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Abstract

The main contribution of this paper is the precise numerical identification of a model set
of parameters for a floating object/container system which admits three distinct equilibrium
configurations, two of which are local energy minimizers among pseudo-equilibrium configura-
tions. This numerical result strongly suggests the existence of a physical system in which an
object can be observed to float in a centrally symmetric position in two geometrically distinct
configurations, i.e., at two different heights. The numerical calculation relies on a fairly involved
theoretical framework which can also be used to show uniqueness of equilibrium configurations
for other parameters. Thus, the general dependence of observable stable equilibria on the phys-
ical parameters of the problem is both shown to be much more complicated than originally
anticipated and likely to depend on additional information, e.g., the initial positioning of the
floating object. In addition to providing a basis for numerical results, the theoretical framework
developed here leads to two rigorous general results. The first is the existence of at least one
equilibrium configuration when the density of the floating object is less than that of the liquid
bath. The second is that all such equilibrium interfaces must project simply onto the base of
the container.

Keywords. Floating objects, capillarity

Mathematics subject classification. 76B45

1 Introduction

Archimedes gave, perhaps, the earliest quantitatively precise model description of a physical sys-
tem in which an object is deposited into a liquid bath (and either floats or sinks to the bottom).
For a convex object which is not neutrally buoyant with respect to the liquid, Archimedes’ model
determines a unique floating (or sinking) configuration depending only on the ratio of the physical
density of the object to that of the liquid.

Various scientists have observed the floating of objects with density greater than the density
of the liquid bath into which they are deposited. That this can happen with a spherical object
was demonstrated in [McC09] and/or [MT13] and also see [McC07]. Bhatnagar and Finn [BF06]
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seem to have been the first to prove such a situation arises in an idealized two-dimensional model
involving an unbounded liquid bath, but also taking account of the effects of surface tension and
wetting energy. The theoretical results of [MT13] show that a similar situation prevails in two and
three-dimensional models and with laterally bounded containers. These results are in contradiction
to Archimedes’ assertions. While Archimedes’ theory predicts that such an object sinks to the
bottom, these latter results, which take account of surface tension and wetting energy, not only
include a stable equilibrium with the object at the bottom, but they also feature an additional
stable equilibrium with the object protruding above the liquid of the bath.

We also showed in [MT13] that at least two equilibria can be expected, one a local minimum
for energy and another a local maximum among a one parameter family of pseudo-equilibria, which
will be defined below. Numerical calculations described in [Tre16] also suggested that this situation
prevails with some generality as the physical parameters are varied.

We emphasize that most of the work described above focused on the case of an object with density
greater than that of the liquid and the analysis of how and why such an object can float at all. In this
paper we focus on the complementary case where the density of the object is less than the density of
the liquid and floating upon the surface of the liquid is very much to be expected. We anticipated that
the situation would be somewhat similar, or perhaps simpler in some cases where it might be possible
to show the uniqueness of a single equilibrium (minimum). In fact, the recent thesis of Hanzhe Chen
[Che16] shows there can be at most two equilibria in the two-dimensional case with an unbounded
bath. Much to our surprise, even in the simplest two-dimensional case (neglecting wetting energy)
with a laterally bounded container, there can apparently be three distinct equilibrium configurations
with two of them local minima among the pseudo-equilibria. We now describe such an example,
amidst a general framework.

An equilibrium configuration for a circular object floating symmetrically in a laterally bounded
container is indicated in Figure 1. The object (or its cross-section) is modeled by

B = Ba(0, d) = {(x, z) ∈ R
2 : x2 + (z − d)2 ≤ a2}

where a > 0 is given and d > 0 is to be determined. The configuration includes an interface S
consisting of two curves symmetric with respect to x = 0. Equilibrium configurations are critical for
the functional

E = σLength(S)− σβLength(W)− σβwLength(Ww) +

∫

A

ρℓgz +

∫

B

ρgz

subject to the constraint
Area(A) = A

where σ > 0 is a (surface) tension, β = βb and βw are adhesion coefficients associated with the ball
and the wall respectively, W = Wb and Ww are the “wetted” portions of B and the container, ρ = ρb
and ρℓ are densities in B and A respectively, and g is a gravitational constant. The problem may
be interpreted to model an infinite log floating in an infinite trough or a long thin needle floating
similarly on a liquid surface. Similar configurations for a floating circular object in a laterally infinite
bath have been considered in a series of papers [BF06, Fin08, Fin10, Fin09, Fin11, FV09a, FV09b,
FS09] of Finn and his coauthors as well as in a paper by Kemp and Siegel [KS11]. The significant
complication introduced here is the presence of the laterally finite container and the associated
volume constraint.
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Figure 1: Floating circular object with azimuthal angle determined by triple contact point.

Our container is assumed to be determined by two “walls” at x = ±R with R > a and a “floor”
at z = 0, and it is assumed to contain enough liquid so that B may float without hitting the bottom.

In [MT13] we introduced the azimuthal angle φ̄ to describe the location of the contact point on
the ball and gave the following necessary conditions for equilibrium:

• The curvature k of S is an affine function of the vertical position on the interface

k = κz − λ

where κ = ρℓg/σ is the capillary constant.

• The interface meets the floating object at an angle satisfying cos γ = β.

• The interface meets the wall at an angle satisfying cos γw = βw.

• The remaining parameters must satisfy the relation

2φ̄+ sin(2φ̄) +
4

κa2
sin(φ̄− γ) +

4

κa
(κd− λ) sin φ̄ = 2π

(

1− ρ

ρℓ

)

, (1)

which expresses a balance of buoyancy/pressure, weight, and capillary forces.

A configuration satisfying the first three conditions is called a pseudo-equilibrium. It is significant
that the outer contact angle γw and the volume constraint appears only implicitly in the fourth
condition through the unknowns λ and d. Some consequences of this observation will be important
for us below. We turn our attention to the case 0 < ρ < ρℓ and prove the following result.

Theorem 1 If 0 < ρ < ρℓ (and A large enough) there exists at least one equilibrium configuration
satisfying the four necessary conditions listed above.
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2 Approach

In the discussion below we consider κ, a, R, A, γ, γw, and ρ/ρℓ fixed and given. The problem then
reduces to finding the unknowns φ̄, d and λ where φ̄ ∈ [0, π] is the azimuthal angle determining the
contact point (a sin φ̄, d + a cos φ̄) at which the right interface meets the right half of the surface of
B. The volume constraint becomes

A = 2

[

sin φ̄

(

d− λ

κ
+

1

2
cos φ̄

)

+
1

κ

(

cos γw − sin(γ − φ̄) + λR
)

]

+ φ̄− π.

Using this relation, λ may be expressed in terms of the two unknowns φ̄ and d, or d may be expressed
in terms of λ and φ̄ as long as sin φ̄ 6= 0. In principle our treatment includes the extremal cases when
φ̄ = 0, π, though these two possibilities sometimes involve additional details and especially limits
as φ̄ tends to the endpoints of the interval (0, π). We have generally omitted these straightforward
details.

In the sequel, we focus on the initial inclination angle θ = γ − φ̄ of the interface where it meets
∂B. It was observed in [MT13] that the force balance condition (1) may be rewritten as

2φ̄− sin(2φ̄) +
4

κa2
sin(φ̄ − γ) +

4k̄

κa
sin φ̄ = 2π

(

1− ρ

ρℓ

)

, (2)

where k̄ is the curvature of the interface at the contact point. (Notice, when comparing (1) with (2),
that the second term has changed sign.) Here we observe that if the value of k̄ can be determined
directly, along with φ̄, then we have a second relation k̄ = κ(d+ a cos φ̄)− λ from which either d or
λ may be determined.

In this way, our problem is effectively reduced to determining the values of k̄ and φ̄ or, equiv-
alently, the values of θ and ζ = k̄/κ the normalized starting height for a geometric initial value
problem we now describe.

3 Solution families

In order to organize the possible equilibrium interfaces, we temporarily forget about the relation
θ = γ − φ̄ and simply consider θ ∈ [−π, π] fixed. We also shift coordinates horizontally so that the
right contact point (a sin φ̄, d + a cos φ̄) is taken to have first coordinate x = 0. We shift vertically,
furthermore, so the Euler-Lagrange equation becomes

k = κz.

As a consequence, we may assume the right portion of S is determined (up to a translation) as a
solution of the initial value problem







ẋ = cosψ, x(0) = 0
ż = sinψ, z(0) = ζ

ψ̇ = κz, ψ(0) = θ.
(3)

Solutions of this problem are known to be defined for all s > 0 and are real analytic in the independent
parameter s, which denotes arclength along the parameterized curve (x(s), z(s)). Solutions to the
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problem also depend real analytically on the initial inclination angle θ and the initial starting
height ζ. We will use a semicolon to indicate the secondary dependence on the initial values:
x = x(s) = x(s; θ, ζ).

Every solution of (3) can be identified by a point (θ, ζ, s∗) with (θ, ζ) in the phase plane for
the decoupled system involving z and ψ which is indicated in Figure 2. The value s∗ > 0 specifies

ψ

z

ψ = −π ψ = π

Figure 2: The phase plane for ψ and z. The shaded regions are bounded by portions of the curves

±zπ/2 = ±
√

−2 cosψ/κ on which the conserved quantity takes the value 0 and represent initial values which

will be shown inadmissible below. The flow along the level curves of h = κz2/2 + cosψ is to the right for

z > 0 and to the left for z < 0.

a particular domain [0, s∗] upon which we consider the solution. The flow lines in Figure 2 are
determined by the Hamiltonian/conserved quantity

h(ψ, z) =
κz2

2
+ cosψ. (4)

In order to organize the solutions appropriate to model interfaces as indicated in Figure 1, we
impose the following conditions on the solutions we consider:

1. The geometric interface curve parameterized by

α(s) = (x(s), z(s)), 0 ≤ s ≤ s∗

is an embedded curve.

2. The interface meets the closed right half of ∂B at x(0) = 0. Accordingly, we may assume

−π ≤ θ ≤ π.

In fact, since θ = γ − φ̄, we have the stricter condition

γ − π ≤ θ ≤ γ, (5)

though this involves φ̄ which will be suppressed in our initial analysis.
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3. The interface is contained on the right:

x(s∗) > 0 and x(s) < x(s∗), 0 ≤ s < s∗.

The condition x(s) ≤ x(s∗), s ∈ (0, s∗) implies there is some k ∈ Z such that −π/2 ≤
ψ(s∗) + 2πk ≤ π/2. The next condition requires that the integer k = 0.

4. The interface meets the right wall with the appropriate orientation:

−π/2 ≤ ψ(s∗) ≤ π/2.

This rules out configurations like that indicated in Figure 3(left).

Figure 3: Formal interfaces which are non-physical. The interface on the left is not oriented correctly to

contain a volume of liquid extending from the ball to the floor of the container. The interface on the right

has two components which are not globally embedded.

We give an initial analysis of solutions based on these four conditions in Section 4 and denote the
collection of all solutions satisfying them by S0. A secondary analysis in Section 6 is based on the
next three conditions which take explicit account of the azimuthal angle φ̄ and the contact angles γ
and γw.

5. The interface meets the right wall at the appropriate distance to the right:

x(s∗) = r = R− a sin φ̄.

6. The interface meets the right wall at the correct angle:

ψ(s∗) = π/2− γw.

7. Solutions do not extend to the left past the center of B:

x(s) > −a sin φ̄, 0 < s ≤ s∗.

This condition rules out interfaces like that shown in Figure 3(right).
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4 Initial classification of solutions

We seek to separate the phase plane into the projection of an initial potential solution set

S0 = {(θ, ζ, s∗) : conditions 1− 4 hold}

and a complementary region corresponding to excluded solutions. We begin by excluding certain
regions of the phase plane.

First note that the periodic orbit passing through (−π/2, 0) is a portion of the level curve
h(ψ, z) = 0. Consequently, if −π ≤ θ ≤ −π/2 and ζ <

√

−2 cos θ/κ, then it is readily verified that

ψ(s) < −π/2 for all s > 0, and condition 4 cannot be satisfied. The borderline case ζ =
√

−2 cos θ/κ
can also be excluded since x(s) ≤ 0 whenever ψ(s) = −π/2 in violation of the combination of
conditions 3 and 4. Similar considerations apply to a symmetric region with π/2 ≤ θ ≤ π. Thus, we
exclude

{

(θ, ζ) : π/2 ≤ |θ| ≤ π, sign(θ)ζ ≥ −
√

−2 cos θ/κ
}

as indicated in Figure 2.
Returning to θ ∈ (−π,−π/2), let us set zπ/2 :=

√

−2 cos θ/κ and consider ζ ∈ (zπ/2,
√

2(1− cos θ)/κ).

Note that ζ = z∞ :=
√

2(1− cos θ)/κ corresponds to the singular solution with h(ψ, z) = 1 indicated
in Figure 6. Each corresponding solution of (3) with zπ/2 < ζ < z∞ will have

1. a first vertical point at some sa > 0,

2. a first inflection at some sb > sa, and

3. a second vertical point at some (unique) sc > sb.

sc

sa

ψ

z

sa

sc
sb

x

z

sb

ψ1

Figure 4: A solution which is a potential interface.

See Figure 4. For 0 ≤ s ≤ sb, we have ψ̇ = κz > 0 and, integrating the first equation in (3), we find

x(s) =

∫

[0,s]

cosψ =

∫ ψ

0

cos t

κz
dt.

7



Solving κz2/2 + cosψ = h = κζ2/2 + cos θ for z, we find

x(s) =
1√
2κ

∫ ψ

θ

cos t√
h− cos t

dt.

Extending the same reasoning beyond s = sb, where ψ is decreasing with s, we obtain

x(sc) =
1√
2κ

[

∫ ψb

θ

cos t√
h− cos t

dt+

∫ ψb

−π/2

cos t√
h− cos t

dt

]

=
1√
2κ

[

∫ −π/2

θ

cos t√
h− cos t

dt+ 2

∫ ψb

−π/2

cos t√
h− cos t

dt

]

(6)

where ψb = ψmax ∈ (−π/2, 0) is determined by

cosψmax = h =
κζ2

2
+ cos θ.

For reference, we observe that an integral of the form

I =

∫ ψmax

ψ

cos t√
h− cos t

dt,

where cosψmax = h as above, may be expressed as

I = −2 cotψ
√

h− cosψ + 2

∫ ψmax

ψ

csc2 t
√
h− cos t dt.

Consequently,

∂I

∂ζ
= −κζ

[

cotψ√
h− cosψ

+

∫ ψmax

ψ

csc2 t√
h− cos t

dt

]

.

In particular,

∂

∂ζ
x(sc) =

κζ√
2κ

[

−1

2

∫ −π/2

θ

cos t

(h− cos t)3/2
dt+ 4

∫ ψb

−π/2

csc2 t√
h− cos t

dt

]

> 0.

We are now in a position to state an initial exclusion result:

Theorem 2 For each fixed θ ∈ [−π,−π/2), there is a unique zr > zπ/2 > 0 such that the solution
of (3) with initial value ζ = zr satisfies

x(sc; zr) = 0.

Proof: Using expression (6) for x(sc), we find

lim
ζցzπ/2

x(sc; ζ) =
1√
2κ

∫ −π/2

θ

cos t√
h− cos t

dt < 0.
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z

ψ

zr

Figure 5: The phase plane showing zr and the associated excluded regions.

On the other hand,
lim
ζրz∞

x(sc; ζ) = +∞,

and the existence and uniqueness of zr follows from the monotonicity of x(sc, ζ) as a function of ζ.
�

For solutions corresponding to ζ > z∞, there are no inflections, but we obtain a second vertical
point with

x =
1√
2κ

∫ π/2

θ

cos t√
h− cos t

dt.

The monotonicity reverses with

∂

∂ζ
x = − κζ

2
√
2κ

∫ π/2

θ

cos t

(h− cos t)3/2
dt < 0,

and
lim
ζցz∞

x = +∞ with lim
ζր+∞

x = 0.

It is easy to check that all points in the strip {(θ, ζ) : −π/2 < θ < π/2} correspond to solutions in
S0, and a symmetric situation prevails for π/2 ≤ θ ≤ π. Consequently, we obtain the following.

Corollary 1 The projection of S0 into the phase plane is precisely

{(θ, ζ) : −π/2 < θ < π/2} ∪ {(θ, ζ) : π/2 ≤ |θ| ≤ π, sign(θ)ζ < −zr(−|θ|)}.

In particular, S0 is not empty.

The function zr = zr(θ) determines a positive, decreasing, concave graph on [−π,−π/2] with
zr(−π/2) = 0 and zr(−π) .

= 1.71019 as indicated in Figure 5, though the only information needed
for the discussion to follow is that zr ≥ zπ/2 with equality only for θ = −π/2.
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Corresponding to each point (θ, ζ) in the projection of S0 given in Corollary 1, the value

smax = smax(θ, ζ) = sup{s∗ : (θ, ζ, s∗) ∈ S0}

is a well-defined, positive extended real number. For example, if −π ≤ θ ≤ −π/2 and zr < ζ ≤
z∞ =

√

2(1− cos θ)/2, then the situation of Figure 4 prevails with vertical points at s = sa and sc
and an inflection at s = sb. It will be observed that sc = smax is the largest arclength s∗ for which
(θ, ζ, s∗) ∈ S0. In fact, if s∗ > sc, then condition 4 (that ψ(s∗) ≥ −π/2) implies the parameterized
orbit (ψ(s), z(s)) must complete an entire cycle in phase space. Let us denote the arclength of this
cycle by s̄. In particular, α(sa + s̄) must be a vertical point in α[0, s∗]. If α[0, s∗] is to be embedded
in accord with condition 1, then α(sa + s̄) = α(sa)− δe1 for some δ > 0. That is, α(sa+ s̄) must be
a left translation of α(sa). But then α(s∗) = α(s∗ − s̄)− δe1 as well. Since s∗ − s̄ ≥ sa+ s̄− s̄ = sa,
this means α(s∗) is also a left translation of another point in α[0, s∗]. This violates condition 3 that
α(s∗) must be the point farthest to the right.

Similar case by case considerations justify the following:

(i) Along the decreasing curve ζ = −sign(θ)z∞ = −sign(θ)
√

2(1− cos θ)/κ, solutions are portions
of the singular solution1 indicated in Figure 6. Consequently, smax = +∞ and the maximum
interval of definition is [0,∞).

z

x

Figure 6: The soliton solution corresponding to h = 1.

(ii) If ζ 6= −sign(θ)z∞, then smax is finite valued and determines a finite maximum interval of
definition [0, smax].

1Wente [Wen06, Wen11] (among others) refers to this as the soliton solution, but it is also known as the syntractrix
of Poleni, who considered it in an equivalent form in 1729; see [Lev08]. Bhatnagar and Finn [BF06] also study this
particular solution in the case of a laterally unbounded container.
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(iii) If ζ < −sign(θ)z∞, then ψ(smax) = −π/2.

(iv) If ζ > −sign(θ)z∞, then ψ(smax) = π/2.

(v) One implication of conditions 1-4 is that for every solution in S0, we have

−π ≤ ψ(s) ≤ π, 0 ≤ s ≤ s∗.

5 Secondary exclusions

In view of the monotonicity inequalities and limits of x(s∗) = x(smax) described in the previous
section, we obtain the following result concerning the behavior of solutions corresponding to points
in S0 at a fixed distance r to the right of the contact point.

Theorem 3 For each r > 0, there are well defined finite values z < z∞ < z̄ with z = z(r) = z(θ, r)
determined by the conditions

x(smax(z); z) = r and ψ(smax(z); z) = −π/2,

and z̄ = z̄(r) = z̄(θ, r) determined by the conditions

x(smax(z̄); z̄) = r and ψ(smax(z̄); z̄) = π/2.

Furthermore, given θ and r > 0 fixed, the condition x(smax; ζ) ≥ r holds precisely for z ≤ ζ ≤ z̄.

x
r

z̄

z

Figure 7: Monotonicity of ending contact angles and unique solution in S2(r, γw) for a given θ and r > 0.

The vertical dashed line represents x = r. The lowest solution starts at height z, and the highest one starts

at height z̄.

In view of Theorem 3, which is illustrated in Figure 7, we set

S1(r) = {(θ, ζ, s∗) ∈ S0 : z(θ, r) ≤ ζ ≤ z̄(θ, r)}.
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Though we have not introduced the role of φ̄ and the other suppressed parameters explicitly, these
results have obvious implications for condition 5. In particular, the following is now immediate from
the properties of the inclination angle for solutions with z < ζ < z̄:

Corollary 2 For each r > 0, θ ∈ [−π/2, π/2], and ζ ∈ [z(r), z̄(r)], there is a unique s1 = s1(ζ) =
s1(ζ; θ, r) ≤ smax(ζ) for which

x(s1; ζ) = r. (7)

Notice that s1 defines a particular ending arclength value for s∗. In particular, Conditions 1-7 may
now be considered with s∗ = s1. It follows from Theorem 3 and continuity, that for any θ and r and
any given angle ψ∗ ∈ [−π/2, π/2], there is at least one ζ between z and z̄ for which ψ(s1(ζ); ζ) = ψ∗.
Note the implications of this assertion for Condition 6. Each point (θ, ζ, s1(ζ)) may be considered
to correspond to a pseudo-equilibrium, though it may be that condition 7 is violated by such a
configuration. See Figure 3(right). Uniqueness is not immediately obvious but follows from results
in [McC15]. Numerically, the following stronger statement also implies uniqueness and stability for
numerical calculations. This result is also illustrated in Figure 7.

Numerical result 1 For θ and r fixed s1 = s1(ζ) determined by (7),

∂

∂ζ
ψ(s1(ζ); ζ) > 0, z < ζ < z̄.

Given the monotonicity implied by this result, or as found in [McC15], we have a unique value
z1 = z1(θ, r) for which

ψ(s1(z1); θ, z1) =
π

2
− γw. (8)

In the discussion above we have assumed r is fixed, and θ varies independently of φ̄. In the next
section, we will have to take account of the fact that as φ̄ varies, the distance to be spanned satisfies
r = R − a sin(φ̄). In addition, we have the relation γ − θ = φ̄. As a consequence, there is a choice
of parameter in organizing the appropriate family of solutions. We may use as a single parameter
either the azimuthal angle φ̄ or the initial inclination angle θ. The former has the advantage of
having clear relevance to the contact point on the ball. The latter is convenient due to the role it
plays in the phase diagram.

6 Secondary analysis of the geometry of solutions

We now address the additional conditions 5-7 in detail. Technically, this merely involves replacing r
in the discussion above with the value r = R− a sin(φ̄) = R− a sin(γ − θ). Analytically, the ending
arclength s∗ = s1 and the starting height ζ = z1 will be replaced with distinct alternatives. To be
precise, we set

s2(ζ, θ) = s1(ζ; θ,R − a sin(γ − θ)) and zG(θ) = z1(θ,R − a sin(γ − θ)).

In addition, we define the one parameter family of geometrically admissible solutions by

S2 = {(θ, zG(θ), s2(zG(θ), θ)) ∈ S1 : −π ≤ θ ≤ π}.
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In some cases, the graph of the function zG = zG(θ) in phase space may be plotted numerically
as indicated in Figures 8, 9, and 10. In certain cases the qualitative behavior of zG can be rigorously
determined leading to conclusions about the collection of equilibria among the pseudo-equilibria. If
it can be shown, for example, that zG is decreasing, then there is a unique equilibrium. We will
indicate how these conclusions can be obtained below.

Note that conditions 5 and 6 are automatically incorporated in S2. Condition 7 is somewhat
more complicated and arises because we wish to avoid solutions which extend to the left past the

zG

γ − π γ

zℓ

Figure 8: Restriction curves ζ = zr and ζ = zℓ and solution curve ζ = zG.

center of B. Such solutions necessarily intersect the left component of S and lead to a nonphysical
immersion as indicated in Figure 3(right).

In order to understand the restriction, it will be necessary to also impose the more restrictive
condition on the beginning angle (5)

γ − π ≤ θ ≤ γ

which may be easily incorporated in any of the solution sets Sj considered above or their projections
into phase space. For example, this inequality is represented by the vertical dashed lines in Figure 8
where we have taken γ = π/4. Let us, therefore, denote the presence of these bounds on θ in Sj by
S̄j for j = 0, 1, 2.

Then, in abstract terms, we can simply set

S3(a,R, φ̄, γ, γw) = {(θ, ζ, s2) ∈ S̄2(R− a sin φ̄, γw) : x(s) > −a sin φ̄, s > 0}.

For φ̄ very close to π which amounts to the same thing as θ being very close to the left boundary
θ = γ − φ̄, the condition determining the limits for this exclusion is

x(sa; ζ) = −a sin φ̄ (9)

where sa is the arclength corresponding to the first vertical point. Starting with θ < −π/2 as usual,
this first vertical point will be well defined for every solution under consideration and, in fact, the
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corresponding ζ = zℓ(θ) tends to infinity as θ ց γ − π assuming, of course, that γ − π < −π/2. In
the case we have described (9) becomes

1√
2κ

∫ −π/2

θ

cos t√
h− cos t

dt = −a sin φ̄,

and the monotonicity guarantees both the existence and uniqueness of a value zℓ = zℓ(θ) for which
solutions with ζ ≤ zℓ are inadmissible and solutions with ζ > zℓ satisfy all geometric conditions of
the problem. See Figure 8.

Numerical result 2 If γ < π/2, there is a well-defined interval φ̄1 < φ̄ < π such that for each
θ ∈ (γ − π, γ − φ̄1) there is a unique value z = zℓ(θ), decreasing in θ and tending to infinity at the
left such that

S3(a,R, φ̄, γ, γw) ⊂ {(θ, ζ, s2) : zℓ < ζ}.
If γ > π/2, this restriction on the basic condition ζ = zG is vacuous on the left of the phase diagram
where θ < −π/2 but has a symmetric manifestation which will produce a nontrivial restriction for
θ > π/2. In the particular special case γ = π/2, these considerations concerning zℓ play no role at
all. Typical behavior is indicated in Figure 8.

7 Force balance

Taking account of our remarks following (2) and noting that the curvature k̄ is given in our translated
coordinates simply by ζ, we obtain another fundamental condition on admissible equilibria:

Theorem 4 Any equilibrium configuration must satisfy

ζ = zF =
κa

4 sin φ̄

{

2π

(

1− ρ

ρℓ

)

+ sin
(

2φ̄
)

− 2φ̄− 4

κa2
sin

(

φ̄− γ
)

}

(10)

which represents an increasing function of θ in the phase plane with

lim
θցγ−π

zF (θ) = −∞ and lim
θրγ

zF (θ) = +∞

as long as 0 ≤ ρ/ρℓ < 1 and 0 < γ < π.

Proof: Since θ = γ − φ̄ it suffices to show

dzF

dφ̄
=

1

2a sin2 φ̄

{

−2 sinγ + κa2
[

φ̄ cos φ̄− sin φ̄
(

1 + sin2 φ̄
)

− π

(

1− ρ

ρℓ

)

cos φ̄

]}

is always negative. To see this, we consider

f(φ̄, P ) = 2a sin2 φ̄
dzF

dφ̄

as a function of two variables on [0, π]× [0, 1] where P = ρ/ρℓ. Calculating the partial derivatives,
we find

∂f

∂P
= κa2π cos φ̄
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and
∂f

∂φ̄
= κa2

[

cos φ̄− φ̄ sin φ̄− cos φ̄(1 + sin2 φ̄)− 2 sin2 φ̄ cos φ̄+ π(1 − P ) sin φ̄
]

.

It follows that there is a unique interior critical point at (φ̄, P ) = (π/2, 1/2). The value at this point
is

f(π/2, 1/2) = −2 sin γ − 2κa2 < 0.

Restricting the partial derivatives to the edges of the rectangle [0, π] × [0, 1], we find all remaining
extreme values must be in the corners. These values

f(π, 0) = −2 sin γ

f(0, 0) = −2 sin γ − κa2π

f(π, 1) = −2 sin γ − κa2π

f(0, 1) = −2 sin γ,

are all strictly negative unless γ = 0 or γ = π. �

zG
zF

γγγ − π γ − π

Figure 9: The geometric curve zG and the force balance curve zF in phase space.

Existence follows from the observation that when γ ≤ π/2

zF (−π/2) < 0 and lim
θրγ

zF (θ) = +∞,

and when γ ≥ π/2
lim

θցγ−π
zF (θ) = −∞, and zF (π/2) > 0.

Therefore the restrictions of zr and zℓ on solutions (which only effect the region π/2 < |ψ| <
π) cannot prevent the the graphs of zG and zF from intersecting in a point corresponding to an
admissible equilibrium solution. See Figure 9. Thus we have proven Theorem 1.

This discussion has also the surprising corollary that there are no equilibrium interfaces which
are essentially parametric. Intersection points between −π/2 and π/2 lead to equilibrium interfaces
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that are graphs. The exclusions we have obtained force all the intersection points to be in this range.
All equilibrium interfaces are graphs.

Theorem 5 If 0 < ρ < ρℓ (and A large enough), there exists an equilibrium configuration satisfying
the necessary conditions listed above. Additionally, all equilibrium interfaces are graphs.

Finally, in many cases we have numerically verified that the “geometric curve” in phase space
determined by zG = zG(θ) is decreasing. Combined with the proof that the “force balance curve”
determined by zF = zF (θ) is increasing this implies that no more than one such solution may exist
when 0 < ρ/ρℓ < 1. However, the results in the next section show that this is not true in general. We
leave the determination of precise physical conditions that lead to unique centrally located equilibria
for another work.

8 An example of non uniqueness

Here we describe the main example. We assume homogeneous boundary conditions, that is, γ =
γw = π/2. In this special case, condition 7 is never violated for 0 < φ̄ < π and plays no essential
role. We have the following system parametrized by arclength







ẋ = cosψ, x(0) = a cos(θ)
ż = sinψ, u(0) = ζ

ψ̇ = κz, ψ(0) = θ.
(11)

When there are no inflection points along the profile curve this is equivalent to the following ODE
parametrized by inclination angle

{

dx
dψ = − cosψ√

ζ2+2(cos θ−cosψ)

x(θ) = a cos θ,
(12)

for ψ starting at θ and decreasing to 0. This fact follows from the conserved quantity

1

2
z2 + cosψ = q =

1

2
ζ2 + cos θ, (13)

which implies
z = −

√

ζ2 + 2(cos θ − cosψ). (14)

We have taken this sign convention as the equilibria obtained below have negative interface height.
Next, we prescribe the container width of 2R, with R = 4, and we choose a ball with radius

99.9% of R, or a = 3.996. For each θ ∈ (0, π/2) we solve the boundary value problem of determining
a value of ζ in (12) so that x(0) = R. We employ a shooting method and provide an initial guess
of −1.2

√

2(1− cos(θ)), which is a scaled value of the height of the soliton solution at that θ. With
this starting guess, we use a zero finding algorithm implemented as fzero in Matlab to determine
ζ = zG = zG(θ) that achieves the condition x(0) = R within tolerance.

Next, we compute

ζ = zF =
κa

4 sin φ̄

{

2π

(

1− ρ

ρℓ

)

+ sin
(

2φ̄
)

− 2φ̄− 4

κa2
sin

(

φ̄− γ
)

}

(15)
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Figure 10: Graphs of zG and zF .

using the fact that φ̄ = π/2−θ. Here we are able to adjust the density ratio for particular examples,
and we choose ρ/ρℓ = 0.99.

Finally, we graph both zG(θ) and zF (θ), looking for intersections of the graphs. See Figure 10.
Notice there are three intersections. We use a grid with 200 values of θ and cycle through the data.
Upon finding a sign change, we used the secant method to locate the zero of (zG−zF )(θ). Of course,
much more sophisticated methods could easily be employed if more accurate values were desired.
We have located three distinct equilibria for the centrally located floating ball with these physical
parameters, and thus there is no uniqueness in this case.

In Figures 11-13 we show the right half of the symmetric configurations generated by these
distinct θ values. The two equilibria corresponding to azimuthal angle φ̄ slightly less than π/2 look
relatively similar from a distance. With magnification around the interface, however, the difference
is clearly seen, as shown in Figures 12-13.

Technically the methods we have used here do not indicate if these equilibria are local minima,
maxima, saddle points, or even stable or unstable. Nevertheless, the energy of pseudo-equilibria can
be computed and compared as well as the relative energies of actual equilibria. Thus, when we refer
to a local energy minimum or maximum, we mean with respect to pseudo-equilibria. In this case,
the energies of the pseudo-equilibria (one parameter family) are plotted in Figure 14, and we see
that two of the equilibria are local energy minima among pseudo-equilibria and the third is a local
max. Also, we can say that the equilibrium with the azimuthal angle closest to π/2 has the least
possible energy for an equilibrium and is the presumed global energy minimizer for the problem.

The really interesting possibility, however, is that it may be the case that the other local energy
minimizer among pseudo-equilibria may actually be a local energy minimizer among all configura-
tions and, thus, may be observable in a physical system. Let’s call this the “large” interface. There
is also a possibility that there is a lower energy path of configurations connecting the large interface
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Figure 11: The configuration with θ = 0.613. This ”large” inteface yields a local minimum, but has
higher energy than one of the other equilibria.
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Figure 12: The configuration with θ = 0.013, with a detailed zoom on the right. This is a local
minimum, and has the lowest possible energy of any centrally located equilibrium.
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Figure 13: The configuration with θ = 0.215, with a detailed zoom on the right. This is a local
maximum of energy.
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Figure 14: The energy as a function of θ.

to the global min. Such a path does not exist among pseudo-equilibria.
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