EXTRACTING CONCEPT MAPS FROM INSTRUCTOR AND LEARNER

BEHAVIOR IN AN INTERACTIVE E-LEARNING ENVIRONMENT

THESIS

Presented to the Graduate Council of
Texas State University-San Marcos
in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Joshua Emmett Byrne, BChE

San Marcos, Texas
August 2007

COPYRIGHT
by
Joshua Emmett Byrne

2007

DEDICATION

This thesis is dedicated to my mother, Kathy Byrne, who was my typist and
proofreader throughout grade school, and who avoided the same fate in this endeavor

thanks to the invention of word processing software for personal computers.

ACKNOWLEDGEMENTS

Thank you to my committee: Dr. Deborah East, Dr. John Durrett, Dr. Jawad
Drissi, and Dr. Carol Hazlewood, who graciously accommodated my working on my
thesis from a thousand miles away. A special thanks to Dr. John Durrett. Thank you to
my wife, Lucia Byrne, who helped with proofreading, and along with my son Lex
accommodated many absences. Many thanks to Bill Alfveby, who went above and
beyond the call of duty to help with the experiment and testing UTS. Thanks to my
parents John and Kathy Byrne who have always supported my academic endeavors.
Finally, thanks to the many friends, colleagues, and students who participated in this
study and provided comments on UTS, including Steve Byrne, Vijay Dayafule, Erik
Mohr, Harold O’Dell, Mouli Paturi, Drew Thorstenson, and Ron Waara.

This manuscript was submitted on March 24, 2007.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...ttt stescssstssesesstsssssssssssssssessesns \
LIST OF FIGUREScoootiitiiictrtntentrestns et ssessssts st sssssssssassnens xi
CHAPTER 1 INTRODUCTION TO THE STUDYccccoviririnriicenenniiseesiseesaenes 1
Changes From the Original Scope of the Studyccceeeriniiinincnincnccineneene 2

I 0] 4TS 1163 1 (R 3
QUESLION. c..eereeeenieereeiceeeeetecete et re et e e s se s e e ee s e saae s e e seesae s neesmees e e eennesenees 3
ADL and €-Learningccoceeriivieneniinicninnniinineieiisseesessenncssesssssssesseesssenne 3
Concept Map vS. ONtOlOZYccveriririirniiiiniieniiiencsesesesssressssessesesssssessessenns 3
INSEIUCKOL .ottt sa e sa e sb e ne s 4
Sharable Content Object (SCO) N 4
UTS ettt a et sa bbb st b e s b bt sa et st s b b 4
CHAPTER 2 LITERATURE SURVEY AND BACKGROUND INFORMATION 5
Instructional TeCANOLOZYccceeeireirerireieeriecertretret et eesreseaeesne s e eesenesssesnnnens 5
ADL Standardscoeeveeeeinmieiininiiiiieineien ettt ettt 5
Intelligent TULOTING........ccceevererireerrertetrerestete ettt sttt st n e sr e sesnens 6
Concept Maps and ONtOLOZIEScccevereeuieeruenereneriernrieseeeeneesseseesessesesseseeesessessssessens 7
CONCEPL MAPS.....coieiiiririininiititiint st saes st e sae e sse e s s e st st seens 7
Constructing Concept Mapsccceverinririinenenenineseeceeeeetsessese e seseeseenees 8

vi

Concept Map Versus Ontologycoevveiviiiiiivinniinniiniiieinsrieecsreseeceeeesseeneens 9

Self-Organizing SYSIEIMSccccervrreuierierieeeeece e ettt s see st s sstsssstessae s ssssssnesanes 11
CHAPTER 3 UNIVERSAL TUTORING SYSTEM......ccccccovvirminnnriiriiienecnesenscrnnnenns 12
UTS MethOdOIOZYoooeiuiririiiiiniiiiiiiiiiniet et saes s e ssns 12
PreParation......ccceeveieeeerieseerereerteereeseessesteresseeesstessessnsssessessessssestsssesssssssssessassnsonns 13
(00011 51l D 1<) 1) oy PN 15
Analysis and Production..........ccceeeeeeevevvenninecnicnennncsnnnnnininsneesnneennes oo 16
SOFIWALE DIESIZI «.vv.veevoreeesireensnssssssssssesssssssssssssssssssssesssssssssssssssssesssssesssessssesssassssans 17
Overall ArChiteCtUurecccovvevuiveiiniininiiiitientrcet st saesaresne 17
Components and Deploymentccccvvveeeenirieiicnneeninnicnenrceccnnntereeeneneeneens 17
Common PatteInscoevuiriiiiiniiiiiiiineniiie e 18
AJAX oottt ettt et et e b et e s a et s a et sae e anes 18

TSP VS, SEIVIELS....coviiiiriiiiiiiticie ettt ss s sassaesaes 19

Code CONVENLIONSovuiruirneiiiiiinieineteieesaee st esssssesessessessessesaessessessssseses 20
ATTAY INAEXING ..veeveenreeririiriceeiietesest et st es e se e e s sessn e s e sanes 21

BT S 704 TS 21

JSP FOrmattingcccoceeeeeermeeenienteiecnicteteee ettt ettt e et e ne s 21

Fle NAMUNG....ccccteeireeeeerieeererreerees e rteesenestescss et sssseeeneessnessneesnssesnsessenanseens 21
Student FEAtUIescoevuiiimviiiiiiiiniictiencsccestcser et s 22
Use Cases and Feature REQUITCMENLSccceververcrrerereieennenessseseeseesseessesssssssesses 22
Comments on Instructional DeSighcceveverreeererrerrecereeneeeseseseesessesessenns 23
USET INLETTACEoveeveeeneiiiititiect ettt e e s s ene 24
Important Design Details..........cccceviveiinuininneninerenenecreeesteeeee st seseseeseeeene 29

vii

Module COMPLELION.....c..ererrerereereeerrieiecresentecte st eressteesesaesanssssessssanesns 29

Path and Event Trackingccoccevveeeeernensernerseeeseeeseensereseeseeeeeseessssessescssnens 29
INStruCtor FEAtUIES........cccvcveiiuieiiricietiecctncrctcsicet et ene 30
Use Cases and Feature ReqUirementsc.ccoevveeeevscnirnecnnnniinicnesncsnisnennnes 30
USEr INEIfaCecovveniieiiiiieictricectee ettt s 32
Static Design and Databasecccoveereevererrerieseneninseneesessesessessessesseesesseseeenne 33
CHAPTER 4 EXPERIMENTAL RESULTS......ccooititrteteeeeteeeeereet et 34
Common Aspects Of the MOQUIESccccevveeeierveirreirterireeieeesreeereeeseessaeseseeeseessenenne 34
Test the Basic HYPOtheSisccceceevueeerrirneereeirieeieceeeeeresieeeesres e eaeseseeseesseeseens 34
Create @ ConCept Mapccceuiureeieencnienietntneneenc ettt sa e sr s e eanes 35
Start With @ Single SCO.......cueoieviieeriererrrerescrsereese st sseesseeste e se e s saesneeses 36
Test Module #1: Single User in All Three RoOIEScccceveeverieceeceeecereceecceeeceeeeeeeeeens 37
OVEIVIEW ..ttt sttt sttt sttt st sae s ettt st s s 37
Initial SCO DESIZNcocvieeeiiiieiierieteseeteeetetet ettt s e s e s e sse s 38
MOdUIE PrereqUiSItes....ccueeruerrreireiruerierrrsererrerereseesseesesnesseesssressesssssessssssssessesssnees 38
Module Post Requisites and ExXit ASSESSMENL.........cccceevuertrrereererneeneererrerseeneesnens 38
INIEIAL SCO...eiiiiiitctttctt ettt et e sae st s e 40
Initial SCO ASSESSIMENLSc..ccvvverireriereerenienentreete et sseses e eseesesaeesesseessesaens 40
Interactive Content GENErationc..cccceeeeereerererreesesessessessssessessesessessssesssesannes 41
ODBSEIVALIONScviuiiiitieiiritcc ettt et st eseb e sttt snene 41
Test Module #2: Separate Student)and INSEIUCKOT ...ttt 42
OVEIVIEW ...ttt ettt ss sttt e st st saasaseas 42
Initial SCO DESIZNccovruecmienriirieentere et erete e ssesas e se st esasssssesessesessesaesnanes 42

viii

Module Post Requisites and ASSESSINENLccecuereerercrsreesncrsseeesiessenssnesssnsssees 43

FArSt SCO ...ttt et es st bbb b sas s ae s 45
First SCO ASSESSIMENLcceetrrrireerieineisenninsieenreetssessessressssssessssssesasessnsssesses 45
Interactive Content GENETAtioNceereeeererersierestesenseseenssessessesisssssssssssssssssssssens 46
(000) (o1 o 1L o OO 46
ODSEIVALIONSoetierriiiriniireniicr st n s s 47
Experiment: Large Student Data Set........ccceceeeeviviiiniinenecninicncciicneneceesesneenes 47
OVEIVIEW ...eveeieerireeiessienee st seesseetstes e sane st e se st ssesansnessssnsessesasesssssssssnessessasssens 47
INitial SCO DESIZNeeueerirrerceiererereeereisieireseessesteesesseesseesesssessesssesnssssassnssssssssssesas 48
MoOdUlE PrerequiSitescceveeueerereerrirerrereeesnensestreeentestseesessesessesaes e sseesessessessenne 48
Module Post Requisites and ExXit ASSESSMENL..........cccueverreerereeniiniesenensensenneeenne 48
FIISt SCO ...ttt ettt sse et s a e 51
First SCO ASSESSIMENLccevveeueriiitiereniereeeietetsee s sse s sses e saesessesasesesne Si
Interactive Content GENETationcceeeureereenereirineneneneescesresnsereseessesasssessesnes 52
CONCEPE MAP ...ttt st st se st sessa e ssesse e ssessesaassassessesessesas 52
ODSEIVALIONSeeueiniiniiriiiririiet ittt ss bbb s s e be s ssesaesassssannis 53
CHAPTER 5 ANALYSIS AND CONCLUSIONScocoinnieiinninineenensesesssessesens 55
Derived Concept Map AlZOrithim........ccccvivverieneineeneiiriineeeeeneeetese et seee 55
Algorithm Step #1: Unique Set of Pre and Post AssesSmentscccceeevveenennene. 56
Algorithm Step #2: Similarity Threshold...........ccoeviveviiirenniisniicirenenesssesennes 57
Algorithm Step #3: Divide At QUESLION........cecceveetreetierrertrereereeeterereeeeesesesaenes 58
Concept Map ANALYSIScceovereereerermieririeniierenentesesesseseeesessessessessnessssesessssseesssnessassees 59
Quantitative Comparison to Expert Concept Mapccoeverrervemrnrerusrereesesessesennens 59

ix

Qualitative Comparison to Expert Concept Mapccccecueverernvrneencrcsnennersecseenne 60

Summary of FINdingscccoceevieriniiiiniiiiiicineiienincttcenrce s 63
CHAPTER 6 FUTURE STUDYcociitiiiiniineneecnenentereeseesssteese st esesessessessessees 66
UTS Software Featurescceveeerueeeiiiiencnnieiciecstsene ettt ssessese st essesees 66
Standards Refactorccooeivireeeiinicciiieeeeeeccee e 66
Assessment Component and Bottom Navigation Effectiveness 67

HowW MUCh 10 KEEP ...eeeetrreieirttrcteecteecere st et ee v e seree e se e s ae e e see e e eenns 68

Exit Assessment Balance........c..ccevueeerveneeiniininceneceieeeeneceeeneee e 68

Number of ChoOiCes........ccceeverueerererrererennens et 68

UTS ClOUd....ooiiiiiiiiciictitneceetee sttt e e e sen 69

UTS Process and APPLiCAtiONSc.eoueerverrerercercerriererenrreseeresessessessessessessessessessessens 69
Algorithmic Assessment Relationship Determinationcccceceeeevereeenncne. 69
Applicability to the Semantic Webcccecueveerrvervinvenenreneninreneneneseesennen. 70
ASSESSIMENE TYPE ...ttt sre et esreseessre s e e e s e e s e e s e s e snenans 70
Simplified Assessment AUthOTing..........ccceeueeeevirrrnrrveeneesnseereerenreeseesreeeseennens 71
Spontaneous Content GENETALIONceeeurreereertrreeriesretrreeeereesesseesessesaessens 71

UTS Learning EffeCtiVenesscccceeevievereniiecnininiencsinsenenenresennsesesssesessssenns 71

Multi Page SCORM PIAYerccocevverereeerieneeresseeserreesesssseseesssesaessessessenns 72
Appendix A: Experimental SCO NamEeS........cccocveueruerererrenrirnireneeesceseeteseeeeseeseseeenes 73
GLOSSARY ..octiiiiiniiiiiiiiiisssctiesssssssssssssssstssssessssesssssssesssssasesssssssssssssssesses 74
BIBLIOGRAPHYcooiiiiiiiiiiicicniiinteiet ettt seeses e sessesas e ssesas et asesaen 76

LIST OF FIGURES

Page
Figure 1: Proposition in @ Concept Mapccccoeveeeerenernirninniestnieeeeeesseeee s essesaeenees 8
Figure 2: UTS Process Activity Diagram.........c.cceevuervereeerceesceersenrrereeeescenseneeeesseesenenns 13
Figure 3: UTS Deployment Diagramcccceeerveeevenverveeneesenerseessennessessessssssssssesseens 17
Figure 4: Select New Assessment Sequence Diagram...........cccceeeveeeeeereercenereerceenennen. 18
Figure 5: Student Navigate Back Sequence Diagramcccceeevverveeerreevensenvesiescesnennes 20
Figure 6: UTS Student USE Casesc.cecevueruicereririinineeneniieeseesreseessesteseessessessesesssessens 22
Figure 7: UTS Student INtErfacecoueueeerueecreneeccrcieenteereees et sn e 24
Figure 8: Score Component Concept in wa Different States.........ccoovverververveesenrerieenens 25
Figure 9: Student Interface With Assessment Interface Visibleccccceeevvevecneeeennen. 26
Figure 10: Student Role Deployment..........ccceccevereevenrenieneentrnreseereseseeseecteneseessssssesnens 27
Figure 11: Database SChemaccceeeueeuieirnerieiniineneetrseetstsseesee st sesae e eaesaeneeens 28
Figure 12: Instructor Use Case Diagrami............cccceeeeeeeeeeeeeeeeeeeiececeeeeeeeeeeeeeeeeveeneens 30
Figure 13: UTS Tutor Activity Diagram for a New Questionccceeeveeeerueeveereennen. 31
Figure 14: UTS Assessment Edit User Interface...........cccocueveeververvenvenveneccesseeeecesseeenee 32
Figure 15: UTS Instructor File Structureccccccevvvervevenenesventneeeeneceeieeeneeeseeseenes 33
Figure 16: Experiment #1 Initial SCOcccoceovreviviiniiccrenreceseceeeceeetese e eneeeens 40
Figure 17: Test Module #2 First SCOccoevcrereerinieinentsestsertesesreteeeeese e eseeenes 45

Xi

Figure 18: Location of Novak’s “What is a Cmap” Concept Map in the CmapTools

(CmapTools, 2007) APPLHCAtION......ccueererrerrirreererteriesreerereeseeesestesseesteseessssssessessessones 46
Figure 19: Experiment First SCO........cccocviiniviniinienentecirccesncsce s 51
Figure 20: Binary Tree Concept Map for Experimentccccecceevereveeneincrnenncnncrieennen. 53
Figure 21: ANalysiS StEP #1 ...ccueeivveiririieriirestistee e ete e seeseesne e s s e sres s s saes st e s s sssesanenaeas 56
Figure 22: Analysis StEP #3ceoueiiiiicriereteenc et see e e s 58

Figure 23: Student and Instructor Paths Overlayed on Instructor Designed

CONCEPL MAPovereeeriiererierieseeseeeee st sressrre st e s e s s st es st as st s snessnsssnassstessaesnsnesssesrses 61

Xii

CHAPTER1

INTRODUCTION TO THE STUDY

The structure of knowledge as seen by an expert does not represent the order in
which most novices naturally learn that information. The goal of this study is to
experimentally explore that hypothesis by comparing concept maps designed by experts to
concept maps derived from student and instructor behavior in a Web-based instructor
facilitated training (WBIFT) course. Chapters 4 and 5 detail the experiments and their
results.

The largest part of the effort in this study was creating the WBIFT software,
hereafter called the Universal Tutoring System (UTS). UTS delivers learning content to
students and assesses their learning. Students choose their own path through the course by
submitting questions and by studying answers to questions submitted by other students.
Two types of instructors—tutors and librarians—facilitate learning by answering student
questions. Tutors answer students’ questions by creating new content. Librarians answer
questions by linking to existing content. Chapter 3 details the design and implementation
of UTS.

This study involves several knowledge domains including computer science and

instructional design. Chapter 2 provides a survey of the literature in those domains that

informed this study. Chapter 6 examines potentially useful findings in these areas that
are not directly related to the basic hypothesis of the study and suggests further study.

One important application of this research is for intelligent tutoring systems.
Intelligent tutoring has been shown to be more effective than the more typical linear
sequenced courses (Murray, 1999). Unfortunately, intelligent tutoring is not widely used
due to the considerable cost and difficulty of authoring (Oguejiofor, 2004), especially
authoring the ontology that maps student needs to instructional content. Concept maps
derived from UTS are useful for this application and could be developed at a fraction of
the cost of expert designed concept maps. Others have alluded to automatic extraction of
concept maps for ADL (Abdulah and others, 2004), but my literature search did not
reveal any truly similar work.

The UTS software developed during this study is best characterized as a proof of
concept sufficient for research purposes, but not yet robust enough for real-world use.
Chapter 6 suggests further research and development needed for UTS to achieve broader

applicability.

Changes From the Original Scope of the Study

While the primary objective and overall approach remained the same, one
difference between this study and that envisioned in the original thesis proposal is the use
of SCORM. My thesis proposal envisioned implementing the learner interface in a
SCORM conformant learning management system (LMS). The SCORM standard
defines the interface between learning content and conformant LMSs. Unfortunately,
closer inspection reveled that SCORM does not allow enough visibility among learning

objects to work easily with the Universal Tutoring System.

As aresult, I built UTS as a single Web application. This added significantly to
the development effort required, but gave a great deal of flexibility that was ultimately
useful. The concept maps derived from UTS can still be used to drive the sequencing of

SCORM conformant learning content that is delivered separately.
Nomenclature

The following terms are applied broadly in common usage, but I construe them

more narrowly to improve clarity.

Question

In this thesis and in the UTS documentation, the term “question” refers to a
question a student asks about a unit of content. An assessment question the student

answers to demonstrate competence is referred to simply as an “assessment.”

ADL and e-Learning-

The US Department of Defense typically uses the term Advanced Distributed
Learning (ADL) to refer to electronically delivered educational content. QOutside of the
military, the terms e-Learning and Computer Based Training (CBT) are more common. I
have adopted the term ADL for content that is not instructor led and Web-Based
Instructor Facilitated Training (WBIFT) for computer based learning that includes

instructor intervention.

Concept Map vs. Ontology

Concept maps and ontologies are similar for the purposes of this study, and I

occasionally refer to the literature for ontology development with the implication that the

findings apply to concept maps as well. For readability, I use the term concept map
throughout. The reader should understand this to include node attributes, machine

readability, and other features which are not formally part of concept mapping.

Instructor

In the context of UTS, there are two instructor roles: the tutor and the librarian.
Because these two share many traits, I often refer to them collectively as an “instructor”
role or user type. In discussion of ADL production, I refer to the “instructor” as the
plarson or people creating a course. In practice ADL development typically involves a
number of specialists including instructional designers, subject matter experts, visual

designers, and media developers.

Sharable Content Object (SCO)

A SCO is a piece of ADL content conforming to the SCORM standard—typically
centered on one or more Web pages and supporting media assets. In practice, the term
SCO is often applied more generally to a collection of ADL content smaller than a
module, which is in turn smaller than a course. In this study the term SCO refers to a

single page of ADL content, regardless of whether it follows the SCORM standard.

UTS

Universal Tutoring System is the working name for the software system
developed for this project. At the time of writing, a Web search showed that this name
was not in common use by any other software system. Another search will be conducted

before the system is publicly released. I am still trying to determine whether there is

commercial applicability for UTS, but readers interested in obtaining the software for

research purposes are encouraged to contact me.

CHAPTER 2

LITERATURE SURVEY AND BACKGROUND INFORMATION

Instructional Technology

ADL Standards

Work on the Sharable Content Object Reference Model (SCORM) was initiated
in 1997 by the US Department of Defense with the goal of enabling ADL
interoperability, affordability, durability, reusability, and accessibility, which are
sometimes referred to as the SCORM *“ilities” (Advanced Distributed Learning, 2007).

At its core, SCORM has two major components. The first is a content packaging
and metadata standard that defines how the files that compose a conformant SCORM
package are to be structured and the XML metadata that it must include. The second is a
standard set of JavaScript functions that a conformant learning management system must
provide to an ADL course. For example, a conformant LMS must provide the loadPage()
function (Advanced Distributed Learning, 2004).

Of its original goals, SCORM has been most successful at achieving portability.
Today, SCORM conformant content will run on most conformant learning management
systems with a small amount of testing and modification. SCORM has been less

successful at enabling reusability, in large part because it is very difficult to author

context independent content. UTS attempts to overcome this problem by using student
questions to provide context.

My original intention was to implement the student interface to UTS as SCORM
packages on an open source LMS. After further analysis, I determined that this was not a
good design. SCORM was designed before the limits imposed by modern browsers on
cross-domain scripting (the ability of a page to load dynamic content from more than one
domain). These restrictions make it difficult to provide content from a server different
from the one that contains the learning management system, further limiting its
usefulness for UTS (Brusilovsky, 2004).

Organizing content into small independent SCOs is important to evaluating my
hypothesis because it is the most visible expression of the instructor’s understanding of
the structure of the content. In a typical ADL course design, content is organized in an
outline that reflects the instructor’s understanding of the best order to learn it in. If the
generated concept map deviates significantly from this outline, it supports the hypothesis
that learners conceptualize the content differently than an expert instructor.

SCORM also supports learning objectives, which might be a close analog to the
nodes of the designed concept map. Unfortunately, it does not support relationships
among the nodes, and the sequencing model for SCOs is primarily tree-based, not map-

based. So, I did not use SCORM learning objectives as part of this study.

Intelligent Tutoring

The term “intelligent tutoring” has been applied to a broad range of computer-
based training systems, but they typically share three common features (Evans and others,

1993) (Angelides and Paul, 1993).

The system has a model of the student’s understanding
The system has a model of the subject domain
The system adapts the material presented to the student based on 1 and 2

W

Intelligent tutoring has been shown to be more effective than traditional linear
ADL (Murray, 1999), but its application is limited due to the cost of developing domain
models, learner models, and the additional content required to accommodate different
learning styles (Abel, 2004). Intelligent tutoring is an important application of my
research because the self organizing system approach embodied in UTS eliminates the
need to expressly create these things.

Some intelligent tutoring methodologies draw extensively from the area of
cognitive psychology, where there has been an enormous amount of effort to build
models of how people learn, and how concepts are represented in the human brain.
Rather than explore this work in great depth, I observe that despite great progress these
theories have had limited impact on the way ADL is delivered. Instead, I focus on
finding a self organizing approach that empirically delivers superior learning—even if the

exact mechanism isn’t completely understood.
Concept Mai)s and Ontologies

Concept Maps

Novak and Caiias (2006) describe concept maps as “... graphical tools for
organizing and representing knowledge” composed of the following elements:

Concepts enclosed in circles or boxes
Connecting lines

Linking phrases

Cross links

Examples to clarify

SR W=

These are typically organized so the most general or abstract concept is at the top
of the concept map. Two or more concepts linked by a connecting line are said to form a

proposition.

[Automobile

Part Of

Tire

Figure 1: Proposition in a Concept Map

Concept map developers sometimes talk of a concept map “cloud” or “soup™: a
large collection of propositions, often formed by joining many different concept maps.
This is similar to an upper ontology.
Constructing Concept Maps

Concept maps are most effective when created in a particular context. This
context is typically provided by a “focus question” the map is intended to answer (Novak
and Canias, 2006). The following steps are recommended to produce useful concept
maps.

1. Define focus question and domain

2. Identify 15 to 25 key concepts
3. Sort concepts by level of abstraction

Construct a preliminary map

Seek cross links

Revise many times

“Clean-up” visually to improve clarity before publishing

Nowk

Concept Map Versus Ontology

The literature is not entirely consistent in defining the term ontology (Oguejiofor
and others, 2004). Russell and Norvig (2003) state that “the ontology determines what
kinds of things exist, but does not determine their specific properties and
interrelationships.” Sugumaran and Storey (2006) directly contradict this when they say
“an ontology is conceptually represented as a semantic network where the nodes
correspond to the ontology’s concepts or terms, and the arcs correspond to various
relationships.” These are only two of many published definitions.

Concept maps are more narrowly defined, as described in the previous section,
but are not quite sufficient for my purposes. There is not a rigorous mathematical
definition of a concept map, and the literature is more focused on the educational benefits
of the process of constructing them than on defining them as a means of machine useable
knowledge representation.

In this study, I use both the term “concept map” to refer to a directed acyclic
graph with nodes representing concepts and arcs representing the relationships between
and among concepts. An arc connecting two nodes forms a proposition, and an abstract
concept may encapsulate many propositions.

The concept maps generated by UTS are anonymous; nodes and relationships are
not explicitly named by the system (Patel-Schneider and others, 2002). This is somewhat

unusual because most concept mapping efforts focus on the question of how to name

10

things for human understanding. However, human readable names are not required to
apply the concept map to intelligent tutoring, as long as the manner in which it was
derived is well understood.

In principle, it might be possible to reduce all human knowledge to a set of
propositions. In practice, it is only practical to develop high granularity concept maps for
small domains. Efforts such as CYC to develop upper ontologies that cover large
domains have been going on for many years and are incomplete despite having more than
a million propositions (Cycorp, 2007). Yet concept maps are still useful for human
understanding because the human brain encodes an enormous number of propositions,
but in most cases we consciously deal with a smaller number of abstractions that
encapsulate the more fundamental propositions. For example, a simple proposition such
as chicken:buy-at:store encapsulates a large number of fundamental propositions, yet we
are never consciously aware of many of them unless one turns out to be faulty.

Asking an expert to design a concept map is a good way to determine the abstract
concepts and relations that make up the expert’s view of a domain because that view is
relatively stable. Student designed concepts maps are a poor way to measure novice
understanding of a domain because the concept maps themselves are an excellent
learning tool (Novak and Caiias, 2006) so the act of constructing the map is likely to
significantly change the student’s understanding. Instead, I deduce the student’s
conception of the domain from the questions they ask as they learn. For individual
students, this approach has the same drawback as asking students to create concept
maps—Dby the time they answer enough assessments and ask enough questions, they will

know too much about the domain to be considered novices any longer. So, I look at

11

students in the aggregate when determining how the concept implied by many novices

compare to the concept map designed by a group of experts.
Self-Organizing Systems

In self organizing systems, complex aggregate behavior is achieved through the
actions of individuals who act locally and have little c/)r no visibility on the system as a
\ whole. Such systems appear in the physical world in biology, chemistry, and human
societies.

UTS is a self organizing system in the sense that students, tutors, and librarians

carry out a relatively simple set of tasks teaching and learning in a particular domain.

CHAPTER 3
UNIVERSAL TUTORING SYSTEM

This chapter describes the UTS process and WBIFT software that evolved as a
result of my research. This chapter has two sections; the first describes the instructional
methodology for using UTS. The second section describes the design of the UTS
software.

UTS is required for testing my hypothesis because it generates data for the
concept map represénting the student conception of the domain being taught. This is a
better approach than simply asking students to create their own concept maps because
creating concept maps is an important teaching technique in itself, and the end product

may not really represent the student’s knowledge as a novice.
UTS Methodology

Over the course of this project, a process for authoring ADL content using UTS
evolved. This section describes the state of the process and related best practices after the
experiments and subsequent analysis. Chapter 4 provides additional information about
how the process evolved over the course of development.

Figure 2 shows the UTS process for a single module. There is no rigid definition
of the length of a module, but in my experiment the goal was that a typical student should

complete a module in an hour.

12

13

Instructors) Student

! N
First SCO

A 4

Document
Scope)

l

Choose
Students

Write Exit
Assessment

Pren::zration J

| [Study First SCO | N

[Instructor ProcessJ / \

[Complete Assessments] [Ask Questionsj

K Course Delivery [Mastery Score] j

v v
® @
Figure 2: UTS Process Activity Diagram

UTS could be used to deliver training on an ongoing basis, but my objective was
to use it as an experimental authoring environment where the interactions of students and
instructors would ultimately evolve to ADL that would be useful without an instructor.

The UTS process starts with a group of at least four knowledgeable instructors
and ten to twenty representative students. The students understand that they are engaged
in a course development activity and that the content may not be as refined as fully
developed courses they have taken. As shown in Figure 2, the UTS process has three

major elements: preparation, course delivery, and analysis. Each is detailed below.

Preparation

During the preparation phase, the lead instructor starts by writing the module

name and a narrative description of objectives for the course. This could be a paragraph

14

or a list of five to ten items. For my experiments I used the concept map focus question.
The lead instruction then gathers the other instructors to create a list of post requisite
assessments that will define the bounds of the module. I found 10-15 questions to be
sufficient, as the number grows significantly during module delivery. The instructors
also work together to create the introductory SCO and its initial assessments.

After the course definition, exit assessments, and initial SCO, the student test
group is chosen. It is important to choose a group that understands they are involved in
course development, and are willing to overlook some delays at the beginning. Students
in the development group should be chosen to reflect the diversity of the ultimate target
audience. For example, if the course is intended for students with a wide range of prior
experience in the topic, then the test group should include students who have significant
prior knowledge as well as those with little or no background in the topic. This situation
is typical of a corporate training environment where the goal is for all students to reach a
certain competency level, but recognizes that some of them might be 90% of the way
there already and others only 10%. By including both kinds of students in the
development group, one ensures that the final course will have paths for each type of
student to complete the course in the most efficient way.

An academic course might have the opposite situation if it has well defined
prerequisites and students have fairly consistent prior domain knowledge. In this case it
might be necessary to diversify the development student group in a different way; it
might be desirable for non-native English speakers to be represented, for example.

The test group can all be registered in UTS at the same time, but I discovered that

it is a good idea to start them two or three at a time. Otherwise too many students will

15

quickly overwhelm the instructors with questions, leading to a lot of equivalent questions.
There is a risk that this approach leads to a course heavily weighted to the predilections
of the first couple students, but I doubt that it is a serious problem in practice because I
saw many questions on the initial SCOs, even from students who joined the course after a

significant amount of content had been created.

Course Delivery

When the students first log into the course there is only a single SCO, so their first
steps are to read the content, attempt the assessments, and ask questions. Where
possible, it is helpful to start with a synchronous session where the students and
instructors are online at the same time and can rapidly ask questions and build out the
initial SCOs. Over subsequent hours or days, depending on the difficulty of the exit
assessments, students continue asking questions and completing SCOs until they have
scored sufficient points on the exit assessments to pass the module. As the content
grows, additional students are added.

During course delivery, the tutors look for questions from students and answer
them with new SCOs. For each new SCO, the tutor also creates three assessments and
evaluates the relationship of other assessments to the new SCO. Tutors are encouraged to
go back to the most popular SCOs to improve the writing and add interactivity and
assessments.

During course delivery, librarians also look for questions, and answer them using
existing SCOs. Similar to tutors, librarians create new assessments and evaluate existing
assessments after answering a question. It is critical that both tutors and librarians

rephrase the student questions where necessary. In some cases, they should even

16

communicate directly with the students to determine the student’s intent for a particular

question.

Analysis and Production

After a number of students have completed the course, the number of new
questions will decline, or the ratio of linked SCOs from librarians to new SCOs from
tutors will rise. The average time to complete the course should also drop, as the most
common questions are answered. These measures indicate when the topic has been
adequately covered for the target student population. At this point it is possible to simply
disable the question component on UTS, and use it to deliver the course as ADL instead
of WBIFT. This is undesirable in most practical situations because UTS is not a full
featured LMS, and because the development process may lead to an excess of closely
related questions in some areas, making it hard for students to find what they are looking
for. Instead, the data from UTS should be extracted for further analysis and refinement.

Ideally the course delivery phase will include experienced media developers who
can take the basic SCOs created by the instructors and augment them with interactive
components and high quality graphics. In the analysis phase, the most frequently used
SCOs should be identified for further improvement. The least used SCOS and questions
should be considered for removal. The course content can then be published in a
SCORM or AICC conformant framework for portability to a wide variety of learning
management systems. For my experiments, the goal was not the production of a polished
ADL course, but the evaluation of student behavior, so I did not go through the final

production step.

Software Design

UTS evolved significantly over the course of the three experiments. This section
describes UTS at the end of this process. This section is organized into three subsections.
The Overall Architecture subsection covers design and implementation issues important
to all of the user types: student, librarian, and tutor. The second subsection covers the

student user features The third subsection covers instructor features, both tutor and

librarian.

Overall Architecture

Components and Deployment

Browser

Client
Figure 3: UTS Deployment Diagram

As shown in Figure 3, UTS is built on the MySQL database management system

and Apache Tomcat application server. Its user interface is implemented using HTML,

[]

L

MySQL

[

]
[]

JSP

L

Servlets

Apache Tomcat

Server

18

CSS, and JavaScript. Server side coding is in the Java programming language using JSP,
Servlets, and JDBC.
Common Patterns

The following patterns are noteworthy because they are used consistently across

different parts of the system.

Ajax

The student user interface makes extensive use of Asynchronous Javascript and
XML (Ajax) to improve interactivity in a number of places. The instructor interface also
uses Ajax in some places. For example, when the instructor chooses a new item from the
list box on the assessment editing page, the form elements are updated without refreshing
the entire page. This improves response time and general user experience. Figure 4

shows a sequence diagram for this scenario, which is typical of all Ajax use in UTS.

tutor assess edit.jsp Utsl.js TutorAssessEdit
Tutor ; 5
E Select List Item ' :
: N : '
E updateAssessEdit(), ! !

:] create AssessX MLHttpRequest()

doPost()

aeListener(XMLHttpResponse)

3

Update UI

B R e L T T fepupupupu

Figurle 4: Select New Assessment Sequence Diagram

Readers who are not familiar with J2EE and Ajax should note that this diagram

elides (intentionally hides for the sake of readability) many details. For example, the JSP

19

is really compiled to a servlet that generates HTML which is sent to the browser. It is in
the browser that the user selects a list item; JavaScript calls are also internal to the
browser. When the listener is invoked, it is the browser’s implementation of the
Document Object Model (DOM) that is used to update the UI. Figure 4 only shows the
Ajax specific aspects of this scenario. Instead of posting directly to the server, the Web
page generéted by the JSP uses JavaScript to make an asynchronous post, and selectively
update the Ul based on the response. In a less dynamic implementation, selecting a list

item would simply get a whole new page from the server.

JSP vs. Servlets

Two major capabilities of J2EE are Java Server Pages (JSP) and Servlets. JSP
allows the developer to mix HTML and Java code in a single source document. This
document is then compiled to a Servlet. JSP is particularly convenient for building user
interfaces because the developer doesn’t need to explicitly write code to output static
HTML in a servlet. The drawback of JSP is that the mix of HTML and Java makes them
very difficult to read if there is too much Java code. They are also inappropriate for
returning data types other than HTML. UTS uses JSP to generate each page of the user
interface, including loading data from the database, but does not use JSP to write to the
database.

Servlet classes inherit from the HTTPServlet class, which provides methods for
handling GET and POST requests from the client browser. UTS uses servlets where a
component needs to write to the database, or where a component needs to return XML.
The sequence diagram in Figure 5 shows the scenario where a students navigates to the

previous SCO. This flow is typical of the use of JSP and Servlets in UTS for both

20

student and instructor roles, except for doGet() calling doPost(). This was done to

accommodate the hyperlink. Most other areas of the US use onclick() or buttons, and call

Session

doPost() directly.
i student _sco.jsp || StudentNavigation JDBC
Student E

nav previous lmk (| :

doGet(scoid, qud, toscoz
D doPost()

E set time 1n paths

.
rupdate bookmark 1n mstructors to tosco

‘new path 1n paths

>
»

setAttribute(“SCOID”, tosco)

v

: E doGet()

Figure 5: Student Navigate Back Sequence Diagram

R SR

In Figure 5, the student presses a link to navigate to the previous SCO. The Web

page issues a GET request to the StudentNavigation servlet, which forwards the request

to the servlet’s doPost(). This extra step makes it easier for HTML to treat a hyperlink to

the servlets as a plain HTML request. The doPost() method then makes various calls to

the database, and sets the SCO number in the session so that when it redirects back to the

JSP, it will display the previous SCO.

Code Conventions

Some code conventions for UTS evolved over the course of the project, so these

are not universally followed in the current build. However, they are followed on all new

development, and added to old code as time permits.

21

Array Indexing
Where user interface elements with 1 based indexing correspond to code
elements with zero based indexing, make the conversion as close as possible to the user

interface.

JSP Logic

Where practical, place Java code in JSP files at the top of the JSP. For example,
database queries should be in the <KHEAD> of the document with the results assigned to
variables that are output by <%= %> in the body of the document. A small amount of
Java code is still required in the body of the HTML for iterative building of tables and the

like.

JSP Formatting

One unfortunate aspect of the way JSP works is that many uses of whitespace that
make the JSP readable render the generated HTML very difficult to read. I chose to err

on the side of JSP readability.

File Naming

Where a JSP posts to a single Servlet, use filenames role_pagedescription.jsp and
RolePageDescription.java (e.g. tutor_question_list.jsp and TutorQuestionList.jsp). Each
JSP should post to its own Servlet. In cases such as student_sco.jsp with many different

posts, there should be a servlet for each major functionality.

22

Student Features

This section details the requirements and design of the student interface to UTS.
Students are users who log in to UTS for the purpose of taking a course during the
development process. The greatest emphasis was placed on ease of use for the Student
interface because it has the most total user interface time, and the least time is available
for training each student users.

Use Cases and Feature Requirements

e

Studeh\

Answer assessment

Figure 6 shows the overall Unified Modeling Language (UML) use case diagram

Figure 6: UTS Student Use Cases

for UTS students. A use case diagram shows the functionality of a system from the
perspective of an outside observer. It shows neither process, nor how that functionality is
implemented. The rectangle represents the system, and the ovals use cases. A stick
figure—an official part of the UML specification—represents an actor, an entity external
to the system that interacts with it in some way. In this example the student is a role for a

human being, but an actor could as easily be another computer system.

23

Comments on Instructional Design

To enable its goal of concept map generation, UTS enforces certain instructional
design constraints that would be less restrictive in most other ADL courses. UTS
assesses the student on each page because the assessments are the foundation of the
concept map extraction algorithm. This would generally be considered excessive
assessment in a linear ADL course, so UTS encourages but does not require assessment
at any given time. Students are free to browse a course and ask questions as long as they
like without taking any assessments. The only restriction is that a student cannot
complete the module until they have achieved the mastery score on the exit assessments.
Likewise, students can take as many assessments as they like on a particular SCO. If the
system runs out of new questions on that SCO, it repeats the ones the student has already
taken. Only the most recent attempt for each assessment is counted.

UTS limits each SCO to a single scrollable page. There is not an enforced limit to
the length of the page, but I strongly encouraged instructors to create content that fit on
an 800x500 screen. UTS also limits the instructor to one figure, graphic, or code sample
per SCO. This is a simplification for the sake of the experiment. I envision a future
version of UTS accepting SCO uploads from any commercial or open source ADL
authoring tool.

UTS also draws assessments for a SCO randomly from four sources: prerequisite,
post-requisite, unrelated, and module exit assessments. The proportion of these is
configurable, but in the experiment I found 10:60:5:25 to be effective. Delivering
assessments that are not post requisite to the SCO is necessary for UTS to determine the

relationship of the concepts underlying one SCO to the concepts underlying another.

24

However it is also distracting to students if they are not warned about it, so students are

told that they should expect some questions they cannot answer because the system is

trying to determine the best path for them.

User Interface

Read the SCO

Root
. y Node
nodchasonepmmandwo.one.ormodmdrmcm » .
for the root node which has no parent. We use terms JefiChild
as parent and child when refeming to the nodes of a tree, | rightChild
but these relationships are different from object oriented Yo o)
inheritance. The figure to the left shows an example of a b:Node c:Node
binary tree. In this example, the nodes are objects, but a o e 1
tree could also have nodes containing single primitive L efiChild lefiChild |
values. ! rightChild rightChild
e — e PR ‘ A node with no
’ d:Node_ g:_N___Q___dC | children s a
! clement clement { _k_‘_l_._._.__.._
| leRChitd lefiChila | | 2) read
| rightChild rightChild | | answers to
SESSS LSS previous
questions

1) Back to 3) Click here to
take a quiz
previous SCO o
Why use a binary tree?
How do binary trees relate to files?
Will this create a balanced tree?

‘What should a software de er know abou...==>

4) Ask a new

Figure 7: UTS Student Interface

Figure 7 shows the student user interface. On the browser side it is implemented
using HTML, CSS, and JavaScript. To provide the greatest simplicity and ease of use for
students, it makes extensive use of Ajax—students can ask questions and take
assessments without refreshing the whole page.

The back link (1) takes the student to the prior SCO, except when they are in the
first (root) SCO of the module, in which case the link is inactivated as shown here. The

text of the back link is the question the student followed in order to get to this SCO. In

23

the case of the root SCO, it is the focus question for the module. The question is
truncated in the link if it exceeds a certain number of characters, but the student can see
the entire question if they roll over the link.

The forward link (2) shows the recommended next question. For experiment 3
the suggested link is randomly chosen to avoid biasing the student’s chosen path through
the material. In future iterations of UTS, it could be based on the shortest path to
complete the post assessment, on the student’s stated preferences, or on a number of other
factors. Rolling the mouse over the suggested next question link, the student sees the

other question links to choose from.

) "1 One
- correct
One
wrong
Twelve

correct

Figure 8: Score Component Concept in Two Different States

By clicking on the assessment component (3) the student shows or hides the semi-
transparent assessment area. This design allows the student to see the SCO content while
completing the assessment. The top bar on the assessment component shows the
student’s mastery of this SCO. If the student answers an assessment correctly, a green
bar is added; incorrectly and a red bar is added. For example, Figure 8 shows the score
component in two different states—first with one correct and one wrong, and then with

twelve correct and one wrong. If the student answers enough post requisite assessments,

26

all bars will be green. My intention is to make a game of the assessments so students are
encouraged to answer more than if they were required to answer a fixed number.

The new question area (4) allows the student to submit a new question. Pressing
the submit button posts the question asynchronously and shows the student a

confirmation message. The question will not appear in the question link list until a tutor

creates new content for it, or a librarian links it to a new SCO.

£ Code SCO - Mozilla Firefox
Fle Fdt Vew Go Dookmarks Toos Heb
@ P G O B (D rosmmsmrromme s 30« [,

[} Microsoft Outiook Web Access | L] Code SCO %]

Binary Trees
A tree is similar to a inked list, but each node may have more ——
than two links and the first node is called the "root” rather than Root

the "head " A binary tree is a tree in which a node has one clement Hodey

parent and zero, one, ogty -

which has no parent. W “What are nodes with the same parent referred to
whenrefu'rmgtoﬂle

are different from o
left shows metmﬂe&'a in:
nodes are objects, but Z-Eedsi{le gy

single primitive values. RSV

e Left-Right Children lohidren s |
® Sub-nodes Jloal ;—{

iy - ‘
Module:7/0 [[Ask]

Figure 9: Student Interface With Assessment Interface Visible

Figure 9 shows the student interface with the assessment screen activated. It is
semitransparent, so students can review the SCO as they complete the quiz. By making it
easy to access the assessments without going to a different page, this interface encourages

students to take as many assessments as possible.

27

Static Design and Database

[__Jutsto é
WEB-INF
% web.xml

classes

|
-

utsi.js

joshbyrne
uts_basics.css

login.jsp

student_sco.jsp

E Login.class
— | text_code.jsp —@ StudentAssessment.class

—% StudentNavigation.class

text_graphic.jsp

—% StudentQuestion.class
% StudentSCO.class

—El UTSUtil.class

Figure 10: Student Role Deployment

Figure 10 shows the deployment of the files that implement the student role. The
primary student interface is provided by student_sco.jsp, and each of its major interactive
components is handled on the server side by a servlet called by a JavaScript function.

For example, StudentQuestion loads assessments from the database and evaluates student
responses.

The text_code and text_graphics JSPs are included by student_sco depending on
what type of content a SCO has. This design keeps the individual JSPs from becoming
too complex, and makes it easy to provide a SCO preview in the instructor components.
Due to extensive use of Ajax, most of the student interface is handled by student_sco, but

it is supported by four different servlets for different types of server side data handling.

28

I IAEID | SCO | AID | UID I Relationship | Comment | EditFlag
ment (1
| ARID | AID | UID | Date | Response | Correct

S
' AID | Question | Correct | Distl | D1st2 | Dist3 | Dist4 | CorrectComment | WrongComment | Published | AssessAuthor
enrollment

in, rs
UID | UserID | LastName | FirstName | EMAil | Password | NewQuestion | Role
log

| LID | EventType | Context | Description | when

modulepostrequisites
modules
1Id | name | minassess | minscore

paths
I PID | UserID | StartSCO | StopSCO | SCOID | Question

QID | StudentID | SubjectSCO | TargetSCO | QuestionText | InstructorID | Date | Published
SCOS :
SCOID | SCOType | SCOTitle | SCOText | SCOImage | SCOAudio | SCOAudioScript | CodeText | CodeOutText | Published |
SCOImagePath | ImageHeight | ImageWidth

Figure 11: Database Schema

Figure 11 shows the database schema for UTS. Some of the specific fields are
instructor related, but the student role uses all of the tables. Most of this will be self
explanatory to readers familiar with database design, but one unusual naming convention
that has not been factored out of the system is noteworthy: the instructors table holds user
information for students, tutors, and librarians.

Another noteworthy feature is the paths table, which keeps track of all of the
SCOS the student visits. This information is used in testing my hypothesis for comparing
the typical student’s path through a set of SCOs to the instructor’s intended path. It will
also be important when UTS is used to design an ADL course because it will help
determine which SCOs and links are most important. At some point in the future with a

larger data set it could also be useful for identifying groups of students (e.g. those who

29

take a certain path through the content) and creating concept maps specific to those
student types.

Important Design Details

Module Completion

Each time a user submits a response to an assessment, the system evaluates all of
the user’s submissions to see if the user has met the completion criteria for a module.
Once a user completes the exit criteria, it is reflected in the score component, but they are
free to continue studying the module and completing additional assessments.

The system tracks the relationship between assessments using modules and
modulepostrequisites tables. The modules table lists course name and ID,
modulepostrequisites relates course ID to assessment ID. For simplicity, the system
currently only supports student enrollment in one module at a time, but the database is
structured to accommodate multiple simultaneous enrollments for future use.

The system calculates the student’s completion score based on the most recent
submission for each assessment using the following query.

SELECT assessmentresponses.aid, MAX(date), response, correct

FROM enrollment,modulepostrequisites,assessmentresponses

WHERE enrollment.sid="student' AND
enrollment.sid=assessmentresponses.uid AND
enrollment.mid=modulepostrequisites.module AND

assessmentresponses.aid=modulepostrequisites.aid
GROUP BY aid

Path and Event Tracking
To support the experimental goals of UTS, I added a number of features for
robust user behavior tracking, including path tracking and event logging. Every time a

user navigates from one page to another, an entry is made in the path table. These data

30

are also required for the forward and back functionality which is non-trivial because UTS

is a map, and not a linear path.

Instructor Features

This section describes the UTS features for the tutor and librarian roles. The tutor
is the most complicated role in terms of number of features, but was somewhat simpler
than the student role to implement because it is less interactive. As shown in Figure 12,
the librarian role is quite similar to the tutor—reusing many of the same screens.

Use Cases and Feature Requirements

View open questions

/ View owned SCOs
Hold question \;

Tut& Librarian

Submit assessment
Review assessment

Figure 12: Instructor Use Case Diagram

31

[PreviewSCO]

Fpublish'] \Wor-peblishiisp

I v
Login Select Question Edit Question Evaluate Assessments
login.jsp tutor_guesiton_list,Jsp tutor_view_course.jsp tutor_assess_eval,jsp

® [Edit SCO }

tutor_sco_edit.jsp

Write Assessments
tutor_assess_edit.Jsp

Figure 13: UTS Tutor Activity Diagram for a New Question

Tutors follow the steps outlined in Figure 13 in the UTS process. Upon logging
in, the tutor is presented with a list of questions that need to be answered, questions they
have already answered, and whether they already have a question open for editing. If the
tutor selects a new question to edit, the system creates a new SCO in the database and
navigates to an editor page that allows the tutor to edit the student’s question. Enabling
the instructor to edit the student’s question was not an original feature of UTS, but proved
necessary because students’ questions were often unclear or error ridden.

Once in editing mode, the instructor can navigate freely among pages for editing
the SCO content, adding new assessments, characterizing existing assessments, and
previewing the target (answer) SCO. After editing the tutor publishes the course,
makeing it accessible to students, and allowing the tutor to open a different question for
editing. From the publish page, the tutor may also cancel editing. Saved edits are not

lost, but other instructors have the option to edit and publish the SCO.

32

User Interface

€ Tutor Assessment Edit - Mozilla Firefox (Z”@
Fle Edt Yew Go Bookmarks Took Heb : S
G- & O B [0 rovcrocmnsiopor s a0 G |
| [} Microsoft Outioo