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SINGULAR PERTURBATION PROBLEM FOR THE
INCOMPRESSIBLE REYNOLDS EQUATION

IONEL CIUPERCA, IMAD HAFIDI, MOHAMMED JAI

Abstract. We study the asymptotic behavior of the solution of a Reynolds

equation which describe the behavior of the fluid between two closes surfaces
as the distance between the two surfaces locally tends to zero.

1. Introduction

The field of lubricated contact deals with dynamical systems which consist of two
(or more) bodies in relative motion. The contact between the bodies is mediated
by a lubricant fluid, which in this work is assumed incompressible. The simplest
such contact is the wedge (or plane slider), used in thrust bearings. It consists of
two planar, rigid surfaces which are not mutually parallel. It is sketched in Fig.
1, in which the bottom surface is assumed to be moving horizontally towards the
right. This movement entrains lubricant towards the right into the convergent gap
between the surfaces. In turn, this generates a pressure field and consequently a
thrust force, which allows to equilibrate a load applied to the top of the device.

Under the thin-film hypothesis (the gap thickness h much smaller than the in-
plane dimensions of the contact, with the variations in h also assumed small) the
fluid pressure does not depend on the vertical coordinate, which is taken across the
gap. Upon normalization and assuming that the system is in a time-independent
state, the pressure satisfies the normalized Reynolds equation [5]

∇ · [h(x)3∇p] =
∂h

∂x1
x = (x1, . . . , xn) ∈ Ω (1.1)

p = 0 x ∈ ∂Ω (1.2)

where Ω ⊆ Rn(n = 1 or 2) is the domain in which the two surfaces are in proximity,
p is the normalized pressure, h(x) is the normalized gap thickness and the relative
motion is assumed along the x1-direction.

Assume, as in Fig. 1, that a vertical force F is applied to the upper surface of the
bearing at a point x0 = (x0

1, x
0
2, . . . , x

0
n). To equilibrate this load the upper surface
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Figure 1. Sketch of a slider bearing

changes its position, intuitively getting closer to the lower surface as the applied
load increases. Let us define the reference shape of the upper surface through a non
negative function h0.
Into this function we incorporate the so-called attitude of the slider (pitch and roll
angles), so that the gap thickness becomes, simply,

h(x) = h0(x) + ε (1.3)

where ε represents the minimal distance between the surfaces. With h0 fixed the
pressure becomes a function of ε satisfying the problem

∇ ·
[(

h0(x) + ε
)3∇p

]
=

∂h0

∂x1
on Ω

p = 0 on ∂Ω
(1.4)

If for any ε > 0, we denote

g(ε) =
∫

Ω

p dx (1.5)

then for equilibrium to hold in a system in which the only degree of freedom is the
vertical position, the upper surface must be placed so as to satisfy

g(ε) = F (1.6)

It is easy to show both that limε→+∞ g(ε) = 0 and that g is a continuous function,
so that an equilibrium position exists for any positive load F smaller than maxε g(ε).
It is thus extremely important to analyze the behavior of g in the vicinity of zero,
in particular the conditions under which limε→0 g(ε) = +∞. This guarantees the
existence of an equilibrium position for any positive F . A finite limit, on the other
hand, guarantees the existence of an equilibrium position for any 0 < F ≤ g(0).

It is also important to study the moments of the force exerted by the pressure
for each minimal gap thickness ε defined with respect to the point x0,

mi(ε) =
∫
Ω

p(xi − x0
i )dx i = 1, . . . , n (1.7)

because equilibrium also requires that

mi(ε) = 0 i = 1, . . . , n (1.8)
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and systems with the pitch and roll angles as additional degrees of freedom have
their attitudes defined by these conditions.

In this article we will assume n = 2, Ω =]a1, b1[×]a2, b2[, h0 ∈ C0(Ω̄) with
h0(x) > 0 a.e x ∈ Ω, and

min
x∈Ω

h0(x) = 0.

The goal is to find the limits of g(ε) and mi(ε), i = 1, 2 as ε → 0+. Beside its
intrinsic importance, this study provides crucial tools for a forthcoming analysis on
the existence of equilibria for the dynamical equations of slider bearings.

As we will see later, the results strongly depend on the shape function h0. We
will consider two situations:

(i) when h0 vanishes on a segment of type {x1 = d1} only, with d1 ∈ [a1, b1],
which will be called “line contact case”. In this case we will assume h0 ∼
|x1 − d1|α in a neighborhood of {x1 = d1}, with α > 0.

(ii) when h0 vanishes only at a single point d = (d1, d2) of Ω̄, which will be
called “point contact case”. We will assume h0 ∼ |x−d|α in a neighborhood
of {x = d}, with α > 0.

In both the “line-contact case” and the “point-contact case” we obtain two types
of results: (i) convergence of load and momenta to some finite limits which will be
made precise in Section 3 and (ii) divergence to +∞ of load and momenta. Problem
(1.4) can be seen as a singular perturbation of the corresponding problem (ε = 0 )
with small parameter ε. This kind of problem has been studied in [10, 2, 8, 6].

We can apply here singular perturbation results to obtain the convergence of
p to the solution of the limit problem denoted p0 in a weighted Sobolev space of
type H1

0 (Ω, h2δ1
0 , h2δ2

0 ) (see Section 2 for the definition). This is not sufficient for
the convergence of load and momenta; we also need a continuous embedding of
H1

0 (Ω, h2δ1
0 , h2δ2

0 ) into L1(Ω) which is obvious if δ1 is not large.
This singular perturbation approach works only for α < 1 in the “line-contact

case” and for α < 3
2 in the “point-contact case”. To have a well-posed limit problem

we need a Poicaré-like inequality for weighted Sobolev spaces. This subject is well
studied in the literature (see [3, 9, 4]). We prefer to give here a new elementary
result (Lemma 2.2) well-adapted to our problem.

In cases α ≥ 1 for “line-contact” and α ≥ 3
2 for “point-contact” (divergent cases)

the singular perturbations results cited above are no longer applicable.
This part is more difficult and we use extensively the maximum principle in order

to find an appropriate lower bound for p whose integral tends to infinity. This
proves the divergence to infinity of the load and we also prove that this divergence,
in the “line-contact case”, is of order greater than ε2/α−2 for α > 1 and greater
than log(1/ε) for α = 1. In the “point-contact case” the same result holds with α
replaced by 2

3α.
In order to prove the divergence of momenta we also need to prove that p is

bounded far from the annulation points of h0. This result is again proved using the
maximum principle, assuming h0 to be a tensor product. We remark that in the
“point-contact case” for α ∈ [ 32 , 2[ we have divergence of load and momenta while
the limit problem of (1.4) exists in a weighted Sobolev space. This is because the
continuous embedding of this space in L1(Ω) does not hold.

In some cases the solution of (1.4) is negative, which does not correspond to
the actual fluid behavior since cavitation takes place for p < 0. To account for
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cavitation, problem (P1) is replaced by the variational inequality [1]

Find p ∈ K = {v ∈ H1
0 (Ω) : v ≥ 0}∫

Ω

(h0(x) + ε)3∇p∇(ϕ− p)dx ≥
∫

Ω

h0
∂

∂x1
(ϕ− p) ∀ϕ ∈ K

(1.9)

The goal is also to find limits of g and mi, i = 1, 2 (defined as in (1.5) and (1.7)
with p now the solution of (1.9)) when ε goes to 0. We obtain the same kind of
results as in the equation case.

The paper is organized as follows. In Section 2 we present some preliminary re-
sults concerning weighted Sobolev spaces, in particular the Poincaré-like inequality.
In Section 3 we study the limits of load and momenta in the equation case (problem
(1.4)) for the different cases cited above. Finally, Section 4 presents the same study
in the inequality case (problem (1.9)).

2. Preliminaries

Let us consider f0, f1 ∈ C0(Ω) with fk > 0 a.e. x ∈ Ω, k = 0, 1. We introduce
the weighted Sobolev space

H1(Ω, f0, f1)

as the set of all measurable functions ϕ = ϕ(x) defined on Ω with (generalized)
derivatives Dαϕ for α = (α1, α2) ∈ N2 with α1 + α2 ≤ 1 such that∫

Ω

f0(x)ϕ2(x)dx +
∫

Ω

f1(x)|∇ϕ|2(x)dx < ∞ (2.1)

H1(Ω, f0, f1) is a pre-Hilbert space equipped with the scalar product(
ϕ1, ϕ2

)
H1(Ω,f0,f1)

=
∫

Ω

f0(x)ϕ1(x)ϕ2(x)dx +
∫

Ω

f1(x)∇ϕ1(x) · ∇ϕ2(x)dx .

Let H1
0 (Ω, f0, f1) be the closure of D(Ω) with respect to the norm of H1(Ω, f0, f1),

which is a Hilbert space endowed with the same scalar product as H1(Ω, f0, f1).

Remark 2.1. If 1/fk ∈ L1
loc(Ω), k = 0, 1 then H1(Ω, f0, f1) is a Hilbert space [7].

We have the following general Poincaré-like inequality.

Lemma 2.2. Let f ∈ C0(Ω) with f > 0 a.e. x ∈ Ω. Assume that a real d1 ∈ [a1, b1]
exists such that f is non-increasing in x1 on [a1, d1] × [a2, b2] and non-decreasing
in x1 on [d1, b1] × [a2, b2], with the obvious convention that for d1 = a1 (resp.
d1 = b1) the function f is only non-decreasing ( resp. non-increasing). Then for
any δ1, δ2 ∈ R+ such that

K = sup
x2∈[a2,b2]

∫ d1

a1

∫ x1

a1

f2(δ1−δ2)(s, x2)dsdx1

+ sup
x2∈[a2,b2]

∫ b1

d1

∫ b1

x1

f2(δ1−δ2)(s, x2)dsdx1 < ∞

we have ∫
Ω

f2δ1u2 ≤ K

∫
Ω

f2δ2
∣∣∇u

∣∣2, ∀u ∈ H1
0 (Ω, f2δ1 , f2δ2)
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Proof. For any u ∈ D(Ω) we have for x1 < d1:

fδ1(x1, x2)|u(x1, x2)| ≤ fδ1(x1, x2)
∫ x1

a1

∣∣ ∂u

∂x1
(s, x2)

∣∣ds

≤
∫ x1

a1

fδ1(s, x2)
∣∣ ∂u

∂x1
(s, x2)

∣∣ds,

since f is x1-non-increasing. We then have

f2δ1(x1, x2)u2(x1, x2)

≤
( ∫ x1

a1

f2(δ1−δ2)(s, x2)ds
)( ∫ b1

a1

f2δ2(x1, x2)
( ∂u

∂x1
(x1, x2)

)2

dx1

)
∀x1 ≤ d1

By integrating in x1 on [a1, d1] first and then in x2 we obtain∫ d1

a1

∫ b2

a2

f2δ1u2dx

≤
(

sup
x2∈[a2,b2]

∫ d1

a1

∫ x1

a1

f2(δ1−δ2)(s, x2) ds dx1

)( ∫
Ω

f2δ2
( ∂u

∂x1

)2
dx

) (2.2)

In the same manner, using the fact that f is x1-non-decreasing on [d1, b1]× [a2, b2],
we obtain∫ b1

d1

∫ b2

a2

f2δ1u2dx

≤
(

sup
x2∈[a2,b2]

∫ b1

d1

∫ b1

x1

f2(δ1−δ2)(s, x2) ds dx1

)( ∫
Ω

f2δ2
( ∂u

∂x1

)2
dx

) (2.3)

Adding (2.2) and (2.3) we obtain the desired inequality and by a density argument
we obtain the result. �

Corollary 2.3. For f, δ1, δ2 satisfying assumptions of Lemma 2.2 the semi-norm
‖fδ2∇ · ‖L2(Ω) is a norm on H1

0 (Ω, f2δ1 , f2δ2) and is equivalent to the norm of
H1(Ω, f2δ1 , f2δ2).

3. Asymptotic behavior of the equation case (problem (1.4))

In this section we set, for the sake of simplicity, Ω =] − 1, 0[2 and we suppose
that

h0 ≥ 0, h0 ∈ C0(Ω̄) and h0 is non increasing in x1. (3.1)

We study the asymptotic behavior, as ε tends to 0, of the solution p of (1.4) which is
non negative by the maximum principle. We introduce the following limit problem
for any δ1 ∈ R+:

Find p0 ∈ H1
0 (Ω, h2δ1

0 , h3
0) such that∫

Ω

h3
0∇p0∇ϕ =

∫
Ω

h0
∂ϕ

∂x1
∀ϕ ∈ H1

0 (Ω, h2δ1
0 , h3

0)
(3.2)

Proposition 3.1. Suppose that
∫
Ω

dx
h0

< +∞ and δ1 ∈ R+ is such that

sup
x2∈[−1,0]

∫ 0

−1

∫ x1

−1

h2δ1−3
0 (s, x2) ds dx1 < +∞



6 I. CIUPERCA, I. HAFIDI, M. JAI EJDE-2006/83

Then problem (3.2) admits a unique solution p0 ∈ H1
0 (Ω;h2δ1

0 , h3
0) which is inde-

pendent on δ1.

Proof. From Lemma 2.2 with d1 = 0 and δ2 = 3
2 we deduce that the seminorm

‖h3
0∇·‖L2(Ω) is a norm in H1

0 (Ω, h2δ1
0 , h3

0) equivalent to the norm in H1(Ω, h2δ1
0 , h3

0).
On the other hand the application

ϕ ∈ H1
0 (Ω, h2δ1

0 , h3
0) →

∫
Ω

h0
∂ϕ

∂x1
dx ∈ R

is in the dual of H1
0 (Ω, h2δ1

0 , h3
0) since we have∣∣∣ ∫

Ω

h0
∂ϕ

∂x1

∣∣∣ ≤ ( ∫
Ω

dx

h0

)1/2[ ∫
Ω

h3
0

( ∂ϕ

∂x1

)2
]1/2

.

By Lax-Milgram theorem we have classically the existence and the uniqueness for
any fixed δ1 ∈ R+. To prove the independence of p0 with respect to δ1 we consider
p1
0 and p2

0 two solutions corresponding respectively to δ1
1 and δ2

1 with δ2
1 < δ1

1 . We
remark that H1

0 (Ω, h
2δ2

1
0 , h3

0) ⊂ H1
0 (Ω, h

2δ1
1

0 , h3
0) with dense and continuous embed-

ding. Then p2
0 satisfies by density the same problem as p1

0 which by uniqueness
gives the result. �

Problem (1.4) can be seen as a singular perturbation of problem (3.2) with the
small parameter ε. This kind of problem has been studied in [10, 2, 8, 6]. Let us
recall a simplified version of a result given in [6] for a more general problem, which
allows us to obtain the convergence of p to p0.

Lemma 3.2. Let V,W,H be three Hilbert spaces, with continuous embeddings V ⊂
W ⊆ H and V dense in W and in H. Let b(ε;u, v), 0 < ε ≤ ε0, be a sequence
of continuous bilinear forms on V , b(u, v) a continuous bilinear form on W and
f ∈ H. Under the hypotheses

(1) ε → b(ε;u, v) is continuous and limε→0 b(ε;u, v) = b(u, v) ∀(u, v) ∈ V × V
(2) ∃α(ε) > 0 with α(ε) → 0 and β > 0 such that b(ε;u, u) ≥ α(ε)‖u‖2V +

β‖u‖2W , ∀u ∈ V
(3) ∃γ > 0 such that b(u, u) ≥ γ‖u‖2W ,∀u ∈ W
(4) For any sequence wε ∈ V for which |b(ε;wε, wε)| is bounded, b(ε;wε, v) −

b(wε, v) → 0,∀v ∈ V
(5) ∃δ(ε) with δ(ε) → 0 such that b(ε; v, v)− b(v, v) + δ(ε)b(v, v) ≥ 0

the solution uε of the problem

b(ε;uε, v) = (f, v) ∀v ∈ V, ε ≤ ε0

converges strongly in W to the solution u of the problem

b(u, v) = (f, v) ∀v ∈ W .

Proposition 3.3. Under the hypotheses of Proposition 3.1, the solution p of (1.4)
converges, as ε tends to 0, to the solution p0 of (3.2), strongly in H1

0 (Ω, h2δ1
0 , h3

0).

Proof. It suffices to apply Lemma 3.2 with V = H1
0 (Ω), W = H = H1

0 (Ω, h2δ1
0 , h3

0)
endowed with the norm ‖h3

0∇ · ‖L2(Ω), uε = p, and

b(ε;u, v) =
∫

Ω

(h0 + ε)3∇u∇vdx, b(u, v) =
∫

Ω

h3
0∇u∇v dx .



EJDE-2006/83 SINGULAR PERTURBATION PROBLEM 7

We choose f in the following manner: Since the application v ∈ W →
∫
Ω

h0
∂v
∂x1

is
an element of W ′, from Riesz’s theorem there exists f in W such that∫

Ω

h0
∂v

∂x1
= (f, v)W , ∀v ∈ W.

Assumptions (1)-(3) and (5) are immediately verified with α(ε) = ε3, β = 1, γ = 1
and δ(ε) = 0.

Let us now verify assumption (4). Let wε be a sequence in H1
0 (Ω) for which∫

Ω
(h0 + ε)3∇(wε)2 is bounded, so ‖wε‖W is bounded. For all v ∈ H1

0 (Ω), we have∫
Ω

(h0 + ε)3∇wε∇v −
∫

Ω

h3
0∇wε∇v

=
∫

Ω

[
(h0 + ε)3/2 − h

3/2
0

](
h0 + ε

)3/2∇wε∇v +
∫

Ω

[
(h0 + ε)3/2 − h

3/2
0

]
h

3/2
0 ∇wε∇v

Since (h0 + ε)3/2 − h
3/2
0 → 0 in L∞(Ω) we easily obtain the result. �

For simplicity we shall distinguish here two different situations: (i) the function
h0 vanishes on the entire segment x1 = 0 namely the line-contact case, (ii) the
function h0 vanishes on a unique interior point, supposed to be (0,0), namely point-
contact case.

3.1. Line-contact case. We assume in this section that, in addition to hypothesis
(3.1)

h0(x) = 0 for x1 = 0

h0(x) > 0 for x1 6= 0

We shall prove, under some supplementary hypotheses, that:
For

∫
Ω

dx
h0(x) < +∞ the load and momenta have finite limits (paragraph 3.1.1).

For
∫
Ω

dx
h0(x) = +∞ the load and momenta have infinite limits (paragraph 3.1.2).

Remark 3.4. If h0 behaves as (−x1)α with α > 0 in a neighbourhood of x1 = 0,
then

∫
Ω

dx
h0(x) is finite for α < 1 and infinite for α ≥ 1.

3.1.1. Finite limit case.

Theorem 3.5. If there exists α ∈]0, 1[ and m0 > 0 such that

h0(x) ≥ m0(−x1)α ∀x ∈ Ω

then, for any (x0
1, x

0
2) ∈ Ω and ε → 0, we have∫

Ω

p dx →
∫

Ω

p0dx,

∫
Ω

(xk − x0
k)p →

∫
Ω

(xk − x0
k)p0, k = 1, 2

where p is the solution of (1.4) and p0 the solution of problem (3.2)

Proof. Since α ∈]0, 1[, the hypotheses in Propositions 3.1 and 3.3 are satisfied
with δ1 = 1

2 . Then there exists p0 ∈ H1
0 (Ω, h0, h

3
0) unique solution of (3.2) with

δ1 = 1
2 such that p → p0 strongly in H1

0 (Ω, h0, h
3
0). On the other hand, all u ∈

H1
0 (Ω, h0, h

3
0), we have∫

Ω

|u|dx ≤
( ∫

Ω

dx

h0

)1/2( ∫
Ω

h0u
2dx

)1/2

that is, the continuous embedding of H1
0 (Ω, h0, h

3
0) in L1(Ω) holds. This implies

that p converges to p0 strongly in L1(Ω) which ends the proof. �
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3.1.2. Infinite-limit case. For any δ > 0, we shall define

Ωδ =]− δ, 0[×]− 1, 0[

In this paragraph we need the following supplementary hypothesis: There exist
δ0 ∈]0, 1

2 [, α ≥ 1 and 0 < m1 ≤ M1 such that

h0 ∈ W 1,∞(Ω) and αm1(−x1)α−1 ≤ −∂h0

∂x1
≤ αM1(−x1)α−1, ∀x ∈ Ω2δ0

(3.3)

Lemma 3.6. For any φ ∈ C2([−2δ0, 0]) with φ(−2δ0) = 0 and q2 ∈ C2([−1, 0])
with q2(−1) = q2(0) = 0, there is c > 0 small enough such that:

p(x) ≥ cq1(x1)φ(x1)q2(x2) ∀x = (x1, x2) ∈ Ω2δ0

with

q1(x1) =
(−x1)α+1(

M1(−x1)α + ε)3

Proof. We apply the maximum principle. Since the function q1(x1)φ(x1)q2(x2),
vanishes on ∂Ω2δ0 , it suffices to prove

−c∇ ·
[
(a + h0)3∇(q1(x1)φ(x1)q2(x2))

]
≤ −∂h0

∂x1
∀x ∈ Ω2δ0

Dividing by (−x1)α−1 and using (3.3) it suffices to prove the existence of a positive
constant K1 independent of ε such that

−
∇ ·

[
(a + h0)3∇(q1(x1)φ(x1)q2(x2))

]
(−x1)α−1

≤ K1

which is equivalent to

3(ε + h0)2q2φq
′

1

[ −∂h0
∂x1

(−x1)α−1

]
− (ε + h0)3q2φ

q′′1
(−x1)α−1

− 2(ε + h0)3q2φ
′ q

′

1

(−x1)α−1

+ 3(ε + h0)2q1q2φ
′[ −∂h0

∂x1

(−x1)α−1

]
− (ε + h0)3q2φ

′′ q1

(−x1)α−1

− (ε + h0)3φq′′2
q1

(−x1)α−1
− 3(ε + h0)2q1φq

′

2

[ ∂h0
∂x2

(−x1)α−1

]
≤ K1

(3.4)

On the other hand, it is easy to see that a constant K2 independent of ε exists such
that:

|q
′

1(x1)| ≤ K2
(−x1)α(

M1(−x1)α + ε
)3 ∀x1 ∈ [−2δ0, 0],

|q′′1 (x1)| ≤ K2
(−x1)α−1(

M1(−x1)α + ε
)3 ∀x1 ∈ [−2δ0, 0].

Integrating (3.3) on [x1, 0] we obtain

m1(−x1)α ≤ h0(x) ≤ M1(−x1)α ∀x ∈ Ω2δ0 (3.5)

Using the above inequalities we obtain (3.4) which concludes the proof. �

Now we are able to give a first result in the case α ≥ 1.
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Theorem 3.7. For α ≥ 1 we have
∫
Ω

p dx → +∞ as ε → 0. Moreover there exists
K > 0 such that for ε small enough we have∫

Ω

p dx ≥ Kε
2
α−2 for α > 1,∫

Ω

p dx ≥ K log(
1
ε
) for α = 1.

Proof. We apply Lemma 3.6 with φ = 1 on [−δ0, 0] and q2 ≥ 0 with

q2 ∈ C2([−1, 0]) ∩H1
0 (]− 1, 0[)

and
∫ 0

−1
q2(x2) > 0. We deduce that there exists a constant c > 0 independent of ε

such that
p(x1, x2) ≥ cq2(x2)φ(x1)q1(x1), ∀x ∈ Ω2δ0

with q1 given in Lemma 3.6. Taking into account the fact that p is non negative on
all of Ω we obtain∫

Ω

p dx ≥ c

∫
Ωδ0

q2(x2)q1(x1)dx = c

∫ 0

−1

q2(x2)dx2

∫ 0

−δ0

q1(x1)dx1 . (3.6)

On the other hand, for α > 1 and ε small enough we have∫ 0

−δ0

q1(x1)dx1 ≥
∫ 0

−ε1/α

q1(x1)dx1 ≥
ε1+

2
α

(M1 + 1)3ε3(α + 2)

which, with (3.6), gives the result for α > 1.
For α = 1 an elementary calculation gives∫ 0

−δ0

q1(x1)dx1 =
−1

3M3
1

∫ 0

−δ0

d
dx1

(
(−M1x1 + ε)3

)
(−M1x1 + ε)3

dx1

− 2ε

M2
1

∫ 0

−δ0

−M1x1

(−M1x1 + ε)3
dx1 −

ε2

M2
1

∫ 0

−δ0

dx1

(−M1x1 + ε)3

We easily prove that the last two terms of the right-hand side are bounded by a
constant independent of ε. With the help of (3.6) we obtain the result. �

In the particular case when h0 is symmetric in the x2 direction we have the
following asymptotic behavior of the x2-momentum.

Theorem 3.8. Suppose that h0 is symmetric in x2 with respect to x2 = −1/2 and
α ≥ 1. Then for ε → 0, we have∫

Ω

(x2 − x0
2)p dx → +∞ if x0

2 ∈]− 1,−1
2
[,∫

Ω

(x2 − x0
2)p dx → −∞ if x0

2 ∈]− 1
2
, 0[,∫

Ω

(x2 − x0
2)p dx = 0 if x0

2 = −1
2

.

Proof. By symmetry of h0 the function p̄(x1, x2) = p(x1,−1−x2) is also a solution
of problem (1.4), so that by uniqueness p = p̄. We then have∫

Ω

(x2 − x0
2)p dx =

∫
Ω

(x2 +
1
2
)p dx− (x0

2 +
1
2
)
∫

Ω

p dx .
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The first integral of the right-hand side is equal to 0 by symmetry. Then we have
the result by Theorem 3.7. �

Now we shall give the behavior of the x1-moment in the particular case when h0

is a tensor product. This is often the case in practice for the contact line. We begin
by the following lemma which means that p is bounded uniformly in ε far from the
line contact.

Lemma 3.9. Suppose that h0(x1, x2) = a1(x1)a2(x2) with a2 ∈ C0([−1, 0]), a2 > 0,
a1 ∈ H1(]− 1, 0[), a1 ≥ 0, ∂a1

∂x1
≤ 0. Then there exists C > 0 such that

p(x) ≤ C

∫ x1

−1

ds

(h̄0(s) + ε)2
, ∀x ∈ Ω

where h̄0(x1) = a2ma1(x1) with a2m = minx2∈[−1,0] a2(x2)

Proof. We apply again the maximum principle. Let q(x1) = C
∫ x1

−1
1/(h̄0(s)+ε)2 ds.

Since q ≥ 0 and p = 0 on ∂Ω it suffices to show that for C > 0 large enough we
have

− ∂

∂x1

[
(h0 + ε)3

∂q

∂x1

]
≥ −∂h0

∂x1
∀x ∈ Ω,

that is

−C
∂h0

∂x1

(h0 + ε)3

(h̄0 + ε)3
E(x) ≥ −∂h0

∂x1
(3.7)

with

E(x) = 3
h̄0 + ε

h0 + ε
− 2

a2m

a2(x1)
Now we have

E(x) =
a2m

a2(x2)
[
3
a1 + ε

a2m

a1 + ε
a2

− 2
]

=
a2m

a2(x2)
a1 + ε( 3

a2m
− 2

a2
)

a1 + ε
a2

.

We easily obtain

E(x) ≥ a2m

a2M
with a2M = max

x2∈[−1,0]
a2(x2)

which proves (3.7) by taking C ≥ a2M/a2m since h0 + ε ≥ h̄0 + ε and ∂h0
∂x1

≤ 0. �

Theorem 3.10. Assuming (3.3) to hold, and assuming further that the function
h0 is of the form h0(x) = g1(x1)g2(x2) with g1, g2 ∈ W 1,∞(]− 1, 0[), then∫

Ω

(x1 − x0
1)p dx → +∞ as ε → 0 for any x0

1 ∈]− 1, 0[ .

Proof. We choose δ > 0 such that −δ > max(x0
1,−δ0). Then we have∫

Ω

(x1 − x0
1)p dx ≥ (−δ − x0

1)
∫

Ωδ

p dx +
∫ −δ

−1

∫ 0

−1

(x1 − x0
1)p dx

We prove as in Theorem 3.7 that the first integral of the right-hand side tends to
+∞ since −δ − x0

1 > 0. Applying Lemma 3.9 with a1 = (−x1)αg1 and a2 = g2 we
easily prove that the second integral is bounded by a constant independent of ε.
We then have the result. �
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Remark 3.11. An interesting open question is to obtain an upper bound for p
which allows to say that p is bounded uniformly in ε far from x1 = 0, without the
global hypotheses that h0 is a tensor product.

3.2. Point-contact case. We now assume that h0 is, in a neighbourhood of x = 0,
equivalent to |x|α with α > 0, where | · | denotes the Euclidean norm. For simplicity
we make here the following (non-essential) hypothesis

h0(x) = |x|αh1(x)

with h1 ∈ W 1,∞(Ω) and h1 > 0. We denote

m = inf
x∈Ω̄

h1(x), M = sup
x∈Ω̄

h1(x)

We shall prove that for 0 < α < 3
2 (paragraph 3.2.1) we have finite limits of load

and momenta while for α ≥ 3
2 (paragraph 3.2.2) they tend to +∞. We begin by

the following existence, uniqueness and convergence results.

Proposition 3.12.
• If 0 < α < 4

3 then for any 0 < δ1 < 3
4 there is a unique solution p0 ∈

H1
0 (Ω, h2δ1

0 , h3
0) of (3.2) and p → p0 in H1

0 (Ω, h2δ1
0 , h3

0).
• If 4

3 ≤ α < 2 then for any δ1 > 3
2 −

1
α there is a unique solution p0 ∈

H1
0 (Ω, h2δ1

0 , h3
0) of (3.2) and p → p0 in H1

0 (Ω, h2δ1
0 , h3

0).

Proof. The first hypothesis of Proposition 3.1 is obvious. The second one is evident
for 4

3 ≤ α < 2 and δ1 ≥ 3
2 −

1
α . For 0 < α < 4

3 and 0 < δ1 < 3
4 we use the inequality√

s2 + x2
2 ≥ |s| and the result is immediate. �

3.2.1. Finite-limit case (α < 3
2). In the following we prove that the limits of load

and momenta are finite for α < 4
3 without supplementary hypotheses. For 4

3 ≤ α <
3
2 we prove the same result but adding a restrictive supplementary assumption on
h0.

Theorem 3.13. For 0 < α < 4
3 we have for any (x0

1, x
0
2) ∈ Ω:∫

Ω

p →
∫

Ω

p0,

∫
Ω

(xk − x0
k)p →

∫
Ω

(xk − x0
k)p0; k = 1, 2

with p0 solution of the limit problem (3.2).

Proof. From Proposition 3.12 we have p → p0 in H1
0 (Ω, h2δ1

0 , h3
0)-strongly for any

δ1 such that

0 < δ1 <
3
4

(3.8)

On the other hand we remark that if

0 < δ1 <
1
α

(3.9)

then
∫
Ω

h−2δ1
0 is finite, which by Cauchy-Schwartz inequality gives the continuous

embedding of H1
0 (Ω, h2δ1

0 , h3
0) in L1(Ω). This will prove the three desired conver-

gence. Now the existence of at least a δ1 satisfying (3.8) and (3.9) is assured if
3/4 < 1/α which is equivalent to α < 4/3. �

Theorem 3.14. For 4/3 ≤ α < 3/2, under the supplementary hypothesis 4h0 ≥ 0
on Ω we have the same convergence as in Theorem 3.13.
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Proof. We need here an estimation of p in a stronger norm than ‖h3/2
0 ∇ · ‖L2(Ω) in

order to obtain ‖hδ1
0 p‖L2(Ω) bounded with a better parameter δ1 than in Theorem

3.13. We prove in the following that ‖h(3−δ)/2
0 ∇p‖L2(Ω) is bounded for an appro-

priate δ > 0. Taking ϕ =
(
h0 + ε

)−δ
p with 0 < δ < 2

α − 1 ≤ 1
2 as a test function in

the variational formulation of (1.4) we obtain∫
Ω

(
h0 + ε

)3−δ∣∣∇p
∣∣2 = δ

∫
Ω

(
h0 + ε

)2−δ∇h0p∇p−
∫

Ω

∂h0

∂x1

(
h0 + ε

)−δ
p =: I1 + I2

(3.10)
Using Green’s formula we deduce

I1 = −δ

2

∫
Ω

∇ ·
[(

h0 + ε
)2−δ∇h0

]
p2

= −δ

2

∫
Ω

[
(2− δ)

(
h0 + ε

)1−δ∣∣∇h0

∣∣2 +
(
h0 + ε

)2−δ∆h0

]
p2

which is negative, thanks to the additional hypothesis ∆h0 ≥ 0. On the other hand

|I2| ≤
1

1− δ

∫
Ω

∣∣(h0 + ε)1−δ ∂p

∂x1

∣∣
=

1
1− δ

∫
Ω

(h0 + ε)(3−δ)/2

∣∣∣∣ ∂p

∂x1

∣∣∣∣ (h0 + ε)−(1+δ)/2

≤ 1
1− δ

( ∫
Ω

(h0 + ε)3−δ
∣∣ ∂p

∂x1

∣∣2)1/2( ∫
Ω

(h0 + ε)−1−δ
)1/2

≤ 1
2

∫
Ω

(h0 + ε)3−δ
∣∣ ∂p

∂x1

∣∣2dx +
1
2

1
(1− δ)2

∫
Ω

dx

(h0 + ε)1+δ
dx

The last integral of the above inequality is bounded uniformly in ε due to the
hypotheses on δ. We deduce from (3.10) that( ∫

Ω

h3−δ
0

∣∣∇p
∣∣2dx

)1/2

≤ C

Applying Lemma 2.2 with f = h0, δ2 = 3
2−

δ
2 and δ1 > 3

2−
δ
2−

1
α we deduce that p is

bounded in H1
0 (Ω, h2δ1

0 , h3−δ
0 ). We then infer the existence of ξ ∈ H1

0 (Ω, h2δ1
0 , h3−δ

0 )
and of a subsequence of ε such that p → ξ weakly in H1

0 (Ω, h2δ1
0 , h3−δ

0 ). From the
continuous embedding of H1

0 (Ω, h2δ1
0 , h3−δ

0 ) in H1
0 (Ω, h2δ1

0 , h3
0) and by identification

and uniqueness of p0 we deduce that p → p0 weakly in H1
0 (Ω, h2δ1

0 , h3−δ
0 ) for the

entire sequence.
Choosing now δ = 2

α − 1 − η, δ1 = 3
2 −

δ
2 −

1
α + η

2 = 2 − 2
α + η with 0 <

η < 3
α − 2 we obtain

∫
Ω

h−2δ1
0 < +∞ which implies the continuous embedding of

H1
0 (Ω, h2δ1

0 , h3−δ
0 ) in L1(Ω).

We then obtain p → p0 weakly in L1(Ω) which gives the desired convergence. �

3.2.2. Infinite-limit case(α ≥ 3/2). In this paragraph we use the polar coordinates
r, θ:

x1 = r cos θ, x2 = r sin θ

and we denote Ω̃, the image of Ω by this change of variables. For simplicity notations
we use the same notation as in cartesian coordinates (for example h0(r, θ) means
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h0(r cos θ, r sin θ)). We set:

Ω̃r =]0, r[ × ]− π,−π

2
[ ⊂ Ω̃, ∀r ∈]0, 1[

The problem (1.4) becomes

∂

∂r

[
(a + h0(r, θ))3r

∂p

dr

]
+

∂

∂θ

[ (a + h0(r, θ))3

r

∂p

∂θ

]
= r

∂h0

∂r
cos θ − sin θ

∂h0

∂θ
in Ω̃

p = 0 in ∂Ω̃ .

(3.11)

Let us remark that from the relation h0 = rαh1(r, θ) there exists a positive constant
K > 0 and r1 ∈]0, 1[ such that

∂h0

∂r
≥ Krα−1, ∀(r, θ) ∈ Ω̃r1 . (3.12)

We recall that h0 is non-increasing in x1 which is equivalent in polar coordinates
to

r
∂h0

∂r
cos θ ≤ sin θ

∂h0

∂θ
on Ω̃ (3.13)

We need here the following supplementary local condition: There exists r2 > 0
and β ∈]0, 1[ such that

βr
∂h0

∂r
cos θ ≤ sin θ

∂h0

∂θ
on Ω̃r2 . (3.14)

Remark 3.15. Hypothesis (3.14) is a little stronger locally than (3.13) and is true
if for example ∂h0

∂θ ≤ 0 locally (in particular if h0 is radial) since ∂h0
∂r > 0 locally

and cos θ ≤ 0

We now give an analog of Lemma 3.6 in the line-contact case.

Lemma 3.16. Suppose that (3.14) is fulfilled and set r0 = min{r1, r2}. Then for
any φ ∈ C2([0, r0]) with φ(r0) = 0, a constant c > 0 exists such that

p(r, θ) ≥ cq1(r)φ(r)q2(θ) ∀(r, θ) ∈ Ω̃r0

with

q1(r) =
rα+1

(Mrα + ε)3
, and q2(θ) = cos3 θ sin θ

Proof. It suffices to prove the inequality

∂

∂r

[
(ε + h0)3r

∂

∂r

(
cq1q2φ

)]
+

∂

∂θ

[ (ε + h0)3

r

∂

∂θ

(
cq1q2φ

)]
≥ r

∂h0

∂r
cos θ − sin θ

∂h0

∂θ
(3.15)

From (3.14), we have

r
∂h0

∂r
cos θ − sin θ

∂h0

∂θ
≤ (1− β)r

∂h0

∂r
cos θ .
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Carrying out the differentiations in the left-hand side of (3.15) and dividing by
r ∂h0

∂r cos θ, we obtain the following inequality in Ω̃r0 ,

q2(θ)
cos θ

φ
[
3(ε + h0)2q

′

1(r) + (a + h0)2q
′

1(r)
(ε + h0)

r

(∂h0

∂r

)−1

+ (ε + h0)3q′′1 (r)
(∂h0

∂r

)−1]
+

q2(θ)
cos θ

φ
′
(r)

[
3
(
ε + h0

)2
q1 +

(
ε + h0

)3 q1

r

(∂h0

∂r

)−1

+ 2
(
ε + h0

)3
q

′

1(r)
(∂h0

∂r

)−1]
+

q2(θ)
cosθ

(ε + h0)3q1φ
′′
(∂h0

∂r

)−1

+ 3
q

′

2(θ)
cos θ

φ(ε + h0)2q1
∂h0

∂θ

1
r2

(∂h0

∂r

)−1

+
q′′2

cos θ
φ

(ε + h0)3q1

r2

(∂h0

∂r

)−1

≤ 1− β

c
.

(3.16)
Remark also that there is a constant K1 > 0 such that

|q
′

1(r)| ≤ K1
rα(

Mrα + ε
)3 , |q′′1 (r)| ≤ K1

rα−1(
Mrα + ε

)3 (3.17)

Using now (3.12), (3.17) and the expression of q2 we obtain that the absolute value
of the left-hand side of (3.16) is bounded by a constant. Taking c small enough we
obtain the result. �

Theorem 3.17. Under hypothesis (3.14) we have
∫
Ω

p dx → +∞ for ε → 0 More-
over there exists K > 0 such that for ε small enough we have∫

Ω

p dx ≥ Kε
3
α−2 for α >

3
2
,∫

Ω

p dx ≥ K log(
1
ε
) for α =

3
2

.

Proof. Using polar coordinates and the non-negativity of p we have∫
Ω

pdx ≥
∫

Ω̃ρ

rp(r, θ) dr dθ, ∀ρ ∈]0, 1]

Applying Lemma 3.16 with φ = 1 on [0, r0
2 ] we show that there exists a c > 0 such

that ∫
Ω

pdx ≥ c

∫ −π/2

−π

q2(θ)dθ ·
∫ r0/2

0

rq1(r)dr .

As in the proof of Theorem 3.7 with some elementary computations we obtain the
result. �

Theorem 3.18. Under hypothesis (3.14) if moreover h1(r, θ) = g1(r)g2(θ) with
g1 ∈ C1[0,

√
2], g2 ∈ C1[−π,−π

2 ], g1(r) > 0, g2(θ) > 0 and d
dr

(
rαg1(r)

)
≥ 0 we

have ∫
Ω

(xk − x0
k)p dx → +∞, as ε → 0, k = 1, 2 .



EJDE-2006/83 SINGULAR PERTURBATION PROBLEM 15

Proof. First we prove that there exists K > 0 large enough such that

p(r, θ) ≤ K

∫ √
2

r

ds

(h0(s) + ε)2
, ∀(r, θ) ∈ Ω̃ (3.18)

with

h0(r) = g2mrαg1(r), and g2m = min
θ∈[−π,−π

2 ]
g2(θ) .

We use the maximum principle as in the proof of Lemma 3.9. It suffices to prove
the following inequality

K
(ε + h0)3

(ε + h0)2
+ Kr

∂h0

∂r

(ε + h0)3

(ε + h0)3
E(r, θ) ≥ −r

∂h0

∂r
cos θ + sin θ

∂h0

∂θ
(3.19)

with

E(r, θ) = 3
ε + h0

ε + h0
− 2

g2m

g2(θ)
.

We consider two situations
Case 1: r ≤ r1 with r1 given in (3.12). As in the proof of Lemma 3.9 we have
E(r, θ) ≥ g2m

g2M
with g2M = maxθ∈[−π,−π

2 ] g2(θ). Then it suffices to prove for r ≤ r1

Kr
∂h0

∂r

g2m

g2M
≥ −r

∂h0

∂r
cos θ + sin θ

∂h0

∂θ
(3.20)

with K > 0 large enough. From (3.12) the function
∣∣∂h0

∂θ /
(
r ∂h0

∂r

)∣∣ is bounded for
r ≤ r1. Now dividing by r ∂h0

∂r the inequality (3.20) is obvious, which proves (3.19)
for r ≤ r1.
Case 2: r > r1. We shall prove

K(ε + h̄0) ≥ −r
∂h0

∂r
cos θ + sin θ

∂h0

∂θ
for r > r1 (3.21)

for K > 0 large enough, which implies (3.19) for r > r1. We have, from hypothesis
on h0, h̄0(r) ≥ h̄0(r1) so K(ε + h̄0(r)) ≥ Kh̄0(r1) for r ≥ r1. Since the right-hand
side of (3.21) is bounded, the result is obvious.

From the tow cases above, the proof of (3.18) is complete. �

Now we have∫
Ω

(xk − x0
k)p dx =

∫
Ω̃δ

r(r cos θ− x0
1)p dr dθ +

∫
Ω̃−Ω̃δ

r(r cos θ− x0
1)p dr dθ . (3.22)

We choose 0 < δ < min(r0,
|x0

1|
2 ) with r0 given in Lemma 3.16. We have r cos θ−x0

1 ≥
−r + |x0

1| ≥
|x0

1|
2 for r < δ, so∫

Ω̃δ

r(r cos θ − x0
1)p dr dθ ≥ |x0

1|
2

∫
Ω̃δ

rp dr dθ

and this last integral goes to +∞ as in the proof of Theorem 3.17. Now using (3.18)
we easily prove that the second integral of the right-hand side of (3.22) is bounded
which ends the proof for k = 1. The case k = 2 is similar.
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4. Asymptotic behavior in the inequality case (Problem (1.9))

In this section we suppose for simplicity that Ω =] − 1, 1[2 and that h0 is non-
increasing in x1 on Ω1 and non-decreasing in x1 on Ω2 where we denote

Ω1 =]− 1, 0[×]− 1, 1[ and Ω2 =]0, 1[×]− 1, 1[ .

We study the asymptotic behaviour of the solution p of (1.9) when ε → 0. In order
to introduce the limit problem we define Kδ1 as the closure of K = {ϕ ∈ H1

0 (Ω) :
ϕ ≥ 0} with respect to the norm of H1

0 (Ω, h2δ1
0 , h3

0) . We remark that Kδ1 is a
closed convex set in H1

0 (Ω, h2δ1
0 , h3

0).
We now define the limit problem

Find p0 ∈ Kδ1 such that∫
Ω

h3
0∇p0∇(ϕ− p0)dx ≥

∫
Ω

h0
∂

∂x1
(ϕ− p) ∀ϕ ∈ Kδ1

(4.1)

We now give the following existence, uniqueness and convergence results.

Proposition 4.1. Suppose that
∫
Ω

dx
h0

< +∞ and δ1 ∈ R+ is such that

K = sup
x2∈[−1,1]

∫ 0

−1

∫ x1

−1

h2δ1−3
0 (s, x2) ds dx1

+ sup
x2∈[−1,1]

∫ 1

0

∫ x1

0

h2δ1−3
0 (s, x2) ds dx1 < ∞

Then Problem (4.1) admits an unique solution p0 ∈ Kδ1 which is independent of
δ1. Also the solution p of problem (1.9) converges, when ε → 0, to p0 strongly in
H1

0 (Ω, h2δ1
0 , h3

0).

Proof. We apply Lemma 2.2 with d1 = 0 and δ2 = 3
2 and we obtain classically the

first result. Taking ϕ = 0 in (1.9) we obtain∫
Ω

(h0 + ε)3|∇p|2dx ≤
∫

Ω

h0
∂p

∂x1
=

∫
Ω

(h0 + ε)
∂p

∂x1

which leads to ∥∥∥(h0 + ε)3/2∇p
∥∥∥

L2(Ω)
≤

( ∫
Ω

dx

h0(x)

)1/2

(4.2)

which implies ∥∥∥h
3/2
0 ∇p

∥∥∥
L2(Ω)

≤
( ∫

Ω

dx

h0(x)

)1/2

. (4.3)

From Lemma 2.2 with d1 = 0 and δ2 = 3/2 we deduce that p is bounded in
H1

0 (Ω, h2δ1
0 , h3

0). Then an element ξ ∈ Kδ1 exists such that, up to a subsequence,
p → ξ weakly in H1

0 (Ω, h2δ1
0 , h3

0). We now pass to the limit in all terms in the
inequality∫

Ω

(h0 + ε)3∇p · ∇ϕ ≥
∫

Ω

(h0 + ε)3|∇p|2 +
∫

Ω

h0
∂

∂x1
(ϕ− p) ∀ϕ ∈ K. (4.4)

Writing for any ϕ ∈ K,∫
Ω

(h0 + ε)3∇p · ∇ϕ =
∫

Ω

(
(h0 + ε)3/2 − h

3/2
0

)
(h0 + ε)3/2∇p · ∇ϕ

+
∫

Ω

(
(h0 + ε)3/2 − h

3/2
0

)
h

3/2
0 ∇p · ∇ϕ +

∫
Ω

h3
0∇p · ∇ϕ
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and using (4.2) and (4.3) we deduce∫
Ω

(h0 + ε)3∇p · ∇ϕ →
∫

Ω

h3
0∇ξ · ∇ϕ ∀ϕ ∈ K . (4.5)

Writing also ∫
Ω

h0
∂

∂x1
(ϕ− p) =

∫
Ω

h
−1/2
0 h

3/2
0

∂

∂x1
(ϕ− p),

we obtain ∫
Ω

h0
∂

∂x1
(ϕ− p) →

∫
Ω

h0
∂

∂x1
(ϕ− ξ) ∀ϕ ∈ K. (4.6)

Finally we have ∫
Ω

(h0 + ε)3|∇p|2 ≥
∫

Ω

h3
0|∇p|2

which gives

lim inf
∫

Ω

(h0 + ε)3|∇p|2 ≥
∫

Ω

h3
0|∇ξ|2 . (4.7)

From (4.4)-(4.7) we deduce∫
Ω

h3
0∇ξ · ∇ϕ ≥

∫
Ω

h3
0|∇ξ|2 +

∫
Ω

h0
∂

∂x1
(ϕ− ξ) ∀ϕ ∈ K .

By denseness and uniqueness we deduce that ξ = p0 and that the entire sequence
p converges to p0. It remains to prove the strong convergence. We have∫

Ω

h3
0|∇(p− p0)|2 ≤

∫
Ω

(h0 + ε)3|∇p|2 +
∫

Ω

h3
0|∇p0|2 − 2

∫
Ω

h3
0∇p · ∇p0 .

Taking ϕ = 0 in (1.9) and (4.1) and passing to the limit we deduce

lim
ε→0

∫
Ω

h3
0|∇(p− p0)|2 ≤ 2

∫
Ω

h0
∂p0

∂x1
− 2

∫
Ω

h3
0|∇p0|2.

The right hand-side of the above inequality is 0 (take ϕ = 0 and ϕ = 2p0 in (4.1))
which proves the result. �

In the following we shall use the classical notation

Ω0
ε = {x ∈ Ω : p(x) = 0} (cavitation zone)

Ω+
ε = {x ∈ Ω : p(x) > 0} (active zone)

It is well known that if x ∈ Ω0
ε then ∂h0

∂x1
≤ 0 which implies the inclusion Ω1 ⊂ Ω+

ε

so that in Ω1, p satisfies

∇ ·
[
(h0 + ε)3∇p

]
=

∂h0

∂x1
. (4.8)

The next lemma will be useful for the proofs in the infinite-limit cases.

Lemma 4.2. Let Ω∗ be an open subset of Ω1 with Lipschitz boundary and p∗ the
solution of (4.8) with p∗ = 0 on ∂Ω∗. Then p ≥ p∗ on Ω∗.

Proof. Since p and p∗ satisfy (4.8) on Ω∗, we have the result by the maximum
principle since p ≥ 0 on ∂Ω∗ and p∗ = 0 on ∂Ω∗. �
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4.1. Line-contact case. We suppose for simplicity h0(x) = (−x1)αh1(x),∀x ∈ Ω
with α > 0, h1 ∈ W 1,∞(Ω) and h1 > 0. We have the following result.

Theorem 4.3. For any α ∈]0, 1[ and (x0
1, x

0
2) ∈ Ω we have∫

Ω

p dx →
∫

Ω

p0dx∫
Ω

(xk − x0
k)p dx →

∫
Ω

(xk − x0
k)p0dx, k = 1, 2

Proof. The hypotheses of Proposition 4.1 are satisfied with δ1 = 1/2. Then the
proof is exactly as the proof of Theorem 3.5. �

Now for the infinite-limit case we use Lemma 4.2 with Ω∗ = Ω1. Performing
for p∗ the same kind of estimates as for p in paragraph 3.1.2 we easily obtain the
following result.

Theorem 4.4. For α ≥ 1 we have
(1)

∫
Ω

p dx → +∞
(2) If h0 is symmetric in x2 with respect to x2 = 0 then

•
∫
Ω
(x2 − x0

2)p dx → +∞ for x0
2 < 0

•
∫
Ω
(x2 − x0

2)p dx → −∞ for x0
2 > 0

•
∫
Ω
(x2 − x0

2)p dx = 0 for x0
2 = 0

(3) We assume that h1 is of the form h1(x) = g1(x1)g2(x2), g2 ∈ C0([−1, 1]),
g1 ∈ H1(] − 1, 1[), g2 > 0, g1 > 0 and d

dx1
((−x1)αg1) ≤ 0. Then for any

x0
1 ∈]− 1, 0[ we have∫

Ω

(x1 − x0
1)p dx → +∞ as ε → 0

Remark 4.5. In the above theorem we obtained the behaviour of the x1-moment
for x0 ∈ Ω1 only. The problem is open when x0 is such that x0

1 ≥ 0.

4.2. Point-contact case. We suppose h0(x) = |x|αh1(x) with h1 as in Section
3.2. The analogous of Theorem 3.13 for the inequality problem is the following.

Theorem 4.6. For 0 < α < 4/3 we have for any (x0
1, x

0
2) ∈ Ω∫

Ω

p dx →
∫

Ω

p0 dx ,∫
Ω

(xk − x0
k)p dx →

∫
Ω

(xk − x0
k)p0dx, k = 1, 2 .

The proof the above theorem uses Proposition 4.1 and is exactly as the proof of
Theorem 3.13.

For the infinite-limit case we pass again to polar coordinates. We have the
following result which is immediate applying Lemma 4.2 with Ω∗ =]− 1, 0[2 which
reduces the problem to the equation case.

Theorem 4.7. Suppose that r2 > 0 and β ∈]0, 1[ exist such that

βr
∂h0

∂r
cos θ ≤ sin θ

∂h0

∂θ
, ∀(r, θ) ∈ [0, r2]×]− π,−π

2
[ .

Then for α ≥ 3/2, we have ∫
Ω

p dx → +∞ .
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Also fir h1 of the form h1(r, θ) = g1(r)g2(θ) with g1 ∈ C1[0,
√

2], g2 ∈ C1[−π,−π
2 ],

g1 > 0, g2 > 0 and d
dr (rαg1(r)) ≥ 0, we have∫

Ω

(xk − x0
k)p dx → +∞ as ε → 0

for all x0
k ∈]− 1, 0[, k = 1, 2 .

We remark that for α ∈ [4/3, 3/2[, we are not able to obtain a result as in
Theorem 3.14, since we can not take a test function ϕ in (1.9) such that ϕ − p =
−c(h0 + ε)−δp with c independent of ε.
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hydrodynamique. J. Méc. Théor. Appl., 5(1986), 703–729.

[2] Caillerie, D.: Etude générale d’un type de problèmes raides et de perturbation singulière. C.
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