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EXISTENCE OF SOLUTIONS FOR A BVP OF A SECOND
ORDER FDE AT RESONANCE BY USING KRASNOSELSKII’S

FIXED POINT THEOREM ON CONES IN THE L1 SPACE

GEORGE L. KARAKOSTAS, KONSTANTINA G. PALASKA

Abstract. We provide sufficient conditions for the existence of positive solu-
tions of a nonlocal boundary value problem at resonance concerning a second

order functional differential equation. The method is developed by inserting
an exponential factor which depends on a suitable positive parameter λ. By

this way a Green’s kernel can be established and the problem is transformed

into an operator equation u = Tλu. As it can be shown the well known Kras-
noselskii’s fixed point theorem on cones in the Banach space C[0, 1] cannot

be applied. More exactly, there is no (positive) value of the parameter λ for

which the condensing property ‖Tλu‖ ≤ ‖u‖, with ‖u‖ = ρ(> 0) is satisfied.
To overcome this fact we enlarge the space C[0, 1] and work in L1[0, 1] where,

now, Krasnoselskii’s fixed point theorem is applicable. Compactness criteria

in this space are, certainly, needed.

1. Introduction

Let p be a function defined on the set [0, 1] × L1[0, 1] into the positive real
numbers. In this paper we are dealing with the existence of positive solutions of a
boundary-value problem concerning a second order functional differential equation
of the form

(Lu)(t) := u′′(t) = −p(t, u)u(t), a.a. t ∈ [0, 1] =: I, u(0) = 0 (1.1)

under the boundary value condition

(Tu) := u′(1)−
∫ 1

0

u′(r)dg(r) = 0, (1.2)

where g is a nondecreasing function such that∫ 1

0

dg(s) = 1. (1.3)

Under this condition we observe that

ker(L) ⊆ ker(T ).
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Hence no Green’s function can directly be computed. (The latter means that any
(nontrivial) solution u(t) = kt of the problem u′′ = 0, u(0) = 0 satisfies the bound-
ary conditions.) Thus the problem is at resonance. In the literature such problems
are approached in several ways. The more classical one is to decompose the space
we work in the form of a direct sum of subspaces, one of which is ker(L) and then
to work with the corresponding projections on these spaces. For this method, and
for another search on boundary value problems at resonance, one can consult, for
instance, [26, 32, 38, 40] and the references therein. In several works one can see
the application of the so called coincidence degree theory of Mawhin [32, 33, 36],
where the key tool is the following fact:

Let A be the one-dimensional space of linear functions yc(t) = ct, t ∈ I, with
c ∈ R and let J : A → R be the natural isomorphism J(yc) = c. Then for each
open and bounded subset U of A with 0 ∈ U , it holds

deg(J, U, 0) = signJ(yc)=0J
′(yc) = signJ ′(0) 6= 0.

Another interesting way of investigation of such problems, is by a regularization
process based on variational methods, see, e.g, [3, 4, 16, 20, 24, 25, 37, 39].

Nonlocal boundary value problems for ordinary differential equations arise in
several branches of applied mathematics and physics. The study of such problems
with linear and nonlinear ordinary differential equations was, mainly, initiated in [7,
12, 13, 15, 18]. The methods used therein is based on Leray - Schauder continuation
theorem, nonlinear alternatives of Leray - Schauder, coincidence degree theory and
some fixed point theorems, see, e.g., [1, 2, 6, 17] and references therein.

In this paper we suggest a new method relying on a transformation of the orig-
inal equation by using an additive factor of the form eλt, for a suitable positive
parameter λ. The idea was established in a boundary value problem discussed in
[19], (where in Assumption (H1) one can get p = λ − λ and q = 0.) The result-
ing equation for some specific values of the parameter may permit us to obtain a
Green’s function and then apply the well known Krasnoselskii’s fixed point theorem
on cones, [31], which states as follows.

Theorem 1.1. Let B be a Banach space and let K be a cone in B. Assume that
Ω1 and Ω2 are open subsets of B, with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1)→ K
be a completely continuous operator such that either

‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2,

or
‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then A has a fixed point in K ∩ (Ω2 \ Ω1).

Here we shall apply Theorem 1.1 on the Banach space L1(I) and to the best
of our knowledge, it is the first paper where a space different than C(I) is used.
The actual reason to apply such an idea is written in the footnote of Theorem 3.7.
Therefore here we have to spend more space of the paper on notions concerning
some topological means (such as closedness and compactness) of L1(I).

Recall that an operator A : X → Y is completely continuous if it is continuous
and maps bounded sets into precompact sets. A set is precompact if its closure is
compact.
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Let us agree on the motation we shall use here.
Let R be the real line with norm | · | and R+ the set of nonnegative reals. In this

work we shall work in two Banach spaces:
The space C(I) of all continuous functions x : I → R with norm ‖ · ‖sup, and its

superspace L1(I) with norm ‖ · ‖L1 . It is known that it holds

‖u‖L1 ≤ ‖u‖sup,

for any u ∈ C(I). We shall denote by C+(I) the set of nonnegative functions
u ∈ C(I) and by L1

+(I) the set of all u ∈ L1(I) with u(t) ≥ 0, a.e. in I.
Our first essential step is to reformulate the boundary value problem into a fixed

point problem of an operator acting on the space L1(I), thus the fixed point u of
the operator will be a function in this space. However, as it is shown, any fixed
point u of this operator is a solution of the boundary value problem, thus u must
solve the original differential equation (1.1), namely it is a differentiable function.
At least u is an element of the space C(I).

Since we use compactness in the L1-sense, we need to recall the classical well
known Kolmogorov - Riesz - Fréchet Compactness Theorem, (see, e.g. the book by
Brezis [8, p. 111], or a recent article [14, Theorem 5 and Cor. 8]) which reads as
follows: (Notice that a set in a semimetric space is compact if it closed and totally
bounded.)

Theorem 1.2 (Kolmogorov - Riesz - Fréchet). Let 1 ≤ p < +∞. A subset F of
Lp(Rn) is totally bounded if and only if

(i) F is bounded,
(ii) for every ε > 0 there is some R such that for every f ∈ F it holds∫

|x|>R
|f(x)|pdx < εp,

(iii) the family F is equicontinuous in mean, in the sense that for every ε > 0
there is some ρ > 0 so that, for every f ∈ F and y ∈ Rn, with |y| < ρ it
holds

‖f(·+ y)− f(·)‖p =
[ ∫

Rn
|f(x+ y)− f(x)|pdx

]1/p
< ε.

We shall apply this theorem adjusted to L1(I), where, clearly, condition (ii) is
satisfied. (Extend any u ∈ L1(I) to L1(R), by setting u(s) = 0 for s ∈ R \ I).

Problem (1.1)-(1.2) is a nonlocal boundary value problem which includes as
special cases multipoint boundary value problems considered by several authors
during the previous decade. More details about this problem can be found e.g.
in the papers [26, 27, 28, 29, 30] and into their references. Moreover due to the
functional dependence of p on u, the equation can have an integro-differential form,
or generally, a functional-differential form. In the literature one can see a lot of
works concerning boundary value problems with delay or functional dependence,
of first, second or third order, see, e.g., [9, 10, 23, 21, 22, 41] and the references
therein.

The paper is organized as follows: In Section 2 we present the conditions satisfied
by the functions g and p. Then we reformulate the boundary value problem and
built an integral operator equation equivalent to the problem. The main result is
given in the end of Section 3, but first we give several auxiliary lemmas concerning
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properties of the kernel and refer to some (known) topological properties of the
space L1(I). The paper closes with a simple application of the existence result.

2. Conditions and reformulation of the BVP problem

Before we present our conditions, we make the following convention: Assume
that X,Y are two normed spaces with norms ‖ · ‖X , ‖ · ‖Y respectively. Then, the
phrase J is [‖ · ‖X − ‖ · ‖Y ]-continuous will be used to emphasize the continuity of
a function J : X → Y . To proceed we need to present our basic conditions:

Hypothesis 2.1. The function g satisfies (1.3), as well as the following: There are
τ1, τ2, τ3 ∈ (0, 1) with τ1 < τ2 < τ3 and τ2 + τ3 < 1, such that

0 = g(τ1) < g(τ2) < g(τ3) ≤ g(1) = 1.

Example 2.2. The function g defined by

g(s) :=
1
5
χ[ 15 ,

2
5 )(s) +

2
5
χ[ 25 ,

3
5 )(s) + χ[ 35 ,1]

(s),

satisfies Hypothesis 2.1, with τ1 = 1
10 , τ2 := 1

5 and τ3 := 1
2 .

Note that Hypothesis 2.1 implies the following useful inequality:

1−
∫ 1

0

r2dg(r) =
∫ 1

0

(1− r2)dg(r) ≥
∫ τ3

τ2

(1− r2)dg(r)

≥ (1− τ2
3 )(g(τ3)− g(τ2)) > 0.

(2.1)

As we said in the beginning, the function p maps the set I×L1(I) into the positive
real numbers. Assume that p(t, 0) = 0, for all t ∈ I and moreover it satisfies the
following conditions:

Hypothesis 2.3. p(·, u) is continuous in t ∈ I for all u and p(t, ·) is [‖ · ‖L1‖− | · |]-
continuous uniformly for all t.

Hypothesis 2.4. The mapping u→ p(t, u) : L1(I)→ [0,+∞) sends bounded sets
into bounded sets, uniformly for t ∈ I.

Hypothesis 2.5. There exists an interval (α, β) ⊆ [τ2, τ3] with the following prop-
erties: Given any R > 0 there is some N > 0 such that for any u ∈ L1

+(I) with
u(s) ≥ N , for a.a. s ∈ [τ2, τ3], it holds p(t, u) ≥ R, for all t ∈ [α, β].

Because of Hypothesis 2.5, the dependence of p on the argument u cannot be
point-wise. Our requirement is that p depends on the values of u at least on an
open subinterval of [τ2, τ3]. Thus its dependence would be, for example, through
an integral. Here is such an example (which will be used in an application given at
the end of this paper):

Example 2.6. Consider the function

p(t, u) := (1 + t)
∫ t

0

a(t, s)u(s)ds,

where a(t, s) is continuous in t, s ∈ I. If there is a constant k1 such that 0 < k1 ≤
a(t, s), then p satisfies the Conditions 2.3, 2.4, 2.5.
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Proof. Hypothesis 2.3 is obvious. Hypothesis 2.4 follows from the fact that

p(t, u) ≤ 2k2‖u‖L1(I),

where k2 := maxt,s∈I a(t, s). Now choose an open interval (α, β) ⊆ [τ2, τ3] by
taking, for instance, the constants

α :=
2
3
τ2 +

1
3
τ3 and β :=

1
3
τ2 +

2
3
τ3. (2.2)

Then Hypothesis 2.5 is implied by the inequality

p(t, u) ≥ (1 + t)k1

∫ α

τ2

u(s)ds ≥ k1N(α− τ2) =
1
3
k1N(τ3 − τ2) ≥ R.

The last inequality holds if we choose N ≥ 3R/k1(τ3 − τ2). �

Next we proceed to the formulation of the problem. We shall elaborate a little
on the equation and the boundary conditions, in order to built an integral form of
the problem.

Fix a positive parameter λ, which will be defined later in Section 3, and consider
the auxiliary equation

u′′(t) + λu′(t) = λu′(t)− p(t, u)u(t), a.a. t ∈ [0, 1],

associated with the initial value u(0) = 0 and the boundary value condition (1.3).
Multiple both sides with eλt and integrate to obtain

u′(t)− λu(t) = e−λtu′(0)− e−λt
∫ t

0

eλsF (s, u)ds,

where F is the function

F (s, u) := λ2u(s) + p(s, u)u(s). (2.3)

(According to Hypothesis 2.3 the function F is integrable.) Again, multiplying
both sides with e−λt and integrating we get

u(t) =
u′(0)
λ

sinh(λt)−
∫ t

0

eλ(t−2r)

∫ r

0

eλsF (s, u) ds dr.

From this it follows that

u′(t) = u′(0) cosh(λt)− λ
∫ t

0

eλ(t−2r)

∫ r

0

eλsF (s, u) ds dr − e−λt
∫ t

0

eλsF (s, u)ds.

To eliminate the factor u′(0) we use (1.2). Thus we must have

u′(0) cosh(λ)− λ
∫ 1

0

eλ(1−2r)

∫ r

0

eλsF (s, u) ds dr − e−λ
∫ 1

0

eλsF (s, u)ds

= u′(0)
∫ 1

0

cosh(λt)dg(t)− λ
∫ 1

0

∫ t

0

eλ(t−2r)

∫ r

0

eλsF (s, u) ds drdg(t)

−
∫ 1

0

e−λt
∫ t

0

eλsF (s, u) ds dg(t)

(2.4)

Next, we apply Fubini’s theorem and get the following:

λ

∫ 1

0

eλ(1−2r)

∫ r

0

eλsF (s, u) ds dr =
∫ 1

0

sinh(λ(1− s))F (s, u)ds,
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λ

∫ 1

0

∫ t

0

eλ(t−2r)

∫ r

0

eλsF (s, u) ds dr dg(t)

=
∫ 1

0

∫ t

0

sinh(λ(t− s))F (s, u) ds dg(t)

=
∫ 1

0

∫ 1

s

sinh(λ(r − s))dg(r)F (s, u)ds,∫ 1

0

e−λr
∫ r

0

eλsF (s, u) ds dg(r) =
∫ 1

0

(∫ 1

s

e−λ(r−s)dg(r)
)
F (s, u)ds.

Hence (2.4) gives

u′(0) =
1

hλ(0)

∫ 1

0

hλ(s)F (s, u)ds,

where the function h is defined by

hλ(s) := cosh(λ(1− s))−
∫ 1

s

cosh(λ(r − s))dg(r), s ∈ I.

Therefore the solution u satisfies the integral equation

u(t) =
1

λhλ(0)
sinh(λt)

∫ 1

0

hλ(s)F (s, u)ds−
∫ t

0

∫ r

0

eλ(t+s−2r)F (s, u) ds dr,

which can be written as

u(t) =
∫ 1

0

Gλ(t, s)F (s, u)ds, (2.5)

where the (one parameter) Green’s function Gλ is defined by

Gλ(t, s) :=
sinh(λt)
λhλ(0)

hλ(s)− 1
λ

sinh(λ(t− s))χ[0,t](s).

Function hλ plays an important role in all the sequel. Here we must notice that,
due to Hypothesis 2.1, it holds dg(s) = 0 for all s near zero. Hence, in such a
neighborhood, hλ can be differentiated:

h′λ(s) = −λ sinh(λ(1− s)) + λ

∫ 1

s

sinh(λ(r − s))dg(r), s ∈ (0, τ1). (2.6)

Claim: Function hλ is positive and it stays away form zero.
To prove it observe that for all s ∈ [0, 1] it holds

hλ(s) = cosh(λ(1− s))−
∫ 1

s

cosh(λ(r − s))dg(r)

= cosh(λ(1− s))g(s) +
∫ 1

s

[cosh(λ(1− s))− cosh(λ(r − s))]dg(r).

Let s ≤ τ2. Then we have

hλ(s) ≥
∫ 1

s

[cosh(λ(1− s))− cosh(λ(r − s))]dg(r)

≥
∫ τ3

τ2

[cosh(λ(1− s))− cosh(λ(r − s))]dg(r)

≥ [cosh(λ(1− τ2))− cosh(λτ3)](g(τ3)− g(τ2)).

(2.7)
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Also, for s ≥ τ2 we have

hλ(s) ≥ cosh(λ(1− s))g(s) ≥ g(τ2).

Hence for all s ∈ [0, 1] we have

b ≤ hλ(s) ≤ cosh(λ),

where b is the real number given by

b := min{g(τ2), [cosh((λ(1− τ2))− cosh(λτ3)][g(τ3)− g(τ2)]}, (2.8)

which is positive, and the Claim is proved.
Now we need to give some properties of Gλ. Clearly, for s > t it becomes

Gλ(t, s) =
sinh(λt)
λhλ(0)

hλ(s)

and for s ≤ t,

Gλ(t, s) =
1

λhλ(0)
[sinh(λt)hλ(s)− hλ(0) sinh(λ(t− s))]. (2.9)

We rewrite the quantity in the brackets as

sinh(λt)
[

cosh(λ(1− s))−
∫ 1

s

cosh(λ(r − s))dg(r)]

− [cosh(λ)−
∫ 1

0

cosh(λr)dg(r)] sinh(λ(t− s))

= sinh(λt) cosh(λ(1− s))− cosh(λ) sinh(λ(t− s))

+
∫ 1

s

[
sinh(λ(t− s)) cosh(λr)− sinh(λt) cosh(λ(r − s))

]
dg(r)

+ sinh(λ(t− s))
∫ s

0

cosh(λr)dg(r)

=
1
4

[(eλt − e−λt)(eλ(1−s) + e−λ(1−s))− (eλ + e−λ)(eλ(t−s) − e−λ(t−s))]

+
1
4

∫ 1

s

[
[(eλ(t−s) − e−λ(t−s))(eλr + e−λr)

− (eλt − e−λt)(eλ(r−s) + e−λ(r−s))
]
dg(r) + sinh(λ(t− s))

∫ s

0

cosh(λr)dg(r)

which is equal to

sinh(λs) cosh(λ(1− t))g(s) +
∫ s

0

sinh(λ(t− s)) cosh(λr)dg(r)

+
∫ 1

s

sinh(λs)[cosh((λ(1− t))− cosh(λ(r − t))]dg(r).

Therefore the Green’s function, for s ≤ t, becomes

Gλ(t, s)

=
1

λhλ(0)

[
sinh(λs) cosh(λ(1− t))g(s) +

∫ s

0

sinh(λ(t− s)) cosh(λr)dg(r)

+
∫ 1

s

sinh(λs)[cosh((λ(1− t))− cosh(λ(r − t))]dg(r)
]
.

(2.10)
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The previous presentation idicates that the Green’s function is strictly positive for
all t, s ∈ (0, 1].

Lemma 2.7. Let Tλ be the operator defined on the space L1(I) by

(Tλu)(t) =
∫ 1

0

Gλ(t, s)F (s, u)ds. (2.11)

Then a function u ∈ L1
+(I) solves problem (1.1)-(1.3) if and only if it is (a differ-

entiable function which is) a fixed point of the operator equation u = Tλu.

Proof. The “if” part was proved in the lines above. To show the “only if” part,
write u = Tλu in the form (2.5). Then observe first that (Tλu)(0) = 0 and u is
differentiable, satisfying

u′(t) =
cosh(λt)
hλ(0)

∫ 1

0

hλ(s)F (s, u)ds−
∫ t

0

cosh(λ(t− s))F (s, u)ds.

This formula implies that u is a C2 function. For t = 0, we have

u′(0) =
1

hλ(0)

∫ 1

0

hλ(s)F (s, u)ds, (2.12)

and so u satisfies

u′(t) = cosh(λt)u′(0)−
∫ t

0

cosh(λ(t− s))F (s, u)ds.

This gives

u′(t)− λu(t) = e−λtu′(0)−
∫ t

0

e−λ(t−s)F (s, u)ds,

and so

eλt[u′(t)− λu(t)] = u′(0)−
∫ t

0

eλs(λ2u(s) + p(s, u)u(s))ds.

By differentiation we see that u solves equation (1.1).
To show that condition in (1.2) is satisfied, we must prove that it holds

cosh(λ)u′(0)−
∫ 1

0

cosh(λ(1− s))F (s, u)ds

= u′(0)
∫ 1

0

cosh(λr)dg(r)−
∫ 1

0

∫ r

0

cosh(λ(r − s))F (s, u) ds dg(r).

This relation is equivalent to

u′(0)hλ(0) = u′(0)[cosh(λ)−
∫ 1

0

cosh(λr)dg(r)]

=
∫ 1

0

cosh(λ(1− s))F (s, u)ds−
∫ 1

0

∫ r

0

cosh(λ(r − s))F (s, u) ds dg(r)

=
∫ 1

0

cosh(λ(1− s))F (s, u)ds−
∫ 1

0

∫ 1

s

cosh(λ(r − s))dg(r)F (s, u)ds

=
∫ 1

0

[cosh(λ(1− s))−
∫ 1

s

cosh(λ(r − s))dg(r)]F (s, u)ds.

namely (2.12). Thus (1.2) is true. �
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3. Main results

From now on we shall assume that the parameter λ satisfies the following con-
dition:

Hypothesis 3.1. There exist positive real numbers λ, σ, δ such that

λ2 sup
s∈I

∫ 1

0

Gλ(t, s)dt ≤ σ < 1, (3.1)

inf
t∈[α,β]

Pλ(t) ≥ δ > 0, (3.2)

where the function Pλ is defined by

Pλ(t) := cosh(λ(1− t))−
∫ 1

0

cosh(λ(r − t))dg(r). (3.3)

For instance the function g defined in Example 2.2 satisfies Hypothesis 3.1, for
all λ ∈ (0, 0.85] and α, β defined, for example, as in (2.2) (This fact can be justified
by applying a standard numerical process). With λ = 0.85, the constant δ can take
any value in the interval (0, 0.78]. From now on we shall use such a λ.

Lemma 3.2. For each t > 0 it holds

lim
s→0

Gλ(t, s)
Gλ(s, s)

=
Pλ(t)
hλ(0)

. (3.4)

Proof. Fix any t ∈ I. Since Gλ(t, 0) = 0 = Gλ(0, 0) we shall apply L’ Hospital’s
rule to find the desired limit To this end we need to know the limit of d

dsGλ(t, s)
as s→ 0. First we observe that for all s ∈ (0, τ1] it holds

1
s

[ ∫ 1

s

cosh(λ(r − s)dgr −
∫ 1

0

cosh(λr)dg(r)
]

=
1
s

[ ∫ 1

0

[cosh(λ(r − s)dgr −
∫ 1

0

cosh(λr)]dg(r)
]

→ −λ
∫ 1

0

sinh(λr)dg(r),

as s→ 0. Hence we have

d

ds
Gλ(t, 0) =

1
hλ(0)

([
sinh(λt)

(
− sinh(λ) +

∫ 1

0

sinh(λr)dg(r)
)]

+
[

cosh(λ)−
∫ 1

0

cosh(λr)dg(r)
]

cosh(λt)
)

=
Pλ(t)
hλ(0)

,

where Pλ is defined in relation (3.3). On the other hand it holds

d

ds
G(s, s)

∣∣∣
s=0

=
cosh(λs)hλ(s)

hλ(0)
+

sinh(λs)
hλ(0)λ

[
− λ sinh(λ(1− s))

+ λ

∫ 1

s

sinh(λ(r − s))dg(r)
]∣∣∣
s=0

= 1.

(Here we took into account relation (2.6).) These two relations imply the result. �
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Lemma 3.3. There exists a positive constant µ, such that

µGλ(s, s) ≤ Gλ(t, s), s ∈ [0, 1], α ≤ t ≤ β. (3.5)

Proof. From Lemma 3.2 and the inequality

0 <
δ

2 cosh(λ)
<

δ

2hλ(0)
≤ Pλ(t)
hλ(0)

,

we conclude that there is s1 ∈ (0, τ1] such that

δ

2 cosh(λ)
=: µ0 ≤

Gλ(t, s)
Gλ(s, s)

, s ∈ [0, s1], t ∈ [α, β].

Now, fix any t ∈ [α, β] and take into account (3.2). Let s ≥ s1. If s ≥ t, it holds

Gλ(t, s)
Gλ(s, s)

=
sinh(λt)
sinh(λs)

≥ sinh(λα)
sinh(λ)

.

Let s1 ≤ s ≤ t. If s ≤ τ2, then from (2.10) we see that

Gλ(t, s)

≥ 1
λhλ(0)

[ ∫ 1

s

sinh(λs)[cosh(λ(1− t))− cosh(λ(r − t))]dg(r)
]

≥ 1
λhλ(0)

[ ∫ τ3

τ2

sinh(λs1)[cosh(λ(1− t))− cosh(λ(r − t))]dg(r)
]

≥ 1
λhλ(0)

[
sinh(λs1)[cosh(λ(1− τ2))− cosh(λ(τ3 − τ2))]

]
(g(τ3)− g(τ2)).

The quantity in the brackets is strictly positive.
If τ2 ≤ s ≤ t, again, from (2.10) we get

Gλ(t, s) ≥ 1
λhλ(0)

sinh(λs) cosh(λ(1− t))g(s) ≥ 1
λ cosh(λ)

sinh(λτ2)g(τ2).

Finally, if t ≤ s then

Gλ(t, s) =
sinh(λt)
λhλ(0)

hλ(s) ≥ sinh(λα)
λ cosh(λ)

b.

From the previous arguments and the fact that, for all s ∈ I, it holds

Gλ(s, s) =
1

λhλ(0)
sinh(λs)hλ(s) ≤ sinh(λ)

λhλ(0)
cosh(λ) ≤ sinh(2λ)

2λb
,

we, finally, conclude that

min
t∈[α,β],s∈I

Gλ(t, s)
Gλ(s, s)

= µ

exists and it is a positive real number. The proof is complete. �

Lemma 3.4. There exists a positive constant M , such that

Gλ(t, s) ≤MGλ(s, s), s, t ∈ [0, 1].

Proof. From relation (3.4) and the fact that

Pλ(t)
hλ(0)

≤ cosh(λ)
b

,
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it follows that there is a certain s2 ∈ (0, 1), such that
Gλ(t, s)
Gλ(s, s)

≤ 2 cosh(λ)
b

, s ∈ [0, s2], t ∈ I.

Also, for all s ∈ [s2, t] we have
Gλ(t, s)
Gλ(s, s)

≤ sinh(λt)
sinh(λs)

≤ sinh(λ)
sinh(λs2)

,

and for s ≥ t,
Gλ(t, s)
Gλ(s, s)

=
sinh(λt)
sinh(λs)

≤ sinh(λt)
sinh(λt)

= 1.

Now set

M := max{2 cosh(λ)
b

,
sinh(λ)

sinh(λs2)
, 1} = max{2 cosh(λ)

b
,

sinh(λ)
sinh(λs2)

},

and the proof is complete. �

Lemma 3.5. The operator Tλ, defined in (2.11), is completely continuous, i.e., it
is [‖ · ‖L1 − ‖ · ‖L1 ]-continuous and it maps bounded subsets of L1(I) into totally
bounded sets of L1(I).

Proof. To prove the continuity of Tλ consider a sequence (un) and a function v ∈ L1,
such that ‖ · ‖L1-limun = v. We observe that

‖Tun − Tv‖L1

=
∣∣∣ ∫ 1

0

∫ 1

0

Gλ(t, s)F (s, un) ds dt−
∫ 1

0

∫ 1

0

Gλ(t, s)F (s, v) ds dt
∣∣∣

=
∣∣∣ ∫ 1

0

∫ 1

0

Gλ(t, s)[F (s, un)− F (s, v)] ds dt
∣∣∣

=
∣∣∣ ∫ 1

0

(∫ 1

0

Gλ(t, s)dt
)

[F (s, un)− F (s, v)]ds
∣∣∣

≤
∫ 1

0

(∫ 1

0

Gλ(t, s)dt
)
|F (s, un)− F (s, v)|ds

≤ sup
s∈I

(∫ 1

0

Gλ(t, s)dt
)∫ 1

0

|F (s, un)− F (s, v)|ds

≤ σ

λ2

(
λ2‖un − v‖L1 + sup

s∈I
|p(s, un)− p(s, v)|‖un‖L1 + sup

s∈I
p(s, v)‖un − v‖L1

)
.

This quantity converges to 0.
To prove the totally boundedness step, we shall apply Theorem 1.2. So let F

be a bounded subset of L1(I). This guarantees the existence of some κ > 0 such
that ‖u‖L1 ≤ κ, for all u ∈ F . According to Hypothesis 2.4, to this constant there
corresponds a certain Nκ > 0 such that

|p(s, u)| ≤ Nκ, s ∈ I, u ∈ F . (3.6)

Then we have

‖Tλu‖L1 =
∫ 1

0

∣∣∣ ∫ 1

0

Gλ(t, s)F (s, u) ds
∣∣∣ dt

≤
∫ 1

0

(∫ 1

0

Gλ(t, s)dt
)
|F (s, u)|ds
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≤ sup
s∈I

(∫ 1

0

Gλ(t, s)dt
)∫ 1

0

|F (s, u)|ds

≤ sup
s∈I

(∫ 1

0

Gλ(t, s)dt
)∫ 1

0

(λ2 + p(s, u))|u(s)|ds

≤ σ

λ2
(λ2 +Nκ)κ

which means that the image Tλ(F) of F is bounded.
Next take any u ∈ F , t ∈ [0, 1) and η > 0 such that t+ η ∈ I. Then we have

‖(Tλu)(·+ η)− (Tλu)(·)‖L1

=
∫ 1

0

|(Tλu)(t+ η)− (Tλu)(t)|dt

≤
∫ 1

0

∣∣∣ ∫ 1

0

[Gλ(t+ η, s)−Gλ(t, s)]
∣∣∣|F (s, u)|ds dt .

Write the second integral in the form∫ t

0

+
∫ t+η

t

+
∫ 1

t+η

and one can easily see that it is smaller than or equal to the quantity[
cosh(λ)(

cosh(λ)
b

+ 1) +
1
λ

sinh(λ)
]
η.

Therefore, taking into account relation (3.6), we get

‖(Tλu)(·+ η)− (Tλu)(·)‖L1

≤
[

cosh(λ)(
cosh(λ)

b
+ 1) +

1
λ

sinh(λ)
]
(λ2 +Nκ)κη.

The same holds for any t ∈ (0, 1] and η < 0 with t + η ∈ I. Therefore the family
TλF is equicontinuous in mean. This completes the proof of the lemma. �

Before giving the main existence theorem, we need to define the set

K := {u ∈ L1
+(I) : u(t) ≥ µ

M
‖u‖L1 , a.a. t ∈ [α, β]},

where the constants µ,M are given in Lemmas 3.3 and 3.4.

Lemma 3.6. The set K is a cone in L1(I).

Proof. We have to show that K is a subset of the Banach space L1(I) and it satisfies
the properties:

(a) If u ∈ K, then ku ∈ K for any real number k ≥ 0.
(b) If u, v ∈ K, then u+ v ∈ K.
(c) If both u and −u belong to K, then u = 0.
(d) It is a closed subset of L1(I).

The first algebraic properties (a), (b), (c) are obvious. So we have to prove that K
is closed. To this end we assume that (un) is a sequence in K converging to some
v ∈ L1(I) in the ‖ · ‖L1- norm, namely such that lim ‖un − v‖L1 = 0. We have to
show that v is a point in K.

Although, from the classical analysis it is known that L1-convergence implies the
existence of a subsequence (unk) converging to v pointwise, almost everywhere in
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I, for completeness of this paper we shall give the proof. And, first we shall remind
the reader that this convergence implies convergence in measure. Denote by m the
Lebesgue measure.

Get any ε > 0 and define the set En := {t ∈ I : |un(t) − v(t)| ≥ ε}. Then we
have

‖un − v‖L1 =
∫
En

|un(t)− v(t)|dt+
∫
I\En

|un(t)− v(t)|dt

and so

‖un − v‖L1 ≥
∫
En

|un(t)− v(t)|dt ≥ εm(En),

This implies that m(En)→ 0, namely un → v in measure.
Next we claim that there is a subsequence (unk) converging to v pointwise, a.e.

To do that we use the convergence in measure. Thus, for any k = 1, 2, · · · there is
some nk such that

n ≥ nk =⇒ m({t ∈ I : |unk(t)− v(t)| > 1
k
}) ≤ 1

2k
.

Put Zk := {t ∈ I : |unk(t)− v(t)| > 1
k} and Hl := ∪+∞

l=kZl. Then we have

m(Zk) ≤ 1
2k

and m(Hl) ≤
+∞∑
i=l

m(Zi) ≤
+∞∑
i=l

1
2k

=
1

2l−1
.

Set Z := ∩+∞
l=1Hl, for which it holds that

m(Z) ≤ m(Hl) ≤
1

2l−1
.

Thus m(Z) = 0.
Now let t ∈ I \ Z. Then t /∈ Hl, for some l. Hence t /∈ Zk for all k ≥ l. The

latter implies that

|unk(t)− v(t)| ≤ 1
k
, k ≥ l.

Therefore limunk(t) = v(t), for all t ∈ I \ Z, which proves the claim.
Finally, define the set

S := Z ∪
(
∪+∞
n=1 {t ∈ [α, β] : un(t) <

µ

M
‖un‖L1}

)
which has measure 0. Observe that for any t ∈ [α, β] \ S it holds

v(t) = limunk(t) ≥ µ

M
lim ‖unk‖L1 =

µ

M
‖v‖L1 ,

because |‖unk‖L1 − ‖v‖L1 | ≤ ‖unk − v‖L1 → 0. Therefore we have v ∈ K and the
proof is complete. �

Theorem 3.7. Assume that Conditions (1.3) and 2.1–3.1 are satisfied. Then
boundary value problem (1.1), (1.3) admits a positive solution.

Proof. By Lemma 2.7, it is sufficient to prove that the operator Tλ defined by the
type (2.11), where F is given in (2.3), admits a fixed point in K.

From Lemma 3.5 we know that the operator Tλ is completely continuous. Now,
let u ∈ K. Then on one hand we have

‖Tλu‖sup = sup
t∈I

∫ 1

0

Gλ(t, s)F (s, u)ds ≤M
∫ 1

0

Gλ(s, s)F (s, u)ds
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and on the other hand

(Tλu)(t) ≥ µ
∫ 1

0

Gλ(s, s)F (s, u)ds,

for any t ∈ [α, β]. Thus it holds

(Tλu)(t) ≥ µ

M
‖Tλu‖sup ≥

µ

M
‖Tλu‖L1 , t ∈ [α, β]. (3.7)

Also, for any u ∈ K we have

‖Tλu‖L1 =
∫ 1

0

∫ 1

0

Gλ(t, s)F (s, u) ds dt

=
∫ 1

0

(∫ 1

0

Gλ(t, s)dt
)
F (s, u)ds

≤ sup
s∈I

(∫ 1

0

Gλ(t, s)dt
)∫ 1

0

F (s, u)ds

≤ σ

λ2
(λ2 + sup

s∈I
p(s, u))‖u‖L1 < +∞.

(3.8)

Inequalities (3.7) and (3.8) together with the fact that (Tλu)(t) ≥ 0, for all u ∈ K,
imply that the operator Tλ maps the cone K into itself.

Next, because of Hypothesis 3.1, we can choose ρ > 0 with ρ < 1−σ
σ λ2. From

the [‖ ·‖L1−| · |]-continuity of p(t, ·) at 0, uniformly in t, (Hypothesis 2.3), it follows
that, to this ρ there corresponds a certain R1 > 0 such that, for any u ∈ K, with
‖u‖L1 ≤ R1 and t ∈ I, it holds 0 ≤ p(t, u) ≤ ρ.

Take any u ∈ K, such that ‖u‖L1 = R1. Then from (3.8) we get

‖Tλu‖L1 ≤ sup
s∈I

(∫ 1

0

Gλ(t, s)dt
)

(λ2 + ρ)‖u‖L1 ≤ ‖u‖L1 .

The latter holds because of the choice of ρ.
By using the sup norm on the space C(I) such an inequality is not satisfied for

any λ > 0. Indeed, one can prove that for any positive u ∈ C(I) the function
A(λ) := ‖Tλu‖sup

‖u‖sup , λ > 0, satisfies limλ→0A(λ) = 1 and, furthermore, λ → A(λ) is
increasing. Therefore there does not exist any λ > 0 satisfying A(λ) ≤ 1. Notice
that because of the continuous dependence of the problem on parameters, for λ = 0
the integral form of the problem becomes a trivial identity. However, this is the
point which motivated us to use the idea of working on L1(I) instead of C(I). This
idea relies on the obvious fact that there are continuous functions having ‖ · ‖sup-
value greater than 1, and ‖ · ‖L1 value less than 1.

Next fix any real number R > 0 such that

µ2(β − α)(λ2 +R)
∫ τ3

τ2

Gλ(s, s)ds ≥M.

From Hypothesis 2.5, there exists N > 0 such that p(t, u) ≥ R, for all u in K with
u(s) ≥ N, s ∈ [τ2, τ3] and t ∈ [α, β]. Clearly, we can assume that R2 := M

µ N > R1.
Now, fix a point u ∈ K such that ‖u‖L1 = R2. Then, for all s ∈ [τ2, τ3], it holds

u(s) ≥ µ

M
‖u‖L1 = N
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and therefore

‖Tλu‖L1 =
∫ 1

0

∫ 1

0

Gλ(t, s)F (s, u) ds dt =
∫ 1

0

(∫ 1

0

Gλ(t, s)dt
)
F (s, u)ds

≥
∫ τ3

τ2

(∫ β

α

Gλ(t, s)dt
)
F (s, u)ds,

and therefore

‖Tλu‖L1 ≥ µ
∫ τ3

τ2

(∫ β

α

Gλ(s, s)dt
)

(λ2 +R)u(s)ds

≥ µ2

M
(β − α)

∫ τ3

τ2

Gλ(s, s)ds(λ2 +R)‖u‖L1 ≥ ‖u‖L1 .

The previous arguments show that Theorem 1.1 applies, and so we conclude that
a fixed point of Tλ exists in K ∩ (Ω2 \Ω1), where Ω1,Ω2 are the balls in C(I) with
center the origin and radius R1 and R2, respectively. The proof of the theorem is
complete. �

4. An application

Consider the integro-differential equation

u′′ + (1 + t)u(t)
∫ t

0

u(s)ds = 0, t ∈ I, (4.1)

with u(0) = 0. Associate this equation with the nonlocal condition (1.2), where
the function g is defined in Example 2.2. From the fact that 0 = g(0 < g(1) = 1,
the problem is at resonance. Taking into account Example 2.6 we can see that the
conditions of Theorem 3.7 are satisfying, with α, β defined as in (2.2). Thus there
exists a solution u of equation (4.1) satisfying condition (1.2) and u(t) ≥ u(0) = 0,
t ∈ I and being such that ‖u‖L1 > 0.
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