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NONEXISTENCE OF SOLUTIONS TO CAUCHY PROBLEMS
FOR FRACTIONAL TIME SEMI-LINEAR

PSEUDO-HYPERBOLIC SYSTEMS

SALEM ABDELMALEK, MAHA BAJNEED, KHALED SIOUD

Abstract. We study Cauchy problems time fractional semi-linear pseudo-
hyperbolic equations and systems. Using the method of nonlinear capacity,

we show that there are no solutions for certain nonlinearities and initial data.
Our work complements the work by Aliev and col. [1, 6, 7].

1. Introduction

In this article, we study Cauchy problems for time fractional pseudo-hyperbolic
equations and systems. We start by considering the time fractional equation

utt + η(−∆)kutt + (−∆)`u+ ξ(−∆)rDα
0|tu+ γDβ

0|tu = f(u), (1.1)

for x ∈ RN , t > 0, supplemented with the initial data

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN , (1.2)

and with
η, ξ, γ ≥ 0 for r, k ∈ N ∪ {0}, ` ∈ N, 0 < β ≤ α ≤ 1, (1.3)

∆ is the Laplacian and Dα
0|t is the left-sided Riemann-Liouville fractional derivative

of order α.
The aim of this paper is to show, using the method of nonlinear capacity proposed

by Pokhozhaev in 1997 [18] and developed successfully and jointly with Mitidieri
[15, 16, 17], that under certain conditions, there are no solutions to (1.1)-(1.2).

For the non fractional case α = β = 1, Lions’ monograph [13] considered equation
(1.1) in the case where η = 0 and f(u) = −|u|pu. A step forward was achieved
by [10, 15, 20] where they considered the absence of global solutions for the case
where η = ξ = 0 and f(u) = |u|p−1u or f(u) = ±|u|p. Kato [10] showed that for
` = 1, ξ = 0, and 1 < p < 1 + 2

N , problem (1.1)-(1.2) admits no global solution
under a certain condition on the initial data. A further study of John [9] considered
the case ` = 1, ξ = 0, η = 0, γ = 0 and f(u) = |u|p for u close to zero. This was
generalized to ` ∈ N, ξ = η = 0, γ > 0, α = 1, by Zhang [20] and Kirane and
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Qafsaoui [12]. The two studies proved that the critical exponent for this case is in
fact p = 1 + 2

N .
The existence of global solutions of problem (1.1)-(1.3) for the non-fractional

case α = β = 1, η, ξ, γ ≥ 0, r, k ∈ N ∪ {0} and ` ∈ N was achieved by Aliev and
Kazymov [5].

Recently, by using the method of the test function Aliev and col. [1, 6, 7]
established sufficient conditions for the nonexistence of global solutions of problem
(1.1)-(1.3) for the non-fractional case α = β = 1: Aliev and Lichaei [6] considered
the case α = β = 1 and η, ξ, γ > 0 for r = k ∈ N ∪ {0}, ` ∈ N, and f(u) ≥ C|u|p.
Aliev and Kazymov [1] examined the case
α = β = 1, k = 0, r = 0, ` ∈ N and f(u) = 1

(1+|x|2)s |u|
p. Aliev and Mamedov

[7] treated the non existence of global solutions of a semilinear hyperbolic equation
with an anisotopic elliptic part (α = β = 1, k = r = 0),

utt + εut +
N∑
k=1

(−1)`kD2`k
xk
u = f(u), f(u) ≥ c|u|p.

Our work will complement the results of [6] for r, k ∈ N ∪ {0}, η, ξ, γ ≥ 0 and
` ∈ N and extend it to the time-fractional case 0 < β ≤ α < 1, using the test
function method.

In the second part of this paper, we study the Cauchy problem for the time-
fractional pseudo-hyperbolic system

utt + η1(−∆)k1utt + (−∆)`1u+ ξ1(−∆)r1Dα1
0|tu+ γ1D

β1
0|tu = f(v) = |v|p

vtt + η2(−∆)k2vtt + (−∆)`2v + ξ2(−∆)r2Dα2
0|tv + γ2D

β2
0|tv = g(u) = |u|q

(1.4)

posed in Q∞ := RN × (0,∞), subject to the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN ,

v(x, 0) = v0(x), vt(x, 0) = v1(x)x ∈ RN
(1.5)

with p, q > 1, ri, ki ∈ N∪{0}, `i ∈ N, ηi, ξi, γi ≥ 0 and 0 < βi ≤ αi ≤ 1 for i = 1, 2.
The non-existence of global solutions in the case of a non fractional system of two

(or more) equations with αi = 0 or 1 and βi = 0 or 1, is investigated in numerous
studies of Aliev and colleagues: Aliev, Mammadzada, and Lichaei [8] considered
the case βi = 1, γi = ηi = 1, ξi = 0, `1 = 1, `2 = 2, p = 7

2 and q = 5
2 ; Aliev

and Kazymov [4] examined the case βi = 1, γi = ηi = 1, ξi = 0, `i ∈ N, and
fi(u, v) ≥ Ci,1|u|pi + Ci,2|v|qi ; Aliev and Kazymov [2] considered the case βi = 1,
γi = ηi = 1, ξi = 0, `i ∈ N, and f(v) ≥ C|v|p and g(u) ≥ C|u|q; Aliev and Kazymov
[3] dealt with a system of three equations that is similar to the case presented in
[4].

Our work will complement these papers for the system of two equations in the
cases γi, ηi, ξi > 0, ri, ki ∈ N∪{0}, `i ∈ N and extend it to the time-fractional case,
using again the test function method.

2. Preliminaries

For the convenience of the reader, we start by recalling some basic definitions
and properties which will be useful throughout this paper.
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Definition 2.1. The left- and right-sided Riemann-Liouville integrals of order 0 <
α < 1 for an integrable function are defined as(

Iα0|tf
)
(t) :=

1
Γ(α)

∫ t

0

(t− s)α−1f(s)ds, (2.1)

(
Iαt|T f

)
(t) :=

1
Γ(α)

∫ T

t

(s− t)α−1f(s)ds, (2.2)

where Γ is the Euler gamma function.

Definition 2.2. Let AC[0, T ] be the space of functions f which are absolutely con-
tinuous on [0, T ]. The left and right-handed Riemann-Liouville fractional deriva-
tives of order n− 1 < γ < n for a function

f ∈ ACn[0, T ] := {f : [0, T ]→ R, Dn−1f ∈ AC[0, T ]}, n ∈ N

is defined as (see [11])

Dγ
0|tf(t) := Dn(In−γ0|t f)(t), t > 0, (2.3)

Dγ
t|T f(t) := (−1)nDn(In−γt|T f)(t), (2.4)

where D is the usual time derivative.

Furthermore, for every f, g ∈ C([0, T ]) such that Dα
0|tf(t), Dα

0|tg(t) exist and are
continuous for all t ∈ [0, T ], 0 < α < 1, the formula of integration by parts can be
given according to Love and Young [14] by∫ T

0

g(t)(Dα
0|tf)(t)dt =

∫ T

0

f(t)(Dα
t|T g)(t)dt. (2.5)

In addition, [19, Lemma 2.2] provides us with the formula

Dα
t|T f(t) :=

1
Γ(1− α)

[
f(T )

(T − t)α
−
∫ T

t

(t− s)−αf ′(s)ds] (2.6)

or

Dα
t|T f(t) :=

1
Γ(1− α)

d

dt

∫ T

t

(t− s)−αf(s)ds. (2.7)

3. Non-existence of global solutions of one equation

In this section, we study the non-existence of global solutions for the time-
fractional semi-linear pseudo-hyperbolic equation (1.1) for certain initial data with
f(u) = |u|p. Before we state our result. let us define the weak solution of problem
(1.1)-(1.3).

In this article, QT denotes the set QT := RN × (0, T ), 0 < T ≤ +∞. We set∫
QT

f :=
∫

RN

∫ T

0

f(x, t) dx dt,
∫
Q∞

f :=
∫

RN

∫ ∞
0

f(x, t) dx dt,∫
RN

f :=
∫

RN
f(x, 0)dx.
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Definition 3.1. The function u ∈ Lploc(Q∞) is a weak solution of problem (1.1)-
(1.3) on QT with initial data u0(x), u1(x) ∈ L1

loc(RN ) if it satisfies∫
QT

|u|pϕ+
∫

RN
u1(x)ϕ(x, 0) + η

∫
RN

u1(x)(−∆)kϕ(x, 0)

=
∫

RN
u0(x)ϕt(x, 0) + η

∫
RN

u0(x)(−∆)kϕt(x, 0) +
∫
QT

uϕtt

+ η

∫
QT

u(−∆)kϕtt − ξ
∫
QT

u(−∆)rDα
t|Tϕ+ γ

∫
QT

uDβ
t|Tϕ

+
∫
QT

u(−∆)`ϕ,

(3.1)

for any test-function ϕ ∈ C2d 2
x t (QT ) with d = max{`, k, r} such that ϕ is positive,

ϕ ≡ 0 outside a compact K ⊂ Rn, ϕ(x, T ) = ϕt(x, T ) = 0 and Dβ
t|Tϕ,D

α
t|Tϕ ∈

C(QT ).

As for the result on the non-existence of a global solution, the constants η, ξ and
γ will not play a role, and thus will be taken equal to one.

Theorem 3.2. Assume that

(1) r, k ∈ N ∪ {0}, ` ∈ N and 0 < β ≤ α < 1;
(2) u0, u1,∈ L1(RN ) such that

∫
RN u0(x)dx > 0,

∫
RN u1(x)dx > 0

(3) 1 < p ≤ 1 +
2`

N + 2`( 1
β − 1)

=: pc.

Then problem (1.1)–(1.3) does not admit any global in time nontrivial solution.

Proof. The proof is by contraction. Let u be a global weak solution of problem
(1.1)-(1.3) and ϕ be a non-negative function (satisfying the conditions of Definition
3.1) that will be specified later.

Using ε-Young’s inequality

ab ≤ εap + c(ε)bep, p > 1, a ≥ 0, b ≥ 0, p+ p̃ = pp̃, ε > 0,

we can write ∫
QT

uϕtt ≤ ε
∫
QT

|u|pϕ+ c(ε)
∫
QT

|ϕtt|epϕ−ep/p,∫
QT

u(−∆)kϕtt ≤ ε
∫
QT

|u|pϕ+ c(ε)
∫
QT

|(−∆)k1ϕtt|epϕ−ep/p,∫
QT

u(−∆)rDα
t|Tϕ ≤ ε

∫
QT

|u|pϕ+ c(ε)
∫
QT

|(−∆)rDα
t|Tϕ|

epϕ−ep/p,∫
QT

uDβ
t|Tϕ ≤ ε

∫
QT

|u|pϕ+ c(ε)
∫
QT

|Dβ
t|Tϕ|

epϕ−ep/p,∫
QT

u(−∆)`ϕ ≤ ε
∫
QT

|u|pϕ+ c(ε)
∫
QT

|(−∆)`ϕ|epϕ−ep/p.

(3.2)



EJDE-2016/20 SEMI-LINEAR PSEUDO-HYPERBOLIC SYSTEMS 5

Using inequalities (3.2) in (3.1), we obtain the inequality∫
QT

|u|pϕ+
∫

RN
u1(x)ϕ(x, 0) +

∫
RN

u1(x)(−∆)kϕ(x, 0)

−
∫

RN
u0(x)ϕt(x, 0)−

∫
RN

u0(x)(−∆)kϕ(x, 0)

≤ ε1
∫
QT

|u|pϕ+ C1

{∫
QT

|ϕtt|epϕ−ep/p +
∫
QT

|(−∆)kϕtt|epϕ−ep/p
+
∫
QT

|(−∆)rDα
t|Tϕ|

epϕ−ep
p +

∫
QT

|Dβ
t|Tϕ|

epϕ−ep/p +
∫
QT

|(−∆)`ϕ|epϕ−ep/p}.
(3.3)

Setting

A1 =
∫
QT

|ϕtt|epϕ−ep/p, A2 =
∫
QT

|(−∆)kϕtt|epϕ−ep/p,
A3 =

∫
QT

|(−∆)rDα
t|Tϕ|

epϕ−ep/p, A4 =
∫
QT

|Dβ
t|Tϕ|

epϕ−ep/p,
A5 =

∫
QT

|(−∆)`ϕ|epϕ−ep/p,
and taking ε = 1/2, inequality (3.3) becomes∫

QT

|u|pϕ+
∫

RN
u1(x)ϕ(x, 0) +

∫
RN

u1(x)(−∆)kϕ(x, 0)

−
∫

RN
u0(x)ϕt(x, 0)−

∫
RN

u0(x)(−∆)kϕt(x, 0)

≤ C{A1 +A2 +A3 +A4 +A5}.

(3.4)

At this stage, we set

ϕ(x, t) = Ψν
( t2 + |x|4ρ

R4

)
, R > 0, ν � 1, ρ > 0, (3.5)

where Ψ ∈ C∞c (R+) is a decreasing function defined as

Ψ(r) =

{
1 if r ≤ 1
0 if r ≥ 2,

with 0 ≤ Ψ ≤ 1 and r|Ψ′(r)| < C.
Note that with this choice of ϕ, we have

ϕt(x, t) = 2νtR−4Ψν−1((t2 + |x|4ρ)/R4)Ψ′((t2 + |x|4ρ)/R4),

leading to
ϕt(x, 0) = 0. (3.6)

We also assume that ϕ satisfies∫
QT

ϕ−p/ep(|ϕtt|ep + |(−∆)kϕtt|ep + |(−∆)rDα
t|Tϕ|

ep + |Dβ
t|Tϕ|

ep + |(−∆)`ϕ|ep) <∞,
for that, we will choose ν � 1. Therefore, the inequality (3.4) becomes∫

QT

|u|pϕ+
∫

RN
u1(x)ϕ(x, 0) +

∫
RN

u1(x)(−∆)kϕ(x, 0)

≤ C{A1 +A2 +A3 +A4 +A5}.
(3.7)
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Let us pass to the scaled variables y = R−1/ρx, τ = R−2t and the function ϕ̃
given by ϕ(x, t) = ϕ̃(y, τ). In doing so, it follows that

ϕt = R−2ϕ̃τ , ϕtt = R−4ϕ̃ττ , Dβ
t|Tϕ = R−2βDβ

τ |T∗ ϕ̃, (−∆)mϕ = R
−2m
ρ ∆ϕ̃,

where T = R2T ∗ and T ∗is a positive constant.
Now, let us set

Q = {(y, τ), 0 ≤ τ2 + y4ρ ≤ 2}.
Using these definitions, A1, . . . , A5 can be rewritten as

A1 ≤ R−4ep+N
ρ +2

∫
Q

|ϕ̃ττ |epϕ̃−ep/p,
A2 ≤ R−( 2k

ρ +4)ep+N
ρ +2

∫
Q

|(−∆)kϕ̃ττ |epϕ̃−ep
p ,

A3 ≤ R−( 2r
ρ +2α)ep+N

ρ +2

∫
Q

|(−∆)rDα
τ |T∗ ϕ̃|

epϕ−ep/p,
A4 ≤ R−2βep+N

ρ +2

∫
Q

|Dβ
τ |T∗ ϕ̃|

epϕ̃−ep
p ,

A5 ≤ R
−2`
ρ ep+N

ρ +2

∫
Q

|(−∆)`ϕ̃|epϕ̃−ep/p.

(3.8)

In a short form, we can write

Ai = CiR
θi for i = 1, 2, . . . , 5,

where
θ1 = −4p̃+

N

ρ
+ 2, θ2 = −

(2k
ρ

+ 4
)
p̃+

N

ρ
+ 2,

θ3 = −
(2r
ρ

+ 2α
)
p̃+

N

ρ
+ 2, θ4 = −2βp̃+

N

ρ
+ 2,

θ5 =
−2`
ρ
p̃+

N

ρ
+ 2.

(3.9)

As β ≤ α < 1, we observe that

θ2 ≤ θ1 ≤ θ4 and θ3 ≤ θ4.
For R ≥ 1, we have Rθi ≤ Rθ4 +Rθ5 for i = 1, 2, . . . , 5 and then inequality (3.7)

becomes∫
QT

|u|pϕ+
∫

RN
u1(x)ϕ(x, 0) +

∫
RN

u1(x)(−∆)kϕ(x, 0) ≤ K(Rθ4 +Rθ5), (3.10)

where K is a positive constant. We have∫
RN

u1(x)(−∆)kϕ(x, 0) =
∫
QR

u1(x)(−∆)kϕ(x, 0)

= R
N
ρ −

2k
ρ

∫
Q

u1(R1/ρy)(−∆k)ϕ̃(y, 0),

where

QR = {(x, 0);R1/ρ ≤ |x| ≤ 21/(4ρ)R1/ρ}, Q = {(y, 0); 1 ≤ |y| ≤ 2}.
We assume that ϕ satisfies∥∥(−∆k)ϕ̃(·, 0)

∥∥
∞ <∞,



EJDE-2016/20 SEMI-LINEAR PSEUDO-HYPERBOLIC SYSTEMS 7

for that, we will choose ν � 1. It follows that∫
RN

u1(x)(−∆)kϕ(x, 0) ≤ CR
N
ρ −

2k
ρ

∫
Q

|u1(R1/ρy)| ≤ CR−
2k
ρ

∫
QR

|u1(x)|,

then, passing to the limit as R→ +∞, we have∫
RN

u1(x)(−∆)kϕ(x, 0)→ 0. (3.11)

Now, if θ4 < 0 and θ5 < 0, (i.e. max(θ4, θ5) < 0), that means

p < p1(ρ) = 1 +
2βρ

N + 2ρ(1− β)
,

p < p2(ρ) = 1 +
2`

N + 2(ρ− `)
which is equivalent to

p < p(ρ) = min(p1(ρ), p2(ρ)).
As p1 is a decreasing function and p2 is an increasing function, the maximum

value of the function min(p1, p2) will be at the point ρ = `
β , when the two functions

p1 and p2 are equal

p1(
`

β
) = p2(

`

β
) = 1 +

2`
N + 2`( 1

β − 1)
=: pc, (i.e. θ4 = θ5).

Therefore, for
1 < p < pc, (3.12)

we have Rθ4 +Rθ5 tends to zero when R→∞ and the inequalities (3.10) and (3.11)
yield ∫

Q∞

|u|p +
∫

RN
u1(x) ≤ 0.

As ∫
RN

u1(x) > 0,

we get a contradiction. This proves the theorem in the case (3.12).
For the border case where p = pc which corresponds to θ4 = θ5 = 0 and ρ = `

β ,
let

QT,R = {(x, t), R4 ≤ t2 + |x|4ρ ≤ 2R4},
if we use the Hölder inequality in the estimate of

∫
QT

uϕtt instead of the ε-Young
inequality, we obtain∫

QT

uϕtt =
∫
QT,R

uϕtt ≤
(∫

QT,R

|u|pϕ
)1/p(∫

QT,R

ϕ−ep/p|ϕtt|ep)1/ep

≤ (A1)1/ep(
∫
QT,R

|u|pϕ)1/p,

and similarly∫
QT

u(−∆)kϕtt =
∫
QT,R

u(−∆)kϕtt ≤ (A2)1/ep ∫
QT,R

|u|pϕ,∫
QT

u(−∆)rDα
t|Tϕ =

∫
QT,R

u(−∆)rDα
t|Tϕ ≤ (A3)1/ep(∫

QT,R

|u|pϕ
)1/p

,
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QT

uDβ
t|Tϕ =

∫
QT,R

uDβ
t|Tϕ ≤ (A4)1/ep(∫

QT,R

|u|pϕ
)1/p

,∫
QT

u(−∆)`ϕ =
∫
QT,R

u(−∆)`ϕ ≤ (A5)1/ep(∫
QT,R

|u|pϕ
)1/p

.

Thus, we obtain∫
QT

|u|pϕ+
∫

RN
u1(x) ≤

(
A

1/ep
1 +A

1/ep
2 +A

1/ep
3 +A

1ep
4 +A

1/ep
5

)( ∫
QT,R

|u|pϕ
)1/p

≤ C
(∫

QT,R

|u|pϕ
)1/p

.

As
∫
QT
|u|q < +∞, we have

lim
R→+∞

∫
QT,R

|u|qϕ ≤ lim
R→+∞

∫
QT,R

|u|q = 0.

Passing to the limit as R → +∞, we find that
∫
Q∞
|u|q +

∫
RN u1(x) = 0, which

contradicts
∫

RN u1 > 0. This prove the theorem in the case p = pc. �

4. A pseudo-hyperbolic system

This section is concerned with the fractional time pseudo-hyperbolic system
(1.4))-(1.5).

Definition 4.1. The couple of functions (u, v), u ∈ Lqloc(Q∞) and v ∈ Lploc(Q∞)
is a weak solution of (1.4)-(1.5) on QT with initial data u0(x), u1(x), v0(x) and
v1(x) ∈ L1

loc(RN ), if it satisfies∫
QT

|v|pϕ+
∫

RN
u1(x)ϕ(x, 0) + η1

∫
RN

u1(x)(−∆)k1ϕ(x, 0)

=
∫

RN
u0(x)ϕt(x, 0) + η1

∫
RN

u0(x)(−∆)k1ϕt(x, 0) +
∫
QT

uϕtt

+
∫
QT

u(−∆)`1ϕ+ η1

∫
QT

u(−∆)k1ϕtt − ξ1
∫
QT

u(−∆)r1Dα1
t|Tϕ

+ γ1

∫
QT

uDβ1
t|Tϕ,

(4.1)

and ∫
QT

|u|qϕ+
∫

RN
v1(x)ϕ(x, 0) + η2

∫
RN

v1(x)(−∆)k2ϕ(x, 0)

=
∫

RN
v0(x)ϕt(x, 0) + η2

∫
RN

v0(x)(−∆)k2ϕt(x, 0) +
∫
QT

vϕtt

+
∫
QT

v(−∆)`2ϕ+ η2

∫
QT

v(−∆)k2ϕtt − ξ2
∫
QT

v(−∆)r1Dα2
t|Tϕ

+ γ2

∫
QT

vDβ2
t|Tϕ,

(4.2)

for any test-function ϕ ∈ C2`2
x t(QT ), ` = max{`1, `2} being positive, ϕ ≡ 0 outside

a compact K ⊂ Rn, ϕ(x, T ) = ϕt(x, T ) = 0 and Dα1
t|Tϕ,D

β1
t|Tϕ,D

α2
t|Tϕ,D

β2
t|Tϕ ∈

C(QT ).
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Theorem 4.2. Assume that
(1) ri, ki ∈ N ∪ {0}, `i ∈ N and 0 < βi ≤ αi < 1, i = 1, 2;
(2) u0, u1, v0, v1 ∈ L1(RN ) such that

∫
RN u0(x) > 0,

∫
RN u1(x) > 0,

∫
RN v0(x) >

0 and
∫

RN v1(x) > 0;
(3) p > 1, q > 1,

pq ≤ min
(

1 +
2(pβ2 + β1)ρ
N + 2(1− β1)ρ

, 1 +
2(qβ1 + β2)ρ
N + 2(1− β2)ρ

)
where ρ = min( `1β1

, `2β2
).

Then problem (1.4)-(1.5) does not admit any global non trivial solution.

Proof. The proof is by contraction. Let (u, v) be a global weak solution of (1.4)-
(1.5) and ϕ be a non-negative function (satisfying the conditions of Definition 4.1).

Applying Hölder inequality to
∫
QT

uϕtt, we obtain∫
QT

uϕtt ≤
(∫

QT

|u|qϕ
)1/q(∫

QT

ϕ
−eq
q |ϕtt|eq)1/eq

≤ (A1)1/eq(∫
QT

|u|qϕ
)1/q

and similarly ∫
QT

u(−∆)k1ϕtt ≤ (A2)1/eq(∫
QT

|u|qϕ
)1/q

,∫
QT

u(−∆)r1Dα1
t|Tϕ ≤ (A3)

1eq (∫
QT

|u|qϕ
)1/q

,∫
QT

uDβ1
t|Tϕ ≤ (A4)1/eq(∫

QT

|u|qϕ
)1/q

,∫
QT

u(−∆)`1ϕ ≤ (A5)1/eq(∫
QT

|u|qϕ
)1/q

,

(4.3)

where

A1 =
∫
QT

|ϕtt|eqϕ−eq
q dx dt,

A2 =
∫
QT

|(−∆)k1ϕtt|eqϕ−eq/q dx dt,
A3 =

∫
QT

|(−∆)r1Dα1
t|Tϕ|

eqϕ−eq/q dx dt,
A4 =

∫
QT

|Dβ1
t|Tϕ|

eqϕ−eq/q dx dt,
A5 =

∫
QT

|(−∆)`1ϕ|eqϕ−eq/q dx dt.
Now, let ϕ be the test function defined by the expression (3.5). Using the previous
estimates (4.3) and the properties (3.5) and (3.6) of the function ϕ in equation
(4.1), we obtain the inequality∫

QT

|v|pϕ+
∫

RN
u1ϕ(x, 0)

≤
(∫

RN
|u|qϕ

)1/q[
A

1/eq
1 +A

1/eq
2 +A

1/eq
3 +A

1/eq
4 +A

1/eq
5

]
.

(4.4)
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Similarly, for the equation (4.2), we have∫
QT

|u|pϕ+
∫

RN
v1ϕ(x, 0)

≤
(∫

RN
|v|qϕ

)1/q[
B

1/eq
1 +B

1/eq
2 +B

1eq
3 +B

1/eq
4 +B

1eq
5

]
,

(4.5)

where

B1 =
∫
QT

|ϕtt|eqϕ−eq
q dx dt,

B2 =
∫
QT

|u(−∆)k2ϕtt|eqϕ−eq
q dx dt,

B3 =
∫
QT

|(−∆)r2Dα2
t|Tϕ|

eqϕ−eq
q dx dt,

B4 =
∫
QT

|Dβ2
t|Tϕ|

eqϕ−eq
q dx dt,

B5 =
∫
QT

|(−∆)`2ϕ|eqϕ−eq
q dx dt.

Now, we estimate A1, . . . , A5 and B1, . . . , B5 in the same way as in Section 3, we
obtain inequalities similar to those given in (3.7) and (3.8)

Ai = CiR
θi , Bi = DiR

δi for i = 1, 2, . . . , 5, (4.6)

where

θ1 = −4q̃ +
N

ρ
+ 2, δ1 = −4p̃+

N

ρ
+ 2,

θ2 = −
(2k1

ρ
+ 4
)
q̃ +

N

ρ
+ 2, δ2 = −

(2k2

ρ
+ 4
)
p̃+

N

ρ
+ 2,

θ3 = −
(2r1
ρ

+ 2α1

)
q̃ +

N

ρ
+ 2, δ3 = −

(2r2
ρ

+ 2α2

)
p̃+

N

ρ
+ 2,

θ4 = −2β1q̃ +
N

ρ
+ 2, δ4 = −2β2p̃+

N

ρ
+ 2,

θ5 =
−2`1
ρ

q̃ +
N

ρ
+ 2, δ5 =

−2`2
ρ

p̃+
N

ρ
+ 2.

(4.7)

If we set

I =
(∫

QT

|v|pϕ
)1/p

and J = (
∫
QT

|u|qϕ)1/q,

inequalities (4.4) and (4.5) become

IP +
∫

RN
u1ϕ(x, 0) ≤ J(C1R

θ1/eq + C2R
θ2/eq + C3R

θ3/eq + C4R
θ4/eq + C5R

θ5/eq),
(4.8)

Jq +
∫

RN
v1ϕ(x, 0) ≤ I(D1R

δ1eq +D2R
δ2/eq +D3R

δ3/eq +D4R
δ4/eq +D5R

δ5/eq).
(4.9)

We can observe that under the conditions on αi and βi, we have

θ2 ≤ θ1 ≤ θ4, θ3 ≤ θ4, δ2 ≤ δ1 ≤ δ4, δ3 ≤ δ4.
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Hence, for R ≥ 1, we have Rθi ≤ Rθ4 +Rθ5 and Rδi ≤ Rδ4 +Rδ5 , and consequently,
inequalities (4.8) and (4.9) can be rewritten as

Ip +
∫

RN
u1ϕ(x, 0) ≤ CJ

(
R
θ4eq +Rθ5/eq), (4.10)

JP +
∫

RN
v1ϕ(x, 0) ≤ DI(R

δ4eq +R
δ5eq ), (4.11)

where

C =
5∑
i=1

Ci, and D =
5∑
i=1

Di.

Since
∫

RN u1ϕ(x, 0) ≥ 0 and
∫

RN v1ϕ(x, 0) ≥ 0, inequalities (4.10) and (4.11) yield

Ip ≤ CJ
(
Rθ4/eq +Rθ5//eq), (4.12)

JP ≤ DI
(
Rδ4/eq +Rδ5/eq). (4.13)

The constants C and D will be updated at each step of the calculation and will not
play a role. This implies that

Ipq ≤ CI(Rδ4/ep +Rδ5/ep)(Rθ4/eq +R
θ5eq )q, Jpq ≤ CJ(R

θ4eq +R
θ5eq )(Rδ4/ep +Rδ5/ep)p,

leading to

Ipq−1 ≤ C(Rδ4/ep +Rδ5/ep)(Rθ4/eq +R
θ5eq )q, Jpq−1 ≤ C(R

θ4eq +R
θ5eq )(Rδ4/ep +Rδ5/ep)p.

(4.14)
Now, let

S1 =
1
p̃

max(δ4, δ5) +
q

q̃
max(θ4, θ5), S2 =

1
q̃

max(θ4, θ5) +
p

p̃
max(δ4, δ5).

If
S1 < 0, and S2 < 0, (4.15)

we have (Rδ4/ep+Rδ5/ep)(Rθ4/eq+Rθ5/eq)q → 0 and (R
θ4eq +Rθ5/eq)(Rδ4/ep+Rδ5/ep)p → 0

as R → ∞. Hence, by (4.14), both I and J vanish as R → ∞. This implies
that Jq =

∫
QT
|u|qϕ converges to

∫
Q∞
|u|qϕ = 0 and Ip =

∫
QT
|v|pϕ converges to∫

Q∞
|v|pϕ = 0. Consequently, u ≡ 0 and v ≡ 0.

As S1 < 0, then we have max(θ4, θ5) < 0 or max(δ4, δ5) < 0. Suppose that
max(θ4, θ5) < 0 and let again R → ∞. By (4.10), we obtain

∫
RN u1 = 0, which

contradicts
∫

RN u1 > 0.
Now, we return to the condition (4.15) that lead to the contradiction. Inequalities

S1 < 0 and S2 < 0 are equivalent to

S1 = −2
(
qmin(β1,

`1
ρ

) + min(β2,
`2
ρ

)
)

+ (
N

ρ
+ 2)

pq − 1
p

< 0

S2 = −2
(
pmin(β2,

`2
ρ

) + min(β1,
`1
ρ

)
)

+ (
N

ρ
+ 2)

pq − 1
q

< 0.
(4.16)

Let us take ρ = ρ = min( `1β1
, `2β2

). We have

min
(
β1,

`1
ρ

)
= β1 and min

(
β2,

`2
ρ

)
= β2.
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The inequalities in (4.16) can now be written as

S1 = −2(qβ1 + β2)ρ+ (N + 2ρ)
pq − 1
p

< 0

S2 = −2(pβ2 + β1)ρ+ (N + 2ρ)
pq − 1
p

< 0,
(4.17)

which are equivalent to

1 < pq < min
(

1 +
2(pβ2 + β1)ρ
N + 2(1− β1)ρ

, 1 +
2(qβ1 + β2)ρ
N + 2(1− β2)ρ

)
.

Let us now consider the border case where

pq = min
(

1 +
2(pβ2 + β1)ρ
N + 2(1− β1)ρ

, 1 +
2(qβ1 + β2)ρ
N + 2(1− β2)ρ

)
,

which corresponds to

S1 = 0, S2 ≤ 0 or S1 ≤ 0, S2 = 0. (4.18)

Let us take the case S1 = 0, S2 ≤ 0 (the second case: S1 ≤ 0, S2 = 0 is similar).
We have

p̃q̃S1 = q̃max(δ4, δ5) + qp̃max(θ4, θ5) = 0, (4.19)

p̃q̃S2 = p̃max(θ4, θ5) + pq̃max(δ4, δ5) ≤ 0. (4.20)

From (4.19) and (4.20), we have

p̃max(θ4, θ5) = − q̃max(δ4, δ5)
q

and
q̃

q
(pq − 1) max(δ4, δ5) ≤ 0,

which implies
max(δ4, δ5) = max(δ1, δ2, . . . , δ5) ≤ 0.

Moreover, using Young’s inequality (a+b)r ≤ 2r−1(ar+br) for r ≥ 1, the inequalities
in (4.14) lead to

Ipq−1 ≤ 2R1/epmax(δ4,δ5)2q−1R
qeq max(θ4,θ5) = 2qRS1 = 2q,

and similarly
Jpq−1 ≤ 2pRS2 = 2p,

for every T ∈ (0,+∞). Hence, I < +∞ and J < +∞ for every T ∈ (0,+∞), and
thus

∫
Q∞
|u|q < +∞ and

∫
Q∞
|v|q < +∞.

Now, let QT,R =
{

(x, t), R4 ≤ t2 + |x|4ρ ≤ 2R4
}

. For the first inequality of
(4.3), we obtain∫

QT

uϕtt =
∫
QT,R

uϕtt ≤
(∫

QT,R

|u|qϕ
)1/q(∫

QT,R

ϕ
−eq
q |ϕtt|eq)1/eq

≤ (A1)1/eq(∫
QT,R

|u|qϕ
)1/q

≤ C1R
θ1/eq.

Doing the same for the remaining inequalities of (4.3), we obtain a new estimate
of (4.1),

0 <
∫

RN
u1(x)

≤
∫
QT,R

|v|pϕ+
∫

RN
{u1(x) + u0(x)}ϕ(x, 0)
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≤
(∫

QT,R

|u|qϕ
)1/q[

C1R
θ1/eq + C2R

θ2/eq + C3R
θ3/eq + C4R

θ4/eq + C5R
θ5/eq]

≤ C
(∫

QT,R

|u|qϕ
)1/q(

Rθ4/eq +Rθ5/eq)
≤ C

(∫
QT,R

|u|qϕ
)1/q

.

Let R → ∞. Since
∫
Q∞
|u|q < +∞, the right-hand side of the above inequality

approaches zero when R→∞, while the left-hand side
∫

RN u1(x) is assumed to be
positive, this is a contradiction.

Similarly, the second case S1 ≤ 0, S2 = 0 leads to a contradiction. �

Acknowledgements. The authors would like to thank Taibah University for grant
No 4113 which made this work possible. Special thanks also go to Prof. M. Kirane
for his continuous support and guidance, which have helped improve the quality of
this paper.

References

[1] A. B. Aliev, A. A. Kazymov; Effect of Weight Function in Nonlinear Part on Global Solvabil-

ity of Cauchy Problem for Semi-Linear Hyperbolic Equations, Inter. J. of Modern Nonlinear

Theory and Appl. 2013, 2, pp. 102-106.
[2] A. B. Aliev, A. A. Kazymov; Existence non existence and asymptotic behavior of global

solutions of the Cauchy problem for of semi-linear hyperbolic equations with damping terms,
Nonlinear Analysis. 2012, 75, pp. 91-102.

[3] A. B. Aliev, A. A. Kazymov; Global Solvability and Behavior of Solutions of the Cauchy

Problem for a System of Three Semilinear Hyperbolic Equations with Dissipation, in: Trans-
actions of National Academy of Sciences of Azerbaijan, Series of Physical-Technical and

Mathematical Sciences, Vol. XXX, Mathematics , No 4, 2011, pp. 3–18.

[4] A. B. Aliev, A. A. Kazymov; Global Solvability and Behavior of Solutions of the Cauchy Prob-
lem for a System of Two Semilinear Hyperbolic Equations with Dissipation, Differ. Equations,

2013, Vol. 49, No 4, pp. 476-486.

[5] A. B. Aliev, A. A. Kazymov; Global weak solutions of the Cauchy problem for semilinear
pseudo-hyperbolic equations, Differential Equations 2009, Vol 45, pp 175-185.

[6] A. B. Aliev, B. H. Lichaei; Existence and non-existence of global solutions of the Cauchy

problem for higher order semilinear pseudo-hyperbolic equations, Nonlinear Analysis: Theory,
Methods & Applications, Vol 72, Issues 7–8, 1 April 2010, Pages 3275–3288.

[7] A. B. Aliev, F. V. Mamedov; Existence and nonexistence of global solutions of the Cauchy
problem for semi-linear hyperbolic equations with dissipation and anisotropic elliptic part,

Differ. Equations, 2010, Vol. 46, No 3, pp. 307-317.
[8] A. B. Aliev, K. S. Mammadzada, B. H. Lichaei; Existence of a global weak solution of the

Cauchy problem for systems of semilinear hyperbolic equations, in: Transactions of National
Academy of Sciences of Azerbaijan, Series of Physical-Technical and Mathematical Sciences,

Vol. XXX, Mathematics and Mechanics, No1, 2010, pp. 13–24.
[9] F. John; Blow-up of solutions of nonlinear wave equations in three space dimensions,

manuscripta mathematica, Vol. 28, Issue 1-3,(1979), pp 235-268.
[10] T. Kato; Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure

Appl.Math.,1980, Vol. 33, pp. 501-505.
[11] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; Theory and Applications of Fractional Differ-

ential Equations. Elsevier (2006).
[12] M. Kirane, M. Qafsaoui; Fujita’s exponent for a semilinear wave equation with linear damp-

ing, Advanced Nonlinear Studies 2 (2002), pp. 41-49.
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