streams, and clearings in forest areas are 

classified as forest if they are less than 120 feet wide or less than 

an acre in size. Tree-covered areas in agricultural production 

settings, such as fruit orchards, or tree—covered areas in urban 

settings, such as city parks, are not considered forest land”  

USDA 

2016 
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that forests are “lands dominated by woody vegetation with a percent cover of more 

than 60 percent and height exceeding 2 meters” (Strahler et al. 1999). This definition has 

its origins in the Land Cover Units System developed by the International Geosphere-

Biosphere Programme Data and Information System (IGBP-DIS) with the purpose of 

creating a global land cover classification based on 1-kilometer Advanced Very High 

Resolution Radiometer (AVHRR) data (Belward, Estes and Kline 1999).   

 Similarly to the discussion around the definition of “forest”, there has been an 

extensive debate behind the concept of “forest degradation”. Among the international 

organizations that have establish a definition (Table 1.2), FAO describes forest 

degradation as “changes within the forest which negatively affect the structure or 

function of the stand or site, and thereby lower the capacity to supply products and/or 

services” (FAO 2001). Unlike the Intergovernmental Panel on Climate Change (IPCC) or 

the Verified Carbon Standard (VCS) Association which specify that forest degradation is 

human-driven (Table 1.2), FAO does not mention the causes of the process in the 

definition.  

Table 1.2. Forest degradation definitions established by selected international 
organizations 

Institution Definition Source 

United Nations Food 
and Agriculture 
Organization (FAO) 

“Changes within the forest which negatively affect the 
structure or function of the stand or site, and thereby lower 
the capacity to supply products and/or services”  

FAO 2001 

Intergovernmental 
Panel on Climate 
Change (IPCC) 

“A direct, human-induced, long-term loss (persisting for X years 
or more) or at least Y% of forest carbon stocks [and forest 
values] since time T and not qualifying as deforestation” 

GOFC-
GOLD 
2009 

United Nations 
Environment 
Programme/Convention 
on Biological Diversity 
(UNEP/CBD) 

“… a secondary forest that has lost, through human activities, 
the structure, function, species composition or productivity 
normally associated with a natural forest type expected on that 
site. Hence, a degraded forest delivers a reduced supply of 
goods and services from the given site and maintains only 
limited biological diversity. Biological diversity of degraded  

Schoene 
et al. 2007 
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Table 1.2. Continued 

  

 Regardless of the drivers, the decrease in vegetation density is probably the most 

noticeable negative change that can be documented through time series of satellite 

imagery (Chazdon et al. 2016). In the remote sensing field, forest degradation is usually 

associated with the study of forest disturbances, which are considered drivers of a 

forest’s state and function that range from high-impact events (e.g., caused by fires, 

windstorms, deforestation) to subtle and gradual processes (e.g., caused by insects, 

diseases, acid rain; Cohen et al. 2017). According to this description, forest degradation 

can be considered a type of disturbance and other disturbances can potentially lead to 

forest degradation processes. Therefore, this research defines forest degradation as any 

negative monotonic (i.e., single-direction), not necessarily linear, trend in vegetation 

greenness. This comprises any disturbances, including deforestation, that are not 

associated with a recovery process during the period of observation. However, section 

3.4.2. describes a way to separate or identify potential deforestation events from pixels 

classified as degraded.  

Institution Definition Source 

 

 

forests includes many non-tree components, which may 

dominate in the under-canopy vegetation” 

 

United 

Nations/Millennium 

Ecosystem Assessment 

(UN/MEA) 

“…results when forests remain forests but lose their ability to 

provide ecosystem services or suffer major changes in species 

composition due to overexploitation, exotic species invasion, 

pollution, fires, or other factors” 

Sasaki and 

Putz 2009  

 

Verified Carbon 

Standard (VCS) 

Association 

“the persistent reduction of canopy cover and/or carbon stocks 

in a forest due to human activities such as animal grazing, fuel-

wood extraction, timber removal or other such activities, but 

which does not result in the conversion of forest to non-forest 

land (which would be classified as deforestation), and qualifies 

as forests remaining as forests, such as set out under the IPCC 

2003 Good Practice Guidance” 

Shoch, 

Eaton, and 

Settelmyer 

2013 
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1.1.2. Forest degradation impacts on the carbon cycle  

 Forest ecosystems play an essential role in keeping the carbon cycle balance 

because they are able to store carbon (Brown et al. 1996). A considerable number of 

studies have quantitatively estimated carbon stocks in forest vegetation (Kauppi 2003; 

Fang et al. 2007), forest soil (Powers and Schlesinger 2002; Stevens et al. 2006), and in 

forest as a whole (Ramachandran et al. 2007; Sharma et al. 2011; Ullah and Al-Amin 

2012). However, when these ecosystems are disturbed, the stored carbon is released as 

carbon dioxide (CO2) into the atmosphere (Figure 1.1), where it contributes to global 

warming by absorbing heat and impeding transmission to space. In other words, CO2,  

Figure 2.1. Relationship between carbon stock and forest degradation 
conditions. Adapted from Eckert et al. 2011 
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together with other greenhouse gases (GHGs) and the Earth’s surface, helps to maintain 

the planet warm enough for living beings because it absorbs sunlight, but when its 

concentration rises, the process of heat absorption is abnormally enhanced (i.e., 

greenhouse effect) and leads to global warming (Karl et al. 2009). 

 Although deforestation has received more attention among the scientific 

community, there is evidence that forest degradation contributes to carbon stock losses 

in almost the same proportion as deforestation (Erb et al. 2018). In this context, Reducing 

Emissions from Deforestation and Forest Degradation (REDD+) is a program, of which 

Mexico is partner, developed by Parties to the UNFCC to create a financial value for the 

carbon stored in forests. REDD+ offers incentives for developing countries to reduce 

emissions from forested lands and invest in low-carbon paths to encourage sustainable 

development (FAO, UNDP, and UNEP 2015). However, there is uncertainty regarding how 

degradation has been, or will be, systematically measured by the more than 60 partner 

countries of the program. The spatio-temporal scale in which forest degradation can be 

measured varies across countries and, more importantly, the subtle and gradual changes 

inherent to forest degradation processes have traditionally been hard to monitor.  

1.2. Literature review  

 The forest degradation definition that guides this research considers any 

disturbance not associated with a recovery process during the period of observation as a 

degradation process (see section 1.1.1). Thus, this literature review builds on remote 

sensing studies that aim to detect changes in vegetation from either perspective, forest 
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degradation or forest disturbances. Both approaches have been studied at different 

scales through a variety of remote sensing instruments (Table 1.3). According to the 

spatial resolution of the product used to perform the study, the related research can be 

grouped as follows: 

 A. Coarse spatial resolution (more than 100 meters). The most widely used sensors 

at this resolution are AVHRR and MODIS. By means of regression modeling, Eckert 

et al. (2015) demonstrated that trend analysis of MODIS Normalized Difference 

Vegetation Index (NDVI) successfully detect vegetation change areas, as well as 

land degradation and regeneration. Gao et al. (2013) show that the comparison of 

MODIS Percent Tree Cover (PTC) values at two different dates seems to be more 

appropriate to identify known degraded sites than known deforested patches. A 

second study indicates that a single-date PCT does not show significant difference 

between forest of different conservation states and concludes that the 

identification of forest degradation requires multi-temporal datasets with higher 

spatial resolution (Gao et al. 2015). 

 Based on the assumption about a constant negative relationship between surface 

temperature and surface greenness, time series of MODIS Land Surface 

Temperature (LST) and MODIS Enhanced Vegetation Index (EVI) have been used to 

detect vegetation disturbances (Mildrexler et al. 2007; Coops, Wulder, and 

Iwanicka 2009; Mildrexler, Zhao, and Running 2009). AVHRR Fraction Absorbed of 

Photosynthetically Active Radiation (FPAR) time series have also been used to 
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characterize major ecosystem disturbance regimes at regional (Potter et al. 2005, 

2007) and global (Potter et al. 2003) scales.  

 Coarse spatial resolution products have some limitations that become evident 

when compared with higher spatial resolution imagery. For example, the 

application of Modified Soil Adjusted Vegetation Index (MSAVI) on MODIS and 

Landsat canopy fractional cover demonstrated that Landsat has higher accuracy 

for assessing tropical forest degradation (Hashim, Beiranvand, and Wei 2014). 

However, the use of coarse resolution imagery allows researchers to perform 

regional and global scale studies that would be otherwise almost impossible to 

handle computationally. 

 B. Moderate spatial resolution (10-99 meters). At this resolution, Landsat has been 

the most widely used sensor. Landsat-based algorithms have made use of 

shortwave-infrared spectral regions (Moisen et al. 2016; Schroeder et al. 2017), 

Tasseled Cap transformations (Jin and Sader 2005; Healey et al. 2005; Brooks et al. 

2014; Griffiths et al. 2014), human interpretations (Cohen et al. 2016), and a 

variety of spectral indexes, such as the NDVI (Vogelmann et al. 2012), the 

Normalized Burned Ratio (NBR; Kennedy, Yang, and Cohen 2010; Huang et al. 

2010), the Normalized Difference Fraction Index (NDFI; Sofan et al. 2016), the 

Normalized Difference Moisture Index (NDMI; Jin and Sader 2005; Hughes 2014), 

the MSAVI (Matricardi, Skole and Pedlowski 2010; Hashim, Beiranvand, and Wei 

2014), and the Integrated Forest Z-score (IFZ; Huang et al. 2010). 



 

10 
 

 Among the most popular and highly automatized Landsat-based algorithms, the 

Landsat-based detection of Trends in Disturbance and Recovery (LandTrendr) 

relies on NBR (Kennedy, Yang, and Cohen 2010), the Vegetation Change Tracker 

(VCT) is based on NBR and z-scores of forest spectral values (Huang et al. 2010), 

and the Continuous Change Detection and Classification (CCDC) uses visible, near-

infrared, shortwave-infrared, and thermal spectral regions to identify surface 

changes, which are subsequently assigned to a land cover class through a random 

forest classifier (Zhu and Woodcock 2014). As a response to the need of validating 

the outputs from this type of algorithms, Cohen, Yang, and Kennedy (2010) 

created the TimeSync tool, which allows users to assess the quality of the results 

by syncing algorithms and human interpretations of Landsat time series.  

 Active sensors have also been a good source of data at this scale. Long-wavelength 

radar backscatter data from the Phased Array Type L-band Synthetic Aperture 

Radar sensor onboard the Advanced Land Observing Satellite (ALOS PALSAR) have 

been used to detect deforestation, forest degradation, and successional dynamics 

(Ryan et al. 2012; Joshi et al. 2015). Lucas et al. (2014) integrated ALOS PALSAR 

and Landsat-derived foliage projective cover data to map forest regrowth and 

degradation stages. Similarly, Tanase et al. (2015) demonstrated that the 

combination of the Radar Topography Mission (SRTM) and TanDEM-X mission 

(TDM) datasets allows not only for the identification of forest change but also for 

the estimation of magnitude of change.  
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 Although the methodologies and outcomes derived from these studies have 

proved to be useful, very low intensity forest degradation resulting from non-

mechanized logging or charcoal harvesting cannot be effectively monitored using 

Landsat, ALOS PALSAR, or similar products (Souza et al. 2013). For those purposes, 

more detailed (i.e., finer spatial resolution) remote sensing product have to be 

considered.   

 C. Fine spatial resolution (up to 9 meters). Within this category, the NDFI applied 

to a combination of Landsat and Satellite Pour l’Observation de la Terre (SPOT) 

datasets showed higher accuracy to detect forest degradation than NBR or NDVI 

(Sofan et al. 2016). Morales-Barquero et al. (2015) identified drivers and correlates 

of forest degradation by combining biophysical and socio-economic variables 

through spatially-explicit binary logistic regression, where the model covariates 

were obtained from SPOT 5 images, surveys, and semi-structured interviews. Dons 

et al. (2015) applied a supervised classification and adaptive thresholding to a 

pansharpened QuickBird image to detect kiln burn marks resulting from charcoal 

production. Huang et al. (2008) developed a change analysis method, which 

automatically creates samples to train a support machine vector algorithm that 

classifies multi-temporal IKONOS images. As for active sensors, Weishampe et al. 

(2012) used the below-canopy view that lidar technology enables to determine the 

degree of forest degradation along the Guatemala-Belize border, while Ogbodo, 

Oke, and Dagba (2015) found that TerraSAR images at 1 and 3-meters spatial 
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resolution are the most effective to detect logging roads and clearcuts, although 

clearcuts are also detectable with 8-meter RADARSAT images. 

 The use of fine resolution imagery has allowed researchers to identify more 

specific processes related to forest disturbances, such as the presence of kiln burn 

marks (Dons et al. 2015) and logging roads (Ogbodo, Oke, and Dagba 2015). 

However, not many studies incorporate high spatial resolution products as their 

main source of information. Instead, a common practice has been to use fine 

resolution imagery to validate results from coarser resolution products.   

 According to this literature review, Landsat and MODIS time series have been the 

most widely used data to assess forest disturbances/degradation (Table 1.3). Within the 

list of spectral indexes employed by Landsat and MODIS studies (i.e., NDVI, EVI, NBR, 

NDFI, NDMI, MSAVI), Leaf Area Index (LAI) is lacking. Among the MODIS-based 

algorithms, a few have relied on the assumption of constant strong negative relationship 

between surface greenness and surface temperature (Mildrexler et al. 2007; Coops, 

Wulder, and Iwanicka 2009; Mildrexler, Zhao, and Running 2009). The relationship 

between LAI and surface temperature has been scarcely addressed in the related 

literature (Yan et al. 2016), therefore, the potential of these two variables to detect 

forest degradation has not been investigated. Based on this gap, the MODIS-based 

algorithm proposed in this research is expected to contribute, with a new and effective 

procedure, to body of knowledge that aims to monitor forest degradation at regional 

scale. 
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Table 1.3. Selected forest degradation/disturbances studies at different scales 
Spatial resolution Sensor Studies 

Coarse 
(more than 100 meters) 
 
 

MODIS Jin and Sader 2005 
Mildrexler et al. 2007 
Coops, Wulder, and Iwanicka 2009 
Mildrexler, Zhao, and Running 2009 
Pouliot et al. 2009 
Vandecar et al. 2011 
Xin et al. 2013 
Hammer et al. 2014 
Hashim, Beiranvand, and Wei 2014 
Sulla-Menashe et al. 2014 
Eckert et al. 2015 
Gao et al. 2013 
Gao et al. 2015 
de Beurs, Owsley, and Julian 2016 
Tran et al. 2016 

AVHRR 
 

Potter et al. 2003 
Potter et al. 2005 
Potter et al. 2007 

Moderate 
(10-99 meters) 

Landsat 
 

Kovacs, Wang, and Blanco-Correa 2001 
Healey et al. 2005 
Jin and Sader 2005 
Kennedy, Yang, and Cohen 2010 
Huang et al. 2010 
Cohen, Yang, and Kennedy 2010 
Matricardi, Skole and Pedlowski 2010 
Vogelmann et al. 2012 
Souza et al. 2013 
Brooks et al. 2014 
Griffiths et al. 2014 

Hashim, Beiranvand, and Wei 2014 

Hughes 2014 

Zhu and Woodcock 2014 
Cohen et al. 2016  
Moisen et al. 2016 
Sofan et al. 2016 
Schroeder et al. 2017 
Romero-Sánchez and Ponce-Hernandez 2017 

ALOS PALSAR 
 

Ryan et al. 2012 

Lucas et al. 2014 
Joshi et al. 2015 

SRTM and TDM Tanase et al. 2015 
Fine 
(up to 9 meters) 

SPOT 
 

Morales-Barquero et al. 2015 
Sofan et al. 2016 

QuickBird Dons et al. 2015 
IKONOS Huang et al. 2008 
Lidar Weishampe et al. 2012 
TerraSAR/RADARSAT Ogbodo, Oke, and Dagba 2015 
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1.3. Research objectives 

 The overall purpose of this research is to develop an algorithm to detect forest 

degradation using time series of MODIS images collected over Central Mexico between 

2002 and 2017. The specific objectives drawn from the general objective are the 

following:  

1. Evaluate the relationship between vegetation greenness (i.e., MODIS-LAI) and 

surface temperature (i.e., MODIS-LST) to determine the potential of this 

relationship to detect forest degradation.  

2. Develop an algorithm to detect forest degradation thought a trend analysis of the 

MODIS variable(s) selected according to the findings of the first objective.  

3. Evaluate the vegetation greenness (i.e., MODIS-LAI) response to precipitation in 

the context of the forest degradation conditions estimated by the proposed 

algorithm. 

 Each of these objectives is addressed in a single chapter (i.e., Chapters 2-4) 

following the format of a journal article (i.e., introduction, methods and data, results, 

discussion, and conclusions). The final chapter (i.e., Chapter 5) summarizes how the 

objectives were achieved, the major findings, the limitations, and the future directions of 

this research. 
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1.4. Study area 

 The study area comprises all zones within the MODIS tile h08v06 that were 

covered by forest at least one year between 2002 and 2017. According to the MODIS 

Land Cover product (MCD12Q1, type 3), whose spatial resolution is 500-m, these zones 

extend over 63,964 km2 and are primarily distributed over the Sierra Madre Occidental 

(west mountain range) and Sierra Madre Oriental (east mountain range). Deciduous 

broadleaf forest covers 60% of the area, evergreen broadleaf 36%, and evergreen 

needleleaf 4% (Figure 1.2). Due to the coarser spatial resolution (i.e., 1-km) of one of the 

input variables, the extent of the study area used to achieve the first objective of this 

research differs from the extent just mentioned, which was employed for the remaining 

objectives. Specific information of the area analyzed in each objective can be found in the 

study area section of each of the chapters.  

 A MODIS title within Mexico was selected as the study area for three main 

reasons. First, studies focused on detecting forest disturbances or degradation in this 

country have been conducted primarily at local scales (Kovacs, Wang, and Blanco-Correa 

2001; Brower et al. 2002; Vidal, López-García, and Rendón-Salinas 2014; Gao et al. 2015; 

Romero-Sánchez and Ponce-Hernandez 2017) and rarely at a regional scale (Mildrexler, 

Zhao, and Running 2009). Second, according to Morales-Barquero et al. (2014), the levels 

of human disturbance are significantly high in Mexican forest (Morales-Barquero et al. 

2014). Third, based on the Land Use and Vegetation Map produced by the Instituto 
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Nacional de Geografía y Estadística (INEGI), more than 14,500 km2 of the study area were 

covered by perturbed secondary vegetation in 2014 (INEGI 2017). 

Figure 1.2. Study area: 500-m pixels covered by forest during at least one year between 

2002 and 2017 
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2. ASSESSING THE RELATIONSHIP BETWEEN VEGETATION GREENNESS AND SURFACE 

TEMPERATURE THROUGH GRANGER CAUSALITY AND IMPULSE-RESPONSE COEFFICIENTS1 

2.1. Introduction  

 Many environmental studies have successfully accomplished their objectives, 

such as detecting ecosystem disturbances (Mildrexler et al. 2007; Coops, Wulder, and 

Iwanicka 2009; Mildrexler, Zhao, and Running 2009), classifying  land covers (Ehrlich and 

Lambin 1996; Roy, Kennedy, and Folvin et al. 1997), identifying land cover changes 

(Lambin and Ehrlich 1996, 1997), monitoring drought (Wan, Wang, and Li 2004), or 

studying urban heat islands (Weng, Lu, and Schubring 2004), by assuming a constant 

negative relationship between vegetation greenness and surface temperature. This 

assumption, where vegetation greenness is the cause and surface temperature is the 

effect, lies on the fact that increased amounts of vegetation augment latent heat losses 

through transpiration, which provokes a reduction in surface temperature (Goward, 

Cruickshanks, and Hope 1985). However, some authors have demonstrated that the 

nature of this relationship is not always negative and that it varies depending on the 

season, forest type, and spatial scale of analysis (Kaufmann et al. 2003; Zhou et al. 2003; 

Liu et al. 2006; Notaro, Liu, and Williams 2006; Julien and Sobrino 2009).  

 Individually, vegetation greenness, commonly measured by multi-spectral sensors 

 
1 This chapter was accepted for publication with the title “Assessing the relationship between vegetation 
greenness and surface temperature through Granger causality and Impulse-Response coefficients: a case 
study in Mexico” in the International Journal of Remote Sensing. November 4, 2019. 
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through spectral indices like the Normalized Difference Vegetation Index (NDVI), reveals 

the conditions of vegetative covers and responds to regional climatic characteristics 

(GCOS 2019); while surface temperature, often acquired from thermal infrared satellite 

measurements, is defined as the skin temperature of the ground and is mostly a result of 

albedo, vegetation cover, and soil moisture  (GCOS 2019; Eagleson 2011). Thus, any 

fluctuation in climatic variables, including surface temperature, affects vegetation 

greenness after a certain time lag and, in turn, these vegetation changes cause a 

modification of surface temperature (Notaro, Liu, and Williams 2006). 

 This relationship between vegetation greenness and surface temperature has 

been examined by comparing single-date datasets through correlation analysis (Goward, 

Cruickshanks, and Hope 1985; Kumar and Shekhar 2015) and regression models where 

surface temperature is the dependent variable (Yue et al. 2007). These studies have 

found a significant inverse relationship. However, multitemporal studies have revealed 

more diverse patterns. By means of regression analysis, Julien and Sobrino (2009) found 

that in boreal areas the relationship between NDVI and Land Surface Temperature (LST) 

is clearly positive, while in semi-arid areas is clearly negative. Through correlation analysis 

that allow for the examination of non-instantaneous effects of one variable over the 

other, Kaufmann et al. (2003) reported that in North America the effect of vegetation on 

surface temperature is mostly negative during summer, generally positive during winter 

and spring, and not statistically significant during fall. Liu et al. (2006) found that 

vegetation variability is mostly driven by temperature in northern mid and high latitudes; 

although, vegetation also imposes a positive effect on temperature. Similarly, Zhou et al. 
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(2003) reported that temperature changes accounted for the largest fraction of NDVI 

change between the early 1980s and the late 1990s in North America and Eurasia. 

Notaro, Liu, and Williams (2006) described a significant instantaneous influence of 

temperature on vegetation over the United States of America, but also a non-

instantaneous positive effect of vegetation (leading by one month) on temperature, 

especially during spring and over northern states.  

 The Granger causality approach has been used to examine the lagged effects of 

vegetation greenness on surface temperature or vice versa, but the use of Impulse-

Response (IR) coefficients to explore the sign and strength of this relationship is rare in 

the literature (e.g., Wang et al. 2007). The Granger causality concept is based on the idea 

of predictability. When the interaction is studied from vegetation greenness to surface 

temperature, the Granger causality test attempts to predict surface temperature based 

on past values of surface temperature and vegetation greenness. If the prediction is 

improved after including the vegetation greenness values, then vegetation greenness is 

said to Granger-cause surface temperature (Granger 1969; Jiang, Liang, and Yuan 2015; 

Papagiannopoulou et al. 2017), but the sign and strength of the causality is not specified. 

IR functions can determine the sign and strength by modelling the over-time response of 

a variable to an impulse (i.e., change) of another variable based on the Wold Moving 

Average representation of a Vector Autoregressive (VAR) Model (Lütkepohl, 2005).  

 Regardless of the methods, most of the studies that have evaluated the 

relationship between vegetation greenness and surface temperature, or that have 
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modeled a phenomenon using both variables, have employed NDVI (e.g., Ehrlich and 

Lambin 1996; Roy et al. 1997; Lambin and Ehrlich 1996,1997; Kaufmann et al. 2003; Zhou 

et al. 2003; Wan, Wang, and Li 2004; Wang et al. 2006; Wang et al. 2007; Yue et al. 2007; 

Julien and Sobrino 2009; Jiang, Liang, and Yuan 2015; Papagiannopoulou et al. 2017) or 

Enhanced Vegetation Index (EVI; e.g., Mildrexler et al. 2007; Coops, Wulder, and Iwanicka 

2009; Mildrexler, Zhao, and Running 2009) as the vegetation indicator. However, these 

indices have some disadvantages. NDVI is very sensitive to background brightness in 

areas with sparse vegetation and saturates in zones with high biomass, while EVI tends to 

present relatively low values in all biomes and is sensitive to topographic conditions 

(Huete et al. 2002; Matsushita et al. 2007).  Therefore, this study proposes to explore the 

performance of Leaf Area Index (LAI) as an alternative vegetation greenness indicator. In 

coniferous canopies, LAI is defined as the total surface area of just one half of all needles 

per unit ground area; while in broadleaf canopies, it is described as the total one-sided 

area of all green leaves per unit ground area (Myneni et al. 2002). LAI is then a measure 

of the amount of vegetation vertically distributed. It can also be considered a measure of 

the surface potentially available for photosynthesis and as a proxy of the three-

dimensional conditions of vegetation. 

 Thus, this chapter aims to contribute to the understanding of the relationship 

between vegetation greenness and surface temperature by evaluating the annual and 

intraseasonal relationship between LAI and Land Surface Temperature (LST) across forest 

types of Central Mexico. On a pixel-by-pixel basis, the presence of any relationship is 

investigated through the notion of Granger causality, while the sign and strength of the 
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relationship is estimated by means of an IR function. The procedures are performed using 

monthly anomalies of Moderate Resolution Imaging Spectroradiometer (MODIS) data 

collected from 2002 to 2017.  

2.2. Data and methods   

2.2.1. Study area 

 The study area is comprised of all 1-km pixels of the MODIS tile h08v06 that were 

covered by forest during at least one year between 2002 and 2017 according to the 

MODIS Terra + Aqua yearly Land Cover product (MCD12Q1, type 3; Figure 2.1.a). These 

pixels extend over 88,824 km2 and are mainly distributed over the Sierra Madre 

Occidental (west mountain range) and Sierra Madre Oriental (east mountain range). m 

with a mean of 1,046 m and a standard deviation of 741 m (Figure 2.1.b). The slopes 

range from 0 to 35o with a mean of 6.9o and a standard deviation of 4.8o. 

  Tropical climates dominate the region (Figure 2.1.c). Forty percent of the study 

area experiences tropical climate and 34% semi-tropical, whose mean annual 

temperatures exceed 22 and 18 oC respectively. Temperate climate extends over 13% of 

the study area and, in comparison with tropical climates, occurs at higher average 

elevations where the mean annual temperature oscillates between 12 and 18 oC. Arid 

climate is generally found towards continental areas and extends over 8% of the study 

area. Semi-cold climate, whose mean annual temperature oscillates between 5 and 12 

oC, occurs at the highest elevations and covers the remaining 3% of the study area.  As for 
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precipitation regimes, the rainy season (also called “the warm half of the year”) of most 

of the study area starts in May and ends in October, which coincides with the emergence 

and senescence of leaves, respectively (García 2004). 

 The study area is comprised of 61% deciduous broadleaf forest, 35% evergreen 

broadleaf, and 4% evergreen needleleaf (Figure 2.1.d). These forests are composed of a 

broad range of species (in the order of hundreds). Some of the most frequently found 

trees are oaks (e.g., Quercus magnoliifolia, Quercus rugosa, Quercus laeta, Quercus 

sideroxyla), pines (e.g., Pinus durangensis, Pinus douglasiana), firs (e.g., Abies religiosa, 

Abies durangensis), mauto (i.e., Lysiloma divaricatum), white mangrove (i.e., Laguncularia 

racemose), nance (i.e., Byrsonima crassifolia), and bay cedar (i.e., Guazuma ulmifolia; 

CONAFOR 2019). 

Figure 2.1. Study area: location (a), elevation (b), climate types (c), and forest types (d) 
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2.2.2. Data and preprocessing 

2.2.2.1. MODIS LST product 

 The MODIS LST data were downloaded from the Land Processes Distributed 

Active Archive Center (LP DAAC) managed by the NASA Earth Science Data and 

Information System (ESDIS) project. Specifically, MODIS Aqua 8-day LST composites 

(MYD11A2, Collection 6) of the MODIS tile h08v06 were acquired from 2002 to 2017 at 1-

km spatial resolution. Aqua sensor’s overpass time, at approximately 1:30 pm above the 

equator, allows it to capture temperatures close to the daily peak. LST estimates are 

retrieved from the generalized split window algorithm (Wan and Dozier 1996) or the 

day/night algorithm (Wan and Li 1997), which use MODIS Thermal Infrared (TIR) data 

(Wan et al. 2004) and auxiliary MODIS data, such as geolocation, radiance, cloud masking, 

atmospheric temperature, water vapor, land cover, and snow (Wan 2013). Because TIR 

signals are not able to penetrate clouds, the LST retrievals are constrained to cloud-free 

pixels. Wan (2014) reported that the mean LST error of Collection 6 (i.e., the latest 

version of the MODIS LST product) is within ± 0.6 Kelvin and the standard deviation of the 

validation errors is less than 0.5 Kelvin in most validation data sets, which indicates that 

Collection 6 is an improvement over Collection 5.   

 All LST composites were projected to Lambert Conformal Conic projection in 

ITRF2008 datum and clipped to forested areas. To exclude poor quality retrievals, the LST 

Quality Control (QC) layers were unpacked using the Land Data Operational Product 

Evaluation (LDOPE) tool. Only LST estimates with an error lower or equal to 2 Kelvin were 
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selected to perform the analysis. Based on these good quality retrievals, monthly 

anomalies of LST were calculated on a pixel-by-pixel basis for each month from January 

2002 to December 2017. The anomalies were calculated by subtracting the long-term 

monthly average, often called climatology, from the monthly means (e.g., anomaly= 

mean of January 2002 - average of all January means of the study period). In order to 

manipulate the data in an R environment (R Core Team 2018), all LST anomalies were 

extracted from the raster files and rearranged into a comma-separated values (cvs) file, 

where each row contains 192 monthly anomalies, which constitute the LST time series of 

a single pixel.  

2.2.2.2. MODIS LAI product 

 The MODIS LAI data were also downloaded from the LP DAAC. Specifically, MODIS 

Terra 8-day LAI composites (MOD15A2H, Collection 6) of the MODIS tile h08v06 were 

acquired from 2002 to 2017 at 500-km spatial resolution. The early Terra sensor’s 

overpass time, at approximately 10:30 am above the equator, allows it to capture more 

reliable LAI retrievals due to lower cloud presence (King et al. 2013; Yan et al. 2016). 

MODIS LAI retrievals are acquired from a radiative transfer model (Knyazikhin et al. 1998) 

that accounts for vegetation structure. This main algorithm selects the best LAI estimates 

by comparing measured red and near-infrared spectral values with a look-up table 

composed of observed spectral values of six biome types and their corresponding LAI 

values. If this algorithm fails, a back-up method based on the biome-specific empirical 

relationship between NDVI and LAI produces the retrievals (Knyazikhin et al. 1998; 
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Myneni et al. 2002; Jensen et al. 2011; Yang et al. 2006; Yan et al. 2016); however, in this 

study only retrievals from the main algorithm were considered for the analysis.  

 According to Yan et al. (2016), the latest version of the MODIS LAI product, 

Collection 6, is considerably better than Collection 5. Collection 6 properly captures the 

interannual variation of LAI and the general seasonality of most biomes, except for 

evergreen broadleaf forest, for which incorrect seasonal profiles are produced. This issue 

has been also observed in other satellite products, such as the Carbon cYcle and Change 

in Land Observational Products from an Ensemble of Satellites (CYCLOPES) and those 

from the Global Land Surface Satellite (GLASS), and the SPOT-VEGETATION GEOV1 

system. Therefore, this shortcoming may be difficult to avoid using remotely sensed data.  

 All LAI composites were projected to Lambert Conformal Conic projection in 

ITRF2008 datum, resampled to 1-km spatial resolution to make them compatible with the 

LST data, and clipped to forested areas. During the resampling process, the geo-location 

was preserved across data products by snapping the raster environment to the cell 

alignment of the LST datasets. The geo-location is well conserved because the 500-m LAI 

pixels are originally aligned with the 1-km LST pixels (i.e., one LST pixel perfectly contains 

four LAI pixels). The LAI QC layers were also unpacked by means of the LDOPE tool and 

used to select only LAI values obtained from the main algorithm. Then, similar to the 

procedure performed on the LST data, monthly anomalies of LAI were calculated on a 

pixel-by-pixel basis for each month from January 2002 to December 2017 and arranged 
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into a cvs file, where each row contains 192 monthly anomalies, which constitute the LAI 

time series of a single pixel.  

2.2.3. Assessment of the annual and intraseasonal relationship between LAI and LST  

 To assess the annual and intraseasonal relationship between LAI and LST, 86,405 

multivariate time series of monthly anomalies of LAI and LST were analysed. These 

multivariate time series consist entirely of good quality estimates (Table 2.1.a). For the 

annual assessment, all values of the time series were used. For the intraseasonal 

assessment, the time series were reorganized by season: Winter (December - February), 

Spring (March-May), Summer (June-August), and Fall (September-November). This 

means that the three monthly anomalies of a particular season were joined to the three 

anomalies occurring the following year in the same season. Then, the presence of any 

relationship between LAI and LST was evaluated in each year-round and season-based 

multivariate time series through the Granger causality test. If any relationship was 

encountered, its sign and strength was estimated by means of an IR function.  

2.2.3.1. Evaluation of Granger causality 

 The statistical models of the Granger causality approach rely on linear 

specifications. However, climate-vegetation interactions are nonlinear in nature. To solve 

this inconsistency, this analysis is based on anomalies, which represent deviations from 

the steady state of the variables and, thus, help to linearly approximate relationships 

(Glendinning 1994; Wang et al. 2006). It should be noted that the time series of monthly 

LAI and LST anomalies constitute the input data of this analysis; however, to avoid long 
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repetitions, the terms ‘monthly’ and ‘anomalies’ may be omitted where the reference is 

clear. 

 In formal terms, this section describes the methodology implemented to evaluate 

the causal relationship between time series of monthly LAI anomalies at a specific pixel 

and time series of monthly LST anomalies at the same pixel. The existence of causality is 

examined in both directions. When the interaction is studied from LAI to LST, the test 

attempts to forecast LST, at a given time, based on past values of LST and LAI.  If the 

prediction of LST is improved when the LAI values are included as predictors, then LAI is 

said to Granger-cause LST. When the interaction is tested from LST to LAI, the logic is 

inverse. In both cases, if causality is found, the result should be interpreted as ‘predictive 

causality’ rather than ‘true causality’ (Jiang, Liang, and Yuan 2015; Papagiannopoulou et 

al. 2017). 

 A limitation of the Granger causality method is that it cannot be applied to non-

stationary time series (i.e., those whose statistical properties, such as mean and variance, 

do not remain constant over time; Nason 2006) because they are unpredictable and, as a 

result, cannot be modelled or forecasted (Iordanova 2009). Therefore, prior to examining 

the causal relationship, a Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test was applied to all 

LAI and LST time series using the ‘urca’ R package (Pfaff 2008a). The KPSS test examines 

the null hypothesis of stationarity around a linear trend at 0.05 significance level 

(Kwiatkowski et al. 1992). Only stationary time series were considered for the analysis 

(Table 2.1.b).  
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 Vector Autoregressive (VAR) models were used to derive the predictions required 

to examine the Granger causality. VAR models are an extension of univariate 

autoregression models useful to explain and forecast the dynamic behaviour of 

multivariate time series (Zivot and Wang 2006). The pixels containing stationary time 

series of both LAI and LST (Table 2.1.b) were selected to obtain VAR models, which were 

computed, as well as the rest of the statistical functions of this section, by means of the 

‘vars’ R package (Pfaff 2008a, 2008b). In a VAR model, each variable is a linear function of 

its own lagged values and the lagged values of the other variables in the model (Mariano 

et al. 2018). The general form of the VAR (p) model implemented in this study is as 

follows: 

 𝒚𝒕 = 𝑨𝟏𝒚𝒕−𝟏+… +  𝑨𝒑𝒚𝒕−𝒑 + 𝑢𝑡, (1) 

where 𝒚𝒕 represents a 𝐾 × 1 vector of endogenous variables (i.e., variables that are 

explained by other variables in the system; often called ‘depended variables’) at time 𝑡 

and 𝑢𝑡 assigns a spherical disturbance term (i.e., white noise process) of the same 

dimension. 𝑨𝟏, … , 𝑨𝒑 are regression coefficient matrices with a dimension of 𝐾 × 𝐾 and 

𝑝 is the lag length (Pfaff 2008b). The p parameter determines how much of the previous 

information of all variables (i.e., lag time) is included in the model to predict future 

behaviours (Wang et al. 2006). In this analysis,  𝑦𝑡  is a 2𝑥1 vector of LAI and LST monthly 

anomalies (i.e., a 𝐾=2), the regression coefficients are 𝐴1, 𝐴2, 𝐴3 with a dimension of 

2 × 2, and 𝑝 is measured in months.  
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 The optimal lag lengths at which the time series should be evaluated were 

identified by first testing the VAR models using the Akaike Information Criterion (AIC), 

which finds the lag with enough information content on the two variables without over-

fitting (i.e., the best goodness of fit; Zivot and Wang 2006). From this preliminary 

analysis, the most common optimal lag lengths among all time series were 1 and 2-

month. Therefore, the VAR models were repeated two times using these two lags. Then, 

a Portmanteau test was applied to evaluate the existence of serial correlation in the VAR 

residuals at a specific lag length. This test examines the null hypothesis of no serial 

correlation at the significance of 0.05 (Pfaff 2008b). The presence of serial correlation 

implies that some information (e.g., precipitation, solar zenith angle, aerosol optical 

depth) is missing in the model to explain the relationship. Thus, only time series with 

absence of serial correlation were considered for the analysis (Table 2.1.c).   

 After identifying the appropriate VAR models (i.e., without serial correlation), the 

existence of Granger causality was tested at 1 and 2-month lags in both directions (i.e., 

from LAI to LST and from LST to LAI). This means that the test was run twice per lag-

length. First, considering LAI as cause and LST as response, and then considering LST as 

cause and LAI as response. To that end, the vector of LAI and LST monthly anomalies, 𝑦𝑡, 

Equation (1), was split into two subvectors as follows:  

 
[
𝒚𝟏𝒕

𝟎

𝒚𝟐𝒕
𝟎 ] =  ∑ [

𝛼11,𝑖
′  𝛼12,𝑖

′

𝛼21,𝑖
′  𝛼22,𝑖

′ ] [
𝑦1,𝑡−𝑖

0

𝑦2,𝑡−𝑖
0 ]  + 𝐶𝐷𝑡 +  [

𝑢1𝑡
0

𝑢2𝑡
0 ]

𝑝

𝑖=1
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where 𝒚𝟏𝒕 and 𝒚𝟐𝒕 are the subvectors, whose dimensions are (𝐾1 × 1) and (𝐾2 × 2) 

with 𝐾 = 𝐾1 + 𝐾2, and 𝛼 is the coefficient of the model. 𝐶 is the coefficient matrix of 

potentially deterministic regressors and 𝐷𝑡 is the column vector holding the appropriate 

deterministic regressors. This Granger causality test is an F-type test and is distributed as 

𝐹(𝑝𝐾1𝐾2, 𝐾𝑇 − 𝑛), 𝑛 being the total number of parameters in Equation (2) and 𝑇 the 

number of observations. The null hypothesis, stated as 𝒚𝟏𝒕 does not Granger-cause 𝒚𝟐𝒕, 

is accepted when 𝛼21,𝑖 = 0 for 𝑖 = 1,2, … , 𝑝 and rejected when ∃ 𝛼21,𝑖 ≠ 0 for 𝑖 =

1,2, … , 𝑝 (Pfaff 2008a, 2008b). The test was implemented at 95% confidence level. The 

rejection of the null hypothesis provides evidence that LAI Granger-causes LST or vice 

versa, but it does not reveal the sign and strength of the relationship. 

Table 2.1. Multivariate time series that meet the following required criteria: a) entirely 
constituted by good quality estimates, b) stationarity in both variables LAI and LST, and c) 

absence of serial autocorrelation at the lag length under analysis. These criteria are 
additive. Thus, a time series that meets the c) criterion also meets the a) and b) criteria 

 
 

Criteria  

Forest type  
(total of pixels) 

Deciduous 
broadleaf 
(64,136) 

Evergreen 
broadleaf 
(36,233) 

Evergreen 
needleleaf 

(4,618) 

All 
(104,987) 

a) Good quality 56,561 25,497 4,347 86,405 

 
 
b) Stationarity 

All year 40,231 16,561 2,728 59,520 

Winter 51,026 22,775 3,874 77,675 

Spring 53,773 22,194 3,423 79,390 

Summer 50,710 22,084 3,848 76,642 

Fall 50,104 22,548 4,074 76,726 

 
 
 
c) Absence of serial 
autocorrelation at 1 and 2-
month lags 

All year 1 37,726 15,297 1,346 54,369 

2 39,428 16,828 2,126 58,382 

Winter 1 50,657 22,646 3,804 77,107 

2 50,869 22,734 3,837 77,440 

Spring  1 53,008 21,449 3,405 77,862 

2 53,659 22,128 3,419 79,206 

Summer 1 50,523 21,987 3,833 76,343 

2 50,655 22,052 3,838 76,545 

Fall 1 49,738 22,328 4,048 76,114 

2 50,031 22,504 4,072 76,607 
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2.2.3.2. Estimation of Impulse-Response coefficients  

 To estimate the sign and strength of the relationship between LAI and LST, an IR 

function was applied to all time series where Granger causality at 1-month lag was found. 

The IR function measures the over-time response of a variable to an impulse of another 

variable based on the Wold Moving Average representation of a VAR(p) process 

(Lütkepohl, 2005), which is defined as follows: 

 𝑦𝑡 = 𝜙0𝑢𝑡 + 𝜙1𝑢𝑡−1 + 𝜙2 𝑢𝑡−2+. .., (3a) 

𝜙0 = 𝐼𝑘 and 𝜙𝑠 (𝑠 = 1,2, …) can be computed iteratively as indicated below: 

 𝜙𝑠 = ∑ 𝜙𝑠−𝑗𝐴𝑗
𝑠
𝑗=1 , (3b) 

where 𝐴𝑗 = 0 for 𝑗 > 𝑝. The (𝑖, 𝑗)𝑡ℎ coefficients of the matrices 𝜙𝑠 are interpreted as the 

expected response of variable 𝑦𝑖,𝑡+𝑠 to a change in variable 𝑦𝑗𝑡. Hence, the accumulation 

of these effects over time (𝑠 = 1,2, …) simulates the impact on variable 𝑖 after a change in 

variable 𝑗 at time 𝑠 (Pfaff 2008b). In this case, the output of the function consists of IR 

coefficients calculated for 12 months after a single impulse of LAI or LST.    

2.3. Results  

2.3.1. Annual relationship between LAI and LST 

 Granger causality was evaluated on 54,369 and 58,382 year-round multivariate 

time series that met the required criteria at 1 and 2-month lags, respectively. The results, 

summarized in Table 2.2 and Figure 2.2, indicate that LST Granger-causes LAI in around 
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80% of the evaluated pixels (grey bar), while LAI Granger-causes LST in no more than 12% 

of the pixels. In both directions, the presence of causality is slightly higher at 1-month lag. 

Regarding forest types, causality from LAI to LST occurs in more pixels of evergreen 

broadleaf forest (8 and 17% at 1 and 2-month lags, respectively), followed by deciduous 

broadleaf (5 and 10%), and evergreen needleleaf (4 and 7%). In the opposite direction, 

causality occurs in more pixels of deciduous broadleaf forest (88 and 89%), followed by 

evergreen needleleaf (71 and 76%), and evergreen broadleaf (65 and 69%). 

Table 2.2. Annual Granger causality at 1 and 2-month lags per forest type. Refer to Table 

2.1.c to see the number of pixels that meet all the required criteria and, therefore, were 

used to evaluate Granger causality 

Forest type 

Percentage of pixels that show Granger causality 

From LAI to LST From LST to LAI 

1 2 1 2 

Deciduous Broadleaf 10 5 89 88 

Evergreen Broadleaf 17 8 69 65 

Evergreen Needleleaf 7 4 76 71 

All 12 6 83 81 

 To examine the nature of the relationship, IR coefficients were calculated for 

45,028 and 6,513 pixels that showed Granger causality from LST to LAI and from LAI to 

LST, respectively, at 1-month lag. The median of those coefficients indicates that Granger 

causality is primarily negative in both directions (Figure 2.3). The response to an impulse 

of any of the variables is maximum two months after the impulse and then tends to 

gradually disappear. This means that, based on the annual behaviour of the variables, an 

increase in, for example, LAI would produce a decrease in LST, which would be most 

noticeable two months after the change in LAI. The effect of LST on LAI is generally 
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Figure 2.2. Presence of annual Granger causality at 1 and 2-month lags per forest type 

stronger than the effect of LAI on LST. The weakest relationship in both directions occurs 

in evergreen needleleaf forest, while the strongest relationship from LAI to LST is 

observed in deciduous broadleaf and from LST to LAI in evergreen broadleaf.   

 Figure 2.4 illustrates the spatial distribution of the IR coefficients calculated for 

one and two months after a single impulse of LAI (Figure 2.4.a) or LST (Figure 2.4.b). 

Pixels showing causality from LAI to LST concentrate over the east side of the study area, 

particularly in the States of San Luis Potosí and Tamaulipas. The effect of LAI on LST is 

mainly negative as mentioned before, but there are some pixels in which the relationship 

is positive. A few coefficients, especially in the east side of the study area, are positive the 

first month and become negative the second month. A few others, especially in the 

south-western portion, start being negative and become positive the second month 

(Figure 2.4.a). Pixels showing causality from LST to LAI are well represented throughout 
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the study area. The effect of LST on LAI is also predominantly negative, the strongest 

negative effect occurs in the east region two months after the LST impulse. However, 

there are few pixels in which the effect is initially positive and becomes negative the  

Figure 2.3. Median IR coefficients of pixels that show annual Granger causality at 1-
month lag per forest type 
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second month after the impulse, many of these are located in high elevations of 

both sides of the study area (Figure 2.4.b).  

Figure 2.4. IR coefficients of pixels that show annual Granger causality from LAI to LST (a) 
or from LST to LAT (b) at 1-month lag 
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2. 3.2. Intraseasonal relationship between LAI and LST 

 Granger causality was evaluated at 1 and 2-month lags on all season-based 

multivariate time series that met the required criteria (Table 2.1.c). The results, 

summarized in Table 2.3 and Figure 2.5, show that Granger causality from LST to LAI 

occurs more consistently than Granger causality from LAI to LST in all seasons. If all forest 

types are considered as a whole (grey bar), the presence of LAI to LST causality is higher 

in spring (18 and 20% at 1 and 2-month lags, respectively) and lower in summer (5 and 

6%). LST to LAI causality is also higher in spring (43 and 40%), but lower in winter (11 and 

10%). The highest presence of causality in both directions and all seasons occurs in 

evergreen needleleaf forest, with the exception of spring and summer for LAI to LST, 

when deciduous broadleaf and evergreen broadleaf show higher occurrence of causality.  

Table 2.3. Seasonal Granger causality at 1 and 2-month lags per forest type. Refer to 

Table 2.1.c to see the number of pixels that meet all the required criteria and, therefore, 

were used to evaluate Granger causality 

Forest type 

Percentage of pixels that show Granger causality 

From LAI to LST  From LST to LAI  

Winter Spring Summer Fall Winter Spring Summer Fall 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

Deciduous 
Broadleaf 7 7 23 23 5 6 9 9 10 8 41 37 20 17 17 13 

Evergreen 
Broadleaf 5 7 6 16 6 6 7 9 9 10 46 46 13 11 9 9 

Evergreen 
Needleleaf 11 8 6 5 3 4 10 12 29 28 47 57 21 17 7 14 

All 7 7 18 20 5 6 8 9 11 10 43 40 18 16 14 12 
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Figure 2.5. Presence of Intraseasonal Granger causality at 1 and 2-month lags per forest 

type 

 IR coefficients were calculated for all pixels that showed Granger causality at 1-

month lag in each season. The median of those coefficients, plotted in Figure 2.6, revels 

that the effect of LAI on LST is generally positive in fall and negative in the rest of the 

seasons, except for evergreen needleleaf forest where the effect is positive in winter and 

spring (Figure 2.6.a). The effect of LST on LAI is predominantly negative across all season, 

only a slightly positive impact one month after the LST change occurs in evergreen 

broadleaf and evergreen needleleaf forests during winter and fall (Figure 2.6.b). In most 

cases, the response to change in one of the variables is stronger two months after the 

impulse. In a few cases, such as in summer for deciduous broadleaf (both directions), the 

strongest impact occurs one month after the impulse. In all cases, the effect tends to 

gradually disappear after the first or second month. The strongest negative effects of LAI 
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occur in deciduous broadleaf forest during spring and winter, while the strongest positive 

occurs in evergreen needleleaf during winter. The strongest effects of LST are all negative 

and occur in evergreen broadleaf and deciduous broadleaf during spring and summer, 

respectively.   

Figure 2.6. Median IR coefficients of pixels that show intraseasonal Granger 
causality from LAI to LST (a) or from LST to LAT (b) at 1-month lag per forest type 
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 The spatial distribution of the IR coefficients calculated for one and two months 

after a single impulse of LAI (Figure 2.7) or LST (Figure 2.8) shows the diversity of the 

interactions between the variables. The effect of LAI on LST during winter is primarily 

positive over the north-western portion and mainly negative in the remaining area 

(Figure 2.7.a). In spring, the LAI effect is strongly negative in most pixels, especially one 

month after the impulse. Only a small group of pixels located south-east and north-west 

of the study area display positive coefficients (Figure 2.7.b).  In summer, the effect of LAI 

one month after the impulse is predominantly negative. In the following month the effect 

is positive for many of the pixels located in the west and north-east. There are cases, 

such as a small area in the south-west portion of the study area, in which the effect is 

strongly negative the first month and becomes highly positive the second month (Figure 

2.7.c). During fall, the effect is weak one month after the impulse and becomes primarily 

positive in the following month, especially in the west portion of the study area (Figure 

2.7.d).  

 The effect of LST on LAI presents a wider spatial distribution in all seasons (Figure 

2.8). During winter, the LST effect is generally weak. One month after the impulse, the 

coefficients are mainly negative at low elevations and primarily   positive at high 

elevations. After two months, the coefficients are negative in most of the west side and 

positive in the majority of the east side (Figure 2.8.a). In spring, the effect is 

predominantly negative and particularly strong in the eastern portion of the study area 

(Figure 2.8.b). In summer, LST imposes a strongly negative effect on LAI across most of  
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Figure 2.7. IR coefficients of pixels that show LAI to LST Granger causality at 1-month 
lag in winter (a), spring (b), summer (c), or fall (d) 
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Figure 2.8. IR coefficients of pixels that show LST to LAI Granger causality at 1-month 
lag in winter (a), spring (b), summer (c), or fall (d) 
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the study area. A notorious exception occurs in pixels located in the State of Sinaloa, 

where the effect becomes highly positive two months after the LST impulse (Figure 

2.8.c). During fall, the effect is heterogenous. The first month is mainly positive, except 

for the low altitudes of the Sinaloa and Tamaulipas States. The second month is mostly 

negative, except for the south-western portion of the study area, where the impact is 

strongly positive (Figure 2.8.d).    

2.4. Discussion 

2.4.1. Relationship between LAI and LST 

 The results of this research demonstrate that the nature of the relationship 

between LAI and LST varies depending on the temporal scale. The processes responsible 

for this variation are not the same at different time scales. Vegetation succession and 

natural disturbances play a more important role at the annual scale, while phenological 

changes and climate regimes impose a greater influence at the seasonal scale (Liu et al. 

2006).  

2.4.1.1. Annual relationship 

 At the annual scale, LST Granger-causes LAI over most of the study area.  In 

contrast, LAI generally does not Granger-causes LST, except for a portion of the east side 

of the study area and some small isolated areas over the west side (Figure 2.4). The 

nature of the detected causality is primarily negative in both directions and usually 

weaker from LAI to LST (Figure 2.3). These findings are in accordance with Liu et al. 
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(2006), who evaluated feedbacks between Fraction of Photosynthetically Active 

Radiation (FPAR) and air temperature at a global scale between 1982 and 2000. Using 

led-lag regression/correlations to identify the presence of interactions and the 

Frankignoul, Czaja, and L’Heveder (1998) method to estimate the strength of those 

interactions, they observed a year-round strong negative correlation from temperature 

to FPAR over most of the Mexican territory at 1-month lag, but a general absence of 

correlation from FPAR to temperature. The only area where they detected correlation 

from FPAR to temperature also exhibits weaker negative coefficients and coincides with 

the eastern portion where this study found presence of LAI to LST causality (Figure 2.4).  

 The existence of a significant effect of surface temperature on vegetation has 

been similarly addressed by other authors. Zhou et al. (2003) found that fluctuations in 

temperature accounted for the largest fraction of NDVI change in northern high latitudes 

between 1982 and 1999. Liu et al. (2006) detected that FPAR variability is predominantly 

driven by temperature, not only in Mexico, but also in northern mid and high latitudes. 

Notaro, Liu, and Williams (2006) declared that temperature imposes a significant 

instantaneous forcing on FPAR over the United States. These results reflect some of the 

physical process taking place at the land-surface. At global and regional scale, surface 

temperature is a product of several physical drivers (e.g., albedo, soil moisture), of which 

vegetation is only a moderating factor (Liu et al. 2006; Eagleson 2011). In contrast, 

vegetation greenness is purely influenced by regional climatic conditions, where 

temperature is a primary element (Liu et al. 2006; GCOS 2019).   
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 As for forest types (Figure 2.2), a higher proportion of deciduous broadleaf 

showed causality from LST to LAI, which demonstrates the general influence of 

temperature on leaves phenology. LAI to LST causality was observed in more pixels of 

evergreen broadleaf forest, where fluctuations in temperature are less variable year-

round and, therefore, a change in vegetation density may have a more significant impact 

on the naturally stable surface temperature. 

 The eastern portion of the study area is characterized by a relatively higher 

occurrence of LAI to LST causality (Figure 2.4.a) and a negatively stronger effect of LST on 

LAI (Figure 2.4.b), which can be indicators of more dynamic forest ecosystems. More 

specifically, these characteristics may suggest vegetation disturbances. According to the 

Mexico’s National Forest and Soils Inventory collected by the Comisión Nacional Forestal 

(CONAFOR), the most common disturbances recorded between 2004 and 2017 on the 

eastern side are presence of epiphytes, drought, and defoliating insects (in order of 

importance), while for the western side are fire, logging and drought (CONAFOR 2019). 

Among these disturbances, drought has been highlighted as an important diver of forest 

change. Indeed, in 2009 and 2011, Central Mexico suffered the most severe droughts in 

seven decades (Domínguez 2016) and, according to CONAFOR (2019), the effects of 

these droughts have been most severe on the eastern region. Although this study 

suggests that the distinct behaviour of the LAI and LST variables over the east side of the 

study area may be associated with vegetation disturbances, more research must be 

performed to elaborate on a definitive conclusion.   
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2.4.1.2. Intraseasonal relationship 

 In all season, Granger causality from LST to LAI occurs more consistently than 

causality in the opposite direction. The highest and lowest presence of this causality 

occur in spring and winter, respectively (Figure 2.5). The effect of LST on LAI is 

predominantly negative, generally stronger in summer and weaker in winter (Figure 2.6). 

As mentioned in section 2.2.1, the rainy period (May to October) is also called the “warm 

half of the year” and coincides with the growing season. Therefore, a higher presence of 

LST to LAI causality in spring suggests that the effect of surface temperature on 

vegetation greenness is greater during the emergence of leaves than during the 

senescence. Although the occurrence of causality is lower in summer than in spring, the 

strongest coefficients are observed in deciduous broadleaf forest during summer, when 

leaves typically reach maturity. On the other hand, the dry season (November to April), 

which is also referred to as the “cold half of the year”, is characterized by a lower 

presence of LST to LAI causality. Thus, colder temperatures are associated with a lower 

occurrence of causality, which is particularly weak in winter, when the lowest 

temperatures are reached. These findings are overall in line with what the global scale 

study of Liu et al. (2006) estimated for Mexico. 

 Regardless of the season, Granger causality from LAI to LST occurs less commonly 

than causality in the opposite direction (Figure 2.5). The effect of LAI on LST is mainly 

positive in fall and negative in the remaining seasons, except for evergreen needleleaf 

forest where the effect is negative only in summer (Figure 2.6). Despite the low presence 
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of this causality, there is a relatively higher occurrence in spring over deciduous broadleaf 

forest, where LAI imposes a particularly strong negative effect on LST, which suggests 

that leaf emergence has a cooling effect on land surface. Kaufmann et al. (2003) also 

estimated a negative effect of NDVI on surface temperature for this forest type during 

spring in Eurasia. Another aspect to highlight is that the strongest positive effect of LAI on 

LST occurs in winter over evergreen needleleaf. This interaction is also consistent with 

Kaufmann et al. (2003), who found a strong positive relationship from NDVI to surface 

temperature in winter over evergreen needleleaf forests of North America and Eurasia. 

According to these authors, NDVI is not a good indicator of vegetation greenness in 

winter. Instead, it can be a useful proxy of snow cover extent as these variables are 

negatively correlated during this season. Thus, a reduction in the extent of snow cover 

(i.e., an increase in vegetation greenness) increases the absorption of solar radiation and, 

consequently, raises surface temperature. This process creates a positive correlation 

from vegetation greenness to surface temperature.  

2.4.2. Challenges and opportunities  

 This research has a few limitations that can be addressed in future research. First, 

Granger causality and IR coefficients were estimated using only LAI and LST. However, 

other variables (e.g., precipitation, solar zenith angle, aerosol optical depth, latitude) may 

also help to explain the behaviour between vegetation greenness and surface 

temperature (Kaufmann et al. 2003; Papagiannopoulou et al. 2017). Therefore, the 

inclusion of additional variables is considered as future step to improve these models. 



 

47 
 

Second, only pixels with stationary time series were considered for the analysis (Table 

2.1.b). However, the exclusion of non-stationary time series may be avoided by 

detrending those trajectories or by implementing the Toda and Yamamoto (1995) 

procedure, which allows for the examination of Granger causality in the context of non-

stationary data.  

 Third, there is a false continuity in the season-based time series. For example, the 

three monthly anomalies of a particular winter were joined to the three monthly 

anomalies of the following winter. This false seasonal continuity (e.g., winter 2002 and 

winter 2003) provokes the model to estimate not only relationships occurring among 

anomalies of the same season, but also between anomalies of a given season and 

anomalies of the following season. Although, several authors do not discard an 

interaction between anomalies of different seasons (e.g., Kaufmann et al. 2003; Wang et 

al. 2006; Kaufmann et al. 2007; Jiang, Liang, and Yuan 2015) and there should not be a 

reason to discard it a priori, this research may be extended to explore an alternative 

methodology that better handles this false continuity on the season-based time series. 

2.5. Conclusion  

 On a pixel-by-pixel basis of MODIS imagery, this research evaluated the annual 

and intraseasonal relationship between LAI and LST collected from 2002 to 2017 across 

the forest vegetation of Central Mexico. The Granger causality approach was used detect 

the presence of any relationship and an IR function was implemented to estimate the 

sign and strength of the relationship. The main results indicate that, at any temporal 
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scale, Granger causality from LST to LAI occurs more consistently than causality in the 

opposite direction. At the annual scale, the nature of the relationship is primarily 

negative in both directions and usually weaker from LAI to LST. At the seasonal scale, the 

occurrence of LST to LAI causality is higher in spring and lower in winter. The effect of LST 

on LAI is predominantly negative and particularly strong in deciduous broadleaf forest 

during summer, when leaves typically reach maturity. On the other hand, the effect of 

LAI on LST is mainly positive in fall and negative in the remaining seasons, except for 

evergreen needleleaf forest where the effect is negative only in summer. The highest 

presence of LAI to LST causality occurs in spring over deciduous broadleaf forest, where 

LAI imposes a particularly strong negative effect on LST, which suggests that leaf 

emergence has a cooling effect on land surface.   

 These results support general conclusions presented in other studies (e.g., Zhou 

et al. 2003; Liu et al. 2006; Notaro, Liu, and Williams 2006) and reveal novel spatio-

temporal patterns of the relationships between vegetation greenness and surface 

temperature in Central Mexico. As for the input data and methods, this research 

proposed LAI as an alternative index to overcome the shortcomings of other widely used 

vegetation greenness indicators (i.e., NDV and EVI). Unlike traditional regression and 

correlation analysis, the Granger causality approach enabled the examination of lagged 

effects of LAI on LST, and vice versa. IR coefficients, which have been rarely used in the 

related literature, helped to model the over-time response of a variable to a change of 

another variable.  
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 The findings of this research suggest that the relationship between vegetation 

greenness and surface temperature varies depending on the temporal scale, forest type, 

and causal variable. Therefore, caution has to be exercised when assuming a consistent 

inverse relationship driven by vegetation, which seems to be the general consensus in 

much of the literature that makes use of these two variables to study an environmental 

phenomenon (Lambin and Ehrlich 1996, 1997; Wan, Wang, and Li 2004; Mildrexler et al. 

2007; Coops, Wulder, and Iwanicka 2009; Mildrexler, Zhao, and Running 2009). Finally, 

this study is expected to be a contribution to the understanding of vegetation dynamics 

in Mexico. Based on the results, surface temperature is a significant driver of vegetation 

greenness in Mexican forests. Therefore, LST products can be considered a potential 

proxy of vegetation greenness trajectories, especially in the context of a warming 

climate. 
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3. FOREST DEGRADATION ASSESSMENT BASED ON TREND ANALYSIS OF MODIS-LEAF 

AREA INDEX2 

3.1. Introduction 

 Forest ecosystems play an essential role maintaining the carbon cycle balance 

because they are able to store carbon (Brown et al. 1996). However, when these 

ecosystems are perturbed, stored carbon is released as carbon dioxide (CO2) into the 

atmosphere, where it contributes to global warming by absorbing heat and impeding 

transmission to space. The assessment of forest degradation depends on how “forest” 

and “forest degradation” are defined. Both concepts, which have been subject of 

extensive debates (Schoene et al. 2007; Chazdon et al. 2016), have been defined by many 

institutions based on particular perspectives and purposes. In this research, forests are 

“lands dominated by woody vegetation with a percent cover of more than 60 percent 

and height exceeding 2 meters”(Strahler et al. 1999), which is in agreement with the 

definition used by the Moderate Resolution Imaging Spectroradiometer (MODIS) land 

cover product (MCD12Q1). Regarding forest degradation, this work adopts a simple but 

comprehensive approach for which context needs to be provided.  

 Definitions from international organizations, such as the Intergovernmental Panel 

on Climate Change (IPCC) and the United Nations Food and Agriculture Organization 

(FAO), share a set of basic notions, which describe forest degradation as a process that 

 
2 This chapter was published with the title “Forest Degradation Assessment Based on Trend Analysis of 
MODIS-Leaf Area Index: A Case Study in Mexico” in Remote Sensing. 2019. 11(21): 2503. 
doi:10.3390/rs11212503 



 

51 
 

involves a long-term observation period in which negative changes affect the forest’s 

structure, function, and capacity to provide services and goods (UNEP-CBD 2001; 

Penman et al. 2003; ITTO 2005; FAO 2006; Schoene et al. 2007; Sasaki and Putz 2009; 

Shoch, Eaton, and Settelmyer 2013). Within the literature on remote sensing of forest 

dynamics, forest degradation is frequently embedded in the context of forest 

disturbances, which are described as drivers of a forest’s state and function that range 

from high-impact events (e.g., caused by fires, windstorms, deforestation) to subtle and 

gradual processes (e.g., caused by insects, diseases, droughts, acid rain; Cohen et al. 

2017). As far as we are aware, the scientific literature lacks an explicit explanation of the 

relationship between forest degradation and forest disturbances. However, according to 

the forest disturbances definition, forest degradation is a type of disturbance and other 

disturbances can eventually lead to forest degradation. Therefore, this research 

considers forest degradation as any negative monotonic (i.e., single-direction), not 

necessarily linear, trend in vegetation greenness. This includes any disturbances that are 

not associated with a recovery process during the period of observation. Special 

attention is given to changes that are very subtle and become apparent gradually as they 

have traditionally been hard to monitor.  

 Although not used as frequently as Landsat (see Cohen et al. 2017 for examples of 

Landsat-based algorithms), MODIS has been employed to detect forest disturbances, 

including forest degradation. MODIS-based algorithms make use of surface reflectance 

(Jin and Sader 2005; Xin et al. 2013; de Beurs, Owsley, and Julian 2016; Tran, de Beurs, 

and Julian 2016), Percent Tree Cover (PTC; Gao et al. 2015), fires and thermal anomalies 
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(Hammer, Kraft, and Wheeler 2014), and a variety of spectral indexes, such as the 

Normalized Difference Vegetation Index (NDVI; Vandecar et al. 2011; Hammer, Kraft, and 

Wheeler 2014), the Normalized Burned Ratio (NBR; Sulla-Menashe et al. 2014), the 

Modified Soil Adjusted Vegetation Index (MSAVI; Hashim, Beiranvand, and Wei 2014), 

and the Enhanced Vegetation Index (EVI) together with Land Surface Temperature (LST; 

Mildrexler et al. 2007; Coops, Wulder, and Iwanicka 2009; Mildrexler, Zhao, and Running 

2009). Some authors combine a broad range of MODIS products into a single algorithm. 

For example, Pouliot et al. (2009) used surface reflectance, NDVI, the Wide Dynamic 

Range Vegetation Index (WDVI), the Soil Adjusted Vegetation Index (SAVI), the Global 

Environment Monitoring Index (GEMI), the Reduced Simple Ratio (RSR), and the 

Normalized Difference Moisture index (NDMI) to train a decision tree classifier. Unlike 

other vegetation greenness indicators, such as NDVI and EVI, Leaf Area Index (LAI) has 

not been tested to assess forest disturbances. LAI is a measure of the amount of 

vegetation vertically distributed and is formally defined as the total one-sided area of all 

green leaves per unit ground area in broadleaf canopies, and as the total surface area of 

just one half of all needles per unit ground area in coniferous canopies (Myneni et al. 

2002). In theory, the higher the LAI values, the denser the vegetation vertical structure 

and, therefore, the greater the surface potentially available for photosynthesis. 

Therefore, this research proposes to use time series of LAI, which may provide a good 

description of forest conditions through time.  

 MODIS-based algorithms have identified forest disturbances through linear trend 

analysis (Hammer, Kraft, and Wheeler 2014), temporal segmentation (Sulla-Menashe et 
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al. 2014), regression and decision trees (Pouliot et al. 2009; Loboda et al. 2012; Guindon 

et al. 2014), unsupervised classifications (Jin and Sader 2005), linear combinations of the 

pixel components (Hashim et al. 2014), Tasseled Cap transformations (Hilker et al. 2009; 

Tran, de Beurs, and Julian 2016; de Beurs, Owsley, and Julian 2016), and multitemporal 

analysis of surface temperature and vegetation greenness ratios (Mildrexler et al. 2007; 

Coops, Wulder, and Iwanicka 2009; Mildrexler, Zhao, and Running 2009). A considerable 

number of algorithms have fused MODIS with Landsat data to improve the detection of 

forest disturbances (Hilker et al. 2009; Xin et al. 2013; Schmidt et al. 2015; Tran, de 

Beurs, and Julian 2016). To the best of our knowledge, no MODIS-based algorithms have 

decomposed LAI time series to extract and analyze the trend component. Time series 

decomposition procedures were developed within the field of econometrics; however, 

environmental sciences have adopted these techniques to study different processes, 

including ecosystem changes (Verbesselt et al.2010) and vegetation dynamics (Jacquin, 

Sheeren, and Lacombe 2010; Schucknecht et al. 2013). Often, time series are assumed to 

be comprised of three basic components; “trend”, “seasonal”, and “remainder”. The 

trend component improves the identification of very subtle and gradual changes because 

it extracts low frequency changes that occur throughout the time series (Dokumentov 

and Hyndman 2015).   

 Therefore, this study aims to assess forest degradation by analyzing, on a pixel-by-

pixel basis, the trend component of MODIS LAI time series collected over Central Mexico 

from 2002 to 2017.  To achieve this objective, a time series decomposition procedure 

based on regression is applied to extract the trend component, whose strength and 
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magnitude are calculated through a modified Mann-Kendall non-parametric test and the 

Theil-Sen´s slope test, respectively. The product of the strength and magnitude is 

proposed as a measure of forest degradation. The validation is performed by comparing 

the overall trend analysis with an analogous trend analysis of a health index, which was 

developed for the specific purposes of this research and is calculated using reference 

data from the Mexico’s National Forest and Soils Inventory (NFSI).  

3.2. Data and methods 

3.2.1. Study area 

 Due to the multitemporal nature of this work, the study area encompasses all 

500-m pixels contained in the MODIS tile h08v06 that were covered by forest during at 

least one year between 2002 and 2017 (Figure 3.1). According to the MODIS Land Cover 

product (MCD12Q1, type 3), these pixels comprise 63,964 square kilometers, 60% of 

which correspond to deciduous broadleaf forest, 36% to evergreen broadleaf, and 4% to 

evergreen needleleaf. These forests are home of a wide variety of species (in the order of 

hundreds), some of the most commonly found include Quercus magnoliifolia, Quercus 

rugosa, Quercus laeta, Quercus sideroxyla, Pinus durangensis, Abies sp., Lysiloma 

divaricatum, Laguncularia racemosa, Byrsonima crassifolia, Beilschmiedia mexicana, and 

Guazuma ulmifolia (CONAFOR 2019).  

 This vegetation is primarily distributed across the Sierra Madre Occidental (west 

mountain range) and Sierra Madre Oriental (east mountain range). In the western region, 

elevation ranges from sea level to 3,104 m with a mean of 972 m and a standard  
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Figure 3.1. Study area: pixels covered by forest during at least one year between 2002 
and 2017 

deviation of 742 m, while slopes range from 0 to 30o with a mean of 6.9o and a standard 

deviation of 4.5o. In the eastern region, the altitudinal range is wider, it goes from sea 

level to 3,300 m with a mean of 1,067 m and a standard deviation of 684 m, while slopes 

range from 0 to 35o with a mean of 6.9o and a standard deviation of 5o. 

 The climatic conditions range from tropical to semi-cold. Tropical and semi-

tropical climates, whose mean annual temperature exceeds 18 oC, extend over most of 

the areas facing the coastal plains and cover 41 and 35% of the study area, respectively. 

Temperate climate, whose mean annual temperature oscillates between 12 and 18 oC, 

extends over higher elevations and covers 13% of the study area. Arid climates are 

generally found towards continental areas and represent 8% of the study area. The 
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highest elevations are occupied by semi-cold climates, which cover the remaining 3% of 

the study area.   

 In Mexico, nearly 60% of the forest lands are owned by ejidos (i.e., a tenurial 

system in which land is managed collectively) or agrarian communities (Skutsch et al. 

2013), where forests are often managed for timber production. The remaining forested 

areas are managed by private property owners and, in a smaller proportion, by the 

government in the form of natural protected areas (Klooster and Masera 2000; Morales-

Barquero et al. 2014). In the study area, about 50% of the land is managed by ejidos. 

Although this proportion is lower than at national level, ejidos are the dominant land 

tenure units. 

 Central Mexico was chosen as the study area for three reasons. First, studies 

focused on detecting forest disturbances or degradation in Mexico have been conducted 

primarily at local scales (Kovacs, Wang, and Blanco-Correa 2001; Brower et al. 2002; Vidal, 

López-García, and Rendón-Salinas 2014; Gao et al. 2015; Romero-Sánchez and Ponce-

Hernandez 2017) and rarely at a regional scale (Mildrexler, Zhao, and Running 2009) like 

this study. Second, according to Morales-Barquero et al. (2014), the levels of human 

disturbance in Mexican forest are significantly high. Third, according to the Land Use and 

Vegetation Map produced by the Instituto Nacional de Geografía y Estadística (INEGI), 

14,900 km2 (23%) of the study area were covered by perturbed secondary vegetation in 

2014 (INEGI 2017).  
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3.2.2. Data and preprocessing 

 LAI, the ratio of half of the total leaf surface area per unit ground area, is a 

dimensionless measure that ranges from 0 (e.g., bare ground) to over 10 (e.g., dense 

forest; GCOS 2010). In this research, LAI estimates were acquired from the MODIS sensor 

onboard the Terra satellite. The morning overpass time of Terra (at approximately 10:30 

am at the equator) provides more reliable LAI estimates than the afternoon overpass 

time of Aqua (at approximately 1:30 pm) due to lower cloud presence (Yan et al 2016). 

King et al. (2013) performed a visual comparison of the Terra and Aqua cloud fractions 

and found a generally cloudier pattern over land in the Aqua products.   

 MODIS LAI is released in conjunction with Fraction of Photosynthetically Active 

Radiation (FPAR) in a single product. Both variables are estimated from an algorithm 

based on a tridimensional (i.e., it accounts for vegetation structure) radiative transfer 

model that selects the best LAI and FPAR estimates by comparing measured spectral 

values (from the red and near-infrared regions) with a look-up table that contains 

observed spectral values of six biome types and their corresponding LAI/FPAR values. This 

main algorithm may fail to obtain a solution due to large uncertainties in the input 

spectral values, cloud effects, or too low sun/view zenith angles. In this case, the 

retrievals, with relatively poor quality, are produced from a back-up algorithm based on 

the biome-specific empirical relationship between NDVI and LAI/FPAR (Knyazikhin et al. 

1998; Myneni et al. 2002; Jensen et al. 2011; Yang et al. 2006; Yan et al. 2016). According 

to Yan et al. (2016), Collection 6 (C6) of the MODIS LAI/FPAR product is considerably 
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better than Collection 5 (C5). C6 properly captures the interannual variation of LAI, as 

well as the general seasonality of all biomes, except for evergreen broadleaf forests, 

where poor quality retrievals are produced. However, this shortcoming is also observed 

in other satellite products, such as the Carbon cYcle and Change in Land Observational 

Products from an Ensemble of Satellites (CYCLOPES) and those from the Global Land 

Surface Satellite (GLASS), and the SPOT-VEGETATION GEOV1 system.  

 MODIS data were acquired through the Land Processes Distributed Active Archive 

Center (LP DAAC) managed by the NASA Earth Science Data and Information System 

(ESDIS) project. Based on the characteristics mentioned, MODIS Terra 8-day LAI/FPAR 

composites (MOD15A2H, C6) of the tile h08v06 were downloaded from 2002 to 2017 at 

500 meters spatial resolution. To extract forest land covers, MODIS Terra + Aqua yearly 

Land Cover composites (MCD12Q1, C6) were also obtained for the same area and time 

period, and at the same spatial resolution. The preprocessing steps that are described 

below were conducted by means of ArcPy, a site package that allows for the use of 

ArcGIS functionalities through Python programming language.  

 All datasets were projected to Lambert Conformal Conic projection in ITRF2008 

datum and clipped to forested areas, which were delimited by identifying all pixels 

covered by forest during at least one year between 2002 and 2017. In the few cases for 

which the type of forest changed between years, the most frequent forest type was 

assigned. Only good quality LAI retrievals (i.e., obtained from the main algorithm) were 

selected to perform the analysis. The Land Data Operational Product Evaluation (LDOPE) 

tool was used to unpack the LAI Quality Control layers, which specify the type of 
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algorithm used to derive the retrievals. Once the good quality values were extracted, 

monthly LAI means were calculated on a pixel-by-pixel basis for each month from January 

2002 to December 2017. Finally, in order to manipulate the data in an R environment, all 

LAI means were extracted from the raster files and rearranged into a comma-separated 

values (cvs) file, where each row contained the monthly LAI time series of a single pixel. 

Due to the exclusion of poor-quality retrievals, 0.5% of the pixels (1,505) were discarded 

from the analysis. 

3.2.3. Algorithm to analyze LAI trends 

 A seasonal-trend decomposition procedure based on regression (STR; see 

Dokumentov and Hyndman 2015 for a complete description of the procedure) was used 

to break down the time series (𝑦𝑡, where 𝑡 is time) into trend (𝜇𝑡), seasonal (𝛾𝑡), and 

remainder (𝜖𝑡) components. In a given time series (Figure 3.2.a), the simplest STR model 

considers these components to be additive: 

                                                𝑦𝑡 = 𝜇𝑡 + 𝛾𝑠𝑛(𝑡),𝑡 + 𝜖𝑡, 𝑡 = 1, … , 𝑇. (4) 

The trend component (Figure 3.2.b) describes low frequency non-stationary long-term 

changes. The seasonal component (Figure 3.2.c) shows a stable repeating pattern of 

change; thus,  𝛾𝑡 represents only one element of the seasonal pattern, while 𝛾𝑠𝑛(𝑡),𝑡 

represents a k x n matrix of seasonal shapes, where k is the number of seasons and n is 

the length of the time series. The remainder (Figure 3.2.d) depicts variations considered 

as a normally distributed white noise process with mean zero and variance  𝜎𝜖
2 (Harvey 
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and Tood 1983; Harvey 1985; Harvey and Peters 1990; Cleveland 1990; Dokumentov and 

Hyndman 2015).    

 The trend (Figure 3.2.b), which is the component of interest in this research, can 

be modeled as a local approximation to a linear trend:   

 𝜇𝑡 = 𝜇𝑡−1 + 𝛽𝑡−1 + 𝜂𝑡 , (5a) 

 𝛽𝑡 = 𝛽𝑡−1 + 𝜁𝑡 , (5b) 

where 𝜂𝑡 and 𝜁𝑡 are normally distributed independent white noise processes with mean 

zero and variance 𝜎𝜂
2 and 𝜎𝜁

2, respectively. The level and slope change slowly over time  

Figure 3.2. Example of the decomposition of a time series (a) into trend (b), 
seasonal (c), and reminder (d) components 
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based on a random walk mechanism (Harvey and Tood 1983). The reason behind 

analyzing the trend lies on the nature of the component. Its low frequency, non- 

stationary behavior, and small rate of change in a long-term basis allows for the 

identification of very subtle and gradual changes that may otherwise be obscured.   

 Using the “stR” package (Dokumentov and Hyndman 2018) in an R environment 

(R Core Team 2018), trend components were extracted in the form of a new time series 

with as many values as the original time series. These new sets of values may or may not 

exhibit a general increase or decrease. This means that, in some cases, the trend 

component may actually show that the time series does not exhibit a trend. Therefore, to 

evaluate the presence of a monotonic trend in the trend component, a modified Mann-

Kendall test for serially-correlated data (Mann 1945; Kendall 1955; Hamed and Rao 1998) 

was applied. This non-parametric test evaluates the null hypothesis of independent and 

randomly ordered observations (i.e., no trend).   

 The original Mann-Kendall (Mann 1945; Kendall 1955) test determines if the Y 

variable (in this case LAI) tends to increase or decrease as the X variable (time) increases. 

To achieve this, data are ordered chronologically and a Kendall’s 𝜏 correlation coefficient 

is computed as follows: 

 
𝜏 =  

𝑆

𝑛(𝑛 − 1)/2
 , 

(6a) 

 𝑆 = 𝐶 − 𝐷, (6b) 

where 𝑛 is the number of observations and  𝑆 is the test statistic, which is calculated by 

subtracting 𝐷, the number of “discordant pairs of observations”, from 𝐶, the number of 
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“concordant pairs of observations”. In 𝐷, the later-in-time observation has a smaller 

value than the previous observation (i.e., Y decreases as X increases); while in  𝐶, the 

later-in-time observation has a larger value that the previous observation (i.e., Y 

increases as X increases). A total of 𝑛(𝑛 − 1)/2 pairs of observations are possible. If half 

of the pairs are concordant and half discordant, so that 𝑆 = 0 , 𝜏 will equal 0 (i.e., no 

trend). If all pairs are concordant, so that 𝑆 = 𝑛(𝑛 − 1)/2, 𝜏 will equal 1 (i.e., strong 

increasing trend). In contrast, if all pairs are discordant, so that 𝑆 = −(𝑛(𝑛 − 1)/2), 𝜏 

will equal -1 (i.e., strong decreasing trend). Therefore, 𝜏  produces values, from -1 to 1, 

that show the strength of the monotonic association between the variable of interest (Y) 

and time (X; Helsel and Frans 2006).  

 The significance of the trends is evaluated by comparing the standardized 𝑆 

statistic,  𝑍 = 𝑆/[𝑣𝑎𝑟(𝑆)]0.5, with the standard normal variate at the desired level or 

significance. Under the null hypothesis of trend absence, the 𝑆 statistic tends to show 

zero mean and variance 𝑛(𝑛 − 1)(2𝑛 + 5)/18. However, the variance of 𝑆 and, as a 

consequence, the p values are affected when serial correlation is detected. A positive 

serial correlation increases the probability of detecting a significant trend when it actually 

does not exist, while a negative serial correlation decreases the probability of detecting a 

significant trend when it actually exists (Hamed and Rao 1998). A rank von Neumann 

ratio test (Bartels 1982), which assesses the null hypothesis of randomness, corroborated 

the presence of serial correlation in the extracted trend components of this study. 

Therefore, a 𝑆 variance correction approach, proposed by Hammed and Rao (1998), was 
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implemented to address the issue of serial correlation and, consequently, generate the 

correct p values.  

 As explained, the modified Mann-Kendall test detects significant monotonic 

trends and provides a measure of their strength (i.e., how consistently-decreasing or 

consistently-increasing they are) through the Kendall’s 𝜏 correlation coefficient. However, 

it does not specify their magnitude (i.e., how much they change). To account for the 

magnitude, a Theil-Sen’s slope (Theil 1950; Sen 1968), which estimates a monthly rate of 

change that can be used to calculate the absolute change over the study period, was 

obtained by computing a set of 𝑁= 𝑛(𝑛 − 1)/2 slope values (Hollander, Wolfe, and 

Chicken 2013):  

𝑏𝑖𝑗 =
𝑌𝑗 − 𝑌𝑖

𝑋𝑗 − 𝑋𝑖
, 

1 ≤ 𝑖 < 𝑗 ≤ 𝑛,  𝑋𝑖 ≠ 𝑋𝑗, (7a) 

median of those slopes: 

 𝛽̂ = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑏𝑖𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}. (7b) 

  The “modifiedmk” R package (Patakamuri and O’Brien 2019) was used to 

calculate the Mann-Kendall p value, the Kendall’s 𝜏 correlation coefficient, and the Theil-

Sen’s slope for each of the trend components. After exploring the overall results and 

computing the occurrence of positive versus negative significant trends, a subset of 

negative trends was created for a deeper analysis. Negative trends are potential 

indicators of forest degradation. However, consistently-decreasing trends alone (i.e., 

negative Kendall’s 𝜏 correlation coefficients) cannot be considered processes of forest 

degradation because their magnitude of change may be insignificant. Similarly, negative 
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magnitudes alone (i.e., Theil-Sen’s slopes) cannot be considered processes of forest 

degradation because their rate of change may be weakly monotonic and, therefore, not 

representative of a typical process of forest degradation. Therefore, the product of 

negative Kendall’s 𝜏 correlation coefficients and negative Theil-Sen’s slopes is here 

proposed as a measure of forest degradation. This measure facilitates the identification 

of consistently-decreasing trends with high magnitudes of change, which can be 

interpreted as severe processes of forest degradation. As a rule, the higher the product, 

the greater the degradation severity. The outcomes of the multiplication were 

reclassified into three categories of severity (i.e., high, moderate, and low) based on a 

geometrical interval classification method, which performs well with non-normally 

distributed data.  

3.2.4. Validation of the algorithm 

 To validate the results, the health conditions of 52,807 trees collected in 177 

conglomerates were used as reference data (CONAFOR 2019). This information was 

gathered between 2004 and 2017 by the Comisión Nacional Forestal (CONAFOR) as part 

of Mexico’s National Forest and Soils Inventory (NFSI). A simple trend analysis of the tree 

conditions was performed and compared with the proposed measure of forest 

degradation. The Mexico’s NFSI is completely updated every five years by re-visiting 20% 

of the sampling conglomerates every year. Within the study area, there are 

approximately 1,540 conglomerates separated from each other by roughly 5 km. These 

conglomerates have been measured two or, in a few cases, three times during the study 
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period. Based on these spatio-temporal characteristics, only conglomerates that have 

been visited three times and whose centroids fall within a buffer of 150 m around the 

center of the MODIS pixels were considered for the analysis. The first criterion responds 

to the necessity of at least three observations to perform a trend analysis. The second 

criterion ensures that the conglomerates are representative of what the Instantaneous 

Field of View (IFOV) of the MODIS pixels captures. In other words, it warrants spatial 

coincidence.  

 The 177 conglomerates that meet the two aforementioned criteria mimic the 

distribution of the original systematically collected NFSI data. Therefore, they are 

representative of the overall characteristics of the area (i.e., forest type, altitude, slope, 

climate). Each conglomerate contains four sampling sites that are distributed in an 

inverted “Y” shape and whose centroids are separated by 45.14 m. Each site has an area 

of 400 m2 and a radius of 11.28 m. The health conditions of all trees falling within this 

area and having diameter greater than 7.5 cm were recorded. As a result, 13,905 trees 

were measured during the NFSI 2004-2009 in the 177 conglomerates, 15,730 during the 

NFSI 2009-2014, and 23,172 during the first 3 years of the NFSI 2014-2019. Two 

classification systems were used to record the tree conditions. The first system, 

employed for the NFSI 2004-2009 and the NFSI 2009-2014, comprises the six following 

classes: stump, dead-standing, very poor vigor, poor vigor, good vigor, and maximum 

vigor. The second system, used for the NFSI 2014-2019, comprises the five following 

classes: stump, dead-standing, low vigor, moderate vigor, and high vigor. This 

incompatibility between classification schemes implies a limitation that is addressed in 
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section 3.4.3. For the purposes of this validation, the conditions from the two 

classification schemes were unified as follows: stump, dead-standing, very poor or low, 

poor, moderate, good, and maximum or high. 

 To obtain a single measure representative of all trees within each conglomerate, a 

health index was developed. First, the number and proportion of trees within each class 

was calculated. Then, the proportion was multiplied by the weight of the class (i.e., 

stump = 1, dead-standing = 2, very poor or low vigor = 3, poor vigor = 4, moderate vigor = 

4.5, good vigor = 5, and maximum or high vigor= 6). The resulting values were summed to 

obtain an overall index that ranges from 1 to 6, where 6 is the optimum vigor condition 

(Table 3.1).  

Table 3.1. Example of health index calculation in a selected conglomerate (conglomerate 
ID 39373, NFSI 2004-2009) 

Condition Trees Weight Proportion × Weight Health index 
(addition) No. Proportion 

Stump 0 0.00 1  0.00  
 
 

5.07  

Dead-standing 4 0.03 2  0.06 

Very poor or low vigor 4 0.03 3  0.09 

Poor vigor 9 0.07 4  0.27 

Moderate vigor 0 0.00 4 .5 0.00 

Good vigor 78 0.59 5  2.93 

Maximum or high vigor 38 0.29 6 1.71 

 Once three index values were computed per conglomerate (i.e., one per 

observation date), the presence of trends was evaluated by looking at the sign of the 

differences between two consecutive index values (later date minus earlier date). As 

there are three observations, two differences were calculated. When these differences 

share the same sign, a given location exhibits a trend, which is negative if both signs are 

negative and positive otherwise. The magnitude of change of all negative trends was 
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calculated by subtracting the last observation from the first one and dividing the 

outcome by two. The resulting values were reclassified into three categories of severity 

(i.e., low, moderate, and high) based on a geometrical interval classification method. 

According to this methodology, each conglomerate can take one of the following classes: 

no trend, positive trend, low degradation, moderate degradation, or high degradation 

(Table 3.2). By means of a confusion matrix, these results were compared with the results 

of the trend analysis proposed in this research. 

Table 3.2. Examples of trend analysis in selected conglomerates based on the calculated 
health index values 

 
Conglo-
merate 

ID 

 
Health index per NFSI 

Sign of the 
difference 

 
 

Trend 

 
 

Magnitude 

 
Trend analysis 
classification A) 

2004-
2009 

B) 
2009-
2014 

C) 
2014-
2019 

 
B - A 

 
C - B 

35110 3.80 4.50 3.60 + - None ---- No trend 

44140 3.30 4.30 5.50 + + Positive ---- Positive trend 

38822 4.70 4.60 4.40 - -  
 
Negative 
 

- 0.15 Low 
degradation 

54050 5.50 4.50 2.00 - - - 1.75 Moderate 
degradation 

53937 5.00 3.00 1.20 - - - 1.90 High 
degradation 

 

3.3. Results  

3.3.1. LAI trends  

 To achieve the objective of detecting forest degradation in Mexican forested 

areas, the STR procedure was used to decompose 295,298 monthly LAI pixel-based time 

series comprised of 192 values into trend, seasonal, and remainder components. Only 

the trend component was extracted from each of the time series to evaluate the 
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presence and strength of significant monotonic trends through a modified Mann-Kendall 

test proposed by Hammed and Rao (1998). Additionally, a Theil-Sen’s slope was 

calculated to estimate the magnitude of change of the significant trends.  

 The trend analysis results in 63% of the time series (187,414 pixels) exhibiting 

trends at a significance level of 0.05 or higher. Fifty two percent are positive trends (i.e., 

they show a positive Kendall’s 𝜏 correlation coefficient), while only 11% are negative 

(Figure 3.3). Particularly, evergreen broadleaf forest presents the highest proportion of 

negative trends (18%), followed by evergreen needleleaf (12%), and deciduous broadleaf 

(7%). Significant trends do not cluster in a specific area, their distribution is regular across 

all the study area (Figure 3.4.a). The majority of negative trends are located over the 

eastern portion of the study area (Figure 3.4.b). The overall magnitude of change, 

measured by the Theil-Sen’s slope, ranges from -0.026 to 0.021 LAI/month and presents  

Figure 3.3. Direction of trends at 95% confidence level per forest type, 2002-2017 
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Figure 3.4. Significance of all trends (a), as well as strength (b) and magnitude (c) of 
trends at 95% confidence level or higher, 2002-2017 
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a median of 0.001 LAI/month. The steepest negative slopes are predominantly located in 

the state of Tamaulipas (eastern region), which, together with the state of Nayarit 

(western region), is also scenario of the steepest positive slopes. Lower magnitudes are 

located along the highest elevations of the Sierra Madre Oriental (east mountain range), 

as well as over the western states of Sinaloa and Durango (Figure 3.4.c).  

 Figures 3.3 and 3.4 provide context of the occurrence of negative trends (potential 

indicators of forest degradation), which extend over 7,036 km2 and represent 11.1% of the 

study area. Two thirds of the negative trends present a strength of -1, which means that 

most of them display consistently-decreasing trajectories; these trends are evenly 

distributed across the 7,036 km2 (Figure 3.5.a). The maximum negative magnitude is -

0.0256 LAI/month and the median -0.0012 LAI/month, which are equivalent to an absolute 

change of -4.92 and -0.23 LAI units, respectively, between 2002 and 2017. Magnitudes are 

generally high in the east portion and generally low in the west (Figure 3.5.b).  

 Forest degradation is presented as the dimensionless product of the strength and 

magnitude of negative trends (Figure 3.6). In this study area, the product ranges from 0 

to 0.02 and was reclassified into three categories of severity (i.e., high, moderate, and 

low) based on a geometrical interval classification method.  This classification method 

indicates that 385 km2 (0.6% of the study area) are highly degraded, while 3,406 km2 

(5.4%) and 3,245 km2 (5.1%) are moderately and slightly degraded, respectively. Forest 

degradation is mostly low in the west and generally higher in the eastern region of 

Mexico, which is characterized by consistently-decreasing trends with high magnitudes of 

change. Although the western portion also displays consistently-decreasing trends  
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Figure 3.5. Strength (a) and magnitude (b) of negative trends at 95% confidence level, 
2002-2017 -The pixels size has been exaggerated for visualization proposes- 

(Figure 3.5.a), the magnitudes of change are generally not high (Figure 3.5.b). The most 

degraded areas are irregularly distributed along the Sierra Madre Oriental and, to a lesser 

extent, over southwest Chihuahua, the western fringe of Durango and Jalisco, and some 

isolated areas of Nayarit. 

 Regarding forest types, evergreen broadleaf has the highest median severity 

score of forest degradation (0.0011), followed by evergreen needleleaf (0.0008), and 

deciduous broadleaf (0.0006). In general, evergreen broadleaf forest is characterized by a  
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Figure 3.6. Forest degradation based on the strength and magnitude of negative trends 
at 95% confidence level, 2002-2017 -The pixels size has been exaggerated for 

visualization proposes- 

combination of consistently-decreasing trends with high magnitudes of change, 

evergreen needleleaf by a combination of irregularly decreasing trends with high 

magnitudes of change, and deciduous broadleaf by a combination of consistently-

decreasing trends with low magnitudes of change.  

 Evergreen needleleaf shows the highest proportion of highly degraded areas (8%), 

followed by evergreen broadleaf (7%), and deciduous broadleaf (3%; Figure 3.6). 

Deciduous broadleaf (Figure 3.7.a) is almost free of highly degraded areas in the west  
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Figure 3.7. Degradation of deciduous broadleaf forest (a), evergreen broadleaf 
forest (b), and evergreen needleleaf forest (c) based on the strength and 

magnitude of negative trends at 95% confidence level, 2002-2017 -The pixel size 
has been exaggerated for visualization proposes- 
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part of the study area, but it presents a concentration of highly degraded pixels in the 

west portion, specifically over the state of Tamaulipas. Evergreen broadleaf (Figure 3.7.b) 

exhibits highly degraded pixels distributed throughout its range as well as a high 

proportion of moderately degraded pixels. Unlike the other forest types, evergreen 

needleleaf (Figure 3.7.c) displays more degraded areas in the east portion of the study 

area. 

 
3.3.2. Validation  

 The comparison between the trend analysis of the MODIS LAI data and the 

reference data shows an overall agreement of 63%. This agreement between the 

remotely sensed products and the field observations is slightly better in the west side 

(69%) than in the east side (56%) of the study area (Figure 3.8). According to the 

confusion matrix (Table 3.3), the “high degradation” and “no trend” classes have the 

highest accuracy. All of the MODIS pixels classified as “high degradation” are actually 

highly degraded, while 81% of the MODIS pixels classified as “no trend” do not actually 

exhibit a significant trend. On the other hand, half of the reference data identified as 

highly degraded were correctly classified as “high degradation”, whereas 72% of the 

reference data without any trend were correctly classified as “no trend”.  

 In contrast, the “moderate degradation” class exhibits the poorest accuracy. Forty 

five percent of the MODIS pixels classified as “moderate degradation” are actually 

moderately degraded and only 19% of the reference data identified as moderately 

degraded were correctly classified as “moderate degradation”.  These pixels were  
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Figure 3.8. Spatial comparison between the trend analysis of MODIS LAI data and the 
reference data 

 

Table 3.3. Confusion matrix of the trend analysis of the MODIS LAI data and the reference 

data 
 
 

Trend analysis classes 

Reference data 

Degradation Positive 
trend 

No 
trend 

 
Total 

User’s 
accuracy High Moderate Low 

M
O
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A
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d
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io
n

 High 1 0 0 0 0 1 1  

Moderate 0 5 0 0 6 11 0.45  

Low 0 0 4 1 1 6 0.67  

Positive trend 0 9 0 14 28 51 0.27  

No trend 1 12 4 3 88 108 0.81  

Total 2 26 8 18 123 177  

Producer’s accuracy  0.50 0.19 0.50 0.78 0.72  0.63  
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erroneously classified as “no trend” and “positive trend”. Finally, the class with the 

highest contrast between accuracy types is “positive trend”. Although 78% of the 

reference positive trends were correctly classified as “positive trend”, only 27% of the 

MODIS pixels classified as “positive trend” exhibited positive trends. 

 Although the “high degradation” MODIS sample is comprised of only one pixel, 

that pixel is representative of the actual size of the highly degraded class. Indeed, the 

MODIS sampling sizes of all classes are representative of the actual class sizes. This is 

because the distribution of the 177 conglomerates used to perform the validation mimic 

the spatial distribution of the original systematically collected NFSI data. 

3.4. Discussion  

3.4.1. Potential drivers of forest degradation  

 The objective of this research was to detect forest degradation through a trend 

analysis of monthly MODIS LAI collected over Central Mexico from 2002 to 2017. The 

overall results indicate that about half of the study area (52%, Figure 3.3) has exhibited 

positive trends of forest change, while the other half has either remained unchanged 

(37%) or experienced negative trends (11%). Of the 7,036 km2 exhibiting negative trends, 

the proposed measure of forest degradation estimates that 385 km2 are highly degraded, 

3,406 km2 moderately degraded, and 3,245 km2 slightly degraded. Most of the moderate 

and highly degraded areas are distributed over the east side of the study area (Figure 3.6) 

and evergreen broadleaf seems to be the most affected forest type (Figure 3.7). 
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 The authors are not aware of other studies that examine vegetation trends at the 

regional scale in Mexico, which precludes a direct comparison of the results of this 

research. However, the set of INEGI’s Land Use and Vegetation Maps provides points of 

comparison. For example, this research reveals that 7,036 km2 (11%) of the study area 

have experienced forest degradation between 2002 and 2017. According to the most 

recent INEGI’s cartography, 14,900 km2 (23%) were covered by perturbed secondary 

vegetation in 2014. Of that area, 12,787 km2 were already perturbed in 2002. As the level 

of disturbance of these areas is unknown for both dates, they could have experienced no 

changes, or slight negative or positive trends. In contrast, 1,686 km2 were covered by 

undisturbed primary vegetation in 2002, which clearly translates into negative trends 

since in 2014 were classified as perturbed. The remaining 427 km2 were agriculture or 

water (INEGI 2005, 2017). Thus, although this research and the INEGI’s cartography are 

not directly comparable, both show that important processes of forest degradation are of 

the order of a few thousands of km2. 

 In terms of spatial distribution, this research shows more severe levels of forest 

degradation in the eastern portion. The most common disturbance recorded by the 

Mexico´s NFSI on this side of the study area is presence of epiphytes, followed by drought 

and defoliating insects. On the western portion, the most frequent disturbance is fire, 

followed by logging and drought (CONAFOR 2019). Although not all forest degradation 

can be attributed to these disturbances, they provide an indication of the factors 

affecting forest health in Central Mexico. For instance, changes in microclimate or 

vegetation structure may affect the abundance and distribution of epiphytes (Hietz, 
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Buchberger, and Winkler 2006). This seems to be a major problem because, although 

epiphytes do not obtain nutrients from their host as parasitic plants do, they use the host 

as support, which suffocates the branches and eventually kills the trees (SEMARNAT 

2007). Drought has also been recorded as an important driver of forest disturbance. 

Indeed, in 2009 and 2011, Central Mexico suffered the most severe droughts in seven 

decades (Domínguez 2016). The effects of these droughts continue to affect the region 

and, according to CONAFOR (2019), the impacts on forest vegetation have been most 

pronounced on the east side of the study area, where higher levels of forest degradation 

are encountered based on this research.   

3.4.2. Methodological approach 

  Assessing forest degradation has been a challenging task due to the generally 

slow-changing nature of the process, which demands long periods of observation with 

high frequency of records. In this research, the analysis of the trend component of 

monthly LAI time series helped to overcome the challenge of identifying subtle and 

gradual changes. This component extracts low frequency changes that occur throughout 

the time series. Figure 3.9 demonstrates how the proposed algorithm successfully 

classifies the trend components based on their strength and magnitude of change.  

 Figure 3.9.a is a good example of a very subtle consistently-decreasing change 

that may pass unnoticed if only the original time series is analyzed. This was confirmed by 

a Seasonal Kendall test (Helsel and Frans 2006), which did not detect a significant trend in 

the raw time series. Figure 3.9.b shows a pixel that, although it is classified as highly 
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degraded, does not exhibit one of the highest scores because its trajectory is not typical 

of a forest degradation process (e.g., caused by a disease). Along this line, highly 

degraded pixels with weak Kendall’s 𝜏 correlation coefficients and steep slopes can be 

used to identify potential events of deforestation. Pixels with those characteristics are 

representative of a major non-consistently decreasing change in LAI, which may indicate 

an abrupt vegetation change provoked by a high-impact event, such as deforestation. 

Figure 3.9.c shows a clear example of forest degradation, where LAI changed 

substantially during the study period following a consistently-decreasing trajectory. The 

Seasonal Kendal test and the Theil-Sen´s slope test applied to the raw time series of  

Figure 3.9. Examples of slightly degraded (a) and highly degraded (b and c) pixels based 
on the strength (t) and magnitude (slope) of the extracted trend component 
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examples 11b and 11c detected negative trends with a strength of -0.53 and -0.52 and a 

magnitude of -0.34 and -0.20, respectively. The product of these measures is higher for 

Figure 3.9.b (0.18) than for Figure 3.9.c (0.10), which would have assigned a higher score 

to a trajectory less representative of a typical process of forest degradation. 

3.4.3. Potential sources of validation uncertainty 

  The difficulty of validating degradation models has been recognized and 

attributed to the considerable amount of economic and human resources needed to 

collect reference data during long periods of study (Metternicht et al. 2010). This 

research made use of reference data that were not collected for the specific purpose of 

validating this study. Therefore, although these data are considered the best possible 

information available, they present some limitations. In this context, there are at least 

four reasons that may be associated with the moderate agreement (i.e., 63%) between 

the remotely sensed LAI and the field observations of tree conditions. 

 First, the spatial extent of the reference data is not ideally compatible with the 

spatial resolution of the MODIS pixels. Each sampling conglomerate extends over 1,600 

m2, while each MODIS pixel covers 216,516 m2. This means that the reference data are 

representative of less than 1% of the MODIS pixel with which they are compared. Second, 

the classification schemes of tree conditions are slightly different between forest 

inventories. The NFSI 2004-2009 and the NFIS 2009-2014 recognize four vigor conditions 

(i.e., very poor, poor, good, and maximum), while the NFSI 2014-2019 recognizes only 

three (i.e., low, moderate, and high). This incompatibility hindered an appropriate 
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comparison of the vigor conditions through time. Third, the number of field observation 

dates within the study period is limited for the purposes of a trend analysis. Fourth, the 

collection of tree conditions may be subjective since it depends on the criterion and 

expertise of the data collector.  

 The accuracy of future validation efforts may be improved by including all field 

observations regardless of the position within a pixel, by establishing a unique classification 

scheme of tree conditions, by considering a longer study period that allows for the 

incorporation of more field observation dates, and by testing other reference data such as 

crown density or proportion of live crown. The latter two variables were not considered in 

this work due the high proportion of missing records in the study area and period of 

interest. On the other hand, forest degradation studies may need an entirely different 

validation approach. Although an index that aimed to identify the general condition of the 

forest in each conglomerate was created (see section 3.2.4 for details), forest degradation 

studies may need field observations that evaluate forest as a whole in a given area rather 

than as single individuals (i.e., trees) or plots. Collecting data to properly validate forest 

degradation studies at a regional scale represents an area of opportunity for future 

research.  

3.5. Conclusion   

 This research detected forest degradation over Central Mexico through a trend 

analysis of monthly MODIS LAI collected from 2002 to 2017. The results indicate that 52% 

of the study area has experienced positive trends of vegetation change, 37% has 
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remained unchanged, and 11% has suffered some level of forest degradation. The 

proposed algorithm estimated that 385 km2 are highly degraded, 3,406 km2 moderately 

degraded, and 3,245 km2 slightly degraded. Most of the moderate and highly degraded 

areas are distributed over the east side of the study area and evergreen broadleaf 

appears to be the most affected forest type. 

 This research overcame the problem of detecting very slow and gradual changes 

associated with forest degradation by measuring the strength and magnitude of the 

trend component of pixel-based LAI time series. None of the algorithms cited in this 

document have made use of LAI as vegetation greenness indicator, nor have performed 

this type of trend analysis to detect forest degradation. The main limitation of this study 

is the moderate accuracy of the validation effort (i.e., 63%). Some suggestions to improve 

this accuracy are expressed in section 3.4.3, but also a different approach to validate this 

type of studies is suggested as an area of opportunity for future research.  

 This study is expected to be a contribution to the regional efforts to measuring 

and monitoring forest degradation in Mexico. It could serve as one of the first steps 

towards the mitigation of the serious impacts that forest degradation has on the 

environmental services that these ecosystems provide. Thus, this work suggests that this 

methodology can be applied at the national level and be used as a first look into hot 

spots of forest degradation. 
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4. RESPONSE OF LEAF AREA INDEX TO PRECIPITATION IN THE CONTEXT OF FOREST 

DEGRADATION CONDITIONS 

4.1. Introduction  

 When forest ecosystems are disturbed, the carbon they store is released as 

carbon dioxide (CO2) into the atmosphere, where it contributes to global warming by 

absorbing heat and impeding energy transmission to space. There is evidence that the 

frequency and intensity of some of the hydrometeorological events (e.g., drought, heavy 

storms or snowfall, heat waves, frost, hurricanes, fires) that disturb forest ecosystems 

and frequently lead to degradation processes have increased as climate change becomes 

more evident (IPCC 2014). As a consequence, there has been growing interest in 

understanding the effects of climate variability on a variety of vegetated ecosystems 

aspects, such as carbon storage (Tian et al. 1998; Chen et al. 1999; Bachelet et al. 2001; 

Falloon et al. 2007; Frank et al. 2015), vegetation greenness (Brendel, Bohn, and Piccolo 

2017; Na-U-Dom, Mo, and Garcίa 2017), plant growth (Myneni et al. 1997), growing 

season length (Menzel and Fabian 1999), and net primary production (Nemani et al. 

2003). These aspects may respond differently to variations in climate elements, such as 

temperature or precipitation, depending on the ecosystem conditions.  

 According to Scheffer et al. (2009), ecosystems close to critical transitions are 

more sensitive to disturbances. Seddon et al. (2016) assessed the relative sensitivity of 

global terrestrial ecosystems to climate variability through a vegetation sensitivity index 

(VSI) based on an autoregressive model, whose input data are vegetation greenness 
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(Enhanced Vegetation Index) and climatic driving variables (air temperature, water 

availability and cloud cover). Their study estimated high VSI values for several regions 

with critical ecological thresholds (e.g., boreal and wet tropical forests), as well as for 

areas without critical thresholds (e.g., steppe and prairies). To continue to understand 

the effect of climate variability on vegetation associated with different contexts of 

environmental disturbances, this chapter takes into consideration the forest degradation 

conditions of Central Mexico, which were estimated in Chapter 3 based on a trend 

analysis of Moderate Resolution Imaging Spectroradiometer (MODIS)-Leaf Area Index 

(LAI).  

 Therefore, the objective of this chapter is to evaluate the response of LAI to 

precipitation in Central Mexico in the context of forest degradation conditions. The study 

uses monthly anomalies of MODIS LAI and monthly anomalies of Climate Hazards Group 

InfraRed Precipitation with Station (CHIRPS) data calculated for the period 2002-2017. 

The presence/absence of any LAI response is determined through the Granger causality 

notion, which enables the examination of lagged effects of precipitation over LAI based 

on past values of both variables (Granger 1969). The sign and strength of the LAI 

response (if any) is estimated by means of an Impulse-Response (IR) function, which 

allows for the modelling of the temporal response of LAI to changes in precipitation 

according to the Wold Moving Average representation of a vector autoregressive process 

(Lütkepohl, 2005). The outputs from these methods are grouped and analyzed by forest 

degradation condition, which results in a novel approach to investigate the effect of 

precipitation on vegetation greenness and structure.  
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4.2. Data and methods 

4.2.1. Study area 

 The study area extends over 63,964 km2 and comprises all 500-m pixels of the 

MODIS tile h08v06 that were covered by forest during at least one year between 2002 

and 2017. The MODIS Land Cover product (MCD12Q1, type 3) estimates that 60% of 

these pixels corresponds to deciduous broadleaf forest, 36% to evergreen broadleaf, and 

4% to evergreen needleleaf. According to the trend analysis of LAI performed in Chapter 

3, 52% of the study area has experienced positive trends of vegetation change (i.e., 

increased biomass accumulation), 37% has remained almost unaltered, and 11% has 

suffered negative trends. These findings can be also grouped as non-degraded (89%) and 

degraded (11%) forest (Figure 4.1). Of the 7,036 km2 covered by degraded forest, the 

proposed measure of forest degradation (see sections 3.2.3 and 3.3.1) estimates that 385 

km2 are highly degraded, 3,406 km2 moderately degraded, and 3,245 km2 slightly 

degraded. Most of the moderate and highly degraded areas are distributed over the 

eastern section of the study area and evergreen broadleaf is the most affected forest 

type. 
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Figure 4.1. Study area: forest conditions based on a trend analysis of MODIS LAI, 2002-
2017 

4.2.2. Data and preprocessing 

4.2.2.1. LAI  

 MODIS Terra 8-day LAI composites (MOD15A2H, Collection 6) of the MODIS tile 

h08v06 were acquired from 2002 to 2017 at 500-km spatial resolution. These data were 

downloaded though the Land Processes Distributed Active Archive Center (LP DAAC) 

managed by the NASA Earth Science Data and Information System (ESDIS) project. LAI 

retrievals estimated from the back-up algorithm, which is based on the biome-specific 

empirical relationship between Normalized Difference Vegetation Index (NDVI) and LAI, 

were discarded. Therefore, only LAI retrievals from the main algorithm were considered 

from the analysis. The main algorithm consists of a radiative transfer model (Knyazikhin 
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et al. 1998) accounts for vegetation structure by  comparing the measured values from 

the red and near-infrared spectral regions with previously observed spectral values of six 

biome types and their corresponding LAI values, which are stored in a look-up table 

(Knyazikhin et al. 1998; Myneni et al. 2002; Yang et al. 2006; Jensen et al. 2011; Yan et al. 

2016).  

 All LAI datasets were projected to Lambert Conformal Conic projection in 

ITRF2008 datum and clipped to the study area. The Land Data Operational Product 

Evaluation (LDOPE) tool was used to unpack the LAI Quality Control layers, which helped 

to discriminate retrievals from the back-up algorithm. On a pixel-by-pixel basis, monthly 

anomalies were calculated for each month as the following example: anomaly of January 

2002 = mean of January 2002 - average of all January means of the 2002-2017 period 

(often called climatology). All anomalies were extracted from the raster files and stored 

in a comma-separated values (cvs) file, where each row contains 192 monthly anomalies 

of LAI, which compose the time series of a single pixel. 

4.2.2.2. Precipitation  

 Monthly precipitation anomalies from January 2002 to December 2017 were 

acquired at 0.05o (5.42 km) spatial resolution from the Climate Hazards Group InfraRed 

Precipitation with Station (CHIRPS) dataset, which was developed by the United States 

Geological Survey (USGS) and the Climate Hazards Center (CHC). The CHIRPS dataset 

combines precipitation climatologies (composed of station normals, a variety of satellite 

means, elevation, latitude, and longitude), thermal infrared (TIR) satellite observations 
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produced by the NOAA´s National Climatic Data Center (1981–2008) and the Climate 

Prediction Center (2000-present), Tropical Rainfall Measuring Mission (TRMM) data, 

atmospheric model rainfall fields from the NOAA Climate Forecast System (CFSv2), and in 

situ precipitation observations. The CHIRPS estimation process is based on steps of 5-day 

(pentad) rainfall accumulations. Initially, the algorithm calculates the percentage of time 

in which TIR observations indicate cold cloud tops (<235 oK) during a pentad. This 

percentage is converted into millimeters based on a local regression with TRMM data. 

The resulting TIR precipitation pentads are divided by their long term means to identify 

variations from average conditions. Then, these variations, called percent of normal TIR 

precipitation pentads, are multiplied by the corresponding precipitation climatology 

pentad to generate unbiased gridded estimates reported as millimeters per pentad. 

Finally, the unbiased estimates are blended with stations to produce the CHIRPS product 

(Funk et al. 2014; Funk et al. 2015). 

 Once the downloaded CHIRPS data were projected to Lambert Conformal Conic 

projection in ITRF2008 datum and clipped to the study area, all precipitation anomalies 

were extracted from the raster files and rearranged into a cvs file. Similar to the LAI file, 

each row contains 192 monthly anomalies of precipitation, which constitute the time 

series of a single pixel.  

4.2.3. Estimation of the LAI response to precipitation  

 This section describes the methodology to evaluate the presence, sign, and 

strength of any causal relationship from time series of monthly precipitation anomalies to 
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time series of monthly LAI anomalies. This relationship is assessed by associating each 

500 m-based LAI time series with the corresponding 5.4 km-based precipitation time 

series. Thus, 207,775 multivariate time series entirely constituted by good quality 

estimates of LAI and precipitation were analysed (table 4.1.a) in an R environment (R 

Core Team 2018). The presence of any response was evaluated through the Granger 

causality test, which has been successfully used for similar purposes (e.g., Kaufmann et al. 

2003; Wang et al. 2006, 2007; Jiang, Liang, and Yuan 2015; Papagiannopoulou et al. 

2017). The sign and strength of the response (if any) was estimated by means of an IR 

function, which, although not as frequently used for environmental studies as Granger 

causality, has also been implemented for similar objectives (e.g., Wang et al. 2007; 

Mariano et al. 2018). 

4.2.3.1. Presence of any response  

 In this research, the Granger causality test aims to forecast LAI based on past 

information of LAI and precipitation. If the prediction of LAI is improved after including 

precipitation values as predictors, precipitation is considered to Granger-cause LAI. This 

causality should be interpreted as ‘predictive causality’ rather than ‘true causality’ (Jiang, 

Liang, and Yuan 2015; Papagiannopoulou et al. 2017). Prior to evaluating the presence of 

Granger causality, non-stationary time series  (i.e., those whose statistical properties do 

not remain constant over time and, therefore, cannot be forecasted; Nason 2006) were 

discarded (Table 4.1.b) by means of a Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, 
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which examines the null hypothesis of stationarity around a linear trend (Kwiatkowski et 

al. 1992).  

 To derive the predictions required to examine Granger causality, Vector 

Autoregressive (VAR) models, extensions of univariate autoregression models used to 

analyze multivariate time series (Zivot and Wang 2006), were calculated on pixels 

containing stationary time series of both LAI and precipitation (Table 4.1.b). In this study, 

the implemented VAR model, in which each variable is a linear function of its own lagged 

values and the lagged values of the other variable, is defined as follows: 

 𝒚𝒕 = 𝑨𝟏𝒚𝒕−𝟏+… +  𝑨𝒑𝒚𝒕−𝒑 + 𝑢𝑡, (1) 

where 𝒚𝒕 is a 2𝑥1 vector of LAI and precipitation monthly anomalies at time 𝑡, 𝑢𝑡 assigns 

a white noise process of the same dimension, and 𝑨𝟏, … , 𝑨𝒑 are regression coefficient 

matrices with a dimension of 2 × 2. The p parameter is a 4-month lag, which determines 

how much of the previous information of both variables is included in the model to 

predict LAI (Wang et al. 2006; Pfaff 2008b). The lag length was selected by first testing 

the VAR models using the Akaike Information Criterion (AIC), which finds the lag with 

enough information content on the two variables without over-fitting (Zivot and Wang 

2006). This preliminary analysis showed that the most common optimal lag length among 

all time series was four months. The existence of serial correlation in the VAR residuals 

indicates that some information (e.g., temperature, solar zenith angle, aerosol optical 

depth) is missing in the model to explain the behavior of the variables. Therefore, time 

series with serial correlation at 4-month lag were identified by means of the Portmanteau 
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test, which examines the null hypothesis of no serial correlation (Pfaff 2008b). Those 

pixels were discarded from the analysis (Table 4.1.c).  

Table 4.1. Multivariate time series that meet the following required criteria: a) entirely 
constituted by good quality estimates, b) stationarity in both variables precipitation and 

LAI, and c) absence of serial autocorrelation at the lag length under analysis. These 
criteria are additive. Thus, a time series that meets the c) criterion also meets the a) and 

b) criteria 
 
 

 
Criteria 

Forest conditions 
(total of pixels) 

Degraded Non-degraded  
 

All 
(295,298) 

 
Highly 
(1,792) 

 
Moderately 

(15,869) 

 
Slightly 

(15,114) 

Non-significant 
LAI trend 
(107,884) 

Positive LAI 
trend 

(154,639) 

a) Good quality 1,023 5,918 9,002 75,022 116,810 207,775 

b) Stationarity 101 4,182 7,384 48,722 96,054 156,443 

c) Absence of 
serial 
autocorrelation 
at 4-month lag 

 
62 

 
3,434 

 
6,283 

 
42,713 

 
80,341 

 
132,833 

 

 The presence of Granger causality from precipitation to LAI was finally tested at 

95% confidence level by splitting the vector of LAI and precipitation monthly anomalies 

(𝑦𝑡 in equation 1) as follows:  

 
[
𝒚𝟏𝒕

𝟎

𝒚𝟐𝒕
𝟎 ] =  ∑ [

𝛼11,𝑖
′  𝛼12,𝑖

′

𝛼21,𝑖
′  𝛼22,𝑖

′ ] [
𝑦1,𝑡−𝑖

0

𝑦2,𝑡−𝑖
0 ]  + 𝐶𝐷𝑡 +  [

𝑢1𝑡
0

𝑢2𝑡
0 ]

𝑝

𝑖=1

 
 

(2) 

where 𝒚𝟏𝒕 and 𝒚𝟐𝒕 are the subvectors of precipitation and LAI, whose dimensions are 

(𝐾1 × 1) and (𝐾2 × 2) with 𝐾 = 𝐾1 + 𝐾2, and 𝛼 is the coefficient of the model. 𝐶 is the 

coefficient matrix of potentially deterministic regressors and 𝐷𝑡 is the column vector 

holding the appropriate deterministic regressors. This Granger causality test is an F-type 

test and is distributed as 𝐹(𝑝𝐾1𝐾2, 𝐾𝑇 − 𝑛), where 𝑛 is the number of parameters in 

equation 2 and 𝑇 is the total number of observations. The null hypothesis, stated as 
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precipitation (𝒚𝟏𝒕) does not Granger-cause LAI ( 𝒚𝟐𝒕), is accepted when 𝛼21,𝑖 = 0 for 𝑖 =

1,2, … , 𝑝 and rejected when ∃ 𝛼21,𝑖 ≠ 0 for 𝑖 = 1,2, … , 𝑝 (Pfaff 2008a, 2008b).  

4.2.3.2. Sign and strength of the response  

 The sign and strength of the LAI response to precipitation was estimated by 

applying an IR function to all time series where Granger causality was confirmed. The IR 

function implemented in this study measures the over-time response of LAI to an impulse 

of precipitation based on the Wold Moving Average representation of a VAR(p) process 

(Lütkepohl, 2005), which is expressed as follows: 

 𝑦𝑡 = 𝜙0𝑢𝑡 + 𝜙1𝑢𝑡−1 + 𝜙2 𝑢𝑡−2+. .., (3a) 

𝜙0 = 𝐼𝑘 and 𝜙𝑠 (𝑠 = 1, … ,12) can be computed recursively based on the following 

equation: 

 𝜙𝑠 = ∑ 𝜙𝑠−𝑗𝐴𝑗
𝑠
𝑗=1 , (3b) 

where 𝐴𝑗 = 0 for 𝑗 > 𝑝. The (𝑖, 𝑗)𝑡ℎ coefficients of the matrices 𝜙𝑠 are interpreted as the 

expected response of variable 𝑦𝑖,𝑡+𝑠 to a change in variable 𝑦𝑗𝑡 . Thus, the accumulation 

of these effects over time (𝑠 = 1, … ,12) simulates the impact on variable 𝑖 (LAI) after a 

change in variable 𝑗 (precipitation) at time 𝑠 (Pfaff 2008b).  

4.3. Results 

 The presence of any response of LAI to precipitation was found in 42% of the 132, 

833 multivariate time series in which Granger causality was evaluated (Figure 4.2). 

Overall, the occurrence of causality is higher in non-degraded pixels (43% on average) 
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than in degraded pixels, for which only 28% of the pixels showed causality. The lowest 

presence of causality occurs in highly degraded pixels (23%), while the highest presence 

of causality occurs in pixels with non-significant LAI trends (44%).  

Figure 4.2. Presence of Granger causality from precipitation to LAI at 4-month lag per 
forest degradation condition 

 According to the median of the IR coefficients calculated, the LAI response to 

precipitation is predominantly positive (i.e., LAI increases if precipitation increases and 

decreases if precipitation decreases). It generally reaches its maximum strength three 

months after the precipitation impulse and then tends to gradually disappear (Figure 

4.3). This means that a precipitation decrease produces a LAI decrease, which is most 

noticeable three months after the change in precipitation. Similarly, an increase in 

precipitation results in an increase in LAI. Highly degraded forest tends to deviate from 

the aforementioned behavior by initially exhibiting a negative response (i.e., LAI increases 

if precipitation decreases and decreases if precipitation increases), which becomes 



 

94 
 

positive in the third month and gradually decreases after the fourth month. Additionally, 

highly degraded forest, together with forests with non-significant LAI trends, show the 

weakest LAI responses.  

Figure 4.3. Median of IR Coefficients of pixels that show Granger causality from 

precipitation to LAI (at 4-month lag) per forest degradation condition 

 Figure 4.4 shows the spatial distribution of the IR coefficients estimated for the 

second month and the third month after a given impulse of precipitation. The presence 

of causality occurs in a higher proportion in the analyzed pixels that are located in the 

western side of the study area. The eastern side is characterized by a lower presence of 

causality and generally stronger IR coefficients. Negative responses are more common 

two months after the change in precipitation, especially in the eastern portion of the 

study area, while stronger positive responses dominate three months after the impulse.  
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Figure 4.4. IR coefficients of pixels that show Granger causality from precipitation to LAI 

at 4-month lag 

4.4. Discussion  

4.4.1. Response of LAI to precipitation 

 The occurrence of a generally positive response of LAI to precipitation was found 

in about 42% of the analyzed pixels. This positive response means that greater 

precipitation produces increased vegetation greenness by enhancing water availability, 

higher stomatal conductance and, therefore, higher photosynthetic rates (Gimenez, 

Gallardo, and Thompson 2005). This is in agreement with the global scale study 

conducted by Liu et al. (2006), who detected a highly significant positive effect of 

precipitation on Fraction of Photosynthetically Active Radiation (FPAR) at 1-month lag 

over Central Mexico between 1982 and 2000.   
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 According to the results obtained in Chapter 2 (section 2.3.1), the presence of 

Granger causality from temperature to LAI (around 80%) is higher than from precipitation 

to LAI. This lower occurrence of precipitation to LAI causality does not necessarily suggest 

that precipitation is not an important driver of vegetation dynamics. It may only indicate 

that changes in precipitation are not significant between 2002 and 2017 as confirmed by 

a trend analysis performed on time series of monthly precipitation acquired from the 

CHIRPS dataset (Figure 4.5). Zhou et al. (2003) found a similar pattern in northern forests 

of North America and Eurasia (i.e., evergreen needleleaf, deciduous needleleaf, 

deciduous broadleaf, mixed, and woodlands) between 1982 and 1999. These authors 

reported that temperature imposed the greatest effect on NDVI during this period, while 

precipitation showed a smaller effect. 

Figure 4.5. Precipitation trends, 2002-2017. The direction and significance of these 
trends was calculated trough a Mann-Kendall test (Hamed and Rao 1998) applied to 
trend components, which were extracted from pixel-based time series of monthly 

CHIRPS precipitation by means of a seasonal-trend decomposition procedure based on 
regression (Dokumentov and Hyndman 2015) 
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 Regarding forest degradation conditions, the highest presence of any response of 

LAI to precipitation occurs in non-degraded forests with non-significant LAI trends, while 

the lowest presence occurs in highly degraded forests (Figure 4.2). However, both forest 

conditions exhibit weak LAI responses (Figure 4.3). In forests with non-significant LAI 

trends, this is not surprising due to the state of stability associated with ecosystems that 

remain relatively unchanged during a given period. In other words, these forests may be 

less sensitive to extraordinary rainfall events or droughts. In highly degraded forests, 

these characteristics, together with an unusual behavior observed in the response, may 

be indicators of weak (sometimes nonexistent) recovery responses and an unstable 

ecological state. However, this suggestion should be taken with caution as the theory 

indicates that ecosystems close to critical thresholds respond more sensitively to 

disturbances (Scheffer et al. 2009).  

 Another reason behind this behavior in highly degraded pixels may relate to the 

low capacity of forests in this state to intercept and infiltrate water, which leads to 

erosion processes and, therefore, to an initially negative response of LAI to increased 

precipitation. To better support this statement, this discussion suggests extending this 

research to explore how forest types and the underlying geology may act as a factor in 

this response of LAI to precipitation. 

 Figure 4.6 illustrates the response of LAI to precipitation in pixels located in 

degraded and non-degraded forests. Although there is a statistically significant Granger 

causality in all cases (a-d), only for some pixels (a and c) does the LAI response seem to 
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be clearly associated with precipitation variability. In other pixels (b and d), there appears 

to be other factors (climatic or anthropogenic) influencing this response. While the 

investigation of how LAI is affected specifically by precipitation is crucial, these results  

Figure 4.6. Normalized (from -1 to 1) LAI and precipitation anomalies in selected pixels 
located in degraded (a and b) and non-degraded (c and d) forests 
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have to be interpreted together with other driving variables in order to understand how 

forest ecosystems with different degrees of degradation respond to climate variability.  

4.4.2. Limitations and opportunities  

 This study has three main limitations, two are associated with the data availability 

at specific spatio-temporal scales and one with the methodological approach. First, the 

spatial resolution of the CHIRPS dataset (5.42 km) is not ideally compatible with that of 

the MODIS LAI (500 m) product. However, CHIRPS is considered one of the best possible 

datasets available for regional studies. Second, the climatologies used to estimate 

anomalies of LAI and precipitation were not calculated based on the same period (2002-

2017 for LAI; 1980-2009 for precipitation). LAI anomalies were computed as part of the 

methodology of this research using all temporally available MODIS data, while 

precipitation anomalies were previously calculated by the CHIRPS team according to a 

very detailed protocol (see section 4.2.2.2 and Funck et al. 2015). Third, pixels with non-

stationary time series were discarded, which considerably reduced the number of pixels 

analyzed (Table 4.1.b).  

 The data-related limitations are difficult to avoid as those products are the best 

available at present and the generation of new data is beyond the scope of this research. 

Resampling LAI data to 5.4-km spatial resolution or calculating precipitation anomalies 

based on the 2002-2017 period to create compatibility would bring more uncertainty 

rather than improve the analysis. In contrast, the methodological-related limitation can 

be addressed in future research by detrending non-stationary time series or by 
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implementing the Toda and Yamamoto (1995) procedure, which allows for the 

examination of Granger causality in the context of non-stationary data.   

4.5. Conclusion 

 This work evaluated the response of MODIS-LAI to CHIRPS-precipitation in Central 

Mexico between 2002 and 2017 based on forest degradation conditions, which were 

previously estimated in Chapter 3. The presence/absence of any LAI response was 

determined by means of the Granger causality notion, while the sign and strength of the 

LAI response (if any) was estimated through an IR function. The results indicate that the 

LAI response to precipitation is predominantly positive and occurs in a higher proportion 

in non-degraded pixels (43% in average) than in degraded pixels (28%). Highly degraded 

forests as well as non-degraded forests with non-significant LAI trends show the weakest 

LAI responses, which may be associated with weak recovery responses in the first case 

and with stable ecosystems that are inherently less sensitive to external changes in the 

second. The investigation of the LAI response to precipitation from a forest degradation 

perspective is a novel approach, which contributes to the efforts to understand how 

ecosystems in different ecological states respond to climate variability.  
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5. CONCLUSIONS 

5.1. Forest degradation and climate-vegetation feedbacks in Mexico 

 The general objective of this dissertation was to develop an algorithm to detect 

forest degradation using MODIS images collected over Central Mexico (tile h08v06) 

between 2002 and 2017. The literature on which this research is based reveled that the 

underlying assumption of a constant negative relationship between vegetation greenness 

and surface temperature has guided some studies that aim to identify ecosystem 

disturbances. In this context, the first specific objective evaluated the relationship 

between these two variables to determine the potential of their coupling to assess forest 

degradation. The results of this objective showed that the relationship is not constant 

and its nature (i.e., sign) varies depending on the temporal scale and forest type under 

analysis. Because the premise of a constant negative relationship between vegetation 

greenness and surface temperature was discarded as a foundation on which to build the 

algorithm, the second objective focused only on vegetation greenness by developing a 

forest degradation algorithm that relies on a trend analysis of MODIS-LAI. The use of LAI 

was proposed to facilitate consideration of the structural changes evident from 

degradation though not necessarily observable through widely used vegetation spectral 

indices, such as NDVI and EVI. The degraded and non-degraded areas detected by the 

developed algorithm served as a scenario for the third objective, which evaluated the 

MODIS-LAI response to precipitation in the context of forest degradation conditions. The 

specific conclusions derived from each of the objectives can be summarized as follows: 
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- Objective 1 contributed to the understanding of relationship between vegetation 

greenness and surface temperature by evaluating the annual and intraseasonal 

relationship between monthly anomalies of MODIS-LAI and monthly anomalies of 

MODIS-LST. The presence/absence of any relationship was investigated through 

the notion of Granger causality, while the sign and strength of the relationship 

was estimated by means of an IR function. Unlike traditional regression and 

correlation analysis, the Granger causality approach enabled the examination of 

lagged effects of one variable over the other based on past values of both 

variables. IR coefficients, which have been rarely used in the related literature, 

helped to model the over-time response of a variable to the change of another 

variable. The results showed that, at any temporal scale, Granger causality from 

LST to LAI occurs more consistently than causality in the opposite direction. At the 

annual scale, the relationship is primarily negative in both directions and usually 

weaker from LAI to LST. At the seasonal scale, the occurrence of LST to LAI 

causality is higher in spring (it occurs in about 40% of all the evaluated pixels) and 

lower in winter (10%). The effect of LST on LAI is predominantly negative and 

particularly strong (median coefficient one month after impulse -0.043) in 

deciduous broadleaf forest during summer. On the other hand, the effect of LAI 

on LST is mainly positive in fall and negative in the remaining seasons, except for 

evergreen needleleaf forest where the effect is negative only in summer. The 

highest presence (23%) and strength (-0.039) of LAI to LST causality occurs in 

spring over deciduous broadleaf forest. Based on these findings, caution has to be 
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exercised when assuming a consistent strong negative relationship between 

vegetation greenness and surface temperature, which seems to be the general 

consensus in much of the literature that makes use of these two variables to 

study an environmental phenomenon. 

- Objective 2 overcame the challenge of detecting subtle and gradual vegetation 

changes associated with forest degradation by analyzing the trend component of 

MODIS-LAI time series. A STR model was used to extract the trend component, 

whose strength and magnitude were calculated through a modified Mann-Kendall 

non-parametric test and the Theil-Sen´s slope test, respectively. The product of 

the strength and magnitude was proposed as a measure of forest degradation. 

The analysis found that 52% of the study area has experienced increasing LAI 

trends, 37% has remained unchanged, and 11% has exhibits decreasing LAI 

trends. Of the total area where negative trends were detected, the algorithm 

estimated that 385 km2 are highly degraded, 3,406 km2 moderately degraded, 

and 3,245 km2 slightly degraded. Most of the moderate and highly degraded 

areas are distributed over the east side of the study area and evergreen broadleaf 

seems to be the most affected forest type. The algorithm showed 63% of 

accuracy. The validation was performed by comparing the trend analysis with an 

analogous trend analysis of a health index calculated using reference data from 

the Mexico’s NFSI. Some actions to improve the accuracy were recommended, 

but also a different validation approach was suggested as an area of opportunity 

for future research. 
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- Objective 3 evaluated the response of LAI to precipitation based on the forest 

degradation conditions estimated in objective 2. The study used monthly 

anomalies of MODIS-LAI and monthly anomalies CHIRPS-precipitation. The 

presence/absence of any LAI response was determined by means of the Granger 

causality notion, while the sign and strength of the LAI response was estimated 

trough an IR function. The results demonstrated that the occurrence of LAI to 

precipitation causality is predominantly positive and higher in non-degraded 

pixels (43% in average) than in degraded pixels (28%). Non-degraded forests with 

non-significant LAI trends as well as highly degraded forests exhibit the weakest 

LAI responses, which may be associated with stable ecosystems less sensitive to 

external changes and with weak recovery responses, respectively. The forest 

degradation perspective adopted by this objective is a novel approach to 

investigate the effect of precipitation on vegetation greenness. 

  Overall, this dissertation suggests the application of the proposed methodology at 

national level in Mexico as a first step towards the mitigation of the forest degradation 

impacts on environmental services, especially those related to climate regulation through 

carbon sequestration. Moreover, the results of the first and third objective are expected 

to contribute to the body of knowledge that aims to comprehend the feedbacks between 

the climate and vegetation. Specifically, the third objective is expected to contribute to 

the understanding of how ecosystems in different ecological states respond to climate 

variability. 
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5.2. Limitations and future directions 

 The limitations and future directions of this research can be divided into the two 

following categories: 

- Data-related. Although the data selected to carry out this dissertation are 

considered the best possible information available, they present some limitations. 

The Mexico’s NFSI tree conditions used to validate the forest degradation 

algorithm have the following disadvantages: the spatial extent of the collected 

data is not ideally compatible with the spatial resolution of the MODIS pixels, the 

classification schemes are slightly different between forest inventories, the 

number of field observation dates within the study period is limited for the 

purposes of a trend analysis, and the collection of tree conditions may be 

subjective since it is a qualitative variable. These shortcomings hindered an 

appropriate validation. Therefore, future validation efforts may be improved by 

establishing a unique classification scheme, by considering a longer study period 

that allows for the incorporation of more field observation dates, and by testing 

the performance of reference data derived from quantitative variables. The 

exploration of different approaches to validate degradation studies and 

evaluating forest degradation directly from the Mexico’s NFSI data are 

suggestions for future research. Regarding the remotely sensed data, the spatial 

resolution of the CHIRPS-precipitation (5.42 km) dataset is not ideally compatible 

with that of the MODIS-LAI (500 m) product. Moreover, the climatologies used to 
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estimate anomalies of LAI and precipitation were not calculated based on the 

same period (2002-2017 for LAI; 1980-2009 for precipitation). These two 

limitations are difficult to avoid as these datasets are the best available at this 

spatio-temporal scale. However, future research may explore the possibility of 

applying a downscaling procedure to current precipitation datasets, as well as the 

possibility of calculating equivalent anomalies.   

- Methodology-related. The main methodological limitation of this research is 

associated with the reduced number of pixels on which Granger causality was 

tested. Only pixels with stationary time series were considered for analysis. 

Future studies may investigate the possibility of detrending the trajectories of 

non-stationary time series or implementing the Toda and Yamamoto (1995) 

procedure, which allows for the examination of Granger causality in the context 

of non-stationary data. Another limitation that can be addressed in future 

research deals with the false continuity on the season-based time series that 

were used to evaluate the intraseasonal relationship between LAI and LST. This 

false continuity was originated when the three monthly anomalies of a particular 

season were joined to the three monthly anomalies occurring the following year 

during the same season. This provokes the model to estimate not only 

intraseasonal relationships but also interannual relationships of a given season.  

 By addressing these limitations, future research can better estimate forest 

degradation and evaluate vegetation-climate feedbacks at regional scale. 
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