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SENSITIVITY OF A NONLINEAR ORDINARY BVP WITH
FRACTIONAL DIRICHLET-LAPLACE OPERATOR

DARIUSZ IDCZAK

ABSTRACT. In this article, we derive a sensitivity result for a nonlinear frac-
tional ordinary elliptic system on a bounded interval with Dirichlet boundary
conditions. More precisely, using a global implicit function theorem, we show
that for each functional parameter there exists a unique solution, and that its
dependence on the functional parameters is continuously differentiable.

1. INTRODUCTION

In this article, we study a nonlinear ordinary boundary value problem on the
interval (0, 7), involving a Dirichlet-Laplace operator (—A)# of order 3 > 1/2,

(=A)Pz(t) = f(t,z(t),u(t)), ae. te(0,7), (1.1)

where (—A) : HINH? — L? is the Dirichlet-Laplace operator, H} = Hg((0, ), R™)
and H? = H?((0,7),R™) are classical Sobolev spaces, L? = L2((0,7),R™) is the
classical Lebesgue space, f : (0,7) x R™ x R" — R™ (m, n € N), z: (0,7) - R™
is an unknown function and w : (0,7) — R" is a functional parameter.

Problems involving fractional Laplacians are extensively investigated in resent
years because of their numerous applications, among others in probability, fluid
mechanics, hydrodynamics; see, for example, [3, 4, [8 @] [T5] and references therein.

The definition of the fractional Laplacian adopted in our paper comes from
the Stone-von Neumann operator calculus and is based on the spectral integral
representation theorem for a self-adjoint operator in Hilbert space. It reduces to
a series form which is taken by other authors as a definition [3 [0 §]. Our more
general approach allows us to obtain useful properties of this fractional operator in
a smart way. This approach has also been used in [12].

In the first part of this paper, we recall some facts from the theory of spectral
integral and Stone-von Neumann operator calculus. Next, we derive some proper-
ties of positive powers of the ordinary Dirichlet-Laplace operator and their domains
(among others some embedding theorems). In the second part, we use a global im-
plicit function theorem [10, 1] to prove existence and uniqueness of a solution to
problem as well as its sensitivity. By sensitivity we mean continuous differen-
tiability of the mapping

U > Ty
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where x,, is a unique solution to the problem, corresponding to a parameter u. This
property can be used to study optimal control problems associated with system
().

Similar method but based on a global diffeomorphism theorem [I3] and applied
to a nonlinear integral Hammerstein equation is presented in [5]. An application of
the obtained results to the problem

AM=2)722(t) + h(t, (1) = (=A)7u(t), te(0,1),

where A € R, o € (1,2], h: [-1,1] x R®™ — R" (n € N), with the exterior Dirichlet
boundary condition

z(t) =0, t€ (—oo,—1]UJL,00).

In [6], a problem of type on a bounded Lipschitzian domain Q@ C R™ (n > 2)
and with an exterior Dirichlet boundary condition, is studied. Continuous depen-
dence of solutions on parameters (stability) is investigated therein.

In [12], using a variational method, we derive an existence result for the so-called
bipolynomial fractional Dirichlet-Laplace problem

k
Z i [(=A) )P TPiu(z) = D, F(z,u(z)), ae z€Q,
i,j=0

where o; > 0 for i = 0,...,k (k € NU{0}) and 0 < By < 1 < -+ < Bp,
(=A)y : D((=A),) C L? — L? is a weak Dirichlet-Laplace operator, O C RY
(N € N) is a bounded open set, F': @ x R = R, D, F is the partial derivative of F’
with respect to u.

2. INTEGRAL REPRESENTATION OF A SELF-ADJOINT OPERATOR

Results presented in this section can be found, in the case of complex Hilbert
space, for example, in [IL [14]. Their proofs can be moved without any or with small
changes to the case of real Hilbert space. We will continue to deal only with real
Hilbert spaces. Such a preliminary section has also been included in [12].

Let H be a real Hilbert space with a scalar product (-,-) : H x H — R. Let us
denote by TI(H) the set of all projections of H on closed linear subspaces, and by
B the o-algebra of Borel subsets of R. By the spectral measure in R we mean a set
function E : B — II(H) that satisfies the following conditions:

e for each x € H, the function
B>Pw— E(P)re H (2.1)

is a vector measure
e ER)=1
e E(PNQ)=E(P)o E(Q) for P,Q € B.
By a support of a spectral measure F we mean the complement of the sum of
all open subsets of R with zero spectral measure.
If b: R — R is a bounded Borel measurable function, defined a.e. in F, then the
integral [*°_ b(A)E(dA) is defined by

oo

(/OO b(A)E(dk))x =/ b\ E(d\)z

— 00 — 00
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for each © € H where the integral [~ b(A\)E(dA)z (with respect to the vector
measure) is defined in a standard way, namely, with the aid of the sequence of
simple functions converging a.e. in E(dA)z to b (see [I]).

If b : R — R is an unbounded Borel measurable function defined a.e. in F, then,
for each x € H such that

/ T P E@N 2 < oo (2.2)

— 00
(the above integral is taken with respect to the nonnegative measure B 5P —
E(P)z||?> € R}), there exists the limit
|| 0/

lim / b () E(dN)z

of integrals (with respect to the vector measure (2.1))) where
b [B(OV)] <,
0 if |b(A)| > n.

Let us denote the set of all points & with property (2.2) by D. One proves that D
is dense linear subspace of H, and by [~ b(\)E(dA) one denotes the operator

bn:RB/\H{

/Oo b(\E(N) :DC H— H

—0o0
given by

(/O:o b()\)E(d/\)):r lim/o:o b (A E(dN)z.

Of course, D = H and

lim / b bu(N)E(d\)z = / b b(\) E(dN\)z

when b : R — R is a bounded Borel measurable function, defined a.e. in E.
For x € D, we have

I( [ svm@0)el? = [~ R E@l?,
Moreover,

(/OO b()\)E(d)\)>* - /oo b(A)E(dN), (2.3)

— 00 — 00

i.e., the operator [%_b(A)E(d)) is self-adjoint.

Remark 2.1. To integrate a Borel measurable function b : B — R where B is a
Borel set containing the support of the measure F, it is sufficient to extend b on
R to a whichever Borel measurable function (putting, for example, b(A) = 0 for
A ¢ B).

If b: R — R is Borel measurable and o € B, then by the integral
/ bV E(dN)

we mean the integral

/ e (B E(AN),

— 00
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where X, is the characteristic function of the set o. The integral [ b(A\)E(d)) can
be also defined with the aid of the restriction of E to the set 0. The next theorem
plays the fundamental role in the spectral theory of self-adjoint operators.

Theorem 2.2. If A: D(A) C H — H is self-adjoint and the resolvent set p(A) is
non-empty, then there exists a unique spectral measure E with the closed support

A =0(A), such that
A :/ AE(dN) :/ AE(dN).
—oo o(A)

The basic notion in the Stone-von Neumann operator calculus is a function of a
self-adjoint operator. Namely, if A : D(A) C H — H is self-adjoint and F is the
spectral measure determined according to the above theorem, then, for each Borel
measurable function b : R — R, one defines the operator b(A) by

%Mz/wMME@U:/ b(A)E(dN).

—00 o(A)
It is known that the spectrum o (b(A)) of b(A) is given by
a(b(A)) = b(o(A)) (2.4)

provided that b is continuous (it is sufficient to assume that b is continuous on
o(A)). We have the following general result.

Proposition 2.3. If b,d : R — R are Borel measurable functions and E is the
spectral measure for a self-adjoint operator A : D(A) C H — H with non-empty
resolvent set, then

(b-d)(A) Db(A)od(A)
and

(b-d)(A) =b(A)od(A) (2.5)
if and only if

D((b-d)(A)) C D(d(A)).

Using the above proposition one can deduce that for each n € N with n > 2, and
a Borel measurable function b: R — R,

(H(A))" = b7(4). (26)
When b()\) = A, equality gives
M:/mvmwy (2.7)

If n = 1, then (2.7) follows from Theorem [2.2] Since E(R) = I, therefore the
identity operator I can be written as

I:/mleM.

— 00

If 8 > 0, then formula (2.6 with

0, A <0

IJ:RB)\—>{)\B/27 A>0

and n = 2 implies the following proposition (cf. Remark .
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Proposition 2.4. If 0(A) C [0,00), then
API2 o API2 = AP, (2.8)

3. FRACTIONAL DIRICHLET-LAPLACE OPERATOR

Consider the one-dimensional Dirichlet-Laplace operator on the interval (0, 7),
~A:H}NH? CL*— L*
given by
—Ax(t) = —z"(t).
In an elementary way, one can check that this operator is self-adjoint,
o(=A) = 0p(=A) = {j:j € N}

(0,(—A) is the pointwise spectrum of (—A)) and the eigenspace N (j?) correspond-
ing to the eigenvalue \; = j? is the set {csinjt : ¢ € R™}. The system of functions

2
eji=(0,...,0,/=sinjt,0,...,0), j=1,2...,i=1,...,m,
™

—_———
i-th entry

is the Hilbertian basis (complete orthonormal system) in L2.
Now, let us fix any 8 > 0 and consider the operator

(=AY :D((-A)P)c L* = L2

where

D((—=A)P) = {x(t) € L?: A“EdAx‘Z:oo 2)%)2|a;* < 00, (3.1
((=A)7) ={z(t) € /U(A)III()II ;((J))\\< (3.1)

where

(1) = (/U(A) 1E(d>\)x> (t) = iajﬂsinjt.

Here E is the spectral measure given by Theorem for the operator (—A),
aj\/gsinjt is the projection of z on the m-dimensional eigenspace N(j2) of the
operator (—A), and

(~a)%(t) = (( /J . NB(N))2) (1)
(lim /U(_A)(/\ﬁ)nE(d)\)x) (t) = i(jz)ﬁaj\/Zsinjt

for
= 2
x(t) = z;aj\/;smjt € D((—A)P).
J:
The series is meant in L? but from the Carleson theorem it follows that x(t) =

Py aj\/gsinjt a.e. on (0,7) (cf. [7l, Theorem 5.17]).
Equality (2.4]) and the fact that isolated points of the spectrum of a self-adjoint

operator are the eigenvalues imply that
a((=8)") = 0,((=2)7) = {(4*)" : j € N}.
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The corresponding eigenspaces for (—A) and (—A)? are the same (it follows from
a general result concerning the power of any self-adjoint operator).

The operator (—A)? will be called the Dirichlet-Laplace operator of order 3, and
the function (—A)Px - the Dirichlet-Laplacian of order B of x.

Lemma 3.1. D((—A)?) with the scalar product
(@,9)p = (2,y) 2 + {(=A) x, (=A)%y) 2
is a Hilbert space.

Proof. The assertion follows from the operator (—A)? being self-adjoint is closed

(cf. [&3)). O
The scalar product (-,-)s and the scalar product
<$,y>~g = <(_A)ﬁm> (_A)6y>L2

generate equivalent norms in D((—A)?). Indeed, it is sufficient to observe that the
following Poincare inequality holds:

lzlfe =D a; <D ((G7)")a} = 1(=2) 2|32 = |lz]12, (3-2)
j=1 j=1

for each

z(t) = Zaj\/zsinjt € D((—=A)P).

j=1

Next, we shall consider D((—A)?) with the norm || - [|~s.

3.1. Embeddings. From the description of the domain D((—A)#) it follows that
D((=A)%) c D((-A)™) (3.3)

for each 0 < /1 < f2. Using this relation and equality (2.7) with A = (=A) we
assert that

G € D((=4)7)

for each B > 0 (C° = C*((0,7),R™) is the set of smooth functions with the
supports contained in (0,7)).

Lemma 3.2. If 8 > 1/4, then
D((-=A)7) € Ly = L=((0,7),R™)

and this embedding is continuous, more precisely,

2
lzllzge <4/ —C(4B)l2ll~p

for x € D((—A)P), where ((4f) is the value of the Riemann zeta function ((vy) =
die1 1/57 aty = 4B.

Proof. Let

- 2
x(t) = aj\/ = sinjt € D((—=A)P).
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Since Y272 ((5%)%)%a3 < oo and > 1/4, for t € (0,7) a.e., we have

[e%¢] 2 ) ‘ 2 [e'e] 9
2(t)? = |Zaj\/; sinitl? < = (Y lay])

j=1 j=1
2 (<~ (7%)°aj]\2
i (jz_:l (j2)5j )
2 [ 1

< = (DG ?]ayl?
ﬂ'(; J )(; ((jZ)B)z)
2

= 2 el24(48) < o0

and the proof is complete. ([

Lemma 3.3. If 3 > 1/2, then D((—A)?) C HE, and consequently
D((-A)%) c ¢ = o([0, 7], R™).
Proof. Of course it is sufficient to show that D((—A)Y/2) ¢ H (cf. (3-3)). Indeed,

let z(t) = Zjoil aj\/gsinjt € D((—A)?) and consider this series on the interval
[0, 7]. The sequence (S,,) of partial sums converges in L? to . From the convergence
of the series 3%, ja it follows that the sequence (Sy,) of derivatives converges
in L? to a function. So (cf. [7]), one can choose a subsequence (S}, ) convergent
a.e. on [0, 7] to this function and bounded pointwise a.e. on [0, 7] by a function
g € L?. Consequently, the sequence (S,,.) is equiabsolutely integrable on [0, 71]. So,
the sequence (S, ) is equiabsolutely continuous on [0, 7]. Of course, Sy, (0) = 0,
thus

S ()] = |5 (0) + / S, (s)ds| < / " g(s)ds < oo

for t € [0, 7). It means that elements of the sequence (S, ) satisfy the assumptions
of the Ascoli-Arzela theorem for absolutely continuous functions and, in conse-
quence, there exists a subsequence (S, ) converging uniformly on [0, 7] to an abso-
lutely continuous function 7. Clearly, (Sy, ) converges to T in L?. The uniqueness
of the limit in L? means that z = Z a.e. on (0,7). So, x has a representative which
is absolutely continuous on [0, 7] and satisfies Dirichlet boundary conditions, i.e.
z € Wy ((0,7),R™) (the classical Sobolev space). Consequently, there exists a
function g € L' such that

/O () (t) dt = — / a(t)e(t) dt

for each ¢ € C2°. But
™ ™ e 2
xtcp'tdtz/ a-[sinjt '(t) dt
| =te [ (e Famir)e
_ /O i S, ()¢ (1) e

oo T 2
= Z / a; \/7$injt<p’(t) dt
j=170 T
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for ¢ € C°. The last equality follows from Z;’il j2a? < 00, and consequently,
> jaj\/%cosjt € L?. Thus,

—. ]2
g(t) = Z]aj\/;(;osﬂ eL?

n=1

and, finally, » € H}.
The second part of the theorem follows from a known property of Sobolev space
whi((0,7),R™). O

Lemma 3.4. If 8 > 3/4, then any bounded the set B C D((—A)?) is equicontinu-
ous on [0,7].

Proof. Similarly as in the proof of Lemma [3.2] we obtain
) e 2, o
[2(t2) = (t2) = | Y ajy/ = (sin jts — sinjt2)
j=1
= 2ty —ta) \2
(S laly 221 2012
j=1
2 = 2
Zfty =t (D lasli)
j=1

= ;|t1 — 1] (28255]1)

:

IN

IN

< %Itl - tzIQ(i((f)ﬁ)QIajIQ) (i (jzﬁ%)z)

2
=t — tol*[|x[|2 5¢ (48 — 2) < o0

for t1,ty € (0,7) a.e., where z(t) = 3772, aj\/gsinjt € D((—A)P). Identifying

x with its absolutely continuous representative on [0, 7] we assert that the above
estimation holds for all ¢1,%2 € [0,7]. O

Using Lemmas we obtain the following result.

Corollary 3.5. If 8 > 3/4, then the embedding D((—A)?) C C is compact.
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3.2. Equivalence of equations. Fact that the operator (—A)? (8 > 0) is self-
adjoint means that its domain satisfies the equality

D((=4)7)

= {m € L? : there exists z € L? such that (3.4)

/ﬂ z(t)(=A)Py(t) dt = /W z(t)y(t) dt for each y € D((—A)ﬁ)}
0 0

and
(-A)Pz =2 (3.5)
for z € D((—A)P).
From (2.8) it follows that 2 € D((—~A)?) if and only if 2 € D((—-A)%/?),
(—=A)P/2x € D((—A)P/2), and this case
(—A)2((—=A)P2e) = (-A) . (3.6)
Using this fact and (3.4)), (3.5)), we obtain the following lemma.

Lemma 3.6. If 3 > 0 and g € L?, then * € D((—A)?) and (—A)Pz = g if and
only if x € D((—A)P/?) and

/ T AP (t) (D) 2y (1) di = / " o(ty(r) di
0 0

for each y € D((—A)P/?).

4. GLOBAL IMPLICIT FUNCTION THEOREM

Let X be a real Banach space and I : X — R be a functional of class C'. We
say that I satisfies Palais-Smale (PS) condition if any sequence (zy) such that
o |I(x)| < M for all k € N and some M > 0,
° II(Jfk) — O,

admits a convergent subsequence. Here I’(xy) denotes the Frechet differential of I
at xi. A sequence (xy) satisfying the above conditions is called the (PS) sequence
for I.

From [I0} [I1] we have the following result.

Theorem 4.1. Let X, U be real Banach spaces, H be a real Hilbert space. If
F: X xU — H is continuously differentiable with respect to (x,u) € X x U and

e for each u € U, the functional
1
p: X>z— §||F(x,u)\|2 eR
satisfies (PS) condition

o Fl(x,u): X — H is bijective for each (z,u) € X x U,

then there exists a unique function X : U — X such that F(A(u),u) = 0 for each
u € U and this function is of class C* with differential X' (u) at u given by

N (u) = —[Fp(Mu),w)] ™" o Fy(A(u), u). (4.1)
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5. A BOUNDARY VALUE PROBLEM

Let us consider boundary value problem . Using the global implicit func-
tion theorem, we shall show (under suitable assumptions) that, for each fixed
u € L = L*=°((0,7),R"), problem has a unique solution z, € D((—A)#)
and the mapping

L 3 u sz, € D((-A)P)

is continuously differentiable.
Consider the mapping

F:D((-A)P) x L 3 (z,u) — (=A)Px(t) — f(t,z(t),u(t)) € L2
We shall formulate conditions guaranteeing that

e Fis of class C1,

e differential F,(x,u) : D((—A)?) — L2 is bijective for each (z,u) in
D((—A)%) x L,

e for each u € Ly°, functional

1
p:D((=8)) 32 = S|P, u)|i: €R
satisfies the (PS) condition.

5.1. Smoothness of F. Assume that function f is measurable in t € (0, ), con-
tinuously differentiable in (z,u) € R™ x R" and

[f &, w)], | falts 2wl [ fut 2, w)| < alt)y(|e]) + b(@)(|ul) (5.1)

for (¢t,z,u) € (0,7) x R™ x R", where a,b € L? and ~,§ : Rj — R are continuous
functions.

Proposition 5.1. If 8 > 1/4, then F is of class C* and the differential F'(z,u) :
D((=A)?) x L — L% of F at (x,u) is given by

F'(z,u)(h,v) = (=A)h(t) = folt,x(t), u(t)h(t) — fult,z(t), u(t))v(t)
for (h,v) € D((=A)P) x L.
Proof. Smoothness of the first term of F' is obvious. So, let us consider the mapping
G :D((-A)P) x L 3 (z,u) — f(t,z(t),u(t) € L%
We shall show that the mappings
Go(w,u) : D((=A)7) 3 b fu(t,x(t),u(t)h(t) € L?,
Gu(z,u) : L S v fo(t,2(t),u(t))v(t) € L
are partial Frechet differentials of G at (x,u) and the mappings
D((=A)?) x L= 3 (z,u) — Gu(z,u) € L(D((—A)P), L?), (5.2)
D((=A)) x LY 3 (z,u) — Gu(z,u) € L(L®, L?) (5.3)

are continuous. Of course, it is sufficient to check the differentiability in Gateaux
sense and continuity of the above two mappings (in such a case, the Gateaux
differentials are Frechet ones).
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So, let us consider differentiability of G with respect to x. Linearity and conti-
nuity of the mapping G, (x,u) are obvious (in view of Lemma . To prove that
G.(z,u) is Gateaux differential of G with respect to x, we shall show that

G(x 4+ A\gh,u) — G(z,u 2

H ( )\k) ( ) _Gw(x7u)hHL2

— /7r ’f(tvir(t) + Ah(t), u(t)) — f(t 2(t), u(t))

A
0 k

for each sequence (A\p) C (—1,1) such that Ay — 0. Indeed, the sequence of
functions

— fult,x(t), u()h(t)[dt — 0

TN f(tvx(t) + )‘kh(t>7’l;\<kt)) — f(t,x(t),u(t)) _ fm(ty m(t),u(t))h(t)

converges pointwise a.e. on (0,7) to the zero function (by differentiability of f in
x). Moreover, from the mean value theorem it follows that this sequence is bounded
by a function from L?:
ft,x(t) + Ah(t),u(t)) — f(t, x(t), u(t
LA NN0-00) = S0 g 00, uieyynce)
= [fa(t, 2(t) + s pAeh(t), w(®)h(t) — fult, x(t), u(t)) h(t)|
< consty,u,n(a(t) + b(t))[h(t)],

where s, € (0,1) and const, , 5 is a constant depending on z,u, h. Thus, using
the Lebesgue dominated convergence theorem we assert that G, (x,u) is Gateaux
differential of G with respect to x.

In the same way, we check that G, (z,u) is Gateaux differential of G with respect
to u.

To finish the proof we shall show that the mappings , are continuous.
Let (w1, ur) — (0,u0) in D((—A)P) x L. Then

1(Ga(h, ur) — Galzo, uo))hl7

/ ot (8), i (6)) — (b, 20 (2), uo(6)) 2R (0) Pdt

< IIh\lio/0 |folt, 2 (t), un(t)) — fult, zo(t), uo(t))|dt

< 2RI [ 1alt (0 us(0) ~ Falt ), wa(0) P

Consequently,

|G (zk, ur) — Ga(x0, wo) |l £(D((~a)8),L2)

< \/%(/07r |fo(tsai(t), un(t) — folt,mo(t), uo(t))*dt) /.

Using Lemma assumption (5.1) and the Lebesgue dominated convergence the-
orem we assert that G (zx, ur) — Gu(z0,u0) in L(D((—=A)P), L?).
In a similar way, we check the continuity of the mapping

D((=A)P) x L 3 (z,u) = Gy (z,u) € L(LZ, L?).
The proof is complete. O
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5.2. Bijectivity of F(z,u). In view of the previous theorem and its proof, it is
clear that if 8 > 1/4 and functions f, f, satisfy growth condition (5.1]), then the
partial differential of F' with respect to x is of the form

Fo(z,u) : D((—A)P) 3 hs (=A)Ph(t) — fo(t,x(t), u(t))h(t) € L2
for each (z,u) € D((—A)P) x L.

Proposition 5.2. Assume that functions f, f. satisfy growth condition (5.1)). If
B > 1/2 and one of the following conditions is satisfied

(@) Al < 5e(5m)
(b) A(t) <0, i.e. matriz A(t) is nonpositive, for a.e. t € (0,),
(¢c) Ae LY., and |||l < 1,
where A(t) := f.(t,z(t),u(t)), LY = LP((0,7),R™*™) for p = 1,00, then dif-

mXxXm
ferential Fy(z,u) : D((=A)?) — L? is bijective.
By the norm of a matrix C' = [¢; ;] € R™*™ we mean the value (37" _, [e; 5|*)'/2.

Remark 5.3. In Part (c) one can assume that 8 > 1/4. In such a case the proof
of coercivity of a (see the proof of Proposition [5.2]) remains unchanged and to show
its continuity one estimates

la(h, y)| < [hll~p/2llyll~p 2 + 1 AllcollPll L2 lyll >
< (L [[Allo) 1all~p2llyll~ g /2-

Proof of Proposition[5.3. We shall show that, for each function g € L?, equation
(—A)7h(t) = A(t)h(t) = g(t) (5.4)

has a unique solution in D((—A)#). Using Lemma we see that it is equivalent
to show that there exists a unique function h € D((—A)?/?) such that

/0 (AP h(t)(—A) 2y (1) d = / " (A@R() + g(0)y(t) de

for each y € D((—A)?/2). So, let us define a bilinear form a : D((—A)#/2) x
D((—A)P/?) = R by

o) = [ CaVEO-8)"2y0)de~ [ A0
This form is continuous. Indeed (cf. Lemma [3.2),
alh, 9)] < [hllws/2l9llsyz + 1AL Il lloc
< (L4 A 2Bl lyls

for h,y € D((—A)?/?). We have the following three parts
Part a.

alh, ) = | [ (~A)/2h(e) (~8) 2ty dt - / " AR ]
> AlIZ 52 = Al 1R ]%

2
> (1= (|l =s(2B) 1A%z -
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Part b.
()| > [ 87200 )20 de— [ AOROR do > Al .
Part c. i i
a(h,h)| = |/ A)SP2R() (=AY 2h(t) dt — /(: A(t)h(t)h(t) dt|
> [|hl125/2 = 1Ao7 2
> (1= ||Alloo)1R]1,52 -

So, a is coercive. From Lax-Milgram theorem it follows that for each linear
continuous functional I : D((—A)?/?) — R there exists a unique h € D((—A)?/?)
such that

a(h,y) = U(y)
for each y € D((—A)?/2). Since the functional
D((~A B/QByi—)/ £ dt € R
is linear and continuous, therefore there exists a unique h € D((—A)%/2) such that
/Oﬁ(—A)ﬁ/Qh(t)( AYP 2y (1) dt — / A@DR)y () dt = /Oﬂg(t)y(t) dt
for each y € D((—A)%/2). The proof is complete. O

5.3. (PS) condition. As in the proof of Proposition one can show that,
for each B > 0 and any function g € L?, there exists a unique function z, €
D((—A)P/?) such that

/ (AP (1) ()PP (1) di = / " gty di
0 0

for each y € D((—=A)?/?). It means, in view of Lemma that the following
lemma holds.

Lemma 5.4. For any B > 0 and g € L?, there exists a unique solution x, €
D((—=A)?) of the equation
(-A)z =g

Lemma 5.5. If 8 > 1/2, then the operator
(-A) 1 25 g 2y € L2
is compact, i.e. the image of any bounded set in L? is relatively compact in L.

Proof. Since (g, . g,y = (Tg,,...,2g, ) for each (g1,...,9m) € L?, one can assume
that m = 1.

Let us recall the Kolmogorov-Frechet-Riesz theorem [7]: if F is a bounded set
in ZP(R™) (1 < p < 00) and

>0 §>0 ‘h|v<5 fg}_ ITnf — fllr@ny <€ (5.5)

(where, 7, f(z) = f(z + h)), then F |, is relatively compact in LP(2) for each
measurable set 2 C R™ with finite Lebesgue measure.
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Let G C L%((0,7),R) be a set bounded by a constant C. Consider the functions

Zbg\/781n]t€G
ia?[smgt

(both series are convergent in L? and, in view of the Carleson theorem, a.e. on
(0,7)). Since (—A)Pxy(t) = g(t), i.e

/2 2
Z 8111]15269\/78111]15
j=1 j=1 T

it follows that

g
A

for j € N. Now, we shall show that the set of functions {Z,; g € G}, where

N t) te(0,m),
5, Ro ey | Tl 1€
0 otherwise,

satisfies condition (5.5) (of course, it is bounded in L?(R,R)). Let us fix 0 < h < 7
and consider the integral

| e 0 - a0
oo0 7—h

:/ |§g(t+h)|2dt+/ |Ty(t+ D) —Ty(t)|%dt
—h 0
+/ﬂ_h 13, (t+ ) — 3, (1) 2dt

h T—h T
:/ |xg(t)|2dt+/ |xg(t+h)—xg(t)|2dt+/ |24 (t)[2dt.
0 0 T—h

The first term of the above expression can be estimated as follows (to obtain third
inequality we use Holder inequality for series)

[ e 15 o Fonsf
€T = - —Smj ‘
o ! It (2P V m

IN
3
o\
>
—~
[~]s
S| =
=
===
~—
o

QL
Iy

IN
)
>
<%
s
(e
[y
N
)
s

2 hlgl3-¢(48) < 2CCaph

In the same way one can estimate third term of (5.6]).
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For the second term, we have

/O” (gt + h) — g (£)
_/()Wh‘i(?j)ﬁ\/?(smj( +h)—smjt)‘2d

j=1
— bl
g/o Zl |281n—cos jt+]2 )|> dt
]:
8 [T K (b 2 8 e sm2%
< ;/0 (Z (j2)ﬁ‘smi|) dt < ;<”—h>z|b?| Z (j2)26
j=1 j=1 j=1
8 = jh
< =(m-h)CY 37
j=1
1
< 4Chz <7 = 4CCUB — Dh.
j= 1

If —m < h <0, we proceed in the same way. Finally,
17 f — fllLr@ny < const|h|

for |h| < m. So, the set {fg|(0 Y€ G} = {z4 : g € G} is relatively compact in
L2. The proof is complete. O

Using the above lemma we obtain the following result.

Lemma 5.6. If 3 > 1/2 and x), — xo weakly in D((—A)?), then ), — xq strongly
in L? and (—A)Pzp — (—A)Pxy weakly in L2

Proof. From the continuity of the linear operators
D((-AP) sz ze L
D((—=A)P) sz (—A)Pz e L2,

it follows that zp — x¢ weakly in L? and (—A)%zp — (=A)Pz¢ weakly in L2.
Lemma [5.5] implies that the sequence (z) contains a subsequence (zy,) converging
strongly in L? to a limit. Of course, this limit is the function zg, i.e. 7k, — o
strongly in L2. Supposing contrary and repeating the above argumentation we
assert that z; — xo strongly in L2. (Il

Remark 5.7. Lemmas and Lemma are valid for each 8 > 0. The proofs of
such stronger results, in the case of bounded open set @ C R™ (n > 1), can be found
n [12]. We give here weaker theorems for two reasons. First, to prove more general
results (in fact, a counterpart of Lemmabecause the proof of Lemmaremains
unchanged) some additional considerations, concerning the spectral representation
of the inverse operator, are needed. Second, due to the other assumptions (cf.

Proposition [5.2)) assumption 8 > 1/2 in Theorem can not be omitted.

The main tool for proving that ¢ satisfies the (PS) condition is the following
lemma.
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Lemma 5.8. If 8 > 1/4, f satisfies the growth condition
|f(t, @, w)| < alt)]z] + b(t)o(|ul)

for (t,z,u) € (0,7) x R™ x R", where a,b € L?, 6 : R — RY is a continuous
function and

Zcuplalzz <1, (57)

then, for each uw € LY, the functional
p: D((~8)") 3 SIF (@I} €R
is coercive, i.e. ||x||~p — 0o implies p(x) — oo.
Proof. We have
1F (2, w)llzz = 1(=8) 2 (t) = f(t 2(t), u(t))] 2
> [[(=A)%z(t)llz= — [t x(t), ut))l| 2.
But

120wz < ([ (@ole)] + bs(ueyae)

)
w 1/2

< (/ |a(t)|2|:c(t)\2dt) +D
0

< |zllllallzz + D

2
< ;C(‘Lﬂ) lall 2 (—A) 2| 12 + D

where D = ([ [b(t)|*(5(|u(t)]))?dt)*/?. Thus,
IF(z, )|z > [[(=A) 2 r2 — %C(4B)||GHL2H(_A)BxHLQ -D

2
= 1=/ —c@B)llallz2)l2ll~p — D
It means that ¢ is coercive. O

Now, we are in a position to prove that ¢ satisfies the (PS) condition.
Proposition 5.9. If 8 > 1/2, f and f, satisfy the growth conditions
|f(t, 2, w)| < a(t)]z] + b(t)d(|ul),
et 2, u)| < a(t)y(|z]) + b(£)d(|ul)

for (t,x,u) € (0,7) x R™ x R", where a,b € L? and 7,5 : RT — R are continuous
functions, and (5.7) holds true, then ¢ (with any fivred u € LS°) satisfies the (PS)
condition.

Proof. From Proposition it follows that ¢ is of class C! and its differential
¢'(x): D((=A)P) = Ris

¢ (x)h = /Oﬂ((—A)Bx(t) = (2 (t),u®))(=A)°h(t) = folt,2(t), u(t)h(t)) dt
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for h € D((—A)?). Consequently, for zy, 2o € D((—A)?), we have

(' (wr) — ' (w0)) (wx — wo) = [l — w0l|Z 52 + D Wilwn)

where
Vi(zx) = /Oﬂ(—A)ﬁwk(t)fx(t»xk(t),U(t))(fﬂo(t) — (1)) dt,
Va(zk) /W(*A) o(t) fa(t, o (t), u(t))(zr(t) — zo(t)) dt,

2(an) / S 20 (8), u(t)) fio (1, (1), u(t)) (a () — o (1)) d,
a(zx) = / £t w0 (8), u(t)) f (. 20(t), () (2o () — 24 (8)) d,
s (ax) = / C(Fltxo(t), ult)) — £t 2(8), u(t) (—A)Pax(t) — (~A)Pao(t)) di.

Now, let (zx) be a (PS) sequence for . Since ¢ is coercive, therefore (zy) is
bounded in D((—A)?). So, one can choose a subsequence (zy,) weakly converging
in D((—A)”) to some zg. From Lemma it follows that xy, — zo strongly in L?
and (—A)Pzy, (t) = (=A)Pzo(t) weakly in L2. Since the sequence (zy,) is bounded
in D((—A)P), therefore it is bounded in LSS and, consequently (8 > 1/2), in C.
Moreover, there exists a subsequence of the sequence (z;) (let us denote it by
(x,)) converging to xy pointwise a.e. on (0, 7).

Term 1 (xk, ) tends to zero. Indeed, f,(t, xk,(t),u(t)), k € N, are equibounded on
(0,7) by a square integrable function. Functions f, (¢, g, (t), w(t))(xo(t) — Tm, (t))
belong to L? and converge pointwise (a.e. on (0,7)) to zero function. More-
over, they are equibounded on (0,7) by a square integrable function. So, from
the Lebesgue dominated convergence theorem it follows that the sequence

(fo(t,xr, (8), u(t)) (o (t) = 2m, ()))

converges in L? to the zero function. Thus, in view of the weak convergence of the
sequence ((—A)?zy) to (=A)Pzg in L2, 9y (zg,) — 0.

Similarly, ¥;(zx,) — 0 for remaining [. Finally, since ¢'(x,)(zxr, — xo) — 0 and
¢ (xo) (g, — x0) — 0, it follows that

lor, — 330||2~/3/2 -0,

i.e. ¢ satisfies the (PS) condition. O

6. FINAL RESULT

Thus, we have proved the following result.

Theorem 6.1. Assume that 8 > 1/2, function f is measurable in t € (0,7),
continuously differentiable in (x,u) € R™ x R" and

[f (&2, u)| < a(t)]z] + b(t)5(|ul),
ot 2, w)ls [ fu(t, 2, u)| < alt)y(l2]) +b(8)d(|ul)
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for (t,z,u) € (0,7) x R™ x R", where a,b € L?, 7,5 : RY — RY are continuous
functions and

2 c@p)laflze < 1.
i

If, for each pair (z,u) € D((—A)?) x L one of the following assumptions is
satisfied
(@) [Ifa(t, z(t), u(t))]
(b) fo(t,z(t),u(t)) <0 for a.e. t € (0,7),
(©) fult,x(t), u(t)) € Ly and || fu(t, 2(t), u(t)) o <1,
then, for each u € LS, there exists a unique solution x,, € D((—A)?) of problem
(1.1) and the mapping

s
LY < 3C(2B)

A:L® 3 u x, € D(—A)P)

is continuously differentiable with the differential N (u) at w € LS° such that, for
each v € L°,

(=AY (N (w)o)(t) = fult, zu(t), u(t)) (X (w)0) (1) = fult, zu(t), u(t))v(t)
forte (0,m) a.e.
Remark 6.2. Thus, for each u € L, v € D((—A)?) the function N (u)v €

r o

D((—A)P) is a solution to the equation
(=A)7y() = fult, zu(t), ul®)y(t) = fult.zu(t),u(®)o(t), aete (0,m).
Example 6.3. Let 8 > 1/2,m = 2, and r = 2. It is easy to see that the function
flt,zu) = (fl(t7x17x2,u1,u2),fz(t,xl,w27u1,u2))
= (asin(zy) + /3" beos(z1) + tug)
satisfies assumptions of Theorem with
at) = Va2 + b2, ~v(s)=V2, bt)=t"" i+, 6(s) =",
where a,b € R are such that
1
Va2 112 < VTR

Consequently, for each u = (uy,us) € L§°, there exists a unique solution z, €
D((—A)?) of the problem

(=A)Pxi(t) = asin(z(t)) + t71/3er®
(=A)Pao(t) = beos(x1(t)) 4 tus(t)

for t € (0,7) a.e., and the mapping A(u) = (z.,22) is continuously differentiable

u’ u

with the differential X' (u) : LS® — D((—A)”) such that

(=AY (N (o) (¢) — [_bsm(&u)l(t)) acos((ﬂéu)z(t)) OV (w)0) (1)

t—l/Seul(t) 0
= [ 0 tua (1) v(t), ae. te(0,m),

for each v € L3°, i.e.

(=A)7((N (), () = acos((@a)a() (N (w)v), (1) + 15 Duy (1)
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(=2)P (N (u)o)y)(t) = =bsin((za)1(8)) (N (w)v), (t) + tuz(t)va(t)

for a.e. t € (0,7) and every v = (v1,vq) € L§°.
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