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1.0 INTRODUCTION 

1.1 The Rangeland Problem and Data Collection Challenges 

 While the definition of rangelands varies internationally as well in the U.S., 

rangelands can be defined as both land cover and land use (LCLU) areas that are 

dominated by a percentage of natural or introduced vegetation species typically below 5 

m in height.  This primarily includes common short statured species such as grasses, 

sedges, forbs, and cacti; though afforested and transitional rangelands in states of 

ecological change may exhibit encroachment from taller statured shrub and tree species 

not historically observed.  Rangelands are thus ecosystems that characteristically support 

grazing and browsing activity from both wild and domesticated ruminants where they 

serve as natural resource areas that chiefly support grazing-based agronomies.  Different 

from croplands which are anthropogenically controlled LCLU areas, rangelands are 

predominantly managed by the local ecology and require few external inputs (Lund 2007; 

Maynard et al. 2007; Reeves and Mitchell 2011).   

This definition has also been expanded to include larger scale terrestrial biomes 

such as deserts, tundras, and steppes to more fine spatial scale regional rangeland types 

that are distinguished by dominant vegetation communities like the Pacific bunchgrass 

prairie and Texas oak savanna of the western U.S., or the Acacia bushland of South 

Africa (Pratt, Greenway, and Gwynne 1966).  While numerous descriptors for different 

rangeland ecosystems exist, more recent and methodical ecological site descriptions 

(ESD) have sought to more meaningfully define unique local biophysical conditions at 

the study site scale by systematically recording key plant traits, soil properties, moisture 

regimes, and stages of ecological succession.  ESDs in turn help to determine state-and-
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transition models (STM), or models designed to follow a systematic understanding of 

positive or negative vegetation composition changes that are based on the documented 

conditions of ESDs over time.  This in turn allows for reliable categorization and change 

detection analyses that can be performed at various scales for an important, complex, and 

changing biome (Boltz and Peacock 2007; Brown 2010; Talbot et al. 2010; Twidwell, 

Allred, and Fuhlendorf 2014). 

 Globally, rangelands are estimated to cover approximately half of Earth’s 

terrestrial surface area though estimates are known to vary between definitions and 

sources of inventory (Follet, Kimble, and Lal 2001; Lund 2007; Eldridge, Greene, and 

Dean 2011).  In the conterminous U.S. alone, rangelands have been estimated to cover 

approximately 33% (2.68 million km2) of the total land area (Reeves and Mitchell 2011), 

60% (1.61 million km2) of which is privately owned (Follet, Kimble, and Lal 2001).  

Other countries like Australia, South Africa, and Argentina equally possess rangelands 

that occupy a large percentage of their total land mass, where like the U.S., they exist as 

vital natural resources for local and national economies primarily through the production 

of beef and mutton products from the grazing of cattle, sheep, and goats.   

However, the sustainability of grazing-based agronomies which rely on the 

ecological health and productivity of rangeland vegetation is currently in question.  A 

rising global population of approximately 7 billion people combined with the growth of a 

more affluent middle class in industrializing nations has resulted in an increase in 

demand for meat products.  This steady rise in the global demand and supply of meat 

products has in turn placed further pressure on rangeland resources with already limited 

biological carrying capacities for both livestock and wildlife.  Within the past century 
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there has also been an observed degradation of rangelands at the local, national, and 

global scales (Lund 2007; Bedunah and Angerer 2012; Sayre et al. 2012).   

Historically, direct causes of rangeland degradation are well documented and 

have been long attributed in part to poor land management decisions such as overgrazing 

and overstocking (Milton et al. 1994; Cao et al. 2013; Villamil, Amiotti, and Peinemann 

2001; Hilker et al. 2013).  More complex and abstract causes such as climate change, 

desertification, poverty, and rural-urbanization have also been observed and discussed 

thoroughly in recent literature as part of a more interdisciplinary and holistic 

understanding of degradation processes (Milton et al. 1994; Duraiappah 1998; Glenn, 

Smith, and Squires 1998; Meadows and Hoffman 2002; McKreon et al. 2009; Wehrden 

et al. 2012; Easdale and Domptail 2014).   

Similar to the degradation processes of other ecosystems, rangeland degradation 

can be effectively understood as an ecological downward spiral and positive feedback 

model that stems from resource input and output imbalances (biological, chemical, 

geological, etc.) that affect soil fertility.  Once these imbalances reach a pivotal threshold 

beyond natural regenerative capabilities, they propagate further imbalances.  When once 

healthy soil profiles progressively lose their biotic and abiotic fertility without a 

regenerative period or action, they eventually no longer support rangeland vegetation 

species, wildlife, livestock, or agronomic systems derived from them (Milton 1994; 

Briske, Fuhlendorf, and Smeins 2005; Bestelmeyer 2006; King and Hobbs 2006).   

 Therefore, understanding both negative and positive ecological changes while 

recognizing their tell-tale biogeochemical manifestations through systematic observation 

is a primary strategy for determining the multifaceted causes and solutions to rangeland 
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degradation.  Careful monitoring allows land managers and policy makers the ability to 

act in the present, predict future outcomes, and make informed decisions for practical 

resource management strategies at local and national levels.  As specified, many 

rangeland ecologists assigned ESD and STM categorizations to methodically describe 

specific rangeland site conditions, applying these observations to compare, understand, 

and track differences through time and space.  However, collecting ESD and STM data 

for rangelands requires intensive field data collection efforts.   

Traditionally, rangelands have proven to be difficult study areas in which to 

collect data and monitor change.  Spatially, rangelands can occupy vast and remote areas 

that may encompass a complex range of environmental and socioeconomic conditions 

which can be difficult to represent in an efficient manner that utilizes traditional on-the-

ground field collection techniques (West 2003; Mansour, Mutanga, and Everson 2012).  

For example, rangelands in the western U.S. like the sagebrush steppe ecosystem of the 

Great Basin span tens of millions of hectares and fall within multiple administrative 

regions, both public and private.  Temporally, rangelands can also demonstrate rapid 

changes in relative biomass as many rangeland vegetation species such as grasses and 

sedges promptly respond to favorable conditions and negative trends like precipitation, 

extended drought, and wildfires.  While natural changes in biomass due to phenology can 

be expected, it is difficult to account for the mosaic of differences that can occur on 

rangeland sites that are physically subdivided by topography, man-made features, and 

parent soils where a subtle difference may contribute to major inconsistencies in 

vegetation community types within a relatively small spatial scale (Fuhlendorf, Briske, 

and Smeins 2001; Bastin and Ludwig 2006; Amiraslani and Dragovich 2013; Sant et al. 
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2014).   

As such, bottom-up land management schemes derived from even a well-

represented collection of heterogeneous sample sites that are distributed across a single 

rangeland administrative region, may not successfully apply to the rangeland ecosystem 

as a whole because it is divided across multiple political boundaries with different 

administration systems, public or private.  Similarly, data collection problems are 

compounded where rangeland ecosystems have been subdivided throughout history based 

on cultural and societal traditions of land management.  Vast unfenced rangelands have 

become a subdivision of privately owned and fenced parcels that multiply through 

familial, legal, or political actions into consecutively smaller land holdings especially in 

areas where there have been rapid increases in land commercialization and rural 

urbanization rather than traditional agronomic land use activities.   

The oak-juniper savanna in Texas and the bluegrass prairie in the Great Plains 

region are examples of well-developed ranchette-style rangeland sub-division where each 

parcel, along with any sub-divisions, can demonstrate a different land management or 

land use strategy that can be unrepresented or partially accounted for in field data 

collection samples.  Likewise, data collection efforts become increasingly difficult for 

rangelands divided by a large number of private owners due to the need for legal consent 

and confidentiality agreement prior to many on-the-ground data collection efforts (Hilty 

and Merenlender 2003).  Altogether, these data collection challenges cause difficulties in 

attempts to accurately extrapolate and model large scale rangeland health and degradation 

issues contributing to interdisciplinary gaps in rangeland science. 
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1.2 Rangeland Remote Sensing and Vegetation Modeling Limitations 

 Over the past few decades, viable solutions to these data collection challenges 

have been to relate site-specific observations, such as those that have incorporated STM 

and ESD data, with data derived from remote sensing.  The science of remote sensing and 

remote sensing systems is defined by the ability to collect physical data of the 

environment using remotely operated and deployed sensors such as multispectral 

cameras, laser scanners, and radar.  Importantly, most remote sensing systems are thus 

spatially distant from their target of acquisition to provide increased data collection 

coverage whether the general target is Earth’s surface or sub-surface features.  For 

rangeland data collection, manned aerial or unmanned orbital remote sensing systems 

which operate at very high altitudes have allowed data collection with incomparable 

efficiency otherwise impossible from terrestrial perspectives.   

The remote sensing of rangelands has traditionally utilized passive sensor 

systems, or systems designed to use sensors which rely on Earth’s reflected solar energy 

for data collection.  Passive remotely sensed data are then related to site-specific field 

data in order to further characterize rangeland conditions.  This is typically accomplished 

by incorporating various image analysis methodologies such as pixel-based unsupervised 

and supervised land cover classification, band ratioing, principal component analysis 

(PCA), and tasseled cap analysis (TCA) (Hunt et al. 2003; Svoray, Perevolotsky, and 

Atkinson 2013; Higginbottom and Symeonakis 2014).  Importantly, various studies have 

sought to use passive remote sensing systems to improve upon rangeland ESD and STM 

datasets.  Hernandez and Ramsey (2013) employed PCA and the soil adjusted vegetation 

index (SAVI) to determine a similarity index that could describe nearby states of negative 
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transition for known ecological sites in the big sagebrush rangeland of northwestern 

Utah.  Maynard et al. (2007) used Landsat 7 ETM+ imagery with tasseled cap analysis of 

known ESD locations to relate brightness, greenness, and wetness values to changes in 

field measured vegetation biomass and soil conditions of Montana rangeland.  Similarly, 

Maynard et al. (2006) utilized Landsat 7 ETM+ imagery of Montana rangeland with non-

transformed bands in a band-wise regression to account for changes in vegetation 

biomass.  Therefore, a key aspect of many rangeland ecological analyses that use remote 

sensing to track biophysical changes within ESDs is the ability to associate site-scale 

plant measurements, such as leaf area index (LAI), plant height, or above ground biomass 

(AGB), to remote sensing imagery-based or range-based variables.  Such relationships 

can in turn be used to not only estimate plant productivity and ecological transition, but to 

also examine other rangeland health factors such as biodiversity, habitat health, fuel-bed 

loads, and invasive or noxious species distribution, among many others.   

 While multispectral and hyperspectral imagery have been used to indirectly 

estimate rangeland biophysical vegetation properties, they can be limited for certain 

rangeland study objectives because most widely available multispectral and hyperspectral 

datasets have coarser resolutions such as the MODerate Resolution Imaging 

Spectroradiometer (MODIS), Landsat series, and even the higher resolution Satellite Pour 

l’Observation de la Terre (SPOT) series sensors.  Specifically, coarser resolutions can 

make it difficult to quantify vegetation presence at the individual or species-level spatial 

scales, or the spatial scales related to ESD analyses (Booth and Cox 2008; Mansour, 

Mutanga, and Everson 2012).  Conversely, higher resolution datasets, particularly those 

with spatial resolutions under 1 meter or very high resolution (VHR) datasets allow the 
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minute details of small vegetation communities or single plant physiognomies to become 

more distinguishable.  This helps to separate and distinguish individual species, which 

can reveal more precise observations of ground cover, foliar cover, ecological succession, 

and the presence or absence of noxious or invasive species (Rango et al. 2009; Sant et al. 

2014).   

Higher resolution datasets also help to alleviate common arid rangeland 

vegetation classification challenges that are associated with spectral mixing, or the 

overlapping of soil and vegetation spectral signatures within a single pixel (Mansour, 

Mutanga, and Everson 2012).  While federal and state funded aerial photography 

programs such as NAIP and NAPP exist in the U.S as potential options for multispectral 

VHR data collection of rangelands, they too can be limited by temporal resolution and 

availability for remote areas.  Despite the utility afforded to rangeland analyses by 

multispectral and hyperspectral imagery, they are nonetheless limited to information 

recorded in two spatial dimensions, X and Y.  In remote sensing of the environment, the 

addition of a third spatial dimension, Z or height, is extremely useful for more direct 

estimates of vegetation structure and biomass.  Naturally 3-D datasets produced by active 

remote sensing systems offer a more realistic characterization of the horizontal and 

vertical distributions of plant architectures. 

 Traditionally, the measurement and modeling of rangeland vegetation structure at 

high spatial resolutions can be attributed to data derived from aerial or TLS systems.  

Aerial-Lidar or aerial laser scanner (ALS) remote sensing systems have been 

demonstrated to be particularly valuable for the quantification of certain vegetated land 

covers where vegetation species are dominated by tree-cover such as conifer, deciduous, 
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and tropical forests.  Rangelands on the other hand, have proven to be more difficult data 

collection environments.  Early studies such as Streutker and Glenn (2006) and Mitchel et 

al. (2011) were among the first to evaluate the capability of ALS to model rangeland 

vegetation structure where estimates of sagebrush height by a small footprint Lidar 

system demonstrated consistent underestimation that was attributed to the sensors sub-

meter dimensional (horizontal and vertical) accuracy limitations.  Similarly, Su and Bork 

(2006) and Spaete et al. (2011) found that small-footprint Lidar estimates for low lying 

vegetation and bare-earth digital elevation models (DEM) can be difficult due to minute 

slope and vegetation inconsistencies that are also below the horizontal and vertical 

thresholds of the sensor.  Estornell, Ruiz, and Velázquez-Marti (2011) also found a 

considerable underestimation of vegetation height by ALS in Mediterranean shrub-land 

where shrubs below the average shrub height were difficult to quantify. 

  Although these studies have provided valuable evaluations of Lidar systems in 

varying rangeland environments, there are mutual limitations found throughout the 

literature that are indicative of the need for alternative solutions to rangeland remote 

sensing and the remote sensing of low-statured vegetation overall.  For one, ALS by its 

very nature as a fast moving high altitude aircraft based system, tends to have a lower 

point density and post spacing that can lead to systematic height and plant detection and 

prediction inaccuracies.  This is especially true for natural environments with variable 

vegetation canopy structures, wide dispersion of plant communities, and complex micro 

and macro topographies where point densities and post spacing that are too sporadic will 

inconsistently capture and effect accurate calculations of vegetation presence or structure.  

Likewise, when the sub-meter dimensional accuracies are taken into account, the 
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combined sources of error can lead to difficulties in distinguishing vegetated cover from 

bare-earth returns, leaves from stems, and photosynthetically active vegetation from 

ground litter.  For example, many arid rangeland ecosystems that are found in desert and 

mountain areas like parts of the Sonoran and Chihuahuan deserts possess complex micro-

topographies with thin rocky soils where low lying vegetation cover can be exceptionally 

hard to distinguish from bare-earth surfaces.  While more appropriate point densities or 

post spacing may be achievable using an increase in the pulse rate, scan line overlap, or 

the addition of a secondary flight plan, these actions can be overall inefficient and cost 

prohibitive for a given data acquisition or research objective.  Overall, these 

technological and environmental challenges have demonstrably resulted in an 

underrepresentation of rangeland vegetation structure studies in existing literature. 

 As a solution, more reliable measurements of vegetation structure for rangeland 

vegetation are typically reserved for allometric on-the-ground measurements by hand or 

through the use of TLS or terrestrial laser scanners (TLS).  TLS has the ability to produce 

extremely dense point clouds of hundreds to thousands of points/m2 for individual 

vegetation species especially when acquired at close ranges with systematic overlapping 

scanning geometries.  Studies that have utilized TLS systems with discrete return or 

wavelet analyses, have met with positive results.  Olsoy, Glenn, and Clark (2014) and 

Olsoy et al. (2014) used TLS in order to estimate shrub biomass in an arid sagebrush-

steppe ecosystem.  Similarly, Vierling et al. (2013) used TLS with wavelet analysis in 

sagebrush steppe to examine sagebrush shrub height and canopy cover.  In contrast, 

Sankey et al. (2013) used TLS to quantify the detailed vegetation canopy architectures of 

mesquite shrubland in the Sonoran desert in order to analyze shrub effects on minute 
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differences in aeolian sediment mounds and transportation.   

However, much like ALS systems, TLS can be expensive and practically limited 

to non-destructive sampling at plot or stand scales as interpolation is generally needed for 

applications at larger scales.  Alternative solutions have been to mount a compact TLS 

system to a small unmanned aerial system (sUAS) in order to mimic the benefits of aerial 

acquisition while retaining the benefits of increased point density and dimensional 

accuracy.  While this option has shown future benefits, it is relatively impractical in its 

current technological state due to the weight of the payload, short flight durations, and the 

high cost of a sUAS malfunction (Wallace et al. 2012; Wallace 2013).  

 

1.3 sUAS-SfM Remote Sensing and Prickly Pear Cacti 

 Recently, a small-statured revolution in remote sensing has occurred in large part 

due to contemporary advances in the fields of robotics, computer processing, computer 

vision, and photogrammetry.  Specifically, the novel development and employment of 

small unmanned aerial systems (sUAS) with digital aerial photographic techniques and 

structure-from-motion (SfM) photogrammetric processing has given rise to a technical 

and methodological fusion of “sUAS-SfM-based” or sUAS-SfM remote sensing.  sUAS-

SfM remote sensing has been demonstrated to be a possible solution to rangeland and 

low-statured vegetation remote sensing limitations primarily because it has the ability to 

produce dense and spatially accurate 3-D datasets similar to the point densities and 

dimensional accuracies produced from TLS, yet captured from the valuable aerial 

perspectives provided by low-altitude flight.  This is practically accomplished by 

mounting consumer-grade digital point-and-shoot or DSLR cameras to low-cost multi-
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rotor or fixed-wing sUAS airframes.  When flown at low-altitudes manually or 

autonomously automated interval (time-lapse) stills or video photography can be used to 

produce a high number of overlapping images.  

These images then serve as input data into open-sourced or proprietary SfM 

“pipelines”, a term that refers to an integrated workflow with distinct phases or steps 

which utilize multiple algorithms designed to generate 3-D positions (XYZ points) from 

2-D data (XY/RGB pixel) through the calculation of keypoint positions or structure 

derived from camera pose data or motion (Oliensis 2000; Trucco and Verri 1998).  The 

unique outputs of SfM pipelines used for remote sensing can consist of orthorectified or 

georeferenced high density point clouds, sub-decimeter digital surface models (DSMs), 

and orthophotomosaics.  Recent studies in the fields of computer vision, geomorphology, 

forestry, and agriculture have already successfully demonstrated the viability of sUAS-

SfM as a useful remote sensing tool through the evaluation of sUAS-SfM-derived digital 

terrain models (DTM) and canopy height models (CHM) for various land covers along 

with quantifiable comparisons to traditional datasets produced from TLS, ALS, GPS, and 

total station measurements.  Still, sUAS-SfM remote sensing has yet to be fully assessed 

for the quantification and modeling of rangelands or rangeland vegetation species.   

One of the most underrepresented rangeland plant family indicative of such 

rangeland remote sensing data gaps is the Cactacea or cacti plant family, a family that 

contains 174 genera and 12,000 known species (The Plant List 2013).  In the arid 

rangelands of North and South America, numerous Cactaceae species serve 

multifunctional roles that are pivotal to the life cycles of other plant and animal species. 

For instance, protected Cactaceae species like Carnegiea gigantean (saguaro cactus) or 
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Lophophora williamsii (peyote cactus) are rare, geographically isolated, sensitive to 

environmental change, and culturally significant (Godinez-Álvarez, Valverde, and Baes 

2003).  In particular, there are few more well-known and widely distributed Cactaceae 

species than those of the Opuntia genus, one of the largest Cactaceae genera with several 

species and sub-varieties that commonly share the name “prickly pear” or “wheel 

cactus”.  While Opuntia spp. are originally native to North and South America, they have 

been introduced across the world for a variety of reasons both aesthetic and agricultural.  

In many countries such species have maintained a double-edged notoriety as either an 

indicator, keystone, or a noxious plant species for several reasons. 

 For one, many Opuntia spp. like Opuntia engalmanni var. lindheimeri 

(Engelmann’s prickly pear, Texas prickly pear), Opuntia edwarsii (Edward’s prickly 

pear), and Opuntia polyacantha (Plains prickly pear) possess an array of sharp spines 

surrounded by smaller spiny “hairs” that cover the plants cladodes (photosynthetic stem 

joints) and tunas (fleshy fruits).  Though native wildlife has adapted strategies and 

physical traits to consume the plant’s cladodes, tunas, and flowers, non-native livestock 

are not adapted to or familiar with dealing with the plant’s natural defenses and can be 

severely harmed when they attempt to consume the plant; sometimes developing a fatal 

condition known as “pearmouth” (Hanselka and Paschal 1991; Ueckert 2015).  Secondly, 

due to its growth cycle, Opuntia spp. can also occupy large areas of rangeland as they can 

reproduce and root successfully through cloning and pollination in a range of soil 

conditions, topography, and extreme temperatures thereby competing successfully for 

space with more palatable agronomic vegetation species (Hanselka and Paschal 1991; 

Agüero, Aguirre, Valiente-Banuet 2006; Hart and Lyons 2010; Ueckert 2015).  Similarly, 
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when healthy rangeland soil profiles are progressively degraded, they may exhibit a high 

density of Opuntia spp. plants that have taken advantage of marginal soil conditions and 

a lack of competition from more agronomical herbaceous vegetation species (Hanselka 

and Paschal 1991).  Over time, once grazable areas can feature such a dense distribution 

of Opuntia spp. plants that any movement by livestock into these areas is severely limited 

(Hart and Lyons 2010).   

Efforts to remove Opuntia spp. and open up claimed areas to palatable grasses for 

grazing through mechanical, fire management, biological, or chemical means can be 

expensive, time consuming, and yield little long term results in certain areas where 

cuttings and seeds of the plant can root easily, lay dormant for long periods of time, and 

eventually reclaim lands left unmonitored (Hart and Lyons 2010; USDA 2012).  In its 

native habitats, it has been observed that the natural distribution of Opuntia spp. was 

most probably controlled primarily by intense wildfires and successive factors that 

exploited the injured and defenseless cacti flesh like herbivory and insect action.  

However, as large scale fire management is rare or no longer prevalent on many 

rangelands where proper grazing does not necessitate a viable fuel load for burning 

Opuntia spp., intense distribution can be troublesome (Vermeire and Roth 2011; Ueckert 

2015). 

 In Texas, Opuntia spp. such as O. engelmanni var. lindheimeri along with similar 

variants maintain a dubious yet well respected reputation by local ranchers and rangeland 

conservationists, indicative of its symbolic representation as the state’s official plant.  

During extended periods of drought, livestock and native wildlife come to depend on 

Opuntia spp. as emergency sustenance due to its high moisture, mineral, and energy 
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content (Guevara, Suassuna, and Felker 2009).  Historically, ranchers throughout the 

southwestern U.S. have used it as emergency and supplementary fodder by simply 

burning away the harmful spines.  In its native rangelands, the ecological value of 

Opuntia spp. is widely recognized and well documented as the plant provides food, 

water, shelter, and protective cover for numerous wildlife species.   

The majority of the diets of the protected Texas tortoise (Scalise 2011) and the 

collared peccary (Everitt et al. 1981) are composed primarily of Opuntia spp., especially 

during periods of the year when the fleshy tunas are abundant.  The diets of economically 

important game animals like white tailed deer (Quinton, Horejsi, and Flinders 1979; 

Dillard et al. 2005), mule deer (Short 1977), sage grouse (Klebenow and Gray 1968) and 

Rio Grande turkey (Quinton and Montei 1977) as well as non-game species like black-

tailed jackrabbits (Sparks 1968), coyotes (Meinzer, Ueckert, and Flinders 1975), and feral 

hogs (Taylor and Hellgren 1997) equally derive a significant portion of their diet from 

Opuntia spp.  Aside from providing sustenance, Opuntia spp. provide shelter and nesting 

places for bird species like the roadrunner (Folse and Arnold 1978), cactus wren (Short 

1985), and bobwhite quail (Hernandez et al. 2003) among various others.  Due to its 

unique physiology, Opuntia spp. have been observed to foster the reseeding of 

overgrazed rangelands where they act as natural exclosures that protect palatable grass 

species from being consumed as they grow, mature, and seed within the confines of the 

plant’s spiny foliar area (Ueckert 2015). 

 Altogether, the detection, mapping, and monitoring of Opuntia spp. 

characteristics at various spatial scales can yield a moderate assessment of rangeland 

health at multiple levels for rangeland managers based on the positive and negative 
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ecological functions of the plant itself.   

 

1.4 SfM Processing and VHR Datasets 

Specifically, sUAS-SfM remote sensing of prickly pear (PP) cacti is predicted to 

be effective based on the unique ability of modern SfM processing pipelines to:  

 (1) Incorporate a high number of unordered, uncalibrated, and non-metric VHR 

 images acquired from various altitudes and camera angles. 

 (2) Reproduce minute spectral, textural, and spatial differences between 

 individual PP cacti and surrounding vegetated/non-vegetated land cover. 

 (3) Produce dense orthorectified point clouds that capture detailed structural 

 characteristics useful for predictive modeling and analyses. 

Though various SfM pipelines exist, each share a common workflow that can be 

divided into four basic phases: camera/sensor/lens coefficient or parameter estimation, 

feature detection and matching, keypoint estimation, and sparse point cloud densification.  

Depending on workflow design, different phases can also be executed in either a linear, 

hierarchal, or global framework which can utilize progressive feedback loops to 

continually refine and improve the geometric or dimensional accuracy of a reconstructed 

scene based on the continual introduction of more image data (Bemis et al. 2014; 

Crandall et al. 2013; Fonstad et al. 2013; Harwin and Lucieer 2012; Pintus and Gobbetti 

2014; Previtali, Barazzetti, and Scaioni 2011; Tomasi and Zhang 1995; Wang 2011; 

Westoby et al. 2012).   

In the first phase, intrinsic and extrinsic camera/sensor/lens parameters are 

estimated if unknown (uncalibrated) and include coefficients like focal length, principal, 



 

17 

 

point, and radial/tangential distortion.  These parameters are then used to initially 

estimate relative 3-D camera pose, or the position and orientation of the camera in an 

exterior 3-D coordinate system.  In the second phase, a Scale Invariant Feature Transform 

(SIFT), Speeded-Up Robust Features (SURF), or similar feature detection and matching 

algorithm is then used to distinguish and compare image features, or similar pixel(s) 

found in two or more overlapping images.  Extracted feature matches can then be 

iteratively refined using the RANdom SAmple Consensus (RANSAC) algorithm or 

similar robust fitting algorithms designed to filter outlier matches and select best matches 

throughout single or multiple image pairs.  In the third phase, the initial camera pose 

estimates are used alongside matched features to both refine camera pose estimates and 

calculate multiple external XYZ positions or keypoints, sometimes referred to as a sparse 

point cloud.  In the fourth phase, a sparse point cloud can be densified by using Multi 

View Stereovision (MVS) algorithms which are designed to more efficiently interpolate a 

large number of points using image and camera pose data.  As mentioned previously, the 

results from one phase can be used in another to refine final model accuracy and detail.  

For example, the initial estimates of camera pose, including camera/sensor/lens 

coefficients, can be refined by using the 3-D positions of keypoint estimates (Harwin and 

Lucieer 2012; Hödlmoser, Micusik, and Kampel 2013; Previtali, Barazzetti, and Scaioni 

2011; Wendel, Irschara, and Bischof 2011).   

 While SfM pipelines can be computationally intensive depending upon the total 

number of input images and their image resolution (radiometric, spectral, and spatial), 

they can also be relatively automatic and require few input parameters that need to be 

specified by the user.  In addition, most SfM pipelines do not require pre-calibrated 
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camera systems with known camera/sensor/lens coefficients in order to produce reliable 

(sub-decimeter) dimensional accuracies where heavier metric camera systems can overall 

hinder total flight time and can be costly to repair (Fonstad et al. 2013).  Most SfM 

pipelines also allow the user a degree of control over output point cloud density which 

can allow for data processing flexibility that can be tailored to specific objectives.   

Importantly, SfM processing of sUAS-based aerial imagery allows the production 

of several VHR datasets that are predicted to be suitable for the quantification of PP cacti 

at the species-scale based on the potential of these datasets to capture and represent the 

minutia of low-statured plant architectures and spectral characteristics in a virtual 

environment.  Such datasets are projected to help delineate, classify, model, and predict 

vegetation structure more effectively and thus require further exploration and evaluation. 

 

1.5 Problem Statement 

 To date no direct studies have been published concerning the quantification of 

Opuntia spp., or Cactaceae spp. structure using ALS, TLS, or sUAS-SfM remote sensing 

methods.  In fact, no direct study is known regarding the quantification of rangeland 

vegetation structure using sUAS-SfM remote sensing.  Of the few related studies that 

have used sUAS-acquired digital photography to study rangeland vegetation Laliberte, 

Rango, and Herrick (2006); Laliberte and Rango (2008); Rango et al. (2009); and 

Laliberte, Winters, and Rango (2011) mapped rangeland vegetation distribution while 

Laliberte and Rango (2009); Laliberte et al. (2010); and Laliberte and Rango (2011) 

utilized OBIA segmentation/classification to delineate rangeland vegetation at the 

species-scale.   
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Bryson and Sukkarieh (2011) is the only known study to use sUAS-acquired 

digital photography to specifically examine Opuntia spp. distribution at the species-scale 

where OBIA segmentation/classification was used to detect individual cacti in the 

Australian Outback.  While these studies are among the first and most recent to 

demonstrate the value of sUAS and VHR datasets for the study of rangeland vegetation, 

they do not use sUAS-SfM methods to explicitly quantify rangeland vegetation structure.  

This is indicative of an overall lack of adequate literature on the subject in comparison to 

similar studies that have used ALS, TLS, and sUAS-SfM for analysis of vegetated land 

cover defined by high-statured tree dominant vegetation such as those of tropical, 

deciduous, or conifer forests. 

 

1.6 Objectives 

 The objective of this study is to detect and model the structure of PP cacti at the 

species-scale in an open-canopy rangeland ecosystem by utilizing several orthorectified 

VHR datasets derived from sUAS digital aerial imagery, SfM processing, OBIA 

segmentation, supervised machine learning classification, and predictive regression 

modeling.  This study will also compare established point height-based (PH) modeling 

techniques refined in Lidar-based research with newer techniques that incorporate a 

fusion of PH-based data with object-based image analysis (OBIA) attributes that can 

exploit several sUAS-SfM derived datasets.  Specifically, this study will concentrate on 

three primary objectives: 

(1) Generate sUAS-SfM-derived 3-D datasets and visually assess the representation 

of PP cacti and surrounding land covers. 
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(2) Generate a sUAS-SfM-derived orthophoto for OBIA segmentation, classify  

segments using a machine learning algorithm, and assess accuracy.  

(3) Generate PH and OBIA segment-derived statistical predictors extracted from plot-

ellipse and post-classified OBIA-segment dimensions in order to predict field metrics 

using multiple linear regression (MLR) models. 

 

1.7 Justifications 

 The proposed study ultimately seeks to find a practical and economic solution for 

the 3-D mapping of rangeland vegetation at site and species-scales through the use of 

sUAS-SfM remote sensing.  The use of a more affordable and flexible remote sensing 

method that can acquire spatially accurate species-scale vegetation data on demand can 

be a vital tool for efficient rangeland monitoring, management, and conservation.  

Rangelands not only support dynamic ecological and agronomic functions, but they are 

rapidly changing in ways not fully understood where comparable monitoring efforts at 

such fine spatial scales using traditional remote sensing methods can be costly and 

prohibitive.   

This study therefore seeks to first examine past methodologies and outline 

common limitations found in the literature and then elaborate on these established 

methods, present findings, and finally discuss key sources of error and practical 

limitations.  This study also attempts to provide a reasonable proof of concept for future 

quantification of rangeland vegetation structure using sUAS-SfM. 

 

 



 

21 

 

2.0 LITERATURE REVIEW 

2.1 sUAS-SfM Remote Sensing of Vegetation Structure 

2.11 Non-forestry Related Research 

 An early study by Turner, Lucieer, and Watson (2011) demonstrated the utility of 

sUAS-SfM methods for practical applications in the viticulture industry where the 

authors utilized a multi-rotor sUAS mounted with RGB, near-infrared (NIR), and thermal 

infrared (TIR) arrays fitted separately between three different flights.  It was shown that 

sUAS-SfM could easily be used with manual georeferencing techniques to create DSMs 

and valuable vegetation index orthophotomosaics for on-demand VHR monitoring of soil 

and plant health.  Similarly, Mathews and Jensen (2013) investigated the use of sUAS-

SfM methods to quantify the leaf area index (LAI) for a near full veraison trellis-trained 

grapevine species, Vitis vinifera.  Instead of more expensive multi-rotor or fixed wing 

sUAS, an inexpensive kite-wing sUAS was mounted with a point-and-shoot camera that 

was pointed at both nadir and low-oblique angles.  The images were used to generate a 

manually georeferenced dense point cloud and multiple linear regression was used to 

estimate LAI, where moderate agreement was reported between SfM PH-derived 

statistical metrics and LAI field observations. 

More recently, Zarco-Tejada et al. (2014) investigated the accuracy of sUAS-

SfM-derived DSMs for the estimation of individual olive tree heights in an olive orchard.  

A fixed-wing sUAS was mounted with a converted RGB-to-color infrared (CIR) camera 

that was flown at an above ground height (AGH) of 200 meters using a high frequency 

overlapping flight plan.  Estimates of maximum heights of individual olive trees were 

compared to heights derived from directly georeferenced DSMs that utilized different 
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raster resolutions designed to represent DSMs and subsequent height data from higher 

altitudes.  The study reported that height estimates derived from DSMs with pixel 

resolutions between 5-35 cm yielded more accurate tree height predictions versus DSMs 

with coarser pixel sizes. 

In contrast to agriculture-based investigations, early studies such as Lucieer et al. 

(2012) and Lucieer et al. (2014) instead examined the ecological applications for sUAS-

SfM in a remote biome of the Antarctic coastline where both studies comprehensively 

evaluated both the accuracy and modeling capability of open-source SfM pipelines in 

combination with ecological growth models of Antarctic moss beds.  In particular, 

Lucieer et al. (2012) used a multi-copter sUAS that was mounted with a digital single-

lens reflex (DSLR) camera and a Tetracam multispectral (RGB/NIR) sensor that was 

flown at low AGHs in order to capture the spectral details and micro-topographies of 

moss beds.  Lucieer et al. (2014) elaborated on the previous study by loosely coupling a 

similarly produced 2 cm resolution DSM with Monte Carlo simulations of hydrological 

algorithms in order to correlate water and nutrient availability with health and growth 

attributes of Antarctic moss samples.  Importantly, both studies demonstrated the 

flexibility of sUAS-SfM to create valuable research products for remote environments 

where traditional remote sensing has exhibited limitations. 
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2.12 Forestry Related Research 

 An in-depth study by Dandois and Ellis (2010) used various datasets produced 

from a particular sUAS-SfM pipeline, Ecosynth, and compared them to similar datasets 

produced from ALS for mixed-deciduous New England forest study sites that represented 

a leaf-on or leaf-off phenology.  The study used a multi-rotor sUAS that was equipped 

with a point-and-shoot camera that was flown over the study areas at approximately 40 m 

above the forest canopy using an overlapping parallel flight plan.  The study compared 

sUAS-SfM and ALS produced bare-earth digital terrain model (DTM) and canopy height 

model (CHM) variables along with point-height derived statistical predictions of biomass 

and carbon-stock measurements.  Additionally, SfM-derived vertical spectral profiles, or 

the spectral profiles of a study site’s “ground-to-canopy” cross-section, was compared to 

MODIS NDVI time series green-up data.  It was found that while sUAS-SfM DTM 

dimensional accuracies were comparable to ALS DTM accuracies for leaf-off phases, 

they were less accurate during leaf-on conditions.  Similarly, sUAS-SfM CHMs that used 

ALS DTMs to derive height predictions of field observations were more accurate than 

sUAS-SfM CHMs derived from sUAS-SfM DTMs.  Interestingly, sUAS-SfM vertical 

spectral profiles were reported to significantly correspond to MODDIS NDVI data green-

up data which demonstrated the utility of the RGB encoded sUAS-SfM dataset. 

 Lisein et al. (2013) compared sUAS-SfM and ALS produced CHMs at individual 

tree species, plot, and stand-scales for a leaf-on deciduous forest in Belgium using the 

European open-sourced MICMAC SfM pipeline.  Instead of a multi-rotor sUAS, a 

commercial fixed-wing sUAS was mounted with a converted NIR camera and flown at 

an AGH of 225 m.  Similar to Dandois and Ellis (2010), it was found that sUAS-SfM 
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CHMs and ALS CHMs were highly correlated overall, but at the plot and stand scales 

sUAS-SfM CHM heights slightly underestimated ALS CHM heights.  However, at the 

individual tree or species-scale sUAS-SfM CHM-derived predictions of tree heights were 

more reliable than ALS CHM-derived predictions.  Importantly, it was found that sUAS-

SfM CHM prediction accuracies were largely affected by inconsistent point densities 

which caused sparse point clustering that resulted in the capture and misrepresentation of 

undergrowth heights rather than actual trees which systematically affected bare-earth 

DTM interpolation accuracies. 

 Instead of comparing ALS, Fritz, Kattenborn, and Koch (2013) compared sUAS-

SfM with TLS by delineating individual tree stems from both dataset’s point clouds for a 

leaf-off open canopy deciduous forest in southwest Germany.  The study used established 

methodologies that incorporated horizontal slicing, point cluster extraction, and a 

RANSAC cylinder fit algorithm to generate tree stem geometries and subsequent 

variables such as stem radius.  To best generate the dense point cloud that was needed, a 

multi-rotor sUAS was mounted with a compact systems digital camera that was angled 

45° and flown at a AGH of 55 m using a bi-directional parallel flight plan with opposing 

image overlaps.  Of the 102 trees present, the authors reported that 71% were 

successfully reconstructed using sUAS-SfM-derived tree stem estimates although 

estimates of tree radii were slightly lower than TLS estimates.  Similar to point density 

irregularities experienced by Lisein et al. (2013), the study reported that sUAS-SfM tree 

stem estimates decreased when tree height increased which was explained by the 

presence of thinner stems that were not fully represented by sparse point clusters.  

  More recently, Sperlich et al. (2014) used an alternate tree delineation algorithm 
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designed for Lidar and forestry applications known as TreeVis in order to compare 

sUAS-SfM and TLS predictions of tree stem geometries for a leaf-on deciduous and 

conifer forest in Germany.  A multi-copter sUAS mounted with a compact systems digital 

camera was flown at a AGH of 100 m using a nadir camera angle.  They found that 

within the deciduous forest site there were strong relationships between sUAS-SfM-

derived and TLS-derived maximum tree heights, highest tree density, and tree stem 

density estimates.  However, individual tree detection rates were generally lower and 

were attributed to the greater variation in tree heights typical of deciduous forests.  In 

contrast, the conifer stand exhibited stronger relationships between sUAS-SfM-derived 

and TLS-derived maximum tree height, height difference, and DTM difference where the 

bare-earth was easier to model between either dataset as explained by wider spacing 

between individual trees.  Like previous studies, it was reported that sUAS-SfM product 

accuracies and detection probabilities increase for open-canopy leaf-off conditions as 

opposed to dense close-canopy conditions with greater undergrowth and limited line-of-

sight (LoS) to bare-earth.  Additionally, accuracies increase when forest types possess 

lower individual tree density, low horizontal tree crown distribution, and low tree height 

or crown cover heterogeneity. 

 Despite the inherent morphological differences of each forest type that was 

investigated, sUAS-SfM remote sensing methods have demonstrated useful predictions of 

commercial and ecological forest structural metrics at several analysis scales, each 

comparable or near comparable with aerial or terrestrial Lidar-derived structural metrics.  

Importantly, estimate accuracies have repeatedly demonstrated to be higher for leaf-on 

forests with sparse individual tree distribution and non-overlapping crown coverage.  
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Regarding the inherent differences between open-canopy rangeland ecosystems and 

forests, an important relationship exists between a study’s objective and flight planning 

that must be considered for proper study design.  For example, when the objective is to 

reconstruct individual tree structure, stem geometry, or a bare-earth surface for accurate 

CHM calculation it can be surmised from the above literature that sUAS flight plans 

executed during leaf-off conditions that employ low AGH altitudes and low-oblique or 

near-nadir camera angles are more preferable in order to capture unobstructed views of 

detailed vegetation architectures.  On the other hand, when the study’s objective is to 

predict metrics for larger scale study areas that are typical of ALS forestry-based research 

then perhaps the use of Lidar-derived DTMs with sUAS flight plans that use greater 

AGHs, digital compact-systems or DSLR cameras, and nadir camera angles is more 

viable. 

 Consequently, LoS challenges and irregular point-densities have shown to pose a 

key systematic limitation for the derivation of accurate vegetation structure metrics.  In 

contrast, prediction metrics based on regularly distributed PHs have demonstrated to be 

more significant, especially for species-scale study objectives that require minute spatial 

detail.  This is where TLS still exhibits a strong advantage due to the ability of high 

density laser pulses to penetrate foliage gaps and define hidden architectures. 
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2.2 sUAS-SfM Topographic Studies and Error Identification 

 sUAS-SfM data collection strategies vary throughout the recent literature, as early 

evaluations of any technique or technology possesses little established doctrine that 

determine the most appropriate methods for a particular study’s objective.  Regardless, 

sUAS-SfM remote sensing strategies are based on several decades of research designs 

established in Lidar-related or MVS-related studies of vegetation and topography.  This 

has resulted in common factors that have been applied in several disciplines, especially 

geomorphology, that sought to compare and improve sUAS-SfM product dimensional 

accuracies by identifying potential sources of error and curbing systematic error before 

and within the SfM workflow.  This was accomplished primarily through trial-and-error 

examinations between separate studies that investigated different topographies (usually 

sparsely vegetated) utilizing methodical evaluations of sUAS-SfM-derived topographic 

datasets to well-established topographic datasets derived from Lidar, GPS, and total 

station measurements.  The recognition and adaption of these factors is thus important for 

streamlining and optimizing sUAS-SfM remote sensing of rangeland vegetation and 

vegetation in general. 

 An early study by Harwin and Lucieer (2012) provided a comprehensive 

demonstration of important systematic errors that can be produced from the user-defined 

variations typical of sUAS-SfM methods.  A multi-rotor sUAS mounted with a DSLR 

camera was repeatedly flown at an AGH of 30-50 meters using two nadir flight plans and 

one oblique flight plan over a sandy stretch of the Tasmanian coastline.  The dimensional 

accuracies of three sUAS-SfM-derived point clouds were compared to real time 

kinematic differential GPS (RTK DGPS) and total station measurements.  Point cloud 
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measurements were generated from several ground control point (GCP) centerpoint or 

GCP point cluster georeferencing (assignment of real world XYZ coordinates to arbitrary 

positions) variations based on: centroid vs. mean; semi-automatic georeferencing vs. 

manual georeferencing; total station vs. RTK DGPS ground truthing; and GCP design 

(size, shape, and distribution).  Overall, it was reported that sUAS-SfM dimensional 

accuracies were higher for denser point clouds which allowed more accurate GCP 

centerpoint georeferencing and geotransformation (transformation of arbitrary positions 

to real world XYZ coordinate system) where the use of semi-automatic georeferencing 

with centroid-based GCP centerpoint calculations made it easier to recognize individual 

GCP point clusters.  The study also found that a GCP distribution, which employed a 

high number of larger sized GCPs evenly distributed across the study area, ultimately 

helped to compensate for SfM modeling scene distortion that may occur in certain areas 

of the study site such as the outer edges. 

 Turner, Lucieer, and Watson (2012) also examined the effects of different sUAS-

SfM-derived point cloud GCP centerpoint georeferencing techniques for the complex 

topography of a rocky Antarctic coastline.  A multi-rotor sUAS mounted with a DSLR 

camera pointed at nadir was flown at an AGH of 50 m using an overlapping flight plan.  

The resulting dense point cloud’s and their dimensional accuracies were compared 

between the point cloud produced from direct georeferencing (use of flight log-based 

sUAS GPS positions) and the point cloud produced from GCP-based georeferencing (use 

of flight log-based sUAS GPS and external GCP ground truth positions).  It was reported 

that the range of dimensional accuracies for the GCP-based georeferenced point cloud 

resulted in 10-15 cm of difference versus 65-120 cm of difference from the direct 
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georeferenced point cloud. 

 In contrast, Fonstad et al. (2013) sought to compare sUAS-SfM-derived 

elevations with ALS-derived and GPS elevations for a section of limestone river bedrock 

in Texas.  Instead of a multi-copter or fixed wing sUAS, a manually guided heli-kite 

platform mounted with a point-and-shoot digital camera was flown at variable AGHs of 

10-70 meters.  Instead of man-made GCPs, identifiable natural features in the limestone 

bedrock were used for post-flight georeferencing and geotransformation of the sUAS-

SfM-point cloud. Using independent GPS positions that were not used for 

georeferencing, the study reported a mean elevation difference of 60 cm between sUAS-

SfM and ALS versus a mean elevation difference of 44 cm between sUAS-SfM and 

differential GPS measurements.  It was also surmised that the variable AGHs and near-

random positioning of the windblown heli-kite platform contributed to the overall 

dimensional accuracy of the sUAS-SfM-derived point cloud.  This was attributed to the 

ability of SfM processing to capitalize on a high number of images that share a high 

degree of image overlap relative to camera pose variability, or the number of different 

camera poses that are successfully modeled for a given target area.   

 Mancini et al. (2013) used an analogous study where sUAS-SfM-derived DSM 

elevations were compared to TLS-derived DSM elevations and RTK DGPS 

measurements for a sandy coastline in Italy.  A multi-rotor sUAS mounted with a DSLR 

camera was flown at an AGH of 40 m where instead of traditional flat disc shaped GCPs, 

checkered 3-D cubes were distributed.  The study reported a mean difference in 

dimensional accuracies of only 19 cm between the sUAS-SfM-derived DSM and the 

TLS-derived DSM while a mean difference of only 1 cm was reported between the 
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sUAS-SfM-derived DSM and the RTK DGPS measurements.  In order to further test 

systematic errors caused by specific surface features, Mancini et al. (2013) also compared 

dimensional accuracies within four distinct zones: vegetated, non-vegetated, sand flats, 

and dynamic sand dunes.  Overall, the study demonstrated that point densities and 

dimensional accuracy differences between sUAS-SfM and TLS were lower for flat sandy 

and non-vegetated zones.  In contrast, the more topographically dynamic sand dune and 

vegetated zones yielded greater point densities but more disagreement between sUAS-

SfM and TLS dimensional accuracies.  

Tonkin et al. (2014) compared sUAS-SfM-derived DSM dimensional accuracies 

with total station measurements in the detailed micro-topography of a moraine-mound 

complex in North Wales.  A multi-rotor sUAS mounted with a DSLR camera pointed at 

nadir was flown at an AGH of 100 m where a dense point cloud and detailed DSM were 

produced and compared to over 7,000 total station positions.  The study reported a mean 

difference of 45.4 cm between sUAS-SfM-derived DSM and total station dimensional 

accuracies.  Similar to Mancini et al. (2013), the study also compared dimensional 

accuracies between either dataset within two distinct topographic zones, grass and 

bedrock versus heather and shrubs.  Importantly, it was demonstrated that denser 

vegetated zones yielded lower sUAS-SfM-derived DSM dimensional accuracies versus 

zones with little to no vegetation where the authors attributed the lower agreement to the 

sUAS mounted camera’s LoS. 
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2.3 sUAS-SfM Optimization 

Aside from comparison evaluations of different topographic and vegetation 

structure datasets, past studies have collectively presented key limitations to sUAS-SfM 

remote sensing.  Like previous remote sensing methods, some of these limitations are 

based on external and internal sources of error that systematically affect the ability of the 

technology to reproduce the complex geometries of real world features.  While many 

sources of error are difficult to account for and are more an aspect of the technology 

itself, there are sources of error that have been reasonably identified and can be 

practically controlled by the user to improve overall SfM product accuracy.  Specifically, 

there are three primary user-defined factors that have been observed to systematically 

influence accuracy: GCP design, point cloud density, and flight planning.   

First, proper GCP design and georeferencing techniques have demonstrated to be 

a straightforward solution to preserving original scene or site geometries by curbing data 

collection sources of error (i.e. uneven illumination, image artifacts, noise, movement, 

etc.) that may cause inaccurate models of camera distortion or keypoint positions within 

the SfM pipeline itself.  Adequately distributed and recognizable GCPs have repeatedly 

shown to be particularly vital during the geotransformation process where real world 

coordinates correct the arbitrary geometric models produced from the estimated camera 

pose data or any other SfM model derived from less accurate XYZ measurements of a 

cameras position during image acquisition, as exemplified in the flight-log GPS data 

evaluated in Turner, Lucieer, and Watson (2012).  Additionally, the use of 3-D shapes 

like cubes, pyramids, cones, or identifiable natural features has shown to improve the 

identification of GCP centerpoints within the virtual environment so that they can be 
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georeferenced with less error.  However, the accuracy of the ground truth data used for 

georeferencing an SfM model should always be considered with regards to the study 

objective. 

 Second, as discussed by Harwin and Lucieer (2012), Turner, Lucieer, and Watson 

(2012), and Fonstad et al. (2013), the choice to generate very dense point clouds or point 

clouds comparable to TLS outputs with mean point densities reaching between 50-100 

points/m2 has shown to alleviate several sources of error at the cost of computational 

efficiency.  While “correction by densification” occurs at the cost of computational 

efficiency, denser point clouds generally allow the user to more easily identify GCP 

centerpoint clusters.  Denser sUAS-SfM-derived point clouds also add more potential 

estimates of a target objects true shape which may alleviate LoS issues.  For example, 

sUAS-SfM vegetation structure studies have shown that while penetration of foliage is 

limited or non-existent in many cases, extremely detailed representation of the external 

surface is significant where analysis techniques that capitalize on the “outer shell” of a 

plant may be more appropriate to predict structural metrics.   

Moreover, the maximum point cloud density obtainable by a given sUAS image 

acquisition has shown to be proportional to general user-controlled factors within the data 

collection phase that include the percent of overlap between successive images, image 

acquisition interval, and the pixel-to-ground resolution or ground sample distance (GSD).  

Likewise, these parameters are controlled by other parameters set by the user during 

proper flight planning which include the sUAS airframe type, flight AGH, flight speed, 

camera angle, and camera lens/sensor type.  Camera lens/sensor type in particular have 

been well recognized to be important in reducing dimensional errors post MVS 
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photogrammetric processing caused by radial or tangential distortion. 

 An insightful investigation by James and Robson (2014) employed simulations of 

different sUAS image acquisition geometries and radial lens distortions to help quantify 

these effects on resulting DSM dimensional accuracies.  The study found that proper 

flight planning could effectively reduce many common DSM errors, especially for the 

automatic SfM pipelines that did not utilize known camera calibration parameters typical 

of expensive metric camera systems.  Importantly, it was suggested that the utilization of 

converging oblique and nadir camera angles from different AGHs in combination with 

GCP-based georeferncing to be adequate user-controllable parameters for decreasing less 

controllable sources of error that stem from distortion. 

   

2.4 OBIA Segmentation and Classification for Vegetation Analysis 

 Of the few studies that have used sUAS-based aerial photography to study low-

statured vegetation, several have repeatedly demonstrated the value of incorporating 

OBIA segmentation-based techniques into their research analyses.  Various studies have 

comprehensively evaluated intensity, hue, and saturation (IHS) values in combination 

with feature selection or attribute selection measures (Laliberte and Rango 2008; 

Browning, Laliberte, and Rango 2011), assessed the effects of appropriate segmentation 

scales on texture-based OBIA segment classification accuracies (Laliberte and Rango 

2009), and investigated effects of OBIA segment classification strategies for different 

rangeland species compositions and structures at plot and species-scales (Laliberte et al. 

2010).   

Specifically, studies that have utilized OBIA segmentation of VHR sUAS-
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acquired imagery in combination with machine learning classification algorithms that 

classify based on OBIA-segment-derived spatial, textural, or spectral attributes have 

shown it to be especially effective for the classification of arid rangeland vegetation using 

rule-based classification and Classification and Regression Tree (CART) based strategies 

(Laliberte, Winters, and Rango 2011; Laliberte and Rango 2011), the classification of 

weeds in maize fields using an auto-adaptive rule-based approach (Peňa et al. 2013), and 

the classification and estimation of percent vegetation cover in a sagebrush-steppe 

rangeland also using a rule-based approach (Hulet et al. 2014).   

Importantly, OBIA-based or OBIA segmentation/classification (unsupervised, 

semi-supervised, supervised, etc.) of vegetated land cover using VHR RGB imagery has 

proven to be a viable alternative to traditional unsupervised (ISODATA, K-means) or 

supervised (maximum likelihood, minimum-distance, parallelpiped) pixel-based 

classification methods that typically use coarse spatial resolution imagery with a high 

spectral resolution.  Since low-altitude sUAS-acquired RGB imagery has spatial 

resolution but low spectral resolution, typically only three bands (RGB), OBIA 

segmentation/classification strategies instead seek to exploit the fine spatial details 

present through the calculation of multidimensional (spatial, textural, and spectral) 

attributes for individual OBIA segments.  Multiple segment attributes can thus serve as a 

collection of unique descriptors for real-world land cover or land cover objects that can 

be classified distinctly or continuously (Volotǎo, Dutra, and Santos 2012; Volotǎo 2013).  

Overall, OBIA segmentation/classification schemes become practical tools for 

sUAS-based studies that seek to minimize heavy payloads without sacrificing the ability 

to reliably classify vegetated land cover from inexpensive digital imagery (Laliberte and 
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Rango 2008).  Regrettably few rangeland studies have investigated the advantages and 

disadvantages of certain segmentation/classification strategies for different land cover, 

how rangeland vegetation structure may effect classification accuracy, or whether OBIA 

segment geometries can be used to quantify rangeland vegetation structure. 
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3.0 STUDY SITE 

3.1 Prickly Pear Cacti Morphology and Site Selection 

 Prickly pear is a common name for several different species and varieties of 

Opuntia platyopuntoids, or Opuntia spp. that possess flat paddle-like cladodes.  

Throughout the southwestern U.S., PP cacti is a common name associated with several 

different species that grow 2-4 cm long spines and distinct red or purple oval-shaped 

fruits, or tunas.  While exact species and sub-species genetic classification efforts for 

different Opuntia spp. are variable and ongoing, in the U.S. at least 31 species of Opuntia 

sensu stricto are estimated to exist (Grant and Grant 1979; Majure et al. 2012; Rebman 

and Pinkava 2001; Wang et al. 1998).  In Texas, common species include O. engelmannii 

var. lindheimeri (Engelmann’s prickly pear or Texas prickly pear), O. edwardsii 

(Edward’s prickly pear), and O. polycantha (Plains prickly pear).  With regards to the 

study’s objective for a robust evaluation of sUAS-SfM remote sensing and modeling of 

PP cacti structure, a single study site was needed that could represent a heterogeneous 

sampling of PP cacti morphology based on the following reasons. 

First, individual PP cacti found in a single site can possess significant 

physiological differences or very few physiological differences, regardless of age.  This is 

because different varieties and hybrids of a particular Opuntia spp. can possess 

phenotypes that are exceedingly diverse from one another due to genetic factors like 

polyploidy, free hybridization, and backcrossing.  Additionally, PP cacti can reproduce 

easily through cloning and seeding where a variety of heterogeneous or homogeneous 

hybrid swarms can occur between common Texas species such as O. engelmannii, O. 

polycantha, O. macrorhiza, and O. lindheimeri among others (Hart and Lyons 2010; 
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Grant and Grant 1979; Grant and Grant 1982; Powell and Weedin 2001; Wang et al. 

1996).  PP cacti can also respond rapidly to favorable or unfavorable environmental 

conditions by shedding old cladodes or growing new cladodes; changing the shape and 

structure of plants within a relatively short time period.  Therefore, a study site that 

possessed an adequate number of heterogeneous plants to sample was favored. 

 Secondly, PP cacti is rather hardy and can be found in a wide variety of healthy 

or poor range conditions, growing in close proximity to other vegetation species that are 

in different stages of ecological succession or phenology.  For example, various short to 

tallgrass species have been observed to have a close life cycle relationship with PP cacti.  

Sometimes these other vegetation species exceed the maximum heights of nearby PP 

cacti obstructing clear views of them from certain ground and aerial perspectives.  As 

such, results derived from photogrammetric-based methods that rely on a relatively clear 

LoS to reliably capture and model structure, may be different for vegetation heights 

typical of early seral, or grazed rangelands versus taller vegetation heights found in 

fallow or climax rangelands.  To account for a worst case rangeland data collection 

scenario and meet the study’s need for robust modeling potentially applicable to other 

study sites, a study site was selected that represented rangeland with tall vegetation 

heights in near-climax relatively ungrazed conditions. 

 

3.2 Balcones Canyonlands Rangeland Site 

 The Balcones Canyonlands (BC) study site (29° 55’ 23.72” N/97° 58’ 39.29” W) 

is located within the Freeman Center, a 1,701 ha enclosed research area operated by 

Texas State University located in the southeastern portion of Hays County approximately 
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5 kilometers west of the city of San Marcos in south central Texas (Fig. 1).  The BC 

study site lies within the Balcones Canyonlands, an approximately 4,300 km2 sub-

ecoregion within the eastern portion of the larger Edwards Plateau ecoregion, an area that 

encompasses approximately 95,000 km2 from north central to south central Texas (Amos 

and Gehlbach 1988; Griffith et al 2007; Rickets et al. 1999).  The Balcones Canyonlands 

is characterized by its dynamic karst topography that features rolling flat-topped mesa-

like hills with stair step-like terraces that can be starkly interposed by the steep eroded 

slopes of narrow perennial stream valleys, draws, and limestone cliffs typical of this flash 

flood prone region.  Hillsides and higher sloped areas within the Balcones Canyonlands 

exhibit thin, rocky, calcerous soils that can support dense closed-canopy Ashe juniper 

(Juniperus ashei) dominated stands as well as more open-canopy conditions with a mix 

of common woody shrubs: Agarita (Berberis trifoliolata), Texas persimmon (Diospyros 

texana), and Yaupon holly (Ilex vomitoria); Cacti and succulents: Texas prickly pear 

varieties (O. engelmannii, O. linheimeri), Tasajillo (Cylindropuntia leptocaulis), Spanish 

Dagger Yucca (Yucca constricta); forbs: Texas broomweed (Gutierrezia texana), 

Wolfweed (Leucosyris spinosa), Common goldenweed (Iscoma coronopifolia),Texas 

croton (Croton texensis), and short to midgrasses: Texas grama (Bouteloua rigidiseta), 

Buffalo grass (Buchloe dactyloides), Little bluestem (Schizachyrium scoparium), Texas 

wintergrass (Nasella leucotricha).   

In contrast, the deeper loamier soils of the savannah-like upland pastures and 

lowland valleys typically support older growth Live Oak (Quercus fusiformis) and Texas 

Cedar Elm (Ulmus crassifolia) dominated mixed tree stands with an abundance of other  

midgrasses: Red grama (Bouteloua trifida), Sideoats gramma (Bouteloua curtipendula), 
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Figure 1.  Map of Balcones Canyonlands rangeland study site.  Located within the 

Freeman Center, TSU, Hays County, Texas, USA. 
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Hairy grama (Chondrosum hirsutum); and tallgrasses: Big bluestem (Andropogon 

gerardii), Silver bluestem (Bothriochloa saccharoides), Switchgrass (Panicum virgatum), 

Yellow Indiangrass (Sorghastrum nutans).  Such areas have been historically utilized for 

grazing and haying activities but more recently viticulture has been introduced to the 

region.   

The general area that encompasses the study site possesses thin Mollisol 

dominant, very cherty clay loam soils up to 25.4 cm in depth and typical of the local 

Rumple-Comfort and Comfort-Rock soil complexes that nonetheless support nearby old 

growth tree stands of Live Oak, Cedar elm, and Ashe juniper fragmented by 1-2 ha sized 

meadows (USDA 1984; SSURG0 2015).  The study site itself is an open-canopy meadow 

that is located on the southwestern facing aspect of a hill and 30 m north of a small 

limestone bluff.  The bluff rises between 20-30 m in elevation above the northern and 

southern conjoining branches of Sink Creek, a small intermittent streambed that leads 

into a manmade flood control drainage basin which eventually feeds into the San Marcos 

River 5 km downstream.  The study site boundaries encompass an area of approximately 

9955.85 m2 (0.99 hectares) with an average slope of 0.35% from the northern to southern 

boundary within an elevation range of approximately 215 m - 235 m ASL.    

Precipitation received prior to field data collection was recorded by the nearest 

NOAA weather station 2.7 km to the east and reported approximately 81.4 cm of rainfall 

between January 1, 2015 to June 30, 2015 with the month of May receiving a record 

rainfall of approximately 32 cm (Freeman Center 2015).  Precipitation values altogether 

yielded a much wetter than average early summer that prompted an abundance of 

herbaceous vegetation growth for the area in comparison to previous drier than average 
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years.  Vegetation species identified within the study site’s boundaries consist of 

common short to tallgrass species: Texas grama, Texas wintergrass, Big bluestem, Little 

bluestem; Forbs: Texas broomweed, Texas croton, Texas thistle, Largeleaf lantana 

(Lantana camara), Wild carrot (Daucus carota); shrubs: Agarita, Texas persimmon, 

Yaupon holly; trees: Live Oak, Huisache (Acacia farnesiana), Sugar Hackberry (Celtis 

laevigata); and cacti and succulents: Texas prickly pear, Tasajillo, Lace hedhehog cactus 

(Echinocereus reichenbachii), Spanish Dagger Yucca. 

Regarding the relationship between non-target vegetation heights and PP cacti 

heights, the tallgrass and midgrass species tend to exceed the maximum height of 

cladodes in the northern half of the study site; while in the southern half of the study site 

PP cacti, Tasajillo, Texas persimmon, and Agarita plants remain predominantly the tallest 

species present.  This is most likely explained by the thinner rockier soil profile of the 

southern half of the study site which supports a sparser scattering of shortgrass and 

midgrass species.  In addition, PP cacti dispersion in the northern half is observed to be 

more even and spread out between individual plants.  Generally, larger PP cacti were 

observed to be in the eastern portion with smaller plants in the western portion where 

individual plant spacing steadily decreased further south and downslope.  

Notably, the BC study site possessed a well-represented range of morphological 

differences typical of the surrounding region within a mature rangeland.  This was 

exhibited by the early summer presence and health of an array of native forage and 

wildlife species in addition to the lack of any signs of overgrazing or detrimental hoof 

action, flooding, fire, or drought.  Importantly, the dimensions and total area that 

comprised the study site represented a manageable area (0.99 ha) suitable for projected 
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sUAS flight times and data processing limitations. 
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4.0 DATA COLLECTION 

4.1 Prickly Pear Cacti Field Measurements 

 Non-destructive field measurements for individual PP cacti plots occurred 

between June 6-7, 2015.  Prior to actual measurements, the study site’s boundaries were 

delineated by first flagging the center mass of all distinct and separate PP cacti patches, 

or potential plots, within the general area of the study site.  GCPs were then evenly 

distributed throughout the study site based on the locations of flagged PP cacti patches.  

A provisional study site boundary was then delineated that encompassed enough 

individual patches to necessitate an adequate sample size for statistical analysis and 

proper sUAS flight planning.   

Since multiple PP cacti can sometimes grow together and occupy a single patch, 

making it hard to discern separate plants, a single patch was counted as an individual 

plot.  In most occurrences evidence for numerous individual cacti per patch was scarce, 

especially for smaller patches.  Patches which possessed fewer than 7 cladodes were 

excluded from the study.  This was done because the majority of individual PP cacti with 

fewer than 7 cladodes observed within the study site were either newly grown and 

possessed small immature buds, or were in poor health and possessed dry shed cladodes 

that approximated the maximum height of ground litter.  In total 164 plots were flagged 

to be measured.   

Due to the high number of plots, field measurements followed a strict 

methodology to improve data collection efficiency and field metric accuracy.  First, the 
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greatest horizontal extent of cladodes in the north-to-south (N/S) and east-to-west (E/W) 

directions was determined in order to establish the maximum foliar coverage of each plot.  

The lengths of each axis were then measured and recorded.  Second, the conjunction of 

the N/S and E/W axes, or the centerpoint of each elliptical plot, was determined and 

Figure 2.  Ground perspective images of study site.  (A) North-to-south view.   (B) 

South-to-north view.  (C)(D)(E)(F) Show differences between individual PP cacti and 

surrounding vegetation regarding size, shape, height, and color.  (C)(c) Demonstrate a PP 

cacti serving as an early summer brooding site for Rio Grande turkeys as a clutch of eggs 

(c) can be seen incubating. 
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flagged for later GPS measurements of plot centerpoints.  Third, the maximum height of 

foliage within each plot was measured by first determining the tallest cladode within the 

plot and then measuring the height from the top of that cladode to the bare-earth directly 

beneath the cladode.  Lastly, the total number of cladodes for each plot was recorded by 

taking the mean of three separate counts.   

While counting cladodes from smaller patches can be straightforward, a mean 

counting strategy was adopted in order to reduce miscounting errors when trying to 

identify and account for individual cladodes within larger patches that possessed multiple 

horizontal and vertical layers.  A cladode was counted as a single cladode only when it 

was evident that it was separate from adjoining cladodes morphologically.  This was done 

by examining the individual cladode shape and the location of cladode nodes which can 

be found at the narrow base of a cladode as it joins to another cladode’s growing point, or 

the wider area at the top of a cladode.  Small, newly developed cladode buds and dead 

cladodes that had been shed were excluded from the total count.    

Field measurements of each plot were then used to calculate a total of 7 field 

metrics which included total cladode count (CLADCOUNT), maximum PP cacti height 

(PPHEIGHT), elliptical crown coverage (ECC), ellipsoidal crown volume (ECV), ellipsoidal 

crown surface area (ECSA), fresh weight biomass (FWB), and dry weight biomass 

(DWB).  Equations and methods used to calculate each field metric are provided in Table 

1.  FWB and DWB were calculated utilizing equations derived from previous studies that 

used O. ellisiana samples (n=50) to calculate FWB (Han and Felker 1997) and O. 

engelmannii samples (n=26) to calculate DWB (Vogl et al. 2004).  A summary of field  

metric descriptive and distribution statistics for final observations used in statistical 



 

46 

 

Metric Label Description/Equation

Cladode count : the total number of cladodes per plot; determined using the mean of

3 seperate counts.

Prickly pear height  (m): the maximum height of the tallest cladode found per plot;

measured from bare-ground to the top of cladode.

Elliptical crown coverage  (m
2
): the total elliptical area per plot designating a plot-

ellipse; calculated using the greatest horizontal extent (N:S/E:W radii) of cladodes

Ellipsoidal crown volume  (m
3
): the hemispherical-ellipsoidal volume per plot;

calculated for the above-ground portion of the plant or 1/2 the full-ellipsoidal

volume.  Uses the maximum plant height as the vertical radius.

Ellipsoidal crown surface area (m
2
): the hemispherical-ellipsoidal surface area per

plot; calculated for the above-ground portion of the plant or 1/2 the full-ellipsoidal

surface area.  Uses the maximum plant height per plot as the vertical radius.

Fresh-weight biomass  (Kg): the above ground undried plant biomass per plot;

calculated from equation by Han and Felker (1997) based on (n=50)  O. ellisiana

samples.  Uses the total number of cladodes for each plot.

Dry-weight biomass  (Kg): the above-ground dried plant biomass per plot; calculated

from equation by Vogl et al. (2004) based on (n=26)  O. engelmannii  sample.  Uses

the maximum plant height and the longest horizontal diameter of each plot.

DWB

CLADCO UNT

PPHEIGHT 
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ECV 

ECSA

FWB

    

 
 
      

 

       

                                       

where: a =                          (m); c = PPHEIGHT (m); p= 1.6075

where:                             (m); c = PPHEIGHT (m) 

                          )

           

        

 
 

                
 

 

 

      
             

   

Table 1.  Field metric labels, equations, and descriptions. 



 

47 

 

analysis is provided in Table 2.    

 

 4.2 GCP Design and GPS Measurements 

 After flagging PP cacti patches, 23 GCPs were evenly distributed near the outer 

edges and within the center of the rectangular area of the study site following suggested 

GCP quantity and distribution patterns (Harwin and Lucieer 2012; James and Robson 

2014) (Fig. 1).  Instead of placing GCPs along a strict grid pattern, GCPs were 

strategically positioned in areas with low vegetation heights and low overhead cover 

when compared to surrounding areas.  This was done so GCPs could be more visible 

from low-oblique and nadir camera angles during sUAS image acquisition and within a 

virtual environment for georeferencing and geotransformation later.   

Similarly, two different individual GCP designs were incorporated in order to 

potentially improve identification and compensate for visibility effects from non-target 

vegetation heights.  The 19 GCPs that were distributed on the outer edges of the study 

site consisted of open-top orange track cones that measured 20 cm in diameter by 5 cm in 

height and were capped with a 7.62 cm in diameter white foam sphere.  To overcome 

Min. Max. SD Skew Kurt.

CLADCOUNT 58.97 7 389 68.11 2.67 7.87

PPHEIGHT  (m) 0.55 0.19 1.55 0.22 1.53 3.37

ECC (m
2
) 1.64 0.10 15.34 2.16 2.92 11.66

ECV (m
3
) 0.79 0.02 9.88 1.38 3.51 15.36

ECSA (m
2
) 1.62 0.18 9.81 1.57 2.39 6.99

FWB (Kg) 22.54 1.38 156.86 27.72 2.67 7.87

DWB (Kg) 6.12 0.13 71.71 9.95 3.31 14.31

Dependent (Y)
Descriptives Distribution

Table 2.  Field metric descriptive and distribution statistics (n=155).  
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tallgrasses and the slight hill present in the center of the study site, 4 taller GCPs were 

distributed in the center and consisted of steep sided closed top track cones that measured 

6 cm in diameter by 8cm in height.  All GCPs were staked to the ground with 30-60 cm 

tall wooden stakes to prevent any movement by strong winds and to provide increased 

visibility.  The heights of all GCPs were recorded using a level rod that measured the 

distance from their base at ground level to GCP centerpoint height, or the top-center of 

each foam sphere or closed top cone.  Recorded GCP heights were later added to GPS 

measured elevations taken at ground level at the direct base of each GCP centerpoint to 

calculate true GCP centerpoint elevations. 

GPS measurements of GCP centerpoints and plot centerpoints utilized a Trimble 

GeoXH 2008 series GPS receiver and Zephyr antenna with manufacturer reported post-

processing dimensional accuracies within the sub-decimeter range.  All GPS 

measurements incorporated accuracy based real-time correction logging with maximum 

position (3-D) dilution of precision (PDOP) and dimensional accuracy settings no greater 

than 4 and 40.0 cm for GCPs and 5 and 50.0 cm for plot centerpoints respectively.  

Positional logging of individual GCP centerpoints was taken at ground level positions 

directly beneath the GCP centerpoints and used 300 averaged positions per GCP 

centerpoint.  In contrast, each plot centerpoint used 50 averaged positions to increase data 

collection efficiency per the 164 plots.  Differential post-processing corrections used 

Trimble Pathfinder Office software which incorporated 5 of the nearest local base 

stations no more than 25 km from the study site.  The resulting differential post-

processing output of GPS positions reported acceptable mean horizontal and vertical 

precisions for GCPs at 8.1 cm (XY) and 8.2 c (Z) respectively.  Mean horizontal and 
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vertical precisions for plot centerpoints were reported at 7.8 cm (XY) and 8.4 cm (Z) 

respectively (Table 3). 

 

4.3 sUAS Digital Image Acquisition 

 Aerial imagery was acquired within a two-hour period on June 10, 2015 from 

1:00-3:00 PM during maximum solar zenith angles (18 º-10 º) with less than 10% rolling 

cloud cover and average wind speeds of 1.6 kph-2.3 kph (0.80 kn-0.70 kn) out of the 

southeast to southwest (Freeman Center 2015).  With regards to the environmental 

conditions, this optimal period was chosen in order to stabilize the spatial and spectral 

values of pixels from image to image and flight plan to flight plan by seeking to minimize 

major variances in solar illumination and the wind’s movement of vegetation foliage.  

Digital still images (3:4 format, 3/3,000 x 4,000 pixels) were acquired by utilizing 

a customized 12 MP 1/2.3” CMOS sensor GoPro4 Black action camera whose original 

fisheye lens was removed and interchanged with a commercially available M12 3.6 mm 

low distortion lens (manufacturer reported optical distortion<0.35 %).  This particular 

lens was selected because it produced more rectilinear digital stills and possessed 

Max. PDOP Max. HDOP XY-Prec. (m) Z-Prec. (m) SD (m)

2.7917 1.2833 0.0811 0.0822 0.0309

Max. 3.9000 1.6000 0.0818 0.0924 0.0659

Min. 2.2000 1.0000 0.0807 0.0808 0.0145

SD 0.4499 0.1748 0.0003 0.0025 0.0139

2.5159 1.1809 0.0778 0.0758 0.0213

Max. 4.2000 2.3000 0.1558 0.0840 0.0881

Min. 1.8000 0.9000 0.0494 0.0444 0.0041

SD 0.4215 0.2300 0.0129 0.0130 0.0123

Plot (n=155)

GCP (n=24)

Descriptives

Table 3.  GPS signal quality and dimensional precision for GCP/plot centerpoints. 
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distortion coefficients that were easier to model during camera pose estimation in SfM 

processing.  In order to optimize image quality, the lens was also manually focused using 

a computer monitor and then locked to a distance relative to each flight plan’s AGH (25 

m-35 m AGH).  The camera system was then mounted to a Tarot 2D 3-axis self-leveling 

gimbal attached to the bottom of a 3DRobotics IRIS+, an autonomous electric quadcopter 

sUAS platform (Fig. 3).   

Prior to flight, the camera system was programmed to record one digital still 

every 0.5 seconds using the camera system software’s time lapse feature.  All other 

camera settings such as white balance, f-stop, and ISO speed were left to the camera 

system software’s automatic adjustments to capitalize on the action camera’s image 

stabilization and point-and-shoot capabilities.  Detailed flight planning relied primarily 

on the autonomous design of the 3DR IRIS+ quadcopter which was equipped with an 

A 

B 

Figure 3.  3DR IRIS+ quadcopter sUAS.  (A) 3DR IRIS+ prior to takeoff in a test area.  

(B) 3DR IRIS+ in flight with 3-axis gimbal on bottom mounted with GoPro4 Black 

camera/3.6mm low distortion lens. 
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onboard Ublox NEO-7 series GPS receiver (manufacturer reported dimensional accuracy 

of 2.5 m) and a Pixhawk autopilot system.  The Pixhawk autopilot and Ublox GPS 

incorporate 3-axis measurements from an onboard gyroscope, accelerometer, and 

magnetometer that systematically provide external and internal positioning data.  This 

data in turn helps to stabilize the IRIS+ platform through minute adjustments in the four 

electric propeller-motors and the electric motors of the self-leveling 3-axis gimbal during 

continuous flight or while stationary against abrupt user-controlled movements or against 

wind.   

3DR Tower3 open-sourced flight planning software was also used prior to flight 

in order to specify important flight survey parameters such as end/side image overlap, 

flight speed, and flight line angle or hatch angle.  All flight plans either incorporated a 

90º (E/W) or 0º (N/S) flight line angle.  The software was also used to automatically 

calculate pixel-to-ground resolutions relative to the GoPro4 Black camera’s image format 

and the specified AGH.  A summary of flight plan collection parameters is provided in 

Collection

Parameters 1 2 3 5 7

Flight Plan Design E/W Parallel N/S Parallel N/S Parallel E/W Parallel Orbital

Flight Time (min.) 15 10 7 6 5

*AGH (m) 25 35 35 25 25-50

Flight Speed (m/s) 2 2 4 4 4

Camera Angle (°) 0 0 0 45 45

*GSD (cm
2
/pix) 1.87 3.66 3.66 1.87 1.87-7.46 

Unfiltered Images 1,330 923 473 577 664

Filtered Images 1,105 758 303 411 384

*GSD=Ground Sample Distance or the estimated pixel to ground resolution

Flight Plan

*AGH=Above Ground Height

Table 4.  Flight plan collection parameters and digital image counts.  Items in bold are 

final flight plans selected for SfM modeling. 
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Table 4.  Pixel-to-ground resolutions below 4.0 cm2/pixel were specifically targeted 

based on minimum cladode areas of similar Opuntia spp. reported in the literature with 

minimum cladode areas of approximately 36.0 cm2 (Hernández et al. 2010).  Using pixel-

to-ground-resolutions below a minimum cladode area was predicted to increase the 

generation of points and during SfM modeling that would represent the minutia of PP 

cacti structure.  

Accordingly, 7 different flight plans were originally used that ranged in flight 

times from 5-15 minutes with flight speeds of 2 m/s or 4 m/s.  Each flight plan was 

A 

B 

Figure 4.  Flight plans 1 and 5 screenshots.  (A) Screenshot from Tower3 flight planning 

software showing pre-flight survey lines.  (B) Screenshot from Google Earth showing 

actual autopilot flight log vectors from flight plan 1(blue line) and flight plan 5 (yellow 

line) with GCPs (red dots). 
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defined by a manual take-off, an autonomous pre-programmed survey, and an 

autonomous landing at the take-off location while a ground station tablet that was 

connected to the sUAS progressively monitored battery life, flight time, GPS signals, and 

AGH.  The primary flight plan design that was incorporated used either a 0º nadir or a 45º 

low-oblique camera angle that was combined with traditional parallel or survey-style 

flight lines where the sUAS automatically swept back and forth across the study site 

either in a north-to-south or east-to-west orientation.  An example of east-to-west 

orientated survey-based flight plans is provided in Fig. 4.  In contrast, flight plan 7 

incorporated a more complex orbital flight plan with an ascending AGH that spiraled 

away from the center of the study site and sought to capture a wider variety of camera 

angles at different heights.   

Of the 7 original flight plans, only digital stills from 5 preliminary flight plans 

(flight plans 1, 2, 3, 5, 7) were further scrutinized as flight plans 4 and 6 were diagnostic 

test flights.  During the image acquisition process, the sUAS platform that was utilized 

coupled with the specified flight parameters overall allowed multiple surveys of the entire 

study site within a brief time period.  This was anticipated to increase data processing 

flexibility later based on choices between flight plans which produced the highest quality 

imagery that best captured target features.  Likewise, survey-style flight parameters, 

autonomy, and sUAS/camera system stability were altogether expected to systematically 

reduce easily controllable sources of error that pertain to general image quality and image 

overlap.  
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5.0 DATA PROCESSING 

5.1 SfM Workflow 

 Of the 5 flight plans that were used, only images from two final flight plans, flight 

plan 1 and flight plan 5, were chosen for further processing and analysis.  Images from 

flight plans 1 and 5 were selected because both provided comprehensive coverage of the 

study site from nadir and low-oblique camera angles, both possessed a manageable 

number of images to model with respect to data processing efficiency, and both possessed 

adequate image quality based on even illumination conditions, lack of noise, and the 

clarity of vegetation features.  Flight plan 1 produced 1,330 total images where 225 

images were filtered out leaving a final 1,105 images for SfM processing; while fight 

plan 5 produced 577 total images where 166 were filtered out leaving a final 411 images 

for SfM processing (Table 4).  Most of the images that were filtered consisted of stills 

acquired near take-off and landing positions where the sUAS was either ascending or 

descending from survey flight lines.  In all, very few of the images taken in any flight 

plan were of poor image quality or possessed significant image noise associated with 

blurriness, lens flare, or improper focus.  Only slight blurs were found on image edges 

and were attributed to the movement of the sUAS and the inability to remove all camera 

lens/sensor distortion.  An example of digital stills produced from either flight plan are 

provided in Fig. 5.    

Final images were then input into Agisoft Photoscan v1.2.4, a proprietary SfM 

software known for its ease of use, relative cost efficiency, and robust modeling 

procedures.  Instead of combining images from both flight plans into a single cache to 

model from, images from each flight plan were kept separate and imported into different 
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SfM modeling pipelines with the goal of merging corrected and geotransformed models 

later.  This strategy was implemented for several reasons.  For one, while distortion 

coefficients from the camera system are the same for each flight plan, camera poses 

between flight plans and their subsequent keypoint calculations are different.  As such, 

SfM modeling is more efficient when successive images from the same flight plan design 

follow one another in a steady vector void of major changes in the angle or direction of 

the camera.  In actuality, each image’s camera pose estimation should closely follow the 

actual flight vector of the camera/sUAS position as it surveys back and forth throughout 

the study site.  A single cache with a mix of images from flight plans with 0º and a 45º 

Figure 5.  Examples of sUAS digital stills.  (A)(B) Corresponding stills from flight plan 

1 (nadir) and flight plan 5 (low-oblique) of the northwestern section of the study site.  

(C)(D) Corresponding stills from flight plan 1 (nadir) and flight plan 5 (low-oblique) of 

the southeastern section of the study site.  GCPs can be seen as small orange cones. 

 

D C 

B A 



 

56 

 

camera angles would thus be initially difficult to model. 

Each flight plan’s SfM pipeline used the following common steps: preliminary 

camera pose estimation (“Align Photos” in Agisoft Photoscan), GCP-based 

geotransformation, and secondary camera pose estimation (“Optimize Camera 

Alignment” in Agisoft Photoscan).  It should be noted that the preliminary and secondary 

camera pose estimation steps model and refine previous camera and lens distortion 

coefficient estimates in order to consistently determine more accurate camera poses, the 

presence and location of matched image features, and keypoint positions.  The secondary 

camera pose estimation is especially important for correcting errors from the preliminary 

estimation through the use of GCP-based georeferencing and geotransformation.  A 

preliminary camera pose estimation was thus executed for either flight plan using focal 

length (Fx, Fy), principal point (Cx, Cy), skew, radial distortion (K1, K2, K3, K4), and 

tangential distortion (P1, P2) coefficients which resulted in a sparse point cloud model that 

represented keypoints.   

GCP ID Projections  X (m)  of Y (m)  of Z (m) RSSE XYZ (m) RMSE (pixel) 

1 272 0.024 -0.028 0.024 0.044 3.087

2 308 -0.065 -0.008 -0.033 0.073 2.651

4 114 -0.014 -0.037 0.036 0.053 2.565

14 164 -0.008 -0.008 0.020 0.023 3.246

15 164 -0.088 -0.023 -0.036 0.097 2.074

16 257 0.063 0.037 0.020 0.076 2.077

21 250 0.045 0.016 0.065 0.081 1.862

22 260 -0.016 0.084 0.028 0.090 1.875

23 257 0.024 -0.014 -0.067 0.073 2.365

24 282 -0.012 0.008 -0.024 0.028 1.874

Total RMSE 0.044 0.034 0.039 0.068 2.386

Table 5.  Agisoft Photoscan report of GCP GPS positions vs. re-projection errors (n=10). 
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After the preliminary camera pose estimation was complete for either flight plan, 

geotransformation of the sparse point cloud was accomplished within Agisoft Photoscan 

by digitally marking or flagging individual pixels in each image that corresponded with 

the 23 GCP centerpoints captured during sUAS image acquisition.  This was done in all 

images that possessed an identifiable GCP centerpoint where most images contained 

numerous GCP centerpoints.  Once each GCP centerpoint was marked, actual GCP 

coordinates taken from previous GPS measurements were georeferenced to their 

respective centerpoint ID.  The sparse point cloud model for each flight plan was then 

geotransformed to a real world horizontal coordinate system (Universal Transverse 

Mercator Zone 14N, XY Datum: NAD83 CORS 96 meters) and vertical datum 

(NAVD88 meters).  Lastly, the secondary camera pose estimation was executed using the 

same above specified camera and distortion coefficients.  The resulting sparse point cloud 

for flight plan 1 totaled 7,447,116 keypoints (1,105 images) and the sparse point cloud 

for flight plan 5 totaled 1,135,042 keypoints (411 images).  After restricting both flight 

plan models to a common spatial boundary or bounding box, the models were then 

aligned with one another using their shared GCP coordinates and then merged.  

While the merged model initially used all 23 GCP centerpoints, it was found that 

dimensional accuracies could be improved by filtering GCP centerpoints that possessed 

higher re-projection errors and removing images where GCP centerpoints were less 

clearly identifiable.  The use of numerous GCPs for the approximately 1 ha study site 

combined with a high degree (90%) of image overlap allowed flexibility in refining and 

optimizing the dimensional accuracy of the merges model without detriment to the 

quality of the model or loss of point density.  Of the 23 original GCPs, 14 were removed 
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which left 10 final GCPs still evenly distributed throughout the study site.  A final camera 

pose estimation was then executed on the merged sparse point cloud using the same 

specified camera and lens coefficients.  Finally, the model was spatially clipped to 

remove keypoints outside of the general study area and extraneous keypoints that 

represented minor noise where very few keypoints were exceedingly above or below the 

study site’s elevations.  A workflow diagram of SfM processing steps is provided in 

Appendix A.  The final sparse point cloud model consisted of 7,602,076 total keypoints.  

The dimensional accuracy report generated by Agisoft Photoscan for all models reported 

a total RMSE of 0.068 m or 2.386 pixels between actual vs. re-projected GPS positions.  

A summary of the dimensional accuracy reported by Agisoft for GCP GPS vs. estimated 

re-projection errors is provided Table 5.   

 

5.2 Generation of Dense Point Cloud 

In order to output a point cloud that possessed adequate point density and was 

predicted to capture the detailed vegetation structures of each PP cacti plot, three 

different point clouds were generated within Agisoft Photoscan and later combined.  A 

combination strategy was adopted because like most SfM software, Agisoft Photoscan 

utilizes a MVS-based densification process with user-defined settings that can alter depth 

filtering rate or aggression and can be tailored to reconstruct different aspects of a target’s 

features, i.e. regions or features with more detail than others.  In general, the densification 

process utilizes algorithms that combine the 3-D positions of the predetermined keypoints 

with depth mapping or Z-buffering algorithms designed to fill in or interpolate additional 

points in areas that surround or are between known keypoints using camera pose data (i.e. 



 

59 

 

mild moderate aggressive combined

Elevation Min. (m) 219.49 219.74 224.64 219.43

Elevation Max. (m) 239.15 239.08 239.22 239.05

Total Point-Count 2,431,355 2,210,735 2,351,728 8,261,367

 Point-Density (pts/m
2
) 256.91 233.69 248.70 505.34

 Point-Spacing (m) 0.061 0.064 0.062 0.043

R Min. 514 1,285 1,285 514

R Max. 65,535 65,278 65,535 65,535

G Min. 1,542 2,056 3,084 1,542

G Max. 64,250 65,278 64,250 65,278

B Min. 1,542 1,028 257 257

B Max. 65,535 65,535 65,535 65,535

*Unsigned 16-bit

Spectral*

Spatial

Point Cloud Type
Properties

Table 6.  Summary of dense point cloud properties.  Items in bold correspond to the 

combined dense point cloud that was used for analysis. 

Figure 6.  Examples of generated dense point cloud types.  (A)(B)(C)(D) show 

combined, mild, moderate, and aggressive depth filter densification settings, 

respectively.  PP cacti plot-ellipses can be seen as white ellipses. 

A B 

C D 
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focal plane, Z-axis, orientation, etc.) and pixel bit-depth.  With regards to the literature, it 

is unknown which settings are optimal for complex natural environments; though it is 

understood that each depth filtering setting can capture varying degrees of foreground 

and background details depending on scene and image characteristics.   

Therefore, in order to increase data processing efficiency for a rather 

computationally demanding step while preserving scene quality, three different dense 

point cloud “types” were generated in Agisoft Photoscan based on the “mild”, 

“moderate”, and “aggressive” depth filtering settings for the “low” quality.  Fig. 6 

demonstrates the differences that can be seen between each dense point cloud type with 

respect to known PP cacti plots.  The three different point cloud types were then merged 

into a final dense point cloud within Agisoft Photoscan that possessed combined spatial 

(point count, point density, point spacing) and spectral properties predicted to satisfy the 

study’s objectives (Table 6).  Using the combined dense point cloud, a point sum (total 

point count/0.20 m2) raster (Fig. 9), a point Z-range (maximum point elevation-minimum 

point elevation/0.20 m2) raster (Fig. 10), and a detailed maximum point-Z TIN (Fig. 11) 

of the study site were generated (see Results, section 7.1). 

 

5.3 Generation of RGB Orthophoto 

A VHR RGB orthophoto of the study site was also constructed in Agisoft 

Photoscan where a 3-D mesh (4,775,161 faces/ 2,388,896 vertices) or TIN was first 

calculated from maximum point-Z values derived from the dense point cloud.  Though a 

relatively straightforward step, the construction of a dimensionally accurate 3-D mesh 

was important because it helped correct any irregular projection geometries that may 

have been produced from sUAS-acquired aerial photo projection.  An accurate mesh was 
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Figure 7.  RGB orthophoto of BC study site.  (A) top (northeast) inset and (B) bottom 

(southwest) inset.  Plot-ellipses are shown as black ellipses. 

B 

B 

A 
A 
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also needed for correct dimensional placement of spectral values from the sUAS-acquired 

aerial photos onto surfaces or structures that corresponded to PP cacti and surrounding 

vegetation/non-vegetation land cover classes.  Reliable spectral values for either class 

would then be used to generate accurate OBIA segments which represent real-world 

vegetation boundaries. 

RGB values for the orthophoto were calculated using a mosaic blending algorithm 

that determined a particular orthophoto’s pixel value by calculating which specific 2D 

image possessed a pixel that was closest to the center of the camera (Px, Py).  Specifically, 

the RGB values of the pixel that was most directly beneath the camera during image 

acquisition was assigned as the RGB value of the orthophoto’s pixel.  While this study 

does not provide a detailed comparison of orthophoto blending algorithms (averaging, 

maximum, minimum, etc.), this setting was predicted to provide a more realistic 

determination of spectral values as they are derived from pixel’s whose locations are near 

perpendicular to the principal point of the camera where major variations in spectral 

values or distortion is less likely.  The resulting 16-bit RGB orthophoto was exported to a 

minimum resolution of 2.25 cm2/pixel (6497 x 8,288/ 410.82 MB) based on the minimum 

pixel-to-ground resolution of digital stills (0.0187 cm2/pixel).  The RGB orthophoto of 

the study site is provided in Fig. 7 along with plot-ellipse polygons.  
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5.4 OBIA Segmentation and Random Forest Classification 

 Using the RGB orthophoto, a Principle Components raster (PCA1, PCA2, PCA3) 

and an IHS raster were generated in ENVI v5.2 where they were input into the ENVI 

V5.2 FX feature extraction module, an OBIA-based workflow that calculates OBIA 

segments and segment attributes based on user-defined parent and ancillary datasets.  By 

first using only the RGB orthophoto, numerous individual segments were calculated 

using a combination of FLS (Full Lambda Schedule) and Edge segmentation algorithms.  

Specific FLS and Edge settings were optimized for the detection of subtle vegetation 

cover boundaries between PP cacti and non-PP cacti vegetated or non-vegetated land 

cover (e.g. rocks, bare-earth, ground litter, etc.) while considering the maximum number 

of segments achievable defined by the total number of RGB orthophoto pixels 

(53,847,136), it spatial resolution (2.25 m2/pixel), and its extremely high spatial 

frequency.   

In order to refine segmentation boundaries, plot-ellipse polygons (known PP cacti 

ECC) and expert knowledge of study site vegetated/non-vegetated land cover was used to 

reference segment boundaries with actual boundaries.  Overall, optimal representation of 

PP cacti and non-PP cacti land covers was achieved using a balance of segment 

scale/geometry, individual segment area, total number of segments per land cover class, 

and general segment representation of foliar cover boundaries.  Optimum OBIA 

segmentation then resulted in a total of 389,007 individual segments.  An overlay of final 

OBIA segments atop the RGB orthophoto can be seen in Fig. 8.  

Within each segment, 86 total attributes were then calculated using the three RGB 

bands of the orthophoto, three ancillary PC bands (PC1, PC2, PC3), and three ancillary 
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Figure 8.  OBIA segments and RGB orthophoto.  (A) top (northeast) inset and (B) 

bottom (southwest) inset.  Differences in segment shape and size per land cover feature 

can be seen.  Plot-ellipses are shown as white ellipses. 

A 
A 

B 

B 
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IHS bands.  The 86 total attributes consisted of 14 different spatial attributes (area, 

length, compactness, convexity, solidity, roundness, form factor, elongation, rectangular 

fit, main direction, major length, minor length, number of holes, hole area: solid area) 4 

statistical attributes calculated per band (mean, minimum, maximum, SD) and 4 textural 

attributes calculated per band (range, mean, variance, entropy).  The unclassified OBIA 

segments were then exported as a tabular dataset.  

Prior to OBIA segment classification, unclassified segments had to be divided 

into training and testing datasets that adequately represented both PP cacti (PP=2) and 

non-PP cacti (non-PP=1) land cover classes.  Using a plot-ellipse dataset that consisted of 

160 observations, where 4 observations were removed due to close proximity to the outer 

edges of the study site, a PP-class training and testing dataset was generated using a 

stratified random sample selection based on cladode count (CLADCOUNT) where one-half 

of the plot-ellipses were subset for training (n = 80) and the other-half were subset for 

testing (n = 80).  The CLADCOUNT field metric was used because it possessed the highest 

coefficient-of-determination (R2) values when compared to PPHEIGHT, ECC, ECV, and 

ECSA field metrics.  This made it a logical field metric to use for randomized sampling 

designed to divide the dataset based on the best representative of the general structure and 

size of each PP cacti plot.  PP-class training and PP-class testing plot-ellipses were then 

used to manually select segments within each plot-ellipse which resulted in 918 PP-class 

training segments and 1,137 PP-class testing segments.   

In contrast, the non-PP-class training and testing datasets were generated by first 

selecting all segments outside of the plot-ellipses, and then randomly sub-setting 5% to a 

testing dataset and 5% to a training dataset.  These segment subsets were then manually 
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filtered to remove any possible segments that might correspond to PP cacti vegetated 

cover using expert knowledge of the study site and visual references to known PP cacti 

locations (plot-ellipses).  It should be noted that for a reliable classification methodology 

that utilizes only two thematic classes (PP and non-PP), segments had to be carefully 

selected to represent a variety of non-PP land cover which included vegetated (trees, 

shrubs, grasses, etc.) and non-vegetated (gravel roads, rocks, bare-earth, etc.).  The final 

non-PP-class segment dataset consisted of 16,773 training segments and 16,921 testing 

segments.  The final training dataset consisted of 17,691 total segments (PP-class=918 

segments/non-PP-class=16,773 segments) while the final testing dataset consisted of 

18,058 total segments (PP-class=1,137 segments, non-PP-class=16,921) 

 Following similar studies like Laliberte and Rango (2008) and Browning, 

Laliberte, and Rango (2011) that have demonstrated the need for feature/attribute 

selection methods, the 86 original segment attributes calculated in ENVI FX were filtered 

using an attribute selector or a weighted attribute filtering algorithm.  While attribute 

selection isn’t always necessary prior to machine learning-based classification, it is a best 

use practice for large datasets and was predicted to improve final Random Forest (RF) 

classification accuracy through the removal of redundant or collinear attributes that did 

not contribute to overall classification accuracy.   

Attribute selection was accomplished using RapidMiner Studio v6.5 where the 

previously generated training dataset was used to train a preliminary 100 tree RF model 

using a “Weight by Tree Importance” attribute selection module.  This module then 

weighted attributes by calculating the sum contribution of each attribute in the 100 

decision trees towards the overall accuracy of the trained RF model (RapidMiner 2016).  
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This resulted in a rated list of all 86 attributes where the bottom 20 attributes were filtered 

and the top 66 attributes which best contributed to the overall accuracy of the preliminary 

trained RF model were selected for primary RF classification.  A table of the 66 segment 

attributes and mean values is provided in Appendix B. 

Classification of OBIA segments was accomplished using Weka v3.7.13, an 

open-sourced and free statistical analysis and data mining software known for its relative 

computational efficiency for large datasets.  Altogether, classification underwent a three-

phase process that involved RF model training, testing, and pixel-based validation.  

While an K-fold cross validation strategy was implemented for RF model training, a 

separate testing and map-based validation was deemed necessary based on the large 

number of total segments available and the division of a complex dataset into a binary 

classification. 

In the first phase, the training dataset was used to train a 300 tree RF model using 

a K-fold (k=8) cross-validation strategy.  After each training phase, the model was then 

tested using the separate testing dataset where both training and testing classification 

accuracy measures were compared and evaluated.  The specific accuracy measures used 

to evaluate and compare each potential model included the percent of correct/incorrect 

classification instances, Kappa statistic, true-positive (TP) rate, false-positive(FP) rate, F-

measure, and Receiver Operating Curve (ROC) area.  Various iterations of the training 

and testing phases were implemented to refine final RF classification model accuracy 

measures based on optimal settings of cross validation folds and the number of trees to 

model.  The most optimal RF classification model was then used to predict PP or non-PP 

classes for the unclassified segments tabular dataset 
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The predicted class of each segment was then joined to an unclassified OBIA 

segments shapefile that was generated in ENVI FX.  The resulting classified segments 

shapefile was then converted into a raster format, or a thematic land cover map of the 

study site with PP and non-PP thematic classes (see Results, section 7.2, Fig. 15).  The 

final map-based validation phase then assessed the accuracy of the classification map in 

ENVI v5.2 by using the already randomized locations of PP-class and non-PP-class 

segments derived from the testing dataset.  It should be noted that an overall 

classification accuracy of at least 85% and a PP cacti plot detection rate of 50% was 

necessary to satisfy statistical analysis objectives.  A workflow diagram of OBIA 

segmentation and classification steps is provided in Appendix A. 

 

5.5 Calculation of Predictor Variables 

Prior to data analysis, PP-class segments from the classified segments shapefile 

were separated from non-PP-class segments.  Individual PP-class segments were then 

dissolved into a single PP-class polygon that was spatially intersected with individual 

plot-ellipses in order to create distinct plot-segment polygons with adjoining field metric 

variables.  Each plot-segment polygon thus represented the sum total area of all OBIA 

segments within a plot-ellipse polygon that were classified as PP cacti vegetated land 

cover.  The calculation of OBIA plot-segment dimensions in comparison to field 

measured plot-ellipse dimensions therefore allowed the direct comparison of predictive 

regression models of PP cacti structure generated from either polygon geometry’s PH-

derived predictor variables.  More specifically, this allowed a relative evaluation of 

traditional rangeland Lidar research-based techniques that have used field measured 
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elliptical plot dimensions (plot-ellipses) to extract PHs and subsequent predictor variables 

(statistical, TIN-derived, etc.) in comparison to VHR OBIA techniques (post 

segmentation + classification) that use non-field measured OBIA segment-derived plot 

dimensions (plot-segments) to extract PHs and subsequent predictor variables. 

 

5.51 TIN-derived Volume and Surface Area Predictors 

Instead of Agisoft Photoscan, ArcMap v10.2 was used to generate a more detailed 

DSM that was used for the calculation of volume and surface area predictor variables for 

each PP cacti plot-ellipse and plot-segment polygon.  Similar to the creation of the 3-D 

mesh in Agisoft Photoscan, the DSM surface was generated using a TIN interpolation of 

the maximum Z-values of each point without thinning.  This resulted in TIN model of the 

study site that consisted of 8,862,455 faces and 4,431,240 vertices.   

Using the detailed TIN surface, TIN-derived volume for each plot-ellipse (PLOT-

TINVOL) and plot-segment polygon (SEG-TINVOL) was first determined by assigning plot 

centerpoint elevations, acquired during field GPS measurements, as base elevations and 

then calculating polygon volume (m3) as the space above the base elevation and below 

TIN surface elevations.  The TIN-derived 3-D surface area for each plot-ellipse (PLOT-

TINSA) and plot-segment (SEG-TINSA) polygon was simply calculated as the sum total 2-

D area of all TIN faces within each polygon. 
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5.52 Point Height-derived Statistical Predictors 

In order to calculate sUAS-SfM PH-derived predictors for plot-ellipse and plot-

segment predictive regression models, individual points from the combined dense point 

cloud were extracted using plot-ellipse and plot-segment polygon area dimensions.  

Extracted points were then spatially-joined to the parent plot-ellipse or plot-segment 

polygon that completely contained their XY coordinates resulting in a total of 257,630 

individual points extracted from plot-ellipse polygons and a total of 66,920 individual 

points extracted from plot-segment polygons.  The actual point height, or the 

orthographic height of each point, was then calculated by subtracting the plot centerpoint 

GPS-measured elevation (bare-earth Z) from the point elevation (point-Z).   

All plot-ellipse and plot-segment PHs were then sorted by the unique field plot ID 

of the containing polygon and then exported to a tabular dataset in order to calculate a 

total of 52 total statistical predictors.  Specifically, this included 7 descriptive variables 

(e.g. total point count, mean, minimum, maximum, variance, coefficient of variance), 11 

percent of PHs variables in ranges of 0.10 m (x < 0.05 m, 0.05 ≤ x < 0.15, 0.15 ≤ x < 0.25 

m…, x ≥ 0.95 m), 19 percentile variables (10th, 15th, 20th, …, 100th), and 15 difference of 

percentiles variables (90th – 80th, 90th – 70th, 90th – 60th, …, 90th – 20th and 100th – 90th, 

100th – 80th, 100th – 70th, … 100 - 20th).  Two additional predictor variables were 

calculated from the plot-segment generation process which included the total number of 

original undissolved segments used to form plot-segment polygon (SEGCOUNT) and the 

total 2D area of the dissolved plot-segment polygon (SEGAREA).  

A total of 44 predictors were calculated for 157 plot-ellipse observations.  Only 

two plot-segment observations were filtered due to negative PHs resulting in 106 plot-
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segment observations.  Predictors and their corresponding field metrics for plot-ellipse 

and plot-segment observations were then exported as two separate tabular datasets for 

further statistical analysis. 
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6.0 DATA ANALYSIS 

Plot-ellipse and plot-segment datasets were then imported into SAS JMP Pro v12 

statistical analysis and data mining software in order to generate and evaluate robust 

predictive regression models of each field metric using a three-phase analysis process.  In 

the first phase, a preliminary statistical analysis was performed that examined field metric 

distribution characteristics and significant predictor variable relationships.  Following 

assumptions of normality, predictor independence, and homoscedasticity, a primary 

statistical analysis phase then incorporated K-fold CV training of multiple linear 

regression models.  In this phase individual predictors and potential models were 

generally evaluated based on relative statistical measures of goodness of fit and goodness 

of prediction in comparison to competing models which resulted in a pool of candidate 

models.  Final model selection then also evaluated the remaining candidate models based 

on statistical measures of model goodness of fit, goodness of prediction, and error in 

addition to measures of individual predictor explanation of variance and predictor 

multicollinearity.   

 

6.1 Preliminary Statistical Analysis 

The preliminary analysis first implemented an examination of each field metric’s 

distribution characteristics that was designed to identify potential outlier observations 

between field metrics and to determine relative distribution design.  While an assumption 

of normality was inherently adopted for this study’s analysis, based on the geographic 

and biological nature of the study’s sample as a representative of a larger population of 

plant species; a visual examination of field metric distributions nonetheless allowed for a 
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reliable interpretation of predictive linear regression model errors later as many field 

metrics in fact possessed near logistic or log-linear distributions.   

Once potential outliers were identified within distribution plots, 1:1 linear 

regression fits between dependent and predictor variables were used to further test outlier 

model fitness and test-error effects.  In all only two outlier observations were removed 

for both plot-ellipse and plot-segment datasets.  These outliers represented the two largest 

PP cacti plots encountered within the study site with cladode counts greater than 450. 

Final observations for plot-ellipse (n=155) and plot-segment (n=104) datasets were then 

again examined using 1:1 linear regression fits between dependent and predictor 

variables.   

Individual predictor correlation strength (r) and goodness of fit (R2, RMSE) 

values were used to determine weak predictors or predictors that would not significantly 

contribute to predictive explanation of variance for all field metrics.  Of the original 52 

predictors, only 8 variables were removed which included 6 percent of PHs (POH) 

variables (x < 0.05 m, 0.05 ≤ x < 0.15, 0.15 ≤ x < 0.25 m…, 0.45 ≤ x < 0.55 m), PH 

covariance (PPHEIGHTCV), and the 10th percentile (PH10PCTL) which left a final 44 

predictors.  A summary of plot-ellipse and plot-segment R2 values for several descriptive 

and TIN-derived variables are provided in Table 7-9.  
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PHMEAN PHMAX PHSD PHVAR PHCOUNT

CLADCOUNT 0.290 0.382 0.336 0.093 0.738

PPHEIGHT  (m) 0.405 0.438 0.396 0.121 0.361

ECC (m
2
) 0.207 0.284 0.275 0.079 0.717

ECV (m
3
) 0.278 0.402 0.359 0.117 0.781

ECSA (m
2
) 0.360 0.508 0.473 0.166 0.634

FWB (Kg) 0.290 0.382 0.336 0.093 0.738

DWB (Kg) 0.246 0.322 0.326 0.094 0.798

CLADCOUNT 0.259 0.291 0.294 0.166 0.818

PPHEIGHT  (m) 0.359 0.320 0.270 0.130 0.448

ECC (m
2
) 0.175 0.225 0.227 0.105 0.886

ECV (m
3
) 0.255 0.318 0.328 0.189 0.894

ECSA (m
2
) 0.343 0.397 0.387 0.213 0.776

FWB (Kg) 0.259 0.291 0.294 0.166 0.818

DWB (Kg) 0.192 0.234 0.234 0.103 0.841

P
lo

t-
e
ll

ip
se

 (
n

=
1

5
5

)
P

lo
t-

se
g

m
e
n

t 
(n

=
1

0
4

)
Dependent (Y)

Predictor (X)

Table 7.  1:1 plot-ellipse R2 values: field metrics vs. descriptive predictors.  Items in bold 

represent R2 values ≥ 0.40. 

PLOT-TINVOL (m
3
) PLOT-TINSA (m

2
)

CLADCOUNT 0.646 0.635

PPHEIGHT  (m) 0.327 0.377

ECC (m
2
) 0.664 0.635

ECV (m
3
) 0.685 0.726

ECSA (m
2
) 0.583 0.673

FWB (Kg) 0.646 0.635

DWB (Kg) 0.592 0.636

Predictor (X)
Dependent (Y)

Table 8.  1:1 plot-ellipse R2 values: field metrics vs. TIN-derived predictors.  Items in 

bold represent R2 values ≥ 0.40. 



 

75 

 

   

6.2 MLR Model Training and General Evaluation 

While a 2/3 test-set method was initially implemented for regression model 

training based on a stratified random selection derived from CLADCOUNT, many 2 and 3 

term training and validation models were found to possess inconsistent or poor model 

fitness and predictive capability statistical measures.  In addition, relatively high bias and 

low variance or model “underfitting” was seen in residual plots with respect to the low 

number of terms used.  This was found to reoccur with additional randomized test sets 

based on ECC or ECV field metrics which share high R2 values with CLADCOUNT.  Based 

on the preliminary analysis of field metric distributions, this was best explained by the 

inability of an insufficiently trained linear regression model to fully capture the near-

logistic (sigmoidal) growth patterns of the study site’s heterogeneous PP cacti population 

which possessed three basic ranges of plot “size”, as evidenced by several field metrics 

(e.g. CLADCOUNT, PPHEIGHT, and ECV) where most plots were possessed field metric 

values below mean values (see Results, section 7.2, Fig. 16; see Discussion, section 8.2, 

Fig. 18).   

SEGCOUNT SEGAREA (m
2
) SEG-TINVOL (m

3
) SEG-TINSA (m

2
)

CLADCOUNT 0.634 0.735 0.695 0.671

PPHEIGHT  (m) 0.221 0.290 0.289 0.388

ECC (m
2
) 0.698 0.795 0.729 0.556

ECV (m
3
) 0.666 0.745 0.719 0.697

ECSA (m
2
) 0.460 0.576 0.542 0.643

FWB (Kg) 0.634 0.735 0.695 0.671

DWB (Kg) 0.659 0.777 0.732 0.712

Dependent (Y)
Predictor (X)

Table 9.  1:1 plot-segment R2 values: field metrics vs. segment/TIN-derived predictors.  

Items in bold represent R2 values ≥ 0.40. 



 

76 

 

In order to help reduce any sampling bias, improve model generalization, and 

maintain the study’s need for interpretable multiple linear regression models with few 

predictors, a K-fold CV strategy was adopted.  Specifically, a conservative 3-fold (k = 3) 

sampling approach was adopted over higher folds (k=5, k=10) based on the total sample 

size available, the need to represent a three-part logistic growth of PP cacti plots, and the 

need to lower estimation variance for both plot-ellipse (n=155) and plot-segment (n=104) 

datasets. 

 MLR modeling in SAS JMP v12 employed the stepwise regression module which 

was first used to train K-fold CV models for each field metric using the forward-step 

option.  Individual models generated from this option were automatically rated, 

regardless of the number of terms, by the maximum K-fold CV R2 stopping rule or the 

average validation R2 for all 3-folds.  Stepwise K-fold CV models were then compared to 

additional models produced from the “all possible models” option which automatically 

rated models by maximum R2 values (actual vs. predicted) ordered by the number of 

terms.  Using these dialogs options, only 2 and 3 term regression models were generated 

and evaluated based on the need to balance interpretability of individual predictors with 

overall model goodness of fit and predictive power, all while reducing potential 

multicollinearity. 

General model evaluation for each dependent variable underwent a progressive 

refinement that first explored stepwise predictor interactions using the forward-step 

history.  Poor or statistically insignificant predictors were generally removed altogether 

which left a progressively smaller number of meaningful predictor combinations and 

potential models.  These models were then re-evaluated and rated using the K-fold CV 
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maximum R2 value as the primary estimate for a model’s predictive power and the R2 

(actual vs. predicted) value as the primary estimate for goodness of fit.  In addition, low 

RMSE, Mallow’s Cp, and AICc values were compared between competing models (2-

term and 3-term) as the primary means of assessing model test-error, low bias (Cp close 

to p), and a high probability of predictive precision.  It should be noted that 2-term 

models were always preferred over 3-term models when statistical measures between-

models were compared and found to be close, generally within 1-4 percent of difference 

of variance explanation.  Once general model evaluation was accomplished, the best 10 

models for each 2-term and 3-term model, or the top 20 models per field metric, were 

chosen as candidate models. 

 

6.3 Final MLR Model Selection 

Similar to general model evaluation, candidate models were first compared based 

on statistical measures of model fitness, predictive power, and test error.  While low 

AICc and Cp values between models with the same number of terms were compared, 

models that showed little difference between K-fold CV maximum R2 values and actual 

vs. predicted R2 values were preferred.  K-fold CV maximum R2 and PRESS (Predicted 

Residual Sum of Squares) values were also compared between competing models where 

generally models with lower values and thus better predictive capability were preferred. 

Similarly, PRESSRMSE values were compared to actual vs. predicted RMSE values 

within-models and between-models to address any issues of over-fitting or under-fitting.  

Following this initial step, approximately 3-5 candidate models for each dependent 

variable were left for further scrutiny. 
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Final candidate models were then assessed based on statistical measures of 

predictor multicollinearity in addition to visual examinations of homoscedasticity.  To 

address multicollinearity, a correlation coefficient (R) matrix for each model’s predictors 

was first calculated, favoring models whose predictors shared extremely weak 

correlations (-0.20>R<0.20) thereby possibly reducing any data redundancy or overlap of 

explained variance.  Similarly, individual predictor tolerance (1-Rj
2) and VIF (Variance 

Inflation Factor; 1/tolerance) values were also calculated to determine the degree of 

explained shared variance and the magnitude of inflation not seen in the correlation 

matrix.  Considering the low number of terms in each model, models with predictors that 

possessed relatively high VIF values (VIF>5.0) and low tolerance values 

(tolerance<0.10) were interpreted as models with a high degree of unexplained variance 

between predictors and thus possessing significant multicollinearity.   

Therefore, models with predictors that possessed high tolerance values closer to 

1.0 and low VIF values closer to 1.0 were considered to lack any significant 

multicollinearity and were chosen over models with evidence of multicollinearity.  

Notably, tolerance and VIF values were not always absolute indicators of predictor or 

model insignificance and values were interpreted holistically with regards to the nature of 

PH-derived statistical variables as products of a single dataset.  The final step then 

assessed any major violations in a final model’s assumption of homoscedasticity by 

visually examining residual plots for equal variance.  Models that demonstrated strong 

homoscedasticity and lack of bias were favored.  All final multiple linear regression 

models and model predictors are reported to be statistically significant (α=0.05, 

p<0.0001).  A workflow diagram of statistical analysis steps is provided in Appendix A. 
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Overall, the final MLR models selected for each field metric were based on 

various measures of goodness of fit and predictive capability that used a hierarchal 

evaluation strategy with between-model and within-model statistical assessments.  This 

was done in order to produce a well-rounded low-term prediction model with a reduction 

in any test-error, bias-error, variance-error, and data redundancy.  Regarding software 

capabilities and limitations, it should be noted that during model selection the “stepwise” 

option was utilized as a functional guide to exploring successive predictor combinations 

and calculating optimal K-fold CV models while the “all possible models” option was 

used to further compare possible models and then further scrutinize within-model 

statistical measures.  Moreover, it is only possible in SAS JMP 12 to calculate K-fold CV 

maximum R2 values using stepwise regression first, which introduces each predictor step-

by-step and then calculates its contribution to model fit as K-fold CV maximum R2 

values are not automatically calculated in the “all possible models” option alone. 
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7.0 RESULTS AND DISCUSSION 

7.1 Visual Characteristics of sUAS-SfM 3-D Datasets 

In addition to the dense point cloud, dense point cloud-derived visualizations were 

generated in order to examine important point characteristics.  A visual analyis was also 

predicted to help elucidate results from RF-classification, PP cacti plot detection, and 

predictive MLR modeling.  Specifically, visual analysis results sought to report point 

distribution and point elevation patterns that visually differentiated or were shared among 

PP cacti plots in comparison to their respective field metrics and the point distribution 

and elevation patterns of surrounding land covers.  Examples of generated visualizations 

can be seen in the combined dense point cloud or dense point cloud (Fig. 9), point sum 

raster (Fig. 10), maximum point-Z TIN (Fig. 11), and point Z-range raster (Fig. 12).  

 

7.11 Point Distribution and Elevation Results 

Fig. 9 and Fig. 10 show overhead 2-D perspectives of the study site’s dense point 

cloud and point sum raster (total point count/0.01 m2) where either visualization 

demonstrate several distinct point distribution patterns readily observable for different 

small to large plot-ellipses or PP cacti plots with varying ECC values, vegetated/non-

vegetated land covers, and features that correspond to individual or clustered trees and 

shrubs.  Although flight plan settings (Table 3) were designed to yield relatively equal 

side/end overlap, the dense point cloud is non-uniform and exhibits the characteristic 

non-uniformity reported by other studies that have produced VHR sUAS-SfM-derived 

point clouds.  The dense point cloud nonetheless demonstrates few discernable visual 

data gaps caused by major LoS issues for the primary analysis area, or the area that 
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Figure 9.  Combined dense point cloud.  (A) Northeast inset and (B) southwest inset.  

Transects (c)(d)(e) shown as pink lines (see Fig. 10).  Plot-ellipses shown as white 

ellipses. 
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B 

B 

A 
A 

Figure 10.  Point sum raster.  (A) Northeast inset and (B) southwest inset.  Plot-ellipses 

shown as white ellipses. 
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encompasses plot-ellipses.  Minor visual data gaps can however be seen in the northern 

outer section of the study site where “point shadows”, or areas with little to no points, are 

found on the northern halves of several shrubs (Fig. 9-10). 

Individual tree and shrub species are the most prominent features that possess the 

highest mean point densities within the study site.  This can be seen in the live-oak mott 

located on the eastern edge of the study site and in various shrubs represented as brighter 

orange (Fig. 9) or brighter green (Fig. 10) objects.  The outer-canopies of these trees and 

shrubs also demonstrate a higher point density and lower point spacing, or decreased 

distance between individual points, when compared to the lower point density and higher 

point spacing of the inner-canopy.  This produces a donut-like visual effect for small to 

medium volume shrubs and a contour-like effect for the large volume trees where the 

outer-canopy of these trees clearly exhibit highlighted edges of foliage.   

Regarding the within-canopy (both inner and outer-canopy) point distribution 

variances of trees and shrubs, PP cacti plots overall demonstrate a lower point density 

and thus a higher point spacing within-canopy.  Point distribution patterns for PP cacti 

plots can generally be described as clustered and asymmetrical (Fig. 9-10; inset A).  

While individual cladodes, or the leaves of any vegetation species within the study site, 

are indistinguishable based on the dense point cloud and point sum visualizations; various 

minute point clusters or areas of a relatively higher within-canopy point density may 

reasonably correspond to cladode groups.  This asymmetrical “point density cluster” 

characteristic is indeed most prevalent for PP cacti plots with a high CLADCOUNT, ECV, 

and ECSA values, where PP cacti plots with high ECV values defined by high PPHEIGHT 

values overall demonstrate greater within-canopy point density and point spacing 
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variations.  This asymmetrical point density cluster characteristic can best be seen in 

several larger plot-ellipse polygons shown in inset A of Fig. 9 and 10.  PP cacti plots with 

low ECV values or low PPHEIGHT values demonstrate only minor within-canopy point 

density and point spacing variations and generally show less point density cluster 

characteristics.  PP cacti plots with high CLADCOUNT and ECC values but low PPHEIGHT 

values also show far less within-canopy variances (Fig. 10; inset B).   

When examining areas of transition between PP cacti plots and surrounding 

grassy land cover, PP cacti plots generally demonstate a more gradual change in point 

density and point spacing in contrast to the “harder” boundaries exhibited by trees and 

shrubs.  Moreover, grassy land cover or land cover within the study site dominated by 

short to tallgrass species demonstrate point distribution patterns different from those of 

PP cacti plots with high CLADCOUNT and ECV values or those of large volume shrubs 

and trees.  Specifically, grassy land cover exhibits a unique contour-like point distribution 

pattern represented by wide curvilinear banded areas of low point density and high point 

spacing, seperated by thin banded areas of high point density and low point spacing.  This 

contour-like point distribution pattern is most evident in the point sum raster (Fig. 10), 

though it is also observed in the dense point cloud (Fig. 9), and in the 3-D low oblique 

perspective of the dense point cloud (Fig. 13A).   

Differences in this contour-like pattern relative to the height and distribution of 

grassy land cover, or the relative ground coverage, can also be seen in the point sum 

raster (Fig. 10) where several central sections of the study site that possess taller and 

more dense grass coverage are represented by “blurry” less pronounced contour-like 

patterns with a relatively even point density.  In contrast, the southeastern corner, eastern 
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edge, and western edge of the study site show more distinct and well-defined contour-like 

patterns which represent areas of short grass height and sparse ground coverage.  The 

most prominent contour-like point distribution pattern is nonetheless exhibited by barren 

land cover which corresponds to the gravel road located in the northern half of the study 

site (Fig. 10). 

Similar to within-canopy point distribution patterns, PP cacti plots with a high 

CLADCOUNT and high ECV values defined by higher PPHEIGHT values instead of higher 

ECC values, demonstrate a higher point density and lower point spacing which more 

visibly seperates them from the point distribution patterns of surrounding grassy land 

cover.  These high volume PP cacti plots conversely become more distinguishable when 

surrounding grassy land cover is short and sparse.  PP cacti plots with low PPHEIGHT, 

ECC, and ECV values that are located in tall and dense grassy land cover are thus 

generally indistinguishable from the point distibution patterns of surrounding grassy land 

cover (Fig. 9-10; inset B).  This characteristic is especially prevalent in the central 

western half of the study site where most PP cacti plots demonstrate low PPHEIGHT, 

CLADCOUNT, ECC, and ECV values and are surrounded by tall, dense grass coverage. 

Examples of point elevation-derived visualizations for the study site can be seen 

in Fig. 11-14, where Fig. 11 shows the maximum point-Z TIN and Fig. 12 shows the 

point-Z range or difference raster (maximum point-Z – minimum point-Z/0.01 m2).  

Much like point distribution patterns, distinct maximum point-Z and point-Z range 

patterns can be seen for within-canopy areas of trees and shrubs which distinguish them 

from PP cacti plots.  Overall, trees and shrubs possess a greater variation in maximum 

point-Z and point-Z range and are thus represented as features with multiple elevation 
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Figure 11.  Maximum point-Z TIN.  (A) northeast inset with PP-class segment overlay 

(faded white).  (B) southwest inset showing PP-class segment overlay (faded white). 

Plot-ellipses shown as white ellipses. 
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A 
A 

B 

B 

Figure 12.  Point Z-range raster.  (A) Northeast inset showing PP-class segment overlay 

(faded white).  (B) Southwest inset showing PP-class segment overlay (faded white).  

The greatest variation in elevation ranges between land cover features is apparent in the 

northern half of study site.  Plot-ellipses shown as white ellipses. 
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classes evident in the maximum point-Z TIN (Fig. 11).  This greater elevation change is 

also evident in the point-Z range raster where trees and shrubs are generally represented 

as nearly solid bright green objects in comparison to PP cacti plots.  While trees and 

shrubs represented in the maximum point-Z TIN lack the multiple inner-canopy holes 

found in the dense point cloud and point sum raster, corresponding inner-canopy hole 

features and highlighted foliage edges of the outer-canopy edge, represented by a high 

point-Z range, are evident in the point-Z range raster.  This characteristic is especially 

prevalent in the live-oak mott located on the western edge of the study site and within 

various shrubs located on the southern edge of the study site (Fig. 12).  Overall, PP cacti 

plots demonstrate less within-canopy maximum point-Z or point-Z range variances.  

Regarding within-canopy point-Z range patterns that may correspond to similar 

patterns reported for the point density cluster characteristic, PP cacti plots with high 

CLADCOUNT and ECV values indeed demonstrate unique asymmetrical changes in point-

Z range patterns.  This characteristic can be seen alongside plot-ellipse and plot-segment 

polygons in insets A and B of Fig. 12.  In comparison to the point-Z range patterns of the 

surrounding grassy land cover, larger PP cacti plots with high CLADCOUNT and ECV 

values generally demonstrate a greater visible contrast or a drastic increase in maximum 

point-Z elevations and point-Z ranges.  In contrast, PP cacti plots with low CLADCOUNT, 

ECC, and ECV, values defined by low PPHEIGHT values remain difficult to visibly 

distinguish and possess maximum point-Z and point-Z ranges too similar to discern from 

those of grassy land cover.  This characteristic can be seen in insets A and B of Fig. 11 

and Fig. 12, which show several nearly indistinguishable small PP cacti plots (low ECC 

values) in relation to more visible larger PP cacti plots (high ECC values).   
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Unlike the contour-like point distribution patterns evident for grassy land cover, 

in the maximum point-Z TIN and point-Z range visualizations, grassy land cover is 

instead represented as distinct grass bunches or “tussocks” which exhibits more 

homogeneity across the study site compared to the contour-like point distribution pattern.  

Since many of these tussocks show maximum point-Z and point-Z range patterns similar 

to PP cacti plots with high ECC values but low PPHEIGHT values, many of these PP cacti 

plots, even those with high CLADCOUNT and ECSA values, remain indistinguishable from 

tussocks.  This characteristic is particularly evident in the central and northern sections of 

the study site, which possess prominent tallgrass tussocks in contrast to the shorter 

sparser grass coverage in the southern section with few tussocks (Fig. 11-12).   

Similar to patterns found in the dense point cloud, point sum raster, and maximum 

point-Z TIN, the point-Z range raster demonstrates that PP cacti plots with high 

CLADCOUNT values and ECV values defined by high PPHEIGHT values generally 

demonstrate greater point-Z ranges that better distinguish them from surrounding grassy 

land cover, which has lower maximum point-Z and point-Z range values.  PP cacti plots 

with high ECC, CLADCOUNT, and ECSA values, but low PPHEIGHT values and thus low 

ECV values, are less distinguishable.  This effect can best be seen in Fig. 12 in the 

northeastern corner of the study site where several PP cacti plots with high ECC and 

CLADCOUNT values are hard to visually discern from surrounding grassy land cover.  

Overall, PP cacti plots with high CLADCOUNT, PPHEIGHT, and ECV values are the most 

distinguishable when surrounding grassy land cover is short and sparse or at least when 

their point-Z ranges are greater than those of surrounding land cover. 

Examples of minor and major undulations in point elevations that correspond to 
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PP cacti plots and surrounding land covers can be seen in Fig. 13 which shows a 

southeastern oriented 3-D low oblique perspectives of the maximum point-Z TIN and a 

RGB encoded dense point cloud.  Differences in point elevations can also be seen in Fig. 

Figure 13.  3-D low-oblique perspectives of dense point cloud and TIN.  (A) View of 

combined dense point cloud showing point RGB (123) values.  (B) View of maximum 

point-ZTIN.  Plot-ellipses are shown as black 3-D ellipses and GCPs are shown as 

small red cones. 

A 
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14 which show several 2-D transects of the dense point cloud referenced in Fig. 9.  The 

2-D transects demonstrate how individual points are vertically distributed.  Points that 

correspond to grassy land cover are largely distributed along a thin line or their collective 

point-Z range is low.  Points located within PP cacti plots are largely distributed along a 

coarse line or their collective point-Z range are noticeably higher than surrounding land 

cover point-Z ranges. 

 

 

 

 

 

 

 

c 

d 

e 

Figure 14.  2-D transects of dense point cloud (see Fig. 9).  (c) Northeast transect.  (d) 

Southwest transect.  (e) Central transect.  Transects represent a swath width of 

approximately 0.50 m; transect lengths are distorted for visualization purposes. 
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7.2 Classification of Prickly Pear Cacti 

 FLS and Edge-based OBIA segmentation of the study site’s RGB orthophoto 

(2.25 cm2/pixel) resulted in a total of 389,005 individual segments with minimum, 

maximum, and mean segment areas of 0.000225 m2 or 2.25 cm2 (1 pixel), 27.75 m2 

(123,347 pixels), and 0.025 m2 (110 pixels) respectively.  Out of the 86 original attributes 

calculated from the spatial, spectral, and textural properties of RGB, PCA, and IHS 

bands, 66 final attributes per segment were selected using a RF-based weighted attribute 

selection algorithm.  Attributes for separate training and testing datasets that represented 

a random selection of segments for known PP cacti (PP) and non-PP cacti (non-PP) land 

cover classes were then used for supervised classification of the 389,005 segments 

utilizing an RF classification model.  A total processing time of 9 minutes and 49 seconds 

was reported by Weka v3.7.13 for training, testing, and classification phases within a 

Windows 7 64-bit operating system that used a 2.5GHz Intel Core i7-4710MQ CPU, 32 

GB of RAM, and an allotted heap size (maximum memory) of 1024MB for Weka 

v3.7.13.  A summary and detailed accuracy report for training and testing phases can be 

seen in Table 10 and Table 11.  A thematic map showing the results of RF-classified 

OBIA segments into PP and non-PP land cover classes is provided in Fig. 15. 

 

7.21 RF-Classification and Detection Results 

During the training phase, 17,691 training segments (PP-class=918 segments/non-

PP-class=16,773 segments) were used to train a 300 tree RF classification model using an 

8-fold cross-validation strategy in a processing time of 3 minutes and 11 seconds.  

Machine learning accuracy measures reported for the optimally-trained RF model 
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resulted in an overall accuracy of 97.68% (Table 10) with a ROC Area value of 0.984 and 

F-measure values of 0.747 and 0.988 for PP and non-PP classes, respectively (Table 11).  

During the testing phase 18,058 separate test segments (PP-class=1,137 segments, non-

PP-class=16,921) were used to test the trained RF classification model within a 

processing time of 3 minutes and 8 seconds.   

Machine learning accuracy measures reported for the tested RF model resulted in 

an overall accuracy of 96.51% (Table 10) with a ROC Area value of 0.958 and F-

measure values of 0.661 and 0.982 for PP and non-PP classes, respectively (Table 11).  

The tested RF classification model was then used to classify the 389,005 segments within 

Accuracy Training Test

# Correctly Classified Segments 17,280 17,428

% Correctly Classified 97.68% 96.51%

# Incorrectly Classified Segments 411 630

%  Incorrectly Classified 2.32% 3.49%

Total # of Segments 17,691 18,058

Kappa Statistic 0.7354 0.6439

Table 10.  Summary accuracy report: training/testing phases of RF model. 

PP non-PP TP Rate
1

FP Rate
2 F-Measure ROC Area

PP 608 310 0.662 0.006 0.747 0.984

non-PP 101 16,672 0.994 0.338 0.988 0.984

Weighted - - 0.977 0.32 0.975 0.984

PP 615 522 0.541 0.006 0.661 0.958

non-PP 108 16,813 0.994 0.459 0.982 0.958

Weighted - - 0.965 0.431 0.961 0.958

Train

Test

1
True Positive Rate

2
False Positive Rate

Accuracy Measure
Phase Class

Confusion Matrix

Table 11.  Confusion matrix and accuracy measures: training/testing phases of RF 

model. 
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a processing time of 3 minutes and 30 seconds which resulted in a total of 9,268 PP-class 

and 379,737 non-PP class segments.  PP class segments possessed minimum, maximum, 

and mean segment areas of 0.00045 m2 or 4.5 cm2 (2 pixels), 2.51 m2 (11,160 pixels), and 

0.027 m2 (121 pixels) while non-PP class segments possessed, minimum maximum, and 

mean segment areas of 0.000225 m2 or 2.5 cm2 (1 pixel), 27.53 m2 (122,358 pixels), and 

0.025 m2 (110 pixels).   

Classified segments were then used to create a binary PP and non-PP class 

thematic raster of the study site (Fig. 15) where a pixel-based accuracy assessment based 

PP non-PP Total

PP 54.17 1.31 5.96

non-PP 45.83 98.69 94.04

Total 100 100 100

PP 98,783 24,726 123,509

non-PP 83,561 1,865,297 1,948,858

Total 182,344 1,890,023 2,072,367

Pixel

Class
Class

%

Table 12.  Confusion matrix for pixel-based accuracy assessment. 

PP non-PP

Commission 20.02 4.29

Omission 45.83 1.31

Producer 54.17 98.69

User 79.98 95.71

Commission 24,726/123,509 83,561/1,948,858

Omission 83561/182344 24,726/1,890,023

Producer 98,783/182,344 1865297/1890023

User 98,783/123,509 1,865,297/1,948,858

Pixel

Error
Class

%

Table 13.  Classification accuracies and errors for pixel-based accuracy assessment. 
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on the separate testing dataset (18,058 segments) resulted in an overall classification 

accuracy of 94.77 % and a Kappa value of 0.62, which satisfied study objective 

classification requirements for statistical analysis.  Pixel-based accuracy reports and 

classification errors can be seen in Tables 12-13.  Individual classification accuracies 

resulted in 54.17% and 98.69% for PP and non-PP classes (Table 12).  Producer’s and 

user’s classification accuracies resulted in 54.17% and 79.98% for the PP class and 

98.69% and 95.71% for the non-PP class, respectively (Table 13).  Omission (1 - 

producer accuracy) and commission (1 - user’s accuracy) errors resulted in 45.83% and 

20.02% for the PP class and 1.31% and 4.29% for the non-PP class, respectively (Table 

13).     

 Detection accuracy was calculated by determining the total number of individual 

plot-ellipses which contained (detected) or didn’t contain (undetected) a PP-class 

segment.  The total number of detected (n=108) and undetected (n=50) plot-ellipses were 

then divided by the total number of plot-ellipses (n=159) prior to the four plot-ellipses 

removed for statistical analysis.  This resulted in a positive detection rate of 67.92% and a 

negative detection rate of 31.45%; otherwise approximately 2/3 of all PP cacti plots 

within the study site were detected.   

Visualization of detected and undetected plot-ellipses in relation to PP and non-

PP classes and their geographic distribution across the study site is provided in the PP 

and non-PP thematic land cover map (Fig. 15), which shows detected plot-ellipses as 

those which contain at least one PP class pixel.  Graphs of detected and undetected plot-

ellipses in relation to their respective CLADCOUNT, PPHEIGHT, and ECC field metrics can 

be seen in Fig. 16.  A quantile classification of CLADCOUNT values used in statistical 
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Figure 15.  PP and non-PP thematic land cover map.  (A) Northeast (A) and (B) 

southwest insets show PP class segments overlaid on RGB orthophoto.  Plot-ellipses 

shown as white ellipses. 
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analysis (n=155) into 3 qualitative size classes of 53 “small” (7<CLADCOUNT≤23), 51 

“medium” (27<CLADCOUNT≤52), and 51 “large” (52<CLADCOUNT≤389) PP cacti plots 

can also be seen in Fig. 16A.  Qualitative size class positive detection rates are reported at 

32.07% (17 detected) for small plot-ellipses, 76.47% (39 detected) for medium plot-

ellipses, and 96.08% (49 detected) for large plot-ellipses.  Conversely, negative detection 

rates are reported at 67.93% (35 undetected), 21.57% (12 undetected), and 3.92% (2 

undetected) for small, medium, and large size classes, respectively. 

 

7.22 Classification Accuracy, Segment Geometry, and Structure 

 The overall classification accuracy of 94.77% and a positive detection rate of 

67.92% ultimately allowed an adequate sample size (n=104) for generating 2-3 term 

predictive MLR models; though results also indicate that PP classification/detection 

accuracy is closely associated with both OBIA segment geometries and individual PP 

cacti structure. 

For one, a low PP class producer’s accuracy of 54.17% means that 45.83% of PP 

ground-truth (testing dataset) pixels were classified incorrectly as non-PP while a non-PP 

class producer’s accuracy of 98.69% means that almost all non-PP ground truth pixels 

were classified correctly.  These pixel-based class accuracy measures in combination 

with low PP class training and testing TP rates of 0.662 and 0.541 altogether suggest 

uncertainty during the RF-classification training/testing phases as the RF model tried to 

classify known PP segments using the mode of segment attributes (300 trees) that best 

contributed to overall classification accuracy. 

While sample bias may explain some PP class uncertainty, the majority of 
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classification error is likely a product of how certain segment scale/geometry represented 

differences in PP cacti land cover within the RGB orthophoto.  For instance, pixel areas 

comprised by medium to large plot-ellipses generally consisted of numerous small 

segments with high edge pixel ratios (pixels that border other segments) generated by a 

high spatial frequency of these pixel areas and the specific Edge/FLS algorithm settings.  

This characteristic was typically found in plot-ellipses with high CLADCOUNT and ECC 

values, decreased non-PP vegetated canopy coverage, and more cladode shadows.  Small 

plot-ellipses with low CLADCOUNT and ECV values, mixed vegetation canopy coverage, 

and fewer cladode shadows were comparatively generated from pixel-areas of lower 

spatial frequency and consisted of few small segments with low edge pixel ratios (Fig. 8; 

inset A and B).  Since edge pixels are known to largely determine textural and spectral 

segment attribute values which effects RF-classification, a skewed representation of the 

study site’s various PP cacti land cover likely occurred.  This means that the high 

frequency of segment attribute values derived from large PP cacti land cover had a higher 

probability of being selected by the RF model over the low frequency of segment attribute 

values from small PP cacti which generated “mixed segment” values closer to the 

segment values of non-PP land cover (trees, shrubs, grass, rocks, etc.).   

A study by Laliberte and Rango (2009) concluded that a coarser segment scale 

range increased individual class accuracies compared to finer segment scales.  

Specifically, the authors found that larger segment scales reduced the number of edge 

pixels which then decreased within-class segment attribute value variances thereby 

increasing between-class separation.  This suggests that there needs to be a balance 

between OBIA segment scale and PP class heterogeneity where optimal segment scales 
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should at least equalize within-class segment variances prior to RF-classification.  

Admittedly, comparisons and suggestions for universal segment scales of sUAS-SfM-

derived imagery is difficult because spatial resolutions change from study to study.  As 

suggested by Laliberte and Rango (2009), a practical solution involves several output 

classifications using different segment scales in order to determine which scale yields the 

highest class separation.  An alternate solution may be to use sub-land cover classes 

designed to represent differences between small PP cacti and large PP cacti land covers. 

Relationships between the detection rates of individual PP cacti and their 

respective field metrics may also provide reasons for PP misclassification errors.  Small 

plot-ellipse (32.07%), medium plot-ellipse (76.47%), and large plot-ellipse (96.08%) 

positive detection rates directly indicate that detection probability is higher for larger PP 

cacti defined by higher CLADCOUNT values, a field metric significantly correlated with 

ECC (r=0.89), ECV (r=0.93), and ECSA (r=0.92) values.  In Fig. 16, plot-ellipse 

detection graphs sorted by CLADCOUNT (Fig. 16A) and ECC (Fig. 16C) show a 

progressive decay in individual detection as PP cacti field metric values decrease.  While 

this relationship may partially be explained by physical relationships between 

CLADCOUNT, ECC, and OBIA segment scale/geometry as discussed previously, Fig. 16B 

alternately shows that detection may be related to PPHEIGHT values, which are less 

correlated to CLADCOUNT (r=0.74) values but more correlated to ECV (r=0.75) and 

ECSA (r=0.89) values.   

This may indicate that a significant percentage of PP cacti, despite having high 

CLADCOUNT and ECC values, may have gone undetected because they fell under a 

certain height range.  This overall suggests errors caused by LoS during sUAS-image 
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acquisition.  Regrettably, there are few studies that have substantiated the effects of 

vegetation structure on OBIA-segmentation/classification accuracy using sUAS-SfM-

derived imagery.  However, studies such as Fritz, Kattenborn, and Koch (2013); Lisein et 

al. (2013); Mathews and Jensen (2013); and Tonkin et al. (2014) have found that fine 

spatial scale features or low-volume vegetation architectures (tree stems, leaf-off 

undergrowth, grapevines, heather) can produce irregular clustering with low point 

densities that can skew or decrease sUAS-SfM dataset accuracies. 

Possible solutions to these VHR rangeland vegetated land cover classification 

challenges may be to use data fusion techniques that incorporate Z-derived datasets and 

VHR imagery (CHM, DSM, TIN) into schemes using two basic strategies: (1) enhance 

segment scale/geometry for land cover by integrating rasterized sUAS-SfM-derived PH 

or elevation-derived datasets (slope, point density, roughness, etc.) into the OBIA 

segmentation process prior to classification (Blanchard, Jakubowski, and Kelly 2011); or 

(2) integrate post segmentation PH-derived or elevation-derived statistical attributes (PH 

mean, PH SD, PH variance, etc.) within classification models (Zhang, Xie, Selch 2013). 
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7.3 Prediction of Prickly Pear Cacti Structure 

7.31 Predictive MLR Model Results 

A summary of results for final plot-ellipse (n=155) and plot-segment (n=104) 

predictive MLR models of the 7 field metrics are provided in Table 14 which reports 

goodness of fit (K-Fold CV, R2, and predicted vs. actual R2) and absolute error (RMSE, 

PRESSRMSE) values.  Comparative plot graphs (predicted vs. actual) for plot-ellipse and 

plot-segment predictive MLR models of each field metric are also provided in Fig. 18a-d 

along with each model’s multivariate regression equation.  A summary of 1:1 plot-ellipse 

and plot-segment R2 values between selected descriptive predictors and field metrics can 

be referenced in Tables 7-9 (see Data Analysis; section 6.1).  

Plot-ellipse MLR models utilized 8 different predictors for five 3-term models 

(CLADCOUNT, PPHEIGHT, ECC, ECSA, and FWB) and two 2-term models (ECV and 

DWB).  The PHCOUNT predictor was the dominant predictor and resulted in the prediction 

of four different field metrics (PPHEIGHT, ECC, ECV, and DWB) followed by the PLOT-

TINSA predictor which resulted in the prediction of three different field metrics 

(CLADCOUNT, ECSA, and FWB).  All other predictors (PHMAX, DIFFPCTL90-80, PLOT-

TINVOL, PH60PCTL, PHVAR) except DIFFPCTL90-20 were used in two predictive regression 

models.  All field metrics predicted by plot-ellipse models, except PPHEIGHT, 

demonstrated explained variation in field-measured values greater than 79% and 

unexplained variation no less than 21% based on predicted vs. actual R2 values.  
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Similarly, K-fold CV R2 values demonstrated explained variation greater than 73% and 

unexplained variation no less than 27%. 

The prediction of ECC using a 3 term model based on PHCOUNT, PHVAR, and 

PH60PCTL predictors resulted in the highest goodness of fit values with a K-fold CV 

R2=0.94, a predicted vs. actual R2=0.93, and a RMSE=0.54 m2.  Prediction of ECV using 

only 2-terms based on PLOT-TINVOL and PHCOUNT predictors resulted in the second 

highest goodness of fit values with a K-fold CV R2 =0.89, a predicted vs. actual R2= 0.91, 

and a RMSE=0.42 m3.  The lowest goodness of fit values resulted from the prediction 

PPHEIGHT using a 3 term model based on PLOT-TINVOL, PHCOUNT, and PH60PCTL 

predictors with a K-fold CV R2=0.48, a predicted vs. actual R2=0.60, and an RMSE=0.14 

m.  Regarding statistical measures of error for plot-ellipse models, the predicted vs. actual 

RMSE and the RMSE of predicted errors (PRESSRMSE) are also reported in Table 13.  

K-Fold R
2 

R
2 RMSE PRESSRMSE

CLADCOUNT 0.74 0.83 28.16 35.18

PPHEIGHT  (m) 0.48 0.60 0.14 0.15

ECC (m
2
) 0.93 0.94 0.54 0.54

ECV (m
3
) 0.89 0.91 0.42 0.46

ECSA (m
2
) 0.77 0.83 0.66 0.77

FWB (Kg) 0.76 0.84 11.24 14.09

DWB (Kg) 0.81 0.88 3.48 3.84

CLADCOUNT 0.75 0.80 34.33 36.17

PPHEIGHT  (m) 0.55 0.57 0.15 0.16

ECC (m
2
) 0.70 0.85 0.97 1.09

ECV (m
3
) 0.76 0.84 0.65 0.69

ECSA (m
2
) 0.71 0.82 0.76 0.97

FWB (Kg) 0.79 0.80 13.97 14.72

DWB (Kg) 0.77 0.81 4.99 5.40

P
lo

t-
se

g
s.

 (
n

=
1

0
4

)

Dependent (Y)

P
lo

t-
e
ll

ip
se

s 
(n

=
1

5
5

)

Table 14.  Results for plot-ellipse and plot-segment predictive MLR models. 
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The greatest percent differences between RMSE and PRESSRMSE values resulted in a 

difference of 22.50% (2.85 Kg) for FWB and 22.17% (7 cladodes) for CLADCOUNT, 

while the lowest percent difference of 0.29% (0.00 m2) resulted for the prediction of 

ECC. 

Plot-segment MLR models instead utilized only 7 different predictors for two 3-

term models (ECC and ECSA) and five 2-term models (CLADCOUNT, PPHEIGHT, ECV, 

FWB, and DWB).  The SEGAREA predictor was the dominant covariate and was included 

in the models of five different field metrics (CLADCOUNT, ECC, ECV, FWB, and DWB) 

followed by the % PH, 0.65 ≤ x < 0.75m predictor which was included in the models for 

four different field metrics (CLADCOUNT, ECV, FWB, and DWB).  The SEG-TINSA 

predictor was included in models for three different field metrics (PPHEIGHT, ECC, 

ECSA).  All other predictors (PH65PCTL, % PH, 0.75 ≤ x < 0.85m, PHSD, DIFFPCTL90-80) 

were used in only one predictive regression model.  All field metrics predicted by plot-

segment models, except PPHEIGHT, demonstrated explained variation greater than 79% 

with unexplained variation no less than 21% based on predicted vs. actual R2 values.  

Instead, K-fold CV R2 values demonstrated explained variation greater than 69% and 

unexplained variation no less than 31%. 

Similar to plot-ellipse models, the highest goodness of fit values for plot-segment 

models resulted from the prediction of ECC using 3-terms based on SEG-TINSA, 

SEGAREA, and %PH, 0.75 ≤ x < 0.85m predictors with a K-fold CV R2=0.70, a predicted 

vs. actual R2=0.85, and a RMSE=0.97 m2.  Similar to plot-ellipse model results, 

prediction of ECV using only 2-terms based on SEGAREA and %PH, 0.65 ≤ x < 0.75m 

predictors resulted in the second highest goodness of fit values with a K-fold CV R2 
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=0.76, a predicted vs. actual R2= 0.84, and a RMSE=0.65 m3.  The lowest goodness of fit 

values also resulted from the prediction of PPHEIGHT using a 3 term model based on 

PLOT-TINVOL, PHCOUNT, and PH60PCTL predictors with a K-fold CV R2=0.55, a 

predicted vs. actual R2=0.57, and an RMSE=0.15 m.  The greatest percent differences 

between RMSE and PRESSRMSE for plot-segment models were 23.78% (0.21 m2) for 

ECSA and 11.75% (0.12 m2) for ECC while the lowest percent difference of 3.73% (0.01 

m) resulted for prediction of PPHEIGHT.  
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Figure 17a. Predictive MLR models: CLADCOUNT (A)(B) and PPHEIGHT (C)(D).  Actual 

vs. predicted.  Left graphs correspond to plot-ellipse models.  Right graphs correspond to 

plot-segment models. 
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Figure 17b.  Predictive MLR models: ECC (E)(F) and ECV (G)(H).  Actual vs. 

predicted. 
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Figure 17c.  Predictive MLR models: ECSA (I)(J) and FWB (K)(L).  Actual vs. 

predicted. 
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Figure 17d. Predictive MLR models: DWB (M)(N).  Actual vs. predicted. 
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7.32 Plot Geometry, Selected Predictors, and Structure 

Plot-ellipse and plot-segment predictive MLR models demonstrated significant 

results with K-fold and predicted vs. actual explanations of variation in field measured 

values greater than 70% for all field metrics, except PPHEIGHT.  Since few studies have yet 

to quantify the structure of any Cactacea species using sUAS-SfM PH-derived or TIN-

derived predictors, direct comparisons of selected predictors and model performance is 

difficult.  Still, both plot geometries (plot-ellipse/plot-segment) showed similar prediction 

results for ECC, ECV (highest R2 values), and PPHEIGHT (lowest R2 values) field metrics, 

even given a difference of 51 observations and the large difference between the total 

number of plot-segment extracted points (66,920) and plot-ellipse extracted points 

(257,630) used to calculate predictor values.   

In addition, for the moderate plot-segment K-fold ECC R2=0.70 and predicted vs. 

actual ECC R2=0.85 values, which represent plot-segment polygon areas (ECC) that 

presumptively eliminated many non-PP points, predictive MLR model results suggest 

that despite fundamental differences exhibited by plot geometries, the adequate 

prediction (R2>80%) of many field metrics may not be heavily influenced by the 

presence of non-PP points.  When referencing studies that used Lidar-based 

quantification of rangeland vegetation structure, a common source of prediction error is 

attributed to the inclusion or prohibition of points from non-target vegetation 

architectures/structures that can skew PH-derived predictor values (Spaete et al. 2011; Su 

and Bork 2006).  Such findings were equally expected for this study given the unknown 

effects of certain vegetation architectures on sUAS-SfM point placement; though results 

indicate some degree of plot geometry flexibility in prediction accuracy.  This may be 
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explained by the fact that surrounding grassy land cover generally consists of low point 

sums with low point Z-ranges.  When calculating PH-derived or TIN-derived predictor 

values for medium to large PP cacti with high PHCOUNT values, it is reasonable to assume 

that inclusion of some non-PP point values would not significantly skew the values of 

predictors selected by each predictive MLR model.   

Likewise, of the 39 PH-derived statistical predictors originally calculated for 

statistical analysis, only 7 different PH-derived statistical predictors (PHMAX, 

DIFFPCTL90-80, DIFFPCTL90-20, PH60PCTL, PH65PCTL, %PH, 0.65 ≤ x < 0.75m, and 

%PH, 0.75 ≤ x < 0.85m) were used in 5 plot-ellipse models and all plot-segment models.  

Importantly, these predictors mathematically represented the cluster of PHs located near 

the top of PP cacti or other vegetation canopies, otherwise the “point shell” (Fig. 14).  

This was expected given several findings presented by Dandois and Ellis (2010), Lisein 

et al. (2013), and Mathews and Jensen (2013) whose sUAS-SfM-derived dense point 

clouds of deciduous forests and trestle grapevines correspondingly featured point shell 

characteristics accredited to limited LoS penetration of vegetation foliage gaps.   

Additionally, five plot-ellipse models (CLADCOUNT, PPHEIGHT, ECV, ECSA, and 

FWB) also utilized the two TIN-derived predictors that were calculated (PLOT-TINSA 

and PLOT-TINVOL) where four of these models (CLADCOUNT, PPHEIGHT, ECSA, and 

FWB) also utilized point shell predictors.  Plot-ellipse predictions of ECC and DWB 

were the only models that didn’t use TIN-derived and point shell predictor combinations, 

instead incorporating PHCOUNT as the dominant predictor in 4 models; though PHCOUNT 

was absent in all plot-segment models.  Similar to plot-ellipse models, SEG-TINSA was 

used in three plot-segment models (PPHEIGHT, ECC, and ECSA) where SEGAREA was used 
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in the remaining four models (CLADCOUNT, ECC, ECV, FWB, DWB).  In contrast, 

predictors which described the point distribution around a mean (PHSD and PHVAR) were 

only chosen in one plot-ellipse and one plot-segment model as these variables generally 

provided weak 1:1 explanations of variance below 48% for all field metrics (Table 7).  

Therefore, it can be generally surmised that successful non-collinear models are those 

which incorporate 2-D area or 3-D surface area and volume-based predictors in addition 

to point shell predictors that inclusively define the “shape and shell” of PP cacti. 

Furthermore, relationships between PP cacti structure and plot-ellipse model 

predictions can be seen in Fig. 18A-B which shows sorted ascending graphs of predicted 

vs. actual values of CLADCOUNT (sorted by size class) and PPHEIGHT field metrics.  In Fig. 

18A, the CLADCOUNT predicted vs. actual values (significantly correlated with ECC, 

ECV, and ECSA) show that large plot-ellipses generally demonstrate decreased variance 

between predicted vs. actual values compared to small and medium plot-ellipses.  As 

plot-ellipse size decreases, CLADCOUNT predictions begin to slightly overestimate actual 

CLADCOUNT values.  In fact, predicted values overestimate the majority of small plot-

ellipses.  Similar model behavior can also be seen in Fig. 18B where predicted PPHEIGHT 

values overestimate actual PPHEIGHT values as PPHEIGHT decreases and then slightly 

underestimates actual PPHEIGHT values as PPHEIGHT increases.   

This behavior may partially be explained by the effects of sampling bias on model 

fit caused by the varying morphologies of a heterogeneous PP cacti population.  This is a 

common limitation for predictive MLR models of biophysical metrics whose 

distributions are frequently nonparametric or near-logistic (A.F. Zuur et al 2009).  This 
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may be alleviated in future study efforts by integrating either higher term parametric 

regression models with perhaps larger training datasets, using semi-parametric 

generalized linear models (GLM), or even nonparametric regression models commonly 

used in ecology and Lidar-based forest structure prediction (K-nearest neighbor, RF, 

spline, kriging, etc.) (Guisan, Edwards, and Hastie 2002; Penner, Pitt, and Woods 2013).  

However, based on visual analysis results a certain percentage of overestimation error for 

small PP cacti may be still explained by LoS limitations.  Since LoS has been known to 

influence output sUAS-SfM dense point cloud positional accuracy and density for target 
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vegetation features, it is reasonable to assume that small PP cacti amidst tallgrass cover 

with point characteristics virtually indistinguishable from tallgrasses will reasonably have 

a higher probability of generating skewed point-height-derived or TIN-derived predictor 

values. 

 

7.4 Sources of Error and Limitations of Practical Application 

In this study the RF model has demonstrated to be to be a robust classifier of a 

high number of complex OBIA segments attributed to its ability to model large 

nonparametric distributions; though classification accuracies have been known to be 

affected by skewed between-class training instances (Belgiu and Dragut 2016).  Since the 

training dataset consisted of 918 PP class segments which covered of a total area of only 

30.21 m2 (0.30 % of the total study site area), compared to 16,773 non-PP class segments 

(5% randomized subset) which covered a total area of 3000.89 m2 (30.02 % of the total 

study site area) it is reasonable to assume that a certain degree of sample size-based 

misclassification error occurred.  While adopting novel OBIA classification accuracy 

assessment methods versus traditional pixel-based assessments may help better 

understand OBIA segment classification nuances (MacLeaan and Congalton 2012), more 

practical sample bias effects on misclassification are most likely attributed to how 

segment scale/geometry represents different PP cacti land cover and structural attributes.  

As such, ideal segment geometries and between-class sample sizes may be impractical 

for some rangeland ecosystems where target vegetation is scarce or whose canopy cover 

is heavily mixed with non-target vegetation species canopy cover.   

Aside from proper site selection, one classification-based strategy to mitigate 
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sampling design limitations is to incorporate a feature/attribute selection 

scheme/algorithm (RF-based, regression-based, genetic algorithm, etc.) that eliminates 

redundant or collinear attributes prior to using a nonparametric supervised machine 

learning algorithm like the RF or SVM model.  Decision tree-based attribute selection 

algorithms will also help overcome the “black box” nature of some RF models and boost 

interpretation of chosen RF model attributes while helping to generalize application to 

similar rangeland ecosystems.   

For species-scale sUAS-SfM segmentation/classification of rangelands in near-

climax successional stages or vegetation canopy is biodiverse and heavily mixed, it is 

suggested that training segment scale/geometry for target vegetated land covers capture 

the majority of a plant’s pixel-area for the majority of the population.  At the same time, 

non-target land cover training segment scale/geometry needs to at least eliminate 

inclusion of target vegetated land cover to curb misrepresentation in a classification 

model.  Admittedly, these strategies may need to vary for different rangeland ecosystems.  

For arid rangeland ecosystems with more isolated and distinct vegetation cover 

boundaries, it is predicted that segmentation/classification of PP cacti using sUAS-SfM 

may actually be more successful due to the higher probability of land cover class 

separation.  For degraded rangelands defined by an extreme prevalence of interconnected 

PP cacti cover, the high number of “pure segments” would also likely produce successful 

segmentation/classification results. 

Aside from sample bias, GPS GCP positional accuracy and sUAS-acquired digital 

image quality (resolution, distortion, noise, etc.) are common data collection-based 

sources of error known to affect a sUAS-SfM-derived dataset’s pixel (RGB) and point 
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(XYZ) values.  These in turn affect the accuracy of OBIA segment scale/geometry, 

segment attribute values, and PH-derived statistical predictor values used in 

classification/detection and structural prediction models.  More abstract sources of error 

that may equally affect pixel and point values are likely related to how SfM algorithms 

specifically capture and represent certain types of vegetation surfaces.  Since these 

sources of error are yet quantified, it is unknown how to reduce or compensate for them 

in a rangeland environment and should be a focus for future study efforts if sUAS-SfM is 

to be used more effectively for vegetation analyses overall.  As such, incorporating more 

expensive survey-grade GPS equipment, camera systems, and proprietary SfM software, 

etc. is not explicitly suggested to improve upon future OBIA classification/detection and 

structural prediction results for PP cacti or other rangeland vegetation species. 

Instead, a more practical solution to curb data collection-based sources of error is 

to incorporate detailed flight planning designs that utilize an adequate number of total 

input images with a high percent of overlap (80-90%); where images from different flight 

plans use varying perspectives (nadir, high-oblique, low-oblique, etc.) and pixel-to-

ground ratios that reflect target/non-target rangeland vegetation architectures (leaf 

orientation, leaf size, maximum height, reflectivity, etc.) and study objectives.  A 

supplementary strategy is to utilize opportunistic sUAS image acquisition periods where 

rangeland conditions (scene illumination, phenology, ecological health, successional 

stage, etc.) also reflect study objectives.  For this study, a sUAS image acquisition in 

winter after post-grazing conditions may have decreased non-target vegetation spectral 

and structural influences. 

Lastly, computational efficiency is a realistic limitation to current and future 



 

117 

 

sUAS-SfM rangeland remote sensing research.  This is because the SfM workflow is the 

most computationally demanding data processing phase whose efficiency is defined by 

the number and resolution (image file size) of input imagery and desired output dataset 

quality.  An effective strategy to reduce SfM processing time is to initially acquire 

numerous digital stills with a high percent of overlap (80-90%) defined by a high 

acquisition interval, sUAS flight speed, and pixel-to-ground ratio.  Redundant or 

excessive images can be easily removed prior to or during SfM modeling as opposed to 

having too few input images to model from.    
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8.0 CONCLUSIONS 

 In this study, low altitude sUAS-acquired digital imagery of a near-climax 

rangeland was input into a proprietary SfM software whereby several VHR datasets were 

generated in order to quantify the species-scale presence/absence and structure of a 

heterogeneous PP cacti population.  Results from the classification/detection of a sUAS-

SfM-derived RGB orthophoto indicated that, despite significant overall classification 

accuracy and adequate detection rates, RF model uncertainty for the PP class can likely 

be attributed to segment scale/geometry, PP cacti structure, and LoS issues.  Future 

strategies for segmentation/classification may therefore need to incorporate 

supplementary Z-based datasets which could better separate rangeland land covers for 

segmentation or within classification models.  Results from predictive MLR models 

indicate that predictor combinations which describe both point “shell and shape” 

characteristics of the sUAS-SfM-derived dense point cloud, generally contributed to the 

highest R2 values while prediction accuracy for small PP cacti in tallgrass cover may be 

largely determined by LoS limitations.  Future studies need to more extensively examine 

relationships between vegetation surfaces/architectures and resulting sUAS-SfM point 

characteristics. 

 Overall, findings suggest that sUAS-SfM remote sensing techniques are a 

valuable tool in which to monitor and quantify low-statured rangeland vegetation where 

the proposed methodology can be feasibly adapted to the study of other understudied, 

keystone, or invasive rangeland vegetation species, ecological processes, and degradation 

processes.  The proposed study therefore provides a proof of concept that is anticipated to 

improve upon existing data collection techniques associated with ESD/STM or other 
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labor intensive site-scale rangeland monitoring systems that can utilize on demand VHR 

datasets for a rapidly changing ecosystem vital to natural and agronomic systems.  Still, 

further applications in other rangeland environments are essential for the identification of 

common limitations in order to streamline techniques and continuously resolve traditional 

rangeland remote sensing limitations caused by low-statured rangeland plant structure. 
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APPENDIX SECTION 

 Appendix A: Detailed Study Workflow Diagram
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Appendix B: OBIA Segment Attributes 

  

PP non-PP

Feature Length (m) 0.960 0.744

Feature Compactivity 0.190 0.212

Feature Convexity 1.357 1.247

Feature Roundness 0.438 0.480

Feature Elongation 1.667 1.678

Feature Main Direction 89.687 86.871

Feature Minor Axis (m) 0.140 0.109

Feature # of Holes 0.149 0.099

Spatial Attributes
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PP non-PP

Range 37.84 37.59

Mean 130.18 127.28

Var. 216.93 212.88

Entropy -0.64 -0.64

Range 36.76 36.24

Mean 131.20 133.45

Entropy -0.64 -0.64

Range 42.55 37.95

Mean 129.29 120.96

Var. 275.45 216.16

Entropy -0.64 -0.64

Range 67.31 1861.22

Var. 676.44 6.28E+11

Entropy -0.65 -0.65

Range 5.79 1800.67

Entropy -0.94 -0.85

Range 5.47 1801.50

Mean 67.52 -247.40

Var. 4.99 6.28E+11

Entropy -0.58 -0.59

Mean 155.72 112.65

Var. 2169.04 516.63

Range 0.05 0.05

Mean 0.05 0.12

Entropy -0.79 -0.72

Range 0 5.61E+14

Mean 0 0

Var. 0 0

Entropy -0.66 -0.64

Saturation

Intensity

Green

Blue

PCA1

PCA2

PCA3

Hue

Textural Attributes

Red
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PP non-PP

SD 11.38 10.01

Min. 105.03 109.84

Max. 154.41 147.73

SD 11.06 9.66

Min. 106.69 116.59

Max. 154.70 153.15

Mean 128.98 121.96

SD 12.79 10.11

Min. 101.14 103.36

Mean 223.75 220.70

SD 20.19 17.09

Min. 179.74 189.25

Max. 267.39 253.95

Mean 61.04 67.69

SD 2.12 1.33

Max. 65.71 70.20

SD 1.80 1.35

Min. 63.65 67.37

Mean 155.62 112.99

SD 34.93 10.81

Min. 94.44 94.84

Max. 228.39 133.42

Mean 0.05 0.12

Min. 0.02 0.09

Max. 0.10 0.15

Mean 0 0

SD 0 0

Min. 0 0

Max. 0 0

Saturation

Intensity

*8-bit

Green

Blue

PCA1

PCA2

PCA3

Hue

Spectral Attributes*

Red
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