
PERFORMANCE COMPARISON OF 11-IREE TREE-BASED MUTIJAL EXCLUSION

ALGORITHMS IN A SIMULATED DISTRIBUlED COMPUTING ENVIRONMENT

THESIS

Presented to the Graduate Council of
Texas State University-San Marcos

in Partial Fulfillment of
the Requirements

for the Degree

Master of SCIENCE

by

Yunhong Jiang, B.A.

San Marcos, Texas

May 2004

COPYRIGHT

By

Yunhong Jiang

2004

Acknowledgments

First, I deeply appreciate my thesis advisor Dr. Furman Haddix for

devoting so much time and effort to guide me to accomplish my thesis. Without

his encouragement and support, this thesis would not be finished. Also, I would

like to thank Dr. Jawad Drissi and Dr. Xiao Chen for their kindness and support

on my thesis work. Finally, I want to thank my family for their love and support to

me.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

ABSTRACT .. X

CHAPTER 1 INTRODUCTION

1. 1 Motivation o••············••a••······""····················"'·"·"···········"··········••o•ococooooo,coo 1

1.2 Contribution ···•a••········ 2

1.3 Organization ... 3

CHAPTER 2 DISTRIBUTED SYSTEM

2. 1 Definition of Distributed Systems .. 4

2.2 Characteristics of Distributed Systems 4

2.3 Advantage of Distributed System ... 5

CHAPTER 3 DYNAMIC-TREE READ/WRITE-LOCKS

3.1 Introduction .. 7

3.2 Algorithm•...•... 10

3.3 Protocol with Application ... 15

V

CHAPTER 4 DAG-BASED ALGORITHM

4.1 Introduction ···••a••······························· 17

4.2 Algorithm ... 20

4.3 Protocol with Application ... 21

CHAPTER 5 TREE-BASED MUTUAL EXCLUSION WITH FAIRNESS

5.1 Introduction ... 22

5.2 Algorithm ... 22

5.2.1 Application (Leaf) Algorithm .. 24

5.2.2 Root Arbiter Algorithm 7 ••••••••••••••••••••••••• 25

5.2.3 Branch Arbiter Algorithm ··••so••·········""····"""············••oo••·· .. ··""'·· 26

5.2.4 Algorithm Details ... 28

5.3 Protocol with Application ua ... ••··· 31

CHAPTER 6 TOKEN-BASED ALGORITHM IMPLEMENTATION

6.1 Implementation Overview .. 32

6.1.1 File View.. 32

6.1.2 Class View .. 33

6.2 Implementation Details ... 34

6.2.1 Token Server ... 34

6.2.2 Tree Token .. 35

CHAPTER 7 APPLICATION IMPLEMENTATION

7 .1 Application Description ... 37

7 .2 Implementation Overview .. 39

vi

7 .2.1 File View .. 39

7.2.2 ~lass View ... 39

7.3 Implementation Details ... 40

7.3.1 Token Server ... 40

CHAPTER 8 PERFORMANCE COMPARISON

8.1 Token Waiting Time Comparison .. 42

8.1.1 Simulating Three Terminals .. 42

8.1.2 Simulating Four Terminals aa••···················--················ ... 44

8.2 Total Execution Time Comparison .. 45

8.2.1 Simulating Three Terminals ·········••co•oo••·················""············· 45

8.2.2 Simulating Four Terminals .. 47

Chapter 9 CONCLUSION AND FUTURE WORK ... 49

APPENDICES•..••... 50

REFERENCE ... 109

vii

LIST OF TABLES

Table 5.1 Possible States for Application ... 25

Table 5.2 Some Example States of the Root Arbiter with Tow Children 26

Table 8.1 Processes Average Waiting Time m••·······••n••························ 43

Table 8.2 Processes Average Waiting Time .. 45

Table 8.3 Processes Total Execution Time ······•• ■ c ■••·· 46

Table 8.4 Processes Total Execution Time ... 47

viii

UST OF FIGURES

Figure 3.1 Simple Example ... 9

Figure 4.1 Comparison of Raymond and DAG-based Algorithm 17

Figure 4.2 Topology .. 18

Figure 4.3 Example .. 19

Figure 5.1 Arbiters with Shared Requests m••········••m••···················23

Figure 5.2 State Transition Diagram for Grant ... 24

Figure 5.3 State Transition Diagram for Arbiter Request m••······--••ocm•••m••···27

Figure 5.4 Variable Definition ··········"··"····28

Figure 5.5 Application Algorithm ... 28

Figure 5.6 Root Arbiter Algorithm oeo••········•"a ■ oaaaa ■ -••············••n•••ocm••··········29

Figure 5.7 Branch Arbiter Algorithm ················••n••··••m ■ n••····"""·"·· .. ·················30

Figure 7 .1 Examples of Metrics•.....................•...........•.•...................... 38

Figure 7 .2 Example of the contents in each matrix•............. .,, 38

Figure 7 .3 Server and Client Hosts ... 40

Figure 8.1 Token Average Waiting Time Comparisons 43

Figure 8.2 Total Execution Time Comparisons ... 46

ix

ABSTRACT

PERFORMANCE COMPARISON OF 11-IREE TREE-BASED MUTUAL EXCLUSION

ALGORllHMS IN A SIMULATED DIS1RIBU1ED COMPUTING ENVIRONMENT

By

Yunhong Jiang, B.A.

Texas State University-San Marcos

May 2004

SUPERVISING PROFESSOR: FURMAN HADDIX

In a distributed system, the design of a mutual exclusion algorithm

consists of defining the protocols used to coordinate access to a shared object. A

distributed algorithm for mutual exclusion is characterized by (1) all processes

have an equal amount of information; (2) all processes make a decision based

on local information. Many distributed algorithms for mutual exclusion have been

proposed, but this thesis is only concerned with the token-based algorithms

which involve lower communication traffic overhead than non-token-based

algorithms.

This thesis implements three token-based algorithms and compares their

performances in terms of the average token delivery time and the total execution

time in a distributed computing environment in a simulated application.

X

CHAPTER 1 INTRODUCTION

1.1 Motivation

The mutual exclusion problem was originally considered in centralized

systems for the synchronization of exclusive access to the shared resource. In

the problem of mutual exclusion, concurrent access to a shared resource or the

critical section (CS) must be synchronized such that at any time only one process

can access the CS.

Over the past decade, many algorithms have been proposed to achieve

mutual exclusion in distributed systems. These algorithms can be divided into two

classes: token-based and non-token-based (or permission-based). In token

based algorithms, only the site holding the token can execute the critical section

and make the final decision on the next site to enter the critical section. In non

token-based algorithms, a requesting site can execute the critical section only

after it has received permission from each member of a set of sites in the system

- each site receiving a critical section request message participates in making

the final decision.

In token-based algorithms, sites are woven into a logical configuration.

These algorithms can be static or dynamic. In static algorithms, the logical

structure remains unchanged although the direction of the edges may change.

For example, in the DAG-based algorithm, sites are usually organized in a

special configuration. Requests sequentially propagate through the paths

1

/

2

between the requesting site and the site holding the token, and so does the token.

In dynamic algorithms, a dynamic logical tree is maintained such that the root is

always the site which will hold the token in the near future (i.e., the root is the last

site to get the token among the current requesting sites) when no message is

transit. The token is directly sent to the next requesting site to execute the CS,

but a request is sequentially forwarded along a virtual path to the root.

As mentioned above, many problems require that a shared object be

allocated to a number of requesting processes in mutually exclusive manner.

Hence, the mutual exclusion problem plays a vital role in the design of distributed

systems.

There is a trade-off between synchronization delay and message

complexity of distributed mutual exclusion algorithms. No single mutual exclusion

algorithm can optimize both synchronization delay and the message complexity.

The purpose of the thesis is to compare three different token-based algorithms,

namely, dynamic-tree read/write locks protocol [WaMu00], DAG-based protocol

[NeMi91] and fairness tree-based protocol [Hadd04]. Some researches have

analyzed the first two protocols, but there is no comparison work among these

three protocols.

1.2 Contribution

Contributions of this work include the following:

• Simulation of multiple processors in a local distributed computing environment

• Design of a method to create a logical tree of processes

3

• Development of a distributed server application as bench mark

• Implementation of the three token-based algorithms for mutual exclusion

between reading and writing processes

• Evaluation of the performance of the three token-based algorithms

based on waiting time and execution time

1.3 Organization

Chapter 1 of this thesis is an overall introduction to the thesis work and the

purpose of creating this thesis. Chapter 2 talks about distributed systems

generally. Chapters 3 through 5 describe the three token-based algorithms.

Chapter 6 describes how the three token-based algorithms which introduced m

the previous 3 chapters are implemented. Chapter 7 describes the application

implementation that is used to assist the simulation of three algorithms. Chapter

8 describes the measurement of performance of the three algorithms and

analyzes the results. Chapter 9 discusses the conclusions and possible future

directions of this thesis work.

CHAPTER 2 DISTRIBUTED SYSTEMS

2.1 Definition of Distributed Systems

In general, distributed system is a collection of (possibly heterogeneous)

automata whose distribution is transparent to the user so that the system

appears as one local machine. This is in contrast to the network, where the user

is aware that there are several machines, and their location, storage replication,

load balancing and functionality is not transparent. Distributed systems often use

a client-server orgarnzation

2.2 Characteristics of Distributed Systems

Some of the characteristics of distributed systems and their rationales are

the following:

1. Resource sharing allows sharing of hardware devices for convenience and

to reduce costs, and Sharing of date objects in cooperative working

environments.

2. Openness facilitates hardware extensibility, including the addition of

processors, peripherals, memory; and software extensibility, including the

addition of features and protocols.

3. Concurrency allows several processes to be executed of the same time in

a distributed system.

4

5

4. Scalability facilitates addition of system components without modification

of system and application software and the avoidance of potential

bottlenecks as a system grows.

5. Fault Tolerance enables hardware redundancy, such as standby

machines which keep checking the system and are always ready to

replace the system when it fails and software recovery, such as check

points and rollback.

6. Transparency, including access transparency, such as local and remote

user using identical operations; local transparency, such as information

objects being accessed without knowledge of their location; concurrency

transparency, such as several processes operating at the same time and

using the same information object but without interference between

processes; failure transparency, such as tasks being completed in the

presence of failure of hardware or software; migration transparency, such

as moving objects within the system without affecting users and

apptication programs; performance transparency, such as system

reconfiguring for improved performance as load varies and scaling

transparency, such as system expansion without change in system

structure.

2.3 Advantages of Distributed Systems

s·ome of the advantages of distributed systems are the following:

1. Remote access, such as user retrieval of their data when not at their

6

usual location.

2. The equipment cost reduction due to distributed systems having

fewer redundant resources than standalone installation.

3. Flexibility and configurability, for example, distributed systems include

features to improve performance and reliability. (e.g. redundant data)

4. Availability of new applications for use in distributed system

environments.

CHAPTER 3 DYNAMIC-TREE READ/WRITE-LOCKS

3.1 Introduction

The Dynamic-tree Read/Write-locks protocol was developed by Claus

Wagner and Frank Mueller [WaMu00]. This protocol uses a token-based

decentralized approach, which allows either multiple concurrent readers or a

single writer to enter their critical sections. It utilizes a dynamic structure

incorporating path compression to keep the message overhead low resulting in

an average complexity of O(log n) messages per request.

It utilizes a directed tree-like structure. The edges form a chain leading

new requests from node R to the last requester L (or the token holder if no

requests were pending). While a request is in transit, intermediate nodes set their

edges to point to the new requester R, thereby providing path compression, i.e.,

future requests will propagate directly to R from any of\the intermediate nodes.

An example is depicted in Figure 1 where a (read) request from A is sent

via B to T. The intermediate nodes B and T have edges directed at A afterwards.

If T is still engaged in the critical section with a write lock, the read request

cannot be served yet. Instead, T creates a next pointer (dashed edge) to A

indicating the next recipient of the token. Once T exits its critical section, it sends

the token to A and removes the next edge. A proceeds with its critical section

under read protection. At this time, C issues a read request that is sent to A via B

resulting in new edges from A and B to C. A responds by sending the token to C

7

8

even before exiting its critical section because both A and C may execute their

critical sections concurrently. In addition 1 A registers C as the next reader

{double-line edge) and C notes the fact that it is the last reader. At the same time

before C exits its critical section, Node B send a write request. C registers Bas

the next requester. Since C hasn't got the token yet, B must wait until C exits its

critical section. Then node D send a read request through T and A to B. Even

though B is still waiting for the token, it registers D as the next requester. Once

the token has been passed to the D, it will hold on to the token until (1) a request

from another reader arrives next or (2) all the requesters exit their critical

sections. The former case allows more concurrent readers to be served if they

arrive ahead of writers. The latter case ensures that a writer will only be served

after all the concurrent reads have completed. Once one node exits its critical

section, it sends an acknowledgement to the next it points to, which must be

received by the next node before the token may be forwarded to a writer.

-+
----►

B

/\
© ©

Points to the root via the intermediate note

Points to the next requester

Points to the next reader

Token holder

Read-Req from A

~

Token to A Read-Req from C

0 ©
Write-Req from B

~ CD

\
\
\

\

---@]

@

Read-Req from D

Figure 3.1 : Simple example

9

10

3.2 Algorithm

The protocol requires directed edges that requests travel along. It includes

a distributed next queue of pending requests whose sourc~ is the token holder

while the sink is the last requester. A distributed read queue links concurrent

readers starting at the earliest requester still engaged in a critical section via

consecutive requesters to the sink of the reader chain. Consecutive members of

the read chain are either in the critical section or have not received an

acknowledgement from their predecessor in the read chain yet. When a node

issues multiple read requests in a row, the read chain may be circular imposing

the necessity to iog pending recipients of acknowledgements in a local FIFO

queue. Requests are always handled in the order that they arrive at the tail of the

request queue, i.e., a write request always terminates a chain of readers and

subsequent read requests are served after the write. This ensures fairness and

avoids starvation.

This thesis work makes some enhancements based on the original Token

Based Read/Write-Locks protocol. In the original protocol, a queue structure is

used to store the next requester and next reader. But in the enhanced version of

this thesis work, only pointers point to the next requester and next reader instead

of the queue. It is not necessary for every requester to keep the information on all

the later requesters. To make the algorithm more efficient, every requester only

has the next requester and next reader pointers to identify the next member to

pass the token to. In this case, only the token is sent to the next requester or next

11

reader instead of sending both the next requester queue and the token. The

following variables are used in the protocol:

Boolean token= (self== start); II TRUE for current holders of the token if no process is

engage within critical section

Identifier dir = start;

Identifier next = NULL,

II pointer with changing destination for requests

propagation. It points to the last requester or; in the

absences of requests, to the token holder, creating a

distributed tree

II points to the next requester of the token in the queue of

requests. The next chain represents a distributed queue

of pending requests. next receiver of token (=> dist. Q

of unserved requesters)

Identifier next_readers = NULL, // points to the next reader in a sequence of concurrent

readers. The next readers over all nodes form a

Boolean pending_acks = TRUE;

chain of concurrent readers that will be reduced

successively by acknowledgements

II true indicates that the current node is the next

reader for another node, false means that all

subordinate concurrent readers are finished or

were existed.

Enumeration token_mode = UN DEF; II protection of critical section

(undeflreadlmultiread/write). WRITE means that a

writer is engaged in a critical section. READ if the

last reader (of the reader chain) is in a critical

section or MULTI READ if the token has already

been sent to a concurrent readers node. UNDEF in

any other case.

Enumeration next_mode = UNDEF; II protection of next receiver (undeflreadlwrite). It is

READ if next points to the next read requester or, it

is WRITE if next points to the next write requester.

Pseudo code:

PROC lock(mode) IS

IF ., token THEN

SEND request (self, mode) to dir;

dir= self,"

AWAlr (token (&expect_ack));

IF expecl_atk THEN

pending_acks = TRUE;

ENDIF;

concurrent_read:::: (mode == READ AND next_mode == READ);

IF next -:# NULL AND concurrent_read THEN

SEND token (TRUE) to next;

next_readers = next;

next= NULL,

token_mode = fvlULTIREAD,

ELSE

token_mode = mode;

ENDIF,

ELSE

token_mode = mode,

ENDIF;

token = FALSE;

END lock;

12

At initialization, all nodes point via dirto the start node, which is the token

holder. Notice that the edge of the token holder to himself is omitted in the

example since it represents a special case beyond the tree structure. A lock

request for a locally unused token can be served right away. All other requests

propagate along the dir edges while the requester clears his dir pointer since he

is the last requester waiting for the token to arrive. Once the token arrives, the

13

flag to indicate if the node should "expect an acknowledgement" is set according

to the value piggybacked with the token message and the status of pending

acknowledgements may be changed accordingly. In case of concurrent reads,

the token is fotwarded to the next reader and the mode is set to MULTIREAD.

Otherwise, the request mode is stored before entering the critical section. The

token flag is also reset during the critical section indicating that it is in use.

PROC unlock IS

IF token_mode == multiread AND pending_acks == FALSE THEN

SEND ack to next_readers;

next_readers = NULL;

ENDIF,

IF next -;cNULL AND pending_acks == FALSE THEN

SEND token(FALSE) to next,

next= NULL;

ELSE IF token_mode -;cMUL TIREAD THEN

token = TRUE;

ENDIF;

token_mode = UNDEF;

END unlock;

Upon the end of the critical section (unlock), several cases are

distinguished. The first reader sends an acknowledgement to the next reader,

thereby changing the value of acknowledgement if they have already received an

acknowledgement from their predecessor. If a next requester exists and all read

requests have completed (no pending acknowledgements), the token is sent to

the next requester. Otherwise, the token is marked as locally available unless it

was already sent to a concurrent reader at an earlier time.

PROC receive_request (sender, mode) IS

IF dir '# self THEN

SEND request (sender, mode) to dir;

ELSE

Concurrent_read = (token_mode == READ AND mode == READ);

IF (token AND pending_acks ==FALSE) OR concurrent_read THEN

SEND token(-, token) to sender;

token = FALSE;

IF concurrent_read THEN

token_mode = MUL TIREAD;

next_readers = sender,

ENDIF,

ELSE

next = sender,

token = FALSE,

next_mode = mode;

ENDIF;

d1r = sender;

END receive__request;

14

A receiver of a request from some sender also has to distinguish certain

cases before changing its dir edge to the sender. If the receiver is not the last

requester, then he simply forwards the request with the sender's id along the

directed edges. Otherwise, one of two cases may apply. If the token is available

and all readers have completed (no acknowledges pending) or if the request is

for a concurrent read, the receiver sends the token to the sender, clears the

token status and records the next concurrent reader, if necessary. The

15

piggybacked flag is true if the new request represent a concurrent read. If neither

the token was available nor was the request for a concurrent read, the sender is

logged as the next requester.

PROC receive_ack IS

pending_ack == FALSE;

IF token_mode == UNDEF THEN

SEND ack to next_readers;

next_readers ~ NULL;

ELSE IF token AND next¢ NULL THEN

SEND token (FALSE) to next,

next= NULL;

token = FALSE;

ENDIF;

ENO rece,ve_ack,

Upon receipt of an acknowledgement, the status of pending

acknowledgements is changed and an acknowledgement is sent to the next

reader if this had not already been done in the unlock operation. Otherwise, the

token is forwarded to the next requester if all acknowledgements have been sent

and the next reader points to NULL. Notice that the next requester was either a

writer or a reader at the first read requester so that the piggybacked value FALSE

requires no checks for acknowledgements by this requester (similar to unlock).

3.3 Protocol with Application

In the application, three 16 by 16 matrices, A, Band Care used. Once the

process gets the token, it will communicate with the server. The reader, reads

16

matrices A, B and C from the server, and print out what they read. According to

the algorithm, all the readers will concurrently read the source from the server,

then save it to their local matrices. The writers read matrices A and B, multiply A

and B, output the result to matrix C, and write it back to the server.

CHAPTER 4 DAG-BASED ALGORITHM

4.1 Introduction

This protocol is based on Neilsen and Mizuno [NeMi91J. Instead- of

passing-the token step by step through intermedtate sites in the logic structure to

the token requestor as in the Raymond-[Raym8-9] algorithm, Neilsen and Mizuno

proposed an algorithm where the token holder can send the token directly to the

requesting ·site with one message. This is made possible by attaching the

requestor's ID in the request message so that the token holder knows, on

· receiving the message, who is the requestor.

Raymond's Algorithm

QNode

0 Sink Node
With Token

c=> REQUEST

-+ PRIVILEGE

~ Edge

G)~

~~

DAG-based Algorithm

Figure 4.1: Comparison of Raymond and DAG-based Algorithm

One special case of this algorithm is that the logical structure can be a

fixed star topology (called the Star algorithm), which means it is a fully connected,

17

18

reliable physical network.

Figure 4.2: Topology

Under such situation, any site ready to enter the critical section always

sends a request message attached with its own ID directly to the root node. The

root node make it possible to establish a distributed waiting queue (of all

requesting sites) by recording the site which has most recently requested the

token (and is the tail site in the distributed waiting queue). When receiving a

request message, the root forwards the message to the tail site (of the queue)

and updates its record, unless the root itself holds the token. On receiving a

request message, the token holder, if not in need of the token, forwards the

privilege to the requestor directly using a token message. A very attractive

property of the Start algorithm is that it always takes three exchange messages

for a requester to get the token, if the root does not own the token and only two

messages if the root holds the token.

An example is depicted in Figure 4 illustrating how the root keeps

checking the requesters. Before anyone sends request, the tree is rooted at

Node 1. Then the first requester is Node 3. So Node 1 registers Node 3 as the

next requester and the last requester since there are no more requesters for the

token. Node 3 points to its parent which is the root (Node 1). Once Node 3 has

19

the token, it accesses its critical section. At the same time, Node 2 sends a

requester, and both of Node 1 and Node 3 point to the Node 2. Node 1 registers

Node 2 as the last requester instead of Node 3-. Node 3 set its next pointer and

last pointer to the Node 2. And Node 2 sets its parent as node 3. Before Node 2

get the token, Node 4 sends a request, all the node 1, 2 and 3 register Node 4 as

the last requester. Node 2 sets its next requester pointer to Node 4 to indicate

that Node 4 is its next requester. Once there ~s a new requester comtng, the

requested node must set its last pointer to the requesting node indicating that it is

the last requester.

0 Node __. Points to the parent

Node holding token

Sink Node

___ -► Points to the next requester

·· · ····►
Points to the last requester

No Request __.

2

I\
Node 2 sends

request, node 3
has the token

·······

Node 3 sends request
and gets token

Node 4 sends
request, node 3
has the token

_/ ,,,,,,,,,,,,,•'"'""'"""©

- / . ~-----~

~,j/\
(~{,,, , ... ,.,.w.-.-.~c-<;'/f

Figure 4.3: Example

20

4.2 Algorithm

This protocol uses a directed acyclic graph (DAG) structured logical

network with one sink. The following variables are used in n describing the

protocol:

1REQUEST: The message a node initiates when it needs to enter the critical section.
;(.

PRIVILEGE: The message which grants the node receiving it the privilege to enter the

,.~critical section, that is, the token.

LAST: Points toward the tail of the queue.

NEXT: lnd1catmg the next node which will be granted mutual exclusion after this node,

and enabling deduction of the implicit waitmg queue of the distributed system

HOLDING: Indicating whether this node has the available token or not. It is false if this

node doesn't have the token or this node ism its critical section.

,,.Algorithm:
>

4::. When a node needs to entering critical section, it initiates a new REQUEST

message

o Sending REQUEST(l,1) message to the node indicated by LAST where

the first I is the id of the node sending the message and the second I is

the id of the node initiating the request

o Being a new sink node, that is, setting LAST = 0 since it is the tail of the

queue of requesters

~h When an non-sink node N receives a REQUEST(B,I) message from node B

o Passing REQUEST message to the node indicated by LAST

21

+ When a sink node S receives a REQUEST(N, I) message from node N

o If HOLDING 1s false, setting NEXT = the id of the node initiating the

request, that 1s, I

o If HOLDING is true, forwarding the PRIVILEGE message to the node

initiating the request, that is, I

4.3 Protocol with Application

When combined with the application, the protocol provides exclusive

access to the critical section. Once a process is accessing its critical section, all

the other requester will wait for it to finish the reading or writing. In the

application, three matrices (A, B and C) are used. Each process will read all

three matrices one by one, and print out what it reads for the read process. The

writer then multiples matrices A and B, and outputs the results back to the server

to rewrite the matrix C.

CHAPTER 5 TREE-BASED MUTUAL EXCLUSION WITH FAIRNESS

5.1 Introduction

This protocol is due to Haddix [Hadd04]. It utilizes a dynamic grant tree,

which is a directed acyclic graph where grants flow down the tree (leafward,

meaning from the root to the leaves) and requests flow up the tree (rootward,

meaning from the leaves to the root).

In this protocol, each leaf represents an application using the grant, each

branch and the root node are arbiters granting the privilege in a distributed

fashion. An arbiter with an unassigned grant passes it to each child where child

may be an arbiter or an application. The root always has a grant in. There are no

grants active during arbitration and when there are no outstanding requests.

5.2 Algorithm

The Figure 5.1 shows the arbiters' status when there are shared requests.

Once the root arbiter has the shared grant, all the branch arbiters with shared

requests can have the shared grant, which allows more concurrency.

22

0 •- Arbiter

□
--Local
Application

R- Read
F - False

Figure 5.1: Arbiters with Shared Requests

23

This protocol is implemented by three algorithms described in sections

5.2.1 , 5.2.2, and 5.2.3. The relationships between the three values for grant[i] are

illustrated in Figure 5.2. The three cases are the following:

1. The request is false if no arbiter has a READ, WRITE, or BOTH request, i.e,

vi, i E children, request[i] = F (0< i< M + N).

2. If there exists a child with a READ or BOTH request, then the grant of that

arbiter is set to READ, if there is a READ grant in.

3. If there exists a child with WRITE or BOTH request, then the grant of that

24

arbiter is set to WRITE, if there is a WRITE grant in .

The difference between the types of grant is that READ grants are issued

concurrently while WRITE grants are issued sequentially. The cases are

slightly different for the root and branch arbiters.

grant[i]

grant[O] ==Wand (request[i] == W or 8)

grant[O] :::;;;;; R and (request[i] :;;;::; R or B)

request[i] == W or F

· - ·- ·- ·- ·- ·- ·- ·-·-·-·-·- ·-·- ·-·- ·-·- ·- ·- ·- ·- · I

~ Notation:
I

; R- Read
~ W-Write
I

i F - False
; B - Both Read and Write
I
• - • - o - 0 - o - , - • • o -· • • o - • - ' - • o -- o - I - o - • - I - • - I • - o • • .

Figure 5.2: State Transition Diagram for Grant

5.2.1 Application (Leaf) Algorithm

For the application, this algorithm can be viewed as an upward-looking

grant and request algorithm. The application can read the grant variable and can

write the request variable. Table 5.1 shows the possible states for the application.

25

Request Grant INTERPRETATION

FALSE FALSE NO INTEREST

FALSE READ RELEASES READ LOCK

FALSE WRITE RELEASES WRITE LOCK

READ FALSE WAITING FOR READ

READ READ HOLDING READ LOCK

READ WRITE ILLEGAL

WRITE FALSE WAITING FOR WRITE

WRITE READ ILLEGAL

WRITE WRITE HOLDING WRITE LOCK

Table 5.1 : Possible States for Application

Since the application control the request variable, it controls the timing of

request and release actions. By controlling the grant variable the application's

parent arbiter controls the grant and accepts release actions.

5.2.2 Root Arbiter Algorithm

The root arbiter acts as a central privilege arbiter. It is agnostic as to

whatever a child is an application (leaf) or arbiter (branch). In effect, the root

always has an exclusive grant. It can pass that grant through as a shared or

exclusive grant to a child or children.

The root operates in two consecutive modes, exclusive and shared. In the

exclusive mode, it successively polls each child for WRITE requests (WRITE or

BOTH), issuing grants serially. In the shared mode, it polls each child for READ

26

requests (READ or BOTH), issuing concurrent grants. When all concurrent grants

are released, it returns to the exclusive mode.

Some states of the root arbiter are shown 'in Table 5.2.

Request(A) Request(B) Grant(A) Grant(B) INTERPRETATION

FALSE FALSE FALSE FALSE No Interest

FALSE READ FALSE READ BhddsREAD

FALSE WRITE FALSE WRITE B hdds VVRITE

FALSE BOTH FALSE READ B holds READ and needs write

FALSE BOTH FALSE WRITE B hdds VVRITE and needs READ

READ FALSE READ FALSE AhddsRead

READ READ READ READ BothAand B hold READ

READ WRITE FALSE WRITE 8 holds WRITE andAneeds READ

READ WRITE READ FALSE Aholds READ and B needs \fvRITE

REAb BOTH FALSE WRITE B holds \fvRITE and both need READ
- --- - ···-

READ BOTH READ READ Both hold READ and B needs \fvRITE

BOTH BOTH FALSE WRITE B holds WRITE, both need READ and
Aneeds WRITE

BOTH BOTH READ READ Both hold READ and both need
WRITE

BOTH BOTH WRITE FALSE A holds WRITE, B want WRITE and
both need READ

Table 5.2: Some Example States of the Root Arbiter with Two Children

5.2.3 Branch Arbiter Algorithm

In terms of issuing grants, branch arbiter differs from the root arbiter only

in that its mode is determined by its grant[0] variable (indicating grant issued by

parent) rather than cyclically as with the root.

27

The determination of the arbiter request [0] variable is according to the

union of the requests of all its children as depicted in Figure 5.3. Thus, request[0]

= FALSE if a node's children make no requests; request (0] = READ if some of its

children have READ requests; request [0] = WRITE if some of its children have

WRITE requests; and request [0] = BOTH, if its children have both READ and

WRITE requests or if one or more have BOTH requests.

Request [OJ

There exists i
such that

request[i] == R

For all i, request[i] == F

There exists i
such that request[i] == W

For all i,
request[i] ::;;;;; F

There exists i such
that request[i] == R

For all I, request[i] == F or R

There exists i such that request[i] .== W

Notation:
R- Read
W-Write
F - False
B - Both Read and Write

For all i,
request[i] == F or W

Figure 5.3: State Transition Diagram for Arbiter Request

5.2.4 Algorithm Details

The algorithm is shown in Figure 5.4, 5.5, 5.6, and 5. 7.

---,
Identifier neighbor[] II neighbor [O] = par, null if root

Identifier local_ app[]

N = cardinality of neighbor

M = cardinality of local application

Variables: Enum grant [N + M]

II set of local applications

I I the number of child arbiters + 1

II {R W, F}

Enum request [N + M] II {R, W, B, F}

Identifier curr {O, 1, ... , N + M +1}

Figure 5.4: Vanable Definition

---,
Exclusive access to critical section

request [i] = W;

while(grant[i] i- W) {}

I /critical section

request[i] = F;

Shared access to critical section:

request[i] = R;

while(grant[i] i- R) {}

//critical section

request[i} = F; I
I

--- I

Figure 5.5: Application Algorithm

28

--- I

while(true)

if(curr < N + M) {

}

else{

}

if((request[curr] == W V request[curr] ==B) /\ grant[curr] i=- W)

grant[curr] = W,

if(request[curr] i=- W /\ request[curr] i=- B /\ grant[curr] i=- F)

grant[curr] == F;

if(request[curr] i=- W /\ request[curr] -:p B /\ grant[curr] == F)

curr ++;

jor(t = 1, t < N + M,1 ++)

}

if((request[i] == R V request[l} == B) /\ grant[,] -:p R) {}

grant[i] = = R,

for(!= 1; i< N + M, I++) {

if((request[i] == R Vrequest[,J == B) /\ grant[i] ==R){}

while((request[i] == R V request[i] == B /\ grant[i] == R) {}

grant[i] == F;

curr = 1;
I
I
I
I
I
I
I
I
I

---'

Figure 5.6: Root Arbiter Algorithm

I
I
I

29

while(true) {

I
I
I

:1
I

if(grant[OJ == F)
for(i = 1, i < N + M, i + +) {

}

if(request[i] == R /\ request[OJ == W)
request[OJ = B;

if(request[i] == R /\ request[OJ == F)
request[OJ = R;

if(request[i] == W /\ request[OJ == W)
request[OJ = B;

if(request[i] == W /\ request[OJ == F)
request[OJ = W;

if(grant[OJ == WI\ (request[OJ == W V request[OJ == B)) {
curr = 0.
while (curr < M + N) {

if((request[curr] == X V request[curr] == B) I\ grant[curr]l

grant[curr] = W,
if(request[curr] I- W /\ request[curr] -t B /\ grant[curr] -t F)

grant[curr J = F.

}

if(request{curr] -t W /\ request{curr} -f-B /\ grant[curr] == F)
curr ++,

if(request[O J = = B)
request[OJ = R;

if(request{OJ == W)
}

if(grant[OJ == R /\ (request[OJ == R V request[OJ == B)) {
request[OJ = F;

for(i = 1; i< N+M· i++)
if((request[i] == R Vrequest[i} == B) I\ grant[U -1-R)

grant[i] = R;
for(i=l; i<N + M; i++) {

if((request[i] == R V request[i] == B) I\ grant[i] ==
R) {}

while((request[i] == R V request{i] == B) /1 grant[i] == R)
{}

}

grant[i] = F;
}
if(request{O} == B)

request[OJ = W,·
if(request[OJ == R)

request[OJ = F:

·--
Figure 5.7: Branch Arbiter Algorithm

30

31

5.3 Protocol with Application

When it is combined with the application, three matrices are used. Only

the process with the token can access the critical section which means can

communicate with the server.

In this algorithm, if an arbiter (a computer) gets the grant, it passes the

grant to its children with outstanding requests. There are concurrent reads if the

token mode is shared, which means all the read processes can access the

critical section at the same time. If the token mode is exclusive, then only one

process can access to the critical section at a time and all other requesters must

wait.

CHAPTER 6 TOKEN-BASED ALGORITHMS IMPLEMENTATION

Java language is used to implement the algorithms. High-level TCP/IP

sockets are used for communications.

6.1 Implementation Overview

Three token-based algorithms are implemented in a similar way, and the

implementation code for them also has the similar basic structure. The Dynamic

tree algorithm and DAG-based algorithm has the same structure because the

queue structure is used for the implementation. Then in the Fairness tree-based

algorithm, array is used instead of the queue for the structure. The structure is

described in two views, one is from the view of the java files, and the other one is

from the view of the classes.

6.1.1 File View

For each algorithm, there are several classes are used to implement the

algorithm:

Algorithm.java:

It is implemented with the algorithm. All the algorithms use the same file

them in the implementation.

Processes.java

32

33

This file holds the process information.

TreeC/ient.java:

This is a big file. It includes how the processes are used to build the tree;

how each process recognize their order to access to the critical section;

how the processes communicate with the server to read or overwrite the

source.

6.1.2 Class View

For each algorithm, there are several classes to implement them:

Algonthm. class:

This class has the detailed implementation base on the algorithm. For

each algorithm, the code in this class is totally different from other

algorithms. But they all use the same name.

Processes. class:

This class stores the processes1 information. For example, pAddress holds

the process address information; portNumber keeps the port number that

a specific process is using.

Tree Client. class:

This class is used to produce the processes which need to access critical

sections and puts them into a logical structure based on the protocol.

Token Server. class:

This class is a server class, which has two different purposes: one is

34

used to help the simulated processes build the tree structure; the other is

to hold the source file (including the code for the critical section) to

communicate with the requester processes.

6.2 Implementation Details:

6.a2.1 Token Server

TokenServer is the name of the server used to establish a tree in the

implementation.

1. This has a method to build a tree in any distributed system. The method

described below:

@ The tree will be constructed based on the order m which the

processes connect to the server.

• The first process becomes the root.

• All the other processes connect as children of processes already

connected to the tree. This is related to the Tree Token file.

2. This class has the implementation of the critical section and the source

(three matrices) the processes want to read or write.

• Then once the process get the token, it will send the message to the

server and ask for getting into the critical section

• The server will be waiting for the processes to access the CS in the

defined order. If no one has the request for the source, the server

will be idle.

35

In this thesis work, multiple processes are simulated using three

computers. When 9 processes are used, each computer simulates three

processes; when 15 processes are used, each computer simulates five

processes.

6.2.2 Tree Token

This class is an important class, which is connected with the processes

object and the algorithm. It controls the processes which communicate with the

server and access the critical section. It has the following functions:

1. It generates an equal number of processes in each computer, for

example, three of each.

2. It assigns the order of the processes in building the structure.

• The port number is attached to the process when the process is

generated, as well as the local address.

• Each process obtains it own id by receiving a number from the

Token Server.

• Each process generates the mode using a Pseudo Random

function (A sequence of numbers generated by some algorithm so

as to have an even distribution over some range of values and

minimal correlation between successive values).

• All the requesters will be kept in the queue, and the queue is being

updated continually. Once a process finishes executi'on and leaves

the critical section, it will be removed from the queue.

36

• The processes iterate the algorithm many times between accesses

of the critical section, so that when the information is updated, they

take turns communicating with the server.

3. It facilitates reading from or writing to the source from the server.

• A process with a read request reads the matrices A, 8 and C

from the server, and stores them in its local matrices.

• A process with a write request reads the matrices A and 8,

multiplies matrices A and 8, and stores the result in a local

matrix. After this, it reads the last matrix C from the server, and

then adds the multiplication result with the original data it read

together, and sends the updated data back to the server. At the

same time, the server puts the new data back to the matrix C.

• Based on different algorithm, the readers and writers have

different priority to be handled. For example, in the Dynamic

tree protocoC only the consecutive readers can read the source

at the same time; but in the Fairness tree-bases protocol, if the

arbiter has the grant with read, all the readers can read the

source at the same time even they might not be consecutive

inside the local application.

CHAPTER 7 APPLICATION IMPLEMENTATION

7. 1 Application Description

A simple application is used in the implementation of those three

algorithms.

Three 16 by 16 matrices are used for the application. These three

matrices are stored in a server. Once a process has the token, it will

communicate with the server by reading three matrices from them. If that process

has the READ mode, it will read the matrices and print them out; if that process

has the WRITE mode, it will read three matrices from the server and multiply the

matrix A and 8 then write the result back to the server. And the algorithm will

control the mutual exclusion depends on different protocols.

There are four computers are used for the simulation, which are

connected locally to keep a distributed computing environment during the test.

Three co~puters are used for the protocols, and the fourth computer is used to

set up as a server which has the critical section part in it.

The following is an example of how the multiplication is done. This

example uses two 4 by 4 metrics A and B shown in Figure 7.1.

37

1357

2468

3579

46 810

Matrix A

1357

2468

3579

46810

Matrix 8

Figure 7 .1 Examples of Metrics

38

The multiplication result is saved in the matrix C, and it is calculated by

multiplying every row of A with every column of 8. The resulting numbers are

arranged in a new matrix C: the x-th row in A times the y-th column in 8 gives the

number at position (x, y) in C as showing below:

C[0,0] = A (0,0] * B[0,0] + A[0, 1] * 8[1,0] + A[0,2] * 8[2,0) + A[0,3] * 8[3,0J

= 1 * 1 + 3 * 2 + 5 * 3 + 7 * 4 = 50

C[0, 1] = A[0,0] * 8[0, 1] + A[0, 1] * 8(1, 1] + A[0,2] * 8(2, 1] + A[0,3] * 8(3, 1]

=1 *3+3*4+5*5+7*8=96

The following is an example figure which is used in the implementation:

1 3 5 7 ... 29 31

2 4 6 8 ... 30 32

3 5 7 9 ... 31 33

4 6 8 10 ... 32 34

... ...

15 17 19 21 ... 43 45

16 18 20 22 ... 44 46

Figure 7 .2: Example of the contents in each matrix

39

7.2 Implementation Overview

The application implementation also can be described in two views. One is

from the view of the files, and the other one is from the view of the classes.

7 .2.1 File View

Matrix.java ·

It is a utility file to create and initial three matrices which are hold by the

server and are updated by the clients.

TokenServer.java

In the description of the algorithms' implementation in the previous

chapters, this file has been mentioned already. Since it includes the

application part besides the algorithm, the detailed description is in the

next section.

7.2.2 Class View

Matrix.java:

This file generates the 16 by 16 matrix. The row numbers start with 1, 2,

3 and so on until it has 16 columns. And the column numbers start with

1, then 3, 5, 7 until it has 16 rows.

Token Server. class:

It connects with all the clients, handles sending the matrices to the

clients respect to the requests and taking updated matrices back from

the clients to overwrite the original source.

7.3 Implementation Details

7 .3.1 Token Server

40

This file is the same one used in the implementation of the algorithms, so

besides the algorithm part, it gets the requests from the client processes, sends

the information to them, and then reads the new information back and update

them in server. In the real implementation. the server is waiting for the client

processes to access to the criticat section.

Once it's communicating with the process (processes}, it sends aH three

matrices A, B and C to the request process (processes}. If the process is wtth

write request, the server sends the three matrices first, and then waits untn the

process send the new data back. And after receiving the new data from the client

process (processes}, it overwrites the original source (matrix C} with the updated

data. If no process is accessing the server, the server will be idle.

I Client I ◄ ► I Client I
== =

~ ~DD / 1 1 o D

/ ~ t Client I [Client I
== ◄ ► =

Figure 7.3: Server and Client Hosts

41

In the figure 10, it shows the relationships between the clients and the

server. Clients can access the server as well as communicate with each other.

CHAPTER 8 PERFORMANCE COMPARISON

lh Chapter 6 and 7, the implementation for the three tree-based algorithms

combined with the test application has been described in details. Then here we

compare the performance of each algorithm interns of the waiting time and the

execution time.

8.1 Token Average Waiting Time Comparison

By collecting the result from the experimental execution, we list the token

delivery time in the following tables. Detailed explanations are given in 8.1.1 and

8.1.2.

8.1.1 Simulating Three Terminals

The following table is the data of average token waiting time in

milliseconds from the simulation. According to the more accurate data, the

average value is calculated by testing each algorithm for 10 times.

Three computers are used, each simulating three or more terminals. If the

process size is 9, then only 3 processes per computer are used; if the process

size is 12, then 4 processes per computer are used; if the process size is 15,

then 5 processes per computer are used. And as mentioned before, Pseudo

random function is used to ,generate the mode for each process. Then the test

42

43

result is based on the multiple simulated terminals on each actual computer are

made consistent.

Algorithm 9 Processes 12 Processes 15 Processes
(milliseconds) (Milliseconds) (milliseco_nds)

Dynamic-tree 11580 14579 17589

DAG-based 15500 19842 23706

Fairness tree 6799 7159 7330

Table 8.1: Processes Average Waiting Time

Here is a chart based on the data in the table to enable clearer

comparisons between algorithms.

Token Waiting Time Comparison

30000

25000

20000 -+-Dynamic-tree

-II- DAG-based
Q)

.§ 15000 · Fairness-tree
~

10000

5000

0

9 12 15

Number of processes

Figure 8.1: Token Average Waiting Time Comparisons

44

1. The blue (middle) line is for Dynamic-tree protocol. It shows that the

waiting time for the token is increased linearly with the increase of the

process size.

2. The red (top) line is for DAG-based protocol. It shows that the waiting

time for the token is increased linearly with the increase of the process

size. But it has the worse performance among these three protocols

since it only allows exclusive access to the critical section.

3. The yellow (bottom) line is for Fairness tree-based protocol. The

performance is the best among these three protocols. And also the

average waiting time is only changing a little bit when the process

number is getting bigger, not change as dramatically as the other two

protocols.

8.1.2 Simulating Four Terminals

The following table is the data of token waiting time in milliseconds from

the simulation. According to the more accurate data, the average value is

calculated by testing each algorithm for 10 times.

There are four computers are simulated as four terminals. If the process

size is 12, then only 3 processes per computer are used; if the process size is 16,

then 4 processes per computer are used; if the process size is 20 1 then 5

processes per computer are used. Then the test result is based on the multiple

simulated terminals on each actual computer are made consistent.

45

Algorithm 12 Processes 16 Processes 20 Processes
(milliseconds) (milliseconds) (milliseconds)

Dynamic-tree 13872 17798 24309

DAG-based 18451 27701 32198

Fairness tree 8230 8512 8753

Table 8.2: Processes Average Waiting Time

The data in the table 8.2 shows the same performance result as we

simulated three terminals The fairness tree protocol has the best performance

on the waiting time.

8.2 Total Execution Time Comparison

By collecting the result from the experimental execution, we list the

processes execution time in the following tables. Detailed explanations are given

in section 8.2.1 and 8.2.2.

8.2.1 Simulating Three terminals
-

The following table is the data of processes execution time in milliseconds

from the simulation. According to the more accurate data, the average value is

calculated by testing each algorithm for 10 times.

Three computers are simulated as three terminals. If the process size is 9,

then only 3 processes per computer are used; if the process size is 12, then 4

46

processes per computer are used; if the process size is 15, then 5 processes per

computer are used. Then the test result is based on the multiple simulated

terminals on each actual computers are made consistent.

Algorithm 9 Processes 12 Processes 15 Processes
(milliseconds) (milliseconds) (milliseconds)

Dynamic-tree 131874 213791 285139

DAG-based 174321 293420 401531

Fairness tree 92195 151070 193538

Table 8.3: Processes Total Execution Time

Here is a chart based on the data in the table to have more clear

explanations on each algorithm.

Q)

s
·r-1
E-<

450000
400000
350000
300000
250000
200000
150000
100000
50000

0

Pr ocesses Execut ion Time Compar i son

9 12 15

Number of processes

........ Dynamic- tree

--- DAG- based
- -- Fair ness-tree

Figure 8.2: Total Execution Time Comparisons

47

1. The blue line shows the processes execution time of Dynamic ... tree

algorithm. From the chart.

2. The red line shows the processes execution time of OAG~based

algorithm. It has the longest execution time than the other two

algorithms.

3. The yellow line shows the processes execution time of Faime$S tree

based algorithm, which has the best execution compare to Dynamic

tree and DAG-based tree algorithms.

8.2.2 Simulating Four Terminals

The following table is the data of processes execution time in milliseconds

from the simulation. According to the more accurate data, the average value is

calculated by testing each algorithm for 1 O times.

Three,computers are simulated as four terminals. If the process size is 12,

then only 3 processes per computer are used; if the process size is 16, then 4

processes per computer are used; if the process size is 20, then 5 processes per

computer are used. Then the test result is based on the multiple simulated

terminals on each actual computers are made consistent.

Algorithm 12 Processes 16 Processes 20 Processes
(milliseconds) (milliseconds) (milliseconds)

Dynamic-tree 224572 303917 432749

DAG-based 308730 487499 740837

Fairness tree 130324 176520 297829

Table 8.4: Processes Total Execution Time

48

The data in the table 8.4 shows the same performance result as we

simulated three terminals. The fairness tree protocol has the best performance

on the execution time since all the shared requester can access their critical

sections at the same time no matter how many requesters they are.

CHAPTER 9 CONCLUSION AND FUTURE WORK

f=rom the simulated study on three algorithms, it is obviously that Fairness-

. tree algorithm has the best performance among all the algorithms. Compared

with DAG-based algorithm and Dynamic-tree algorithm, Fairness-tree algorithm

has the shortest average waiting time and total execution time. Fairness-tree

algorithm has an advantage by allowing the maximum concurrent requesters.

Furthermore, the DAG-based algorithm has the worst performance on the waiting

time and total execution because concurrent requests are not supported.

Both the DAG-based and Dynamic-tree algorithms are passive 1 since the

root does not keep checking the value of itself to control the access of each

process. Instead, the root only passes the value to the branches. Conversely, the

Fairness-tree algorithm has an active root which keeps checking the status of its

grant and request to control the access of each process, and passive branches

which execute only when requests are outstanding.

There are several areas for future work. One promising area is

comparison of other algorithms. Another area with potential is the utilization of

more sophisticated benchmarks. Performance metrics in this work were average

waiting time and total execution time. Future work can look at other metrics, such

as message passing and critical section request interval comparisons.

49

APPENDICES

50

Appendix I Processes.java

I**
~File name: "Processes.java"
*This file is used for the Dynamic-tree algorithm. It holds the process information
*I

import java.io.*;
import java.net.*;
import java.lang.*;

I**
* Processes Class
*I

public class Processes implements Serializable
{

public int portNumber;
public int connectPort;
public lnetAddress pAddress;
public lnetAddress serverAddress;
public int plD;
protected String myMode,
public Processes next;
protected boolean myToken;

I**
*Constructor without parameters
*I
Processes()
{

}

I**

this.portNumber = -1;
this.connectPort = O;
this.pAddress = null;
this.serverAddress = null;
this.plD = -1;
this.myMode = "UNDEF";
this.next= null;
this.myToken = false;

* Constructor with 4 parameters
*I
Processes(int pNum, int sP, lnetAddress pAdd, lnetAddress sAdd)
{

this.portNumber = pNum;
this.connectPort = sP;
this. pAddress = pAdd;
this.serverAddress = sAdd;
this.plD = -1;
this.myMode = "UNDEF";

51

}

/**

this.next = null;
this.myToken = false;

*Defines object input
*/
public void readObjectUava.io.ObjectlnputStream stream)throws IOException,

ClassNotFoundException
{
stream.defaultReadObject();

}

/**
*Defines object output
*/

52

public void writeObjectUava.io.ObjectOutputStream stream)throws IOException,
ClassNotFound Exception

{

}

/**

stream.defaultWriteObject();
stream.flush(),

*Set the address
*/

public void setAddress(lnetAddress addr)
{

this.pAddress = addr;
}

/**
*Set the port number
*/

public void setPort(int p)
{

this.portNumber = p;
}

/**
* Returns the mode of the object
*I
public String getMode()
{

return myMode;
}

/**
* Returns the next node
*I
public Processes getNext()

{

}

/**

return next;

* Returns the token of the node
*/

public boolean getToken ()
{

return myToken;
}

/**
* Set the mode for the object
*I
public void setMode(String newMode)
{

this.myMode= newMode;
}

/**
* Sets the next
*I

public void setNext(Processes next)
{

this.next= next;
}

I**
*Sets the token.
*/

public void setToken(boolean value)
{

this.myToken = value;
}

/**
*Sets the ID
*/
public void setlD (int newlD)
{

this.pl□ = newlD;
}

}/*end of Processes class*/

53

Appendix II Algorithm.java

/**
*File name: "Algorithm.java"
*It is implemented with the Dynamic-tree algorithm
*I

import java. io. *;
import java.net.*;
import java.lang. *;

/**
* Algorithm class
*I
public class Algorithm
{

/**
* Constructor without any parameters
*I
public Algorithm()
{}

/*Variables used in the class*/
static String token_mode="UNDEF";
static String next_mode = "UNDEF";
static int self = O;
static boolean concurrent_read = false;
static boolean cToken = false;
protected boolean pending_acks = false;
static Processes dir =null;
static Processes nextNode =null;
static Processes next_readers = null;

I**
* Lock function which controls the readers and writers' order to get into the CS
*I
public void lock(Processes temp) throws IQ Exception
{

if(!temp.myToken)
{

request(temp, temp.myMode, dir);
dir = temp;
await(token(pending_ acks));
if(temp.myMode=="READ" &&(token_mode =="READ"II

token_mode == "MULTIREAD"))
concurrent_read = true;

else
concurrent_read = false;

if(temp.next != null && concurrent_read == true)
{

54

}
}

}

/**

temp.next.myToken= true;
next_readers = temp.next;
nextNode = null;
token mode = "MULTIREAD"· - '

* Unlock function which release the lock for readers and writers
*I
public void unlock(Processes temp)
{

}

/**

if(token_mode=="MULTIREAD" && pending_acks == false)
{

}

sendAck(next_readers);
next_readers =null;

if(temp.next !=null && pending_acks ==false)
{

}

temp.next.myToken = false;
nextNode = null,

else 1f(token_mode != "MULTIREAD")
cToken = true;

if(temp.next!=null)
temp.next.myToken = true;

token_mode = "UNDEF";

* Receive_request function which handles request propagation in the tree
*I
public void receive_request(Processes sender)
{

if(dir !=sender)
request(sender, sender.myMode, dir);

else
{

if(token_mode == "READ" && sender.myMode == "READ")
concurrent_read = true;

if((cToken == true && pending_acks == false) II
concurrent_read == true)

{
sendToken(!cToken, sender);
sender.myToken = false;
if(concurrent_read == true)
{

token mode= "MULTIREAD"· - ,
next_readers=sender;

}

55

}

/**

}
else
{

}
}
dir = sender;

nextNode= sender;
cToken=false;
next_mode = sender.myMode;

* Receiver_ack function which count the acknowledgments
*I
public void receive_ack(Processes temp)
{

pending_acks =false;
if(token_mode == "UNDEF")
{

}

sendAck(next_readers);
next_readers = null;

else if(cToken && nextNode != null)
{

sendToken(false, temp.next);
nextNode = null;
cToken = false;

}
}

/**
* Private function, which prints out the message when sending the request
*I
private String request(Processes sender, String mode, Processes rec)
{

}

I**

return ("sender "+sender.portNumber +"send request to"+
rec.portNumber);

* Private function, which returns token status base on the value of expect
*acknowlegements
*I
private boolean token(boolean expect_ack)
{

}

if(expect_ack == true)
cToken = false;

else
cToken = true;

return cToken;

56

/**
* Private function, which returns the wait status
*/

private boolean await(boolean t)
{

}

/**

if (t == true)
return false;

else
return true;

* Private function, which prints out the messages when sending out the token
*/
private void sendToken(boolean value, Processes next)
{

next.myToken = value;
}

/**
* Private function, which sends out the acknowlegementf to the first node
* in the queue
*/
private void sendAck(Processes theOne)
{

pending_acks =false;
}

}/*end of Algorithm class*/

57

Appendix Ill TreeToken.java

/**
*File name: TreeToken.java
*This class is used for Dynamic-tree algorithm, which includes how the
*processes are used to build the tree;how each process recognizes its privilege
*to access to the critical section;how the processes communicate with the server
*to read or overwrite the source
*I

import java.io. *;
import java.net.*;
import java.lang.*;
import java.awt.*;
import java.awt.event. *;

/**
* TreeToken Class
*I
public class TreeToken implements Runnable, Wrndowlistener, Act1onl1stener
{

/**
* Variables used in this class
*/

protected String host;
protected int port;
protected Frame frame;
protected TextArea output;
protected TextField input;
protected PrintWriter out ;
protected DatalnputStream oln;
protected DataOutputStream oOut;
protected FileOutputStream fileput;
protected Thread listener;
protected Socket socket;
protected Processes p = new Processes();
private lnetAddress localAddress;
static Algorithm protocolObj = new Algorithm();
public Processes□ pArray = new Processes[4];
static int tempCounter=0;
protected static int clientPort0 = {3000, 3200, 3400, 3600};
static int clientArray = 0;
protected int localPort = 0;
static int index = 0;
static int theOrder = 0;

/*Static variables used for the matrix*/
static int array1 D□ = new int [16)[16];
static int array2□0 = new int [16][16];
static int array3D□ = new int [16][16];

58

static Matrix arrayA = new Matrix (16, 16, array1);
static Matrix arrayB = new Matrix (16, 16, array2);
static Matrix arrayC = new Matrix (16, 16, array3);

/*Variables used to record the waiting time*/
protected long startWaiting = 0;
protected long endWaiting = 0;
protected long totalWaiting = 0;

/**
* Constructor with two paras
*I
public Tree Token (String host, int port) throws FileNotFoundException
{

}

I**

this.host= host;
this.port= port;
frame = new Frame {"TokenClient [" + host+ ':' + port + "]");
frame.addWindowlistener (this);
output= new TextArea ();
output.setEditable (false);
input = new TextF1eld ();
1nput.addActionL1stener (this);
frame.add ("Center", output);
frame.add ("South", input);
frame.pack ();
out= new PrintWriter(new FileOutputStream("output" + tempCounter

+ ".txt"));
tempCounter++;

*Function will be called in main
*I

public synchronized void start () throws IOException
{

if (listener == null)
{

Socket socket = new Socket (host, port,
lnetAddress.getlocalHost(), clientPort[clientArray]);

clientArray ++;
localAddress = socket.getlocalAddress();
p = new Processes(socket.getlocalPort(), 1000, localAddress,

socket.get! netAddress());
try
{

oln = new DatalnputStream
(new BufferedlnputStream (socket.getlnputStream ()));
oOut = new DataOutputStream

59

(new BufferedOutputStream (socket.getOutputStream ()));
} catch (IOException ex) {

socket. close ();

}
}

/**

throw ex;
}
listener = new Thread (this);
listener.start ();
frame.setVisible (true);

* function stop
*/

protected synchronized void stop () throws IOException
{

}

/**

frame.setVisible (false);
if (listener != null)
{

}

listener.interrupt ();
listener= null;

oOut.close ();

* run the threads
*/

public void run ()
{

try
{

while (!Thread.interrupted ())
{

}

getl D FromServer();
handleCS(p);
out.close();

} catch (IOException ex) {
handlelOException (ex);

} catch (lnterruptedException e) {}
catch (ClassNotFoundException c) {}

}

/**
* Each client is assigned the ids by the server, and gets different port numbers for
* and the information about their neighbors
*/

protected void getlDFromServer() throws IOException, ClassNotFoundException
{

int id = oln.readlnt();
p.setlD(id);
generateRandomMode(p);
output.append("\nMy id is : " + id);

60

}

I**

output.append("\nMy port number is : " + p.portNumber);
out.println("My id is : " +id);
out.println("My port number ts : " + p.portNumber);
pArray[id] = p;
index++;
assignedNext(p);

*The next pointer is set
*I
protected synchronized void assignedNext(Processes theP) throws IOException,

ClassNotFound Exception
{

}

/**

theP.next = new Processes();
if((theP.plD+1)< pArray.length)
theP.next.setlD (oln.readlnt());

* Generates the random mode for each process
*/
protected synchronized void generateRandomMode(Processes tempN) throws

IQ Exception
{

}

/**

String mode□ = {"WRITE", "READ"};
int mode _id = 2;
int index = (int)(Math.random()*mode_id);
tempN.setMode(mode[index]);
output.append("\nMy mode is : " + mode[index]);
out.println("My mode is : " + mode[index]);

*This function is used to set the root
*I
protected void initialValue(Processes pro)throws IOException
{

}

if(pro.plD== 0)
{

}

pro.myToken = true;
protocolObj.token_mode = pro.myMode;
protocolObj.dir =pro;
if(pro.next l=null)
{

}

protocolObj.next_mode = pro.next.myMode;
protocolObj.nextNode = pro.next;

61

/**
*This function is used to set the value of the algorithm variables
*/

protected void setValue(Processes pro)throws IOExcept1on
{

}

/**

if(pro.next!= null)
{

}

pro.next.myToken = true;
protocolObj.token_mode = pro.next.myMode;
protocolObj.dir =pro.next;
if(pro.next.next !=null)
{

}

protocolObj.next_mode = pro.next.ne:xt.myMode;
protocolObj.nextNode = pro.next.next;

*This function is used to set the readers after they exit the critical section
*/

protected void dealReader(Processes rNode) throws IOExcept1on
{

}

I**

protocolObJ.rece1ve_ack(rNode);
1f(protocolObj.token_mode equals("READ")II protocolObj pend1ng_acks

== false)
{

}

protocolObj.concurrent_read =false;
protocolObj.unlock(rNode);
setValue(rNode);

*It handles reading and writing for the processes
*/

protected void controlRW(Processes tNode) throws IOException,
Interrupted Exception

{
oOut.writeUTF(tNode.myMode);

oOut. flush();
if (tNode. myMode.eq uals{"READ"))
{

}

readFromFile();
tNode.myToken= false;
protocolObj.pending_acks=true;
dealReader(tNode);

else if(tNode.myMode.equals("WRITE"))
{

62

}
else

}

I**

write To File();
tNode.myToken = false;
protocolObj.unlock(tNode);
setValue(tNode);

System.out.println("***WRONG***");

*It calls the algorithm to control the access of entering the critical section
*I
protected synchronized void handleCS(Processes temp Node) throws

IOException, lnterruptedException
{

startWa1tmg = System.currentTimeM111is() ;
if(tempNode.plD== 0)
{

tempNode.myToken = true;
protocolObj.token_mode = tempNode.myMode;
protocolObj.dir =tempNode;
1f(tempNode.next !=null)
{

}

protocolObJ.next_mode = tempNode.next.myMode;
protocolObj.nextNode = tempNode.next,

}
protocolObj.lock(tempNode);
if(protocolObj.next_readers !=null && protocolObj.next_readers.plD

== tempNode.plD)
tempNode.myToken = true;

while(tempNode.myToken == false)
{

Thread.sleep(1);
protocolObj.lock(tempNode);
if(protocolObj.next_readers !=null &&

protocolObj.next_readers.plD == tempNode.plD)
tempNode.myToken = true;
theOrder = oln.readlnt();
if(tempNode.plD == theOrder)
tempNode.myToken = true;
if(tempNode.myToken ==true)
break;

}
if(tempNode.myToken==true)
{

endWaiting = System.currentTimeMillis() ;
totalWaiting = endWaiting - startWaiting;
output.append("\nTotal Waiting Time is " + totalWaiting);
controlRW (temp Node);
oOut. write I nt(tempNode. pl D);

63

}

f'*

oOut.flush();
}
oOut. close();
oln.close();

* Read the files from server if the client has the token and has read mode
*I
public synchronized void readFromFile() throws IOException, lnterruptedException
{

output.append("\nl'm going to read now ... ");
out.println("\nl'm going to read now ... ");
output.append("\nFirst Matrix \n");
out.println("First Matrix \n");
for(int i =0;i<arrayA.rows; i++)
{

}

for(int j = 0;j<arrayA.cols; j++)
{

arrayA.M[i]U]= oln.readlnt();
output.append(" "+ arrayA.M[i][J] + " ");
out print(" " + arrayA.M[i][J] + " ");

}
output.append("\n");
out.print("\n ");

output.append("\nSecond Matrix \n");
out.println("Second Matrix \n");
for(int i =0;i<arrayB.rows; i++)
{

}

for(int j = 0;j<arrayB.cols; j++)
{

arrayB.M[i]U]= oln.readlnt();
output.append(" 11 + arrayB.M[i]U] + 11

");

out.print(" " + arrayB.M[i][j] + " ");
}
output.append("\n");
out.println(" ");

output.append("\nThird Matrix \n");
out.println("\nThird Matrix \n");
for(int i =0;i<16; i++)
{

for(int j = 0;j<16; j++)
{

int temp = oln.readlnt();
output.append(" " + temp + " I ");
out.print(" "+temp+" I");

}
output.append("\n");
out.println(" ");

64

}
output.append("\n I finished reading \n");
out.println(" I finished reading \n");

}

/**
* Write to file in the server if the client has the token and has the write mode
*/

65

protected synchronized void writeToFile() throws IOException, lnterruptedException
{

output.append("\nl'm going to write now ... ");
out.println("\nl'm going to write now ... ");
output.append("\nFirst Matrix \n");
out.println("First Matrix \n");
for(int i =0;i<arrayA.rows; i++)
{

}

for(int j = 0;j<arrayA.cols; j++)
{

}

arrayA.M[i]U]= oln.readlnt();
output.append(" "+ arrayA.M[i]U] +" ");
out.print(" " + arrayA.M[i][J] + " ");

output append("\n");
out.print("\n ");

output.append("\nSecond Matrix \n");
out.println("Second Matrix \n");
for(int i =0;i<arrayB.rows; i++)
{

}

for(int j = 0;j<arrayB.cols; j++)
{

arrayB.M[i]U]= oln.readlnt();
output.append(" " + arrays. M[i]D] + " I ");
out.print(" "+ arrayB.M[i][j] + " I ");

}
output.append("\n");
out.println(" ");

output.append("\nThird Matrix \n");
out.println("Third Matrix \n");
for(int i =0;i<arrayC.rows; i++)
{

}

for(int j = 0;j<arrayC.cols; j++)
{

arrayC.M[i]U] = oln.readlnt();
output.append(" "+ arrayC.M[i][j] +"I");
out.print(" " + arrayC.M[i]□] + " I ");

}
output.append(11\n");
out.println(" ");

}

/**

int sum;
for(mt 1=0;1<16;1++)
{

for(mt J=0;j<16;j++)
{

sum=0;
for(int k=0;k<16;k++)
sum = (int)sum + arrayA.M[l][k] * arrayB.M[k]U];
arrayC.M[l]U] = sum + arrayC.M[l]U];

}
}
output.append("\nThe new source is: \n");
out.println("The new source is: \n");
for(int i =0;i<arrayC.rows; i++)
{

}

for(int J = 0;J<arrayC.cols; J++)
{

}

oOut.writelnt(arrayC.M[i]U]);
oOut.flush();
output.append(" 11 + arrayC. M[i]O] + " I 11

);

out.print(" " + arrayC.M[i]D] + " I 11);

output append("\n");
out.println(" ");

output.append("\nl'm finished writing now ... \n");
out.println(11 l'm finished writing now ... \n");

* Function handles 10 exceptions
*/
protected synchronized void handlelOException (IOException ex)
{

if (listener != null)
{

}
}

output.append (ex + "\n");
input.setVisible (false);
frame. validate ();
if (listener != Thread.currentThread ())
listener.interrupt ();
listener= null;
try {

oOut.close ();
} catch (IOException ignored) {}

public void windowOpened (WindowEvent event)
{

input.requestFocus ();
}

66

public void windowClosing (WindowEvent event)
{

}
}

try {
stop();

} catch (IOException ex) {
ex.printStackTrace ();

public void windowClosed (WindowEvent event) O
public void windowlconified (WindowEvent event) O
public void windowDeiconified (WindowEvent event) O
public void windowActivated (WindowEvent event) O
public void windowDeactivated (WindowEvent event) O
public void actionPerformed (ActionEvent event)
{

}

/**

try {
input.selectAII();
oOut. writeUTF (event.getActionCommand ());
oOut.flush ();
} catch (IOException ex) {

handlelOExcept1on (ex);
}

* Function main
*/

67

public static void main (String[] args) throws IOException, lnterruptedException,
FileNotFoundException

{

}

for (inti= 0;i<4;i++)
{

}

TreeToken theClient = newTreeToken("147.26.101.141", 1000);
theClient.start ();

}/*end of TokenC class*/

Appendix IV Processes.java

/**
*File name: "Processes.java"
*This file is used by DAG-based algorithm, which holds the process information
*I

import java.io.*;
import java.net.*;
import java.lang.*;

I**
* Processes class
*/

public class Processes
{

public int portNumber;
public int connectPort;
public lnetAddress pAddress;
public lnetAddress serverAddress;
public int plD,
protected Stnng myMode,
protected Processes nextNode;
protected Item iObj;
protected boolean rec ;
protected boolean token;
public Request reObj;

I**
*Subclass Item
*I
public class Item
{

public int last;
public int next;
public boolean holding;
/**
*Constructor without parameter
*I
public Item()
{

}
/**

last= O;
next =O;
holding = false;

*Constructor with 3 parameter
*I
public ltem(int lastltem, int nextltem, boolean theHolding)
{

this.last= lastltem;

68

this.next= nextltem;
this.holding= theHolding;

}
}/*end of Item class*/

I**

/**
*Constructor without parameters
*/
Processes()
{

}

I**

this.portNumber = -1;
this.connectPort = -1;
this.pAddress = null;
this.serverAddress = null;
this.plD = -1;
this.iObj = new Item();
this.rec= false;
this. token = false;
this.nextNode = null;
this.myMode ="UNDEF";
this.reObj = new Request(),

*Constructor with parameters
*/
Processes(int pN, int sP, lnetAddress addr, lnetAddress sAddr)
{

}

this.portNumber = pN;
this.connectPort = O;
this.pAddress = addr;
this.serverAddress = sAddr;
this.plD = -1;
this.myMode = "UNDEF";
this.nextNode = null;
this.iObj = new Item();
this.reObj= new Request();
this.rec= false;
this. token = false;

*Set the address
*I

public void setAddress(lnetAddress addr)
{

this.pAddress = addr;
}

I**
* Set the mode

69

/**

*/
public void setMode(String newMode)
{

this.myMode= newMode;
}

I**
* Sets the id
*I
public void setObj(int thelD)
{

this.plD = thelD;
}

I**
* Sets the next.pointer
*/

public void setNext(Processes next)
{

this.nextNode = next;
}

*Sets the token
*/

public void setToken(boolean value)
{

this. token = value;
}

}/* end of Processes class*/

70

Appendix V Request.java

/**
*File name: "Request.java"
*This file is used by DAG-based algorithm, which includes the information of
*the requester and the request receiver
*I
import java.io.*;
import java.net.*;
import java.lang.*;
I**
*Request class
*I
public class Request
{

int nd;
int sid;
/**
*Constructor without parameter
*/

public Request()
{

}
/**

nd = O;
sid = O;

*Constructor with 2 parameter
*/

public Request(int senderlD, int initiallD)
{

}
/**

this.rid= senderlD;
this.sid = initiallD;

*Prints out the requester of sender and receiver
*I
public String sendReq ()
{

return ("("+rid + "," + sid + ")");
}
/**
*Sets the information of request sender and receiver
*I
public String sendReq(int firstlD, int secondlD)
{

this.rid = firstlD;
this.sid = secondlD;
return ("(" + rid + "," + sid + ")");

}
}/* end of Request class*/

71

Appendix VI Queue.java

/**
*File name: "Queue.java"
*This file is used by DAG-based algorithm, which includes the queue structure
*I

import java.io.*;
import java.net.*;
import java.lang. *;

I**
* Queue class
*I
public class Queue
{

public Processes first, last;
public int length = O;

/**
* Constructor without paramter
*I
public Queue()
{

}

I**

first= null;
last= null;

*Adda node into the queue from the back
*I
public void addToQueue(Processes newNode)
{

}

I**

if (first == null)
{

}
else
{

last = newNode;
first = last;

last.setNext(newNode);
last = newNode;

}
length++;

* Remove an node from the queue from the front
*I
public Processes removeFromQueue()
{

72

if (first == null)
return null;

else
{

}
}

Processes temp = first;
first= first.nextNode;
length--;
return temp;

}/*end of Queue class*/

73

Appendix VII Algorithm.java

/**
*File name: "Algorithm.java"
*It is implemented with the DAG-based algorithm
*I
import java.io. *;
import java.net.*;
import java.lang.*;

public class Algorithm
{

static Processes rootNode;
static Processes nNode;
/**
* Constructor without any parameters
*I
public Algorithm()O
/**
*Show how the request and token are passing with
*the distributed queue
*/

public void passToken(Processes temp)
{

}

if(temp.pID==1)
{

if(nNode!=null)
{

}

nNode.reObj.rid = temp.pl □;
nNode.reObj.sid = temp.plD;
nNode.rec = true;

temp.iObj.last =0;
}
else if(temp.reObj.rid !=temp.reObj.sid &&

temp. rec==true&&temp. token==false)
{

}

nNode.reObj.rid= temp.reObj.rid;
nNode.reObj.sid = temp.reObj.sid;
temp.iObj.last = temp.reObj.rid;

else if(temp. token==true&&temp.rec ==true)
{

if(temp.iObj.holding ==false)
temp.iObj.next = temp.reObj.rid;

else
nNode.token = true;

temp.iObj.next =temp.reObj.rid;
}

}/* end of Algorithm class * /

74

Appendix VIII TreeToken.java

/**
*File name: TreeToken.java
*This class is used for DAG-based algorithm, It includes how the processes
*are used to build the tree;how each process recognizes its privilege to
*access to the critical section;how the processes communicate with the
*server to read or overwrite the source
*I

import java.io. *;
import java. net.*;
import java.lang.*;
import java.awt. *;
import java.awt.event.*;

/**
* TreeToken Class
*/

public class TreeToken implements Runnable, Windowlistener, Act1onlistener
{

/**
* Variables used in this class
*I
protected Stnng host;
protected int port;
protected Frame frame;
protected TextArea output;
protected TextField input;
protected PrintWriter out ;
static int tempCounter=0;
protected DatalnputStream dataln;
protected DataOutputStream dataOut;
protected FileOutputStream fileOut;
protected Thread listener;
protected Socket socket ;
protected boolean myToken = false;
protected static int clientPort□ = {3000, 3200, 3400, 3600};
static int chentArray = 0;
protected int localPort = 0;
protected Processes qNode;
private lnetAddress localAddress;
static Queue waitQueue = new Queue();
static int computerlD = 0;
static int alndex =0;
static String tokenMode = "UNDEF";
static int j = 0;
protected String tempMode = "UNDEF";
static Algorithm algObject= new Algorithm();
static int tmp= 1 ;
static int theOrder = 0;

75

/*Static variables used for the matrix*/
static int array1 [] □ = new int[16][16];
static int array200 = new int [16][16];
static int array3[] □ = new int [16][16];
static Matrix arrayA = new Matrix (16, 16, array1);
static Matrix arrayB = new Matrix (16, 16, array2);
static Matrix arrayC = new Matrix (16, 16, array3);

/*Variables used for the waiting time*/
protected long startWaiting = 0;
protected long endWaiting = 0;
protected long totalWaiting = 0;

/**
* Constructor with two paras
*/

public TreeToken (String host, int port) throws FileNotFoundException
{

}

/**

this.host= host;
this. port = port;
frame= new Frame ("TokenClient [11 +host+'·'+ port+"]"),
frame.addW1ndowL1stener (this),
output = new TextArea ();
output.setEditable (false);
input = new TextF1eld ();
input.addAct1onlistener (this);
frame.add ("Center", output);
frame.add ("South", input);
frame.pack ();
out= new PrintWriter(new FileOutputStream("output" + tempCounter

+".txt"));
tempCounter++;

*Function will be called in main
*I
public synchronized void start () throws IOException
{

if (listener == null)
{

76

Socket socket=new Socket(host, port,lnetAddress.getlocalHost(),
clientPort[clientArray]);

clientArray ++;
localAddress = socket.getlocalAddress();
qNode = new Processes(socket.getlocalPort(), 1000,

localAddress, socket.getlnetAddress());
try
{

dataln = new DatalnputStream
(new BufferedlnputStream (socket.getlnputStream ()));

77

dataOut = new DataOutputStream
(new BufferedOutputStream (socket.getOutputStream ()));

}
}

/**
* function stop
*/

} catch (IOException ex) {
socket.close ();
throw ex;
}
listener = new Thread (this);
listener.start();
frame.setVisible (true);

public synchronized void stop () throws IOException
{

frame.setVisible (false);
if (listener != null)
{

listener.interrupt ();
listener = null;
dataOut.close ();

}
}

I**
* run the threads
*/

public void run ()
{

try
{

while (!Thread.interrupted ())
{

}

getlDFromServer();
handleCS(q Node);
out.close();

} catch (IOException ex) {
handlelOException (ex);

} catch (lnterruptedException e) {}
}

I**
* Each client is assigned the id by the server, gets different port numbers
* and gets the information about their neighbors
*I
protected synchronized void getlDFromServer() throws IOException
{

}

I"*

int id = dataln.readlnt();
qNode.setlD(id);
alndex ++;
qNode.plD = id;
if(id+1>4)
qNode.iObj.last = O;
else
qNode.iObj.last = id+1;
qNode.setMode(generateRandomMode());
waitQueue.addToQueue(qNode);
output.append("\nMy id is : 11+ id + "with port#" + qNode.portNumber);
out.println("My id is : 11 + id + " with port# " + qNode.portNumber);
output.append("\nMy last:"+ qNode.iObj.last + 11 next: 11

+qNode.iObj.next + " holding : 11 + qNode.iObj.holding);
out.println("My last: 11 + qNode.iObj.last + " next: "

+qNode.iObj.next + " holding : " + qNode.iObj.holding);

* Generates the random mode for each client
*I
protected synchronized String generateRandomMode() throws IOException
{

}

I**

String mode□ = {"WRITE", "READ","WRITE"};
int mode_id = 3;
int index= (int)(Math.random()*mode_id);
output.append(''\nMy mode is : " +mode[index]);
out.println{"My mode is : "+ mode[index]);
return mode[index];

*Handles the access of the processes
*I
protected void handleCS(Processes aNode)throws IOException,

Interrupted Exception
{

startWaiting = System.currentTimeMillis() ;
waitQueue.addToQueue(aNode);
theOrder = dataln.readlnt();
if(computerlD == theOrder)
initialValue();
else

while(computerlD !=theOrder)
{

Thread.yield();
theOrder = dataln.readlnt();
if(computerlD == theOrder)
{

initialValue();
break;

78

}

I**

}
}

if(aNode.token== false)
{

while(aNode.token ==false)
{

Thread.yield();
algObject.passToken(aNode);
if(aNode.token ==true)

break;
}

}
if(aNode. token==true)
{

}

endWaiting = System.currentTimeMillis() ;
totalWaiting = endWaiting - startWaiting;
output.append("\nTHE WAITING TIME IS : " + totalWaiting);
tokenMode = aNode.myMode;
controlRW(aNode);
data Out. write I nt(waitQueue. length);
dataOut.flush();
1f(waitQueue length==0)
{

}

dataOut.wntelnt(theOrder);
dataOut.flush();

tmp = dataln.readlnt();

*Initial the value for the root
*I
public void initialValue() throws IOException
{

algObject.rootNode = waitQueue.first;
algObject.rootNode.token = true;
if(waitQueue.first.nextNode!=null)
{

waitQueue.first.rec = true;
algObject. nNode = waitQueue. first. nextNode;

}
waitQueue.first.iObj.holding = true;

}

/**
*Resets the value after the processes exit the critical section
*I
public void resetValue() throws IOException
{

tokenMode = "UNDEF";

79

}

/**

waitQueue.first.token =false;
waitQueue.first.iObj.holding = false;
waitQueue.first.rec = false;
waitQueue.removeFromQueue();
if(waitQueue.length>0&&tokenMode == "UNDEF")
{

}

waitQueue. first.setT oken(true);
waitQueue.first.iObj.holding = true;
if(waitQueue.first.nextNode!=null)

{
waitQueue.first.rec = true;
algObject.nNode = waitQueue.first.nextNode;

}

*Controls the read and write for the processes
*I
public void controlRW(Processes tNode) throws IOException,

Interrupted Exception
{

dataOut.writeUTF(tNode.myMode);
dataOut.flush();
if(tNode.myMode.equals("READ"))
{

}

readFromFile();
resetValue();

else if(tNode.myMode.equals("WRITE"))
{

}

writeToFile();
resetValue();

else
System.out.println('WRONG!!!");

}

/**
* Read the files from server if the client has the token and has read mode
*I
public synchronized void readFromFile() throws IOException,

terrupted Exception
{

output.append("\n\nl'm going to read now ... ");
ut.println("\nl'm going to read now ... ");
output.append("\n\nFirst Matrix \n");
out.println("\n Matrix \n");
for(int i =0;i<arrayA.rows; i++)
{

for(int j = O;j<arrayA.cols; j++)

80

}

/**

}

{
arrayA.M[1][j]= dataln.readlnt();
output.append(" 11 + arrayA.M[i][J] +" ");
out.print(" "+ arrayA.M[1][J] + " ");

}
output.append("\n");
out.print("\n ");

output.append("\nSecond Matrix \n");
out.println("\nSecond Matrix \n");
for(int i =0;i<arrayB.rows; i++)
{

}

for(int j = 0;j<arrayB.cols; j++)
{

arrayB.M[i][j]= dataln.readlnt();
output.append(" " + arrayB. M[i][J] + 11

");

out.print(" "+ arrayB.M[i][j] +" ");
}
output. append ("\n");
out.println(" ");

output.append(''\nTh1rd Matrix \n"),
out.println("\nThtrd Matrix \n");
for(int i =0;i<16; 1++)
{

}

for(int J = 0,J<16; J++)
{

int temp = dataln.readlnt();
output.append(" " + temp + " I ");
out.print(" " + temp + " I ");

}
output.append("\n");
out.println{11

");

output.append("\n I finished reading ");
out.println(" I finished reading ");

* Write to file in the server if the client has the token and has the write mode
*I
protected synchronized void writeToFile() throws IOException,

Interrupted Exception
{

output.append("\n\nl'm going to write now ... ");
out.println{"\nl'm going to write now ... ");
output.append("\n\nFirst Matrix \n");
out.println("\nFirst Matrix \n");
for{int i =0;i<arrayA.rows; i++)
{

for(int j = 0;j<arrayA.cols; j++)

81

}

{

}

arrayA.M[i]U]= dataln.readlnt();
output.append(" "+ arrayA.M[i]U] +" ");
out.print(" " + arrayA.M[@] +" ");

output.append ("\n");
out.println(" ");

output.append("\nSecond Matrix \n");
out.println("Second Matrix \n");
for(int i =O;i<arrayB.rows; i++)
{

}

for(int j = O;j<arrayB.cols; j++)
{

arrayB.M[i][j]= dataln.readlnt();
output.append(" "+ arrayB.M[i]U] +" ");
out.print(" " + arrayB.M[i]U] + " ");

}
output.append("\n");
out.println(" ");

output.append("\nThird Matrix \n"),
out.println("Third Matrix \n");
for(int i =0;1<arrayC.rows; i++)
{

}

for(int j = O;J<arrayC.cols; j++)
{

}

arrayC.M[i][j]= dataln.readlnt();
output.append(" " + arrayC. M[i][j] + " I ");
out.print(" " + arrayC.M[i][j] +" I ");

output.append ("\n");
out.println(" ");

int sum;
for(int 1=0;1<16;1++)
{

for(int j =O;j<16;j++)
{

}
}

sum =O;
for (int k = O;k<16;k++)

sum = (int) sum + arrayA.M[l][k] * arrayB.M[k]U];
arrayC.M[l]U] = sum+ arrayC.M[l]U];

output.append("\nThe new source is: \n");
out.println("The new source is: \n");
or(int i =O;i<arrayC.rows; i++)

for(int j = O;j<arrayC.cols; j++)
{

82

}
/**

}

dataOut.writelnt(arrayC.M[i]U]);
dataOut.flush();
output.append(" "+ arrayC.M[i] □] +" I");
out.print(" " + arrayC.M[i][J] + " I ");

}
output.append("\n");
out.println(" ");

output.append("\nl'm finished writing now ");
out.println("l'm finished writing now ");

* Function handles 10 exceptions
*I
protected synchronized void handlelOException (IOException ex)
{

}

if (listener != null)
{

output.append (ex + "\n");
input.setVisible (false);
frame.validate ();
1f (listener != Thread.currentThread ())

listener. interrupt ();
listener= null;
try {

dataOut.close ();
} catch (IOException ignored) {}

}

public void windowOpened (WindowEvent event)
{

input.requestFocus ();
}
public void windowClosing (WindowEvent event)
{

try {
stop();

} catch (IOException ex) {
ex.printStackTrace ();
}

}
public void windowClosed (WindowEvent event) O
public void windowlconified (WindowEvent event) O
public void windowDeiconified (WindowEvent event) O
public void windowActivated (WindowEvent event) O
public void windowDeactivated (WindowEvent event) O
public void actionPerformed (ActionEvent event)
{

try {
input.selectAII();

83

}

/**

dataOut.writeUTF (event.getActionCommand ());
dataOut.flush ();

} catch (IOException ex) {
handlelOException (ex);

}

* Function main
*I

84

public static void main (String□ args) throws IOException, lnterruptedException,
FileNotFound Exception

{

}

for (int i = 0;i<4;i++)
{

}

Tree Token theCllent = new TreeToken("147.26.101.142", 1000);
theClient.start ();

}/*end of Tree Token class*/

Appendix IX Processes.java

I**
*File name: "Processes.java"
*This file is used for Fairness-tree holds the process information
*I

import java.io.*;
import java.net.*;
import java.lang.*;

/**
*Processes Class
*I
public class Processes
{

public int portNumber;
public int connectPort;
public lnetAddress pAddress;
public lnetAddress serverAddress;
public int plD;
public char grant,
public char request,
public Processes child;
public LocalApplicat1on localApp = new LocalAppllcat1on();

/**
*Constructor without parameters
*I
public Processes()
{

}

/**

this.portNumber =O ;
this.connectPort = O;
this.pAddress = null;
this.serverAddress = null;
this.plD =-1;
this.grant = 'F';
this.request ='F';

* Constructor with 3 parameters
*I
public Processes(int pNum, int sP, lnetAddress pAdd, lnetAddress sAdd)
{

this.portNumber = pNum;
this.connectPort = sP;
this.pAddress = pAdd;
this.serverAddress = sAdd;
this.plD= -1;
this.grant = 'F';

85

this.request ='F';
}

/**
*Defines object input
*I
public void readObjectUava.io.ObjectlnputStream stream)throws IOException,

ClassNotFoundException
{

}

/**

stream.defaultReadObject();

*Defines object output
*I

86

public void writeObjectUava.io.ObjectOutputStream stream)throws IOException,
ClassNotF ou nd Exception

{

}

/**

stream.defaultWriteObject();
stream.flush();

*Sets the ID
*/

public void setlD(int newlD)
{

this.plD = newlD;
}

/**
*Set the address
*/

public void setAddress (lnetAddress addr)
{

this.pAddress = addr;
}

/**
*Set the port number
*/

public void setPort(int p)
{

this.portNumber = p;
}

/**
*Set the grant
*I
public void setGrant(char value)
{

this.grant= value;
}

/**
*Set the request
*/

public void setRequest(char rValue)
{

this.request= rValue;
}

}/*end of Processes class*/

87

Appendix X LocalApplication.java

I**
*File name: "LocalAppl1cation.java"
*This file is used by Fairness-tree algorithm, which holds the local application
*information of the arbiter
*I
import java.io.*;
import java.net.*;
import java.lang.*;

/**
*LocalApplication Class
*I
public class LocalApplication
{

public char mode;
public char grant ;
public char request;
/**
*Constructor without parameter
*/

public LocalAppllcat1on()
{

}
/**

this.mode = 'F';
this.grant= 'F';
this.request = 'F';

*Sets the mode
*I
public void setMode(char newMode)
{

this.mode =.newMode;
}
/**
*Sets the grant
*I
public void setGrant (char g)
{

this.grant = g;
}
I**
*Sets the request
*I
public void setRequest (char r)
{

this.request = r;
}

}/*end of LocalApplication class*/

88

Append XI Algorithm.java

/**
*File name: "Algorithm.java"
*This class is based on Fairness-tree algorithm
*I
import java.io.*;
import java.net.*;
import java.lang.*;

I**
* Algorithm class based on Frank Mueller's algorithm
*I
public class Algorithm
{

static int NBR;
protected Processes curr;
protected Processes root;

/**
* Constructor without any parameters
*/

public Algorithm()
{

}
I**

NBR = O;
curr = null;
root= null;

* Constructor with only one parameters
*I

public Algorithrh(int number)
{

}

/**

NBR=number;
curr = null;
root= null;

*Branch Algorithm
*I

public void BranchExecution()
{

Processes tempRoot = root;
Processes temp2 = root;
Processes temp3 = root;
if(root.grant == 'F')
{

while(tempRoot.child !=null)
{

89

tempRoot = tempRoot.child;
if(tempRoot.request == 'R' && root.request== 'W')

root.request= 'B';
if(tempRoot.request == 'R' && root.request== 'F')

root.request= 'R';
if(tempRoot.request== 'W' && root.request== 'W')

root.request= 'B';
if(tempRoot.request == 'W' && root.request== 'F')

root.request= 'W';

90

}
}
if(root.grant == 'F' && (root.request== W' II root.request== 'B'))
{

}

curr = root;
while(curr.plD < NBR)
{

}

if((curr.request==W'llcurr.request=='B')&&curr.grant != 'W')
curr.grant =W';

if(curr.request != 'W'&&curr.request != 'B'&&curr.grant != 'F')
curr.grant = 'F';

1f(curr request !=W'&&curr request '= 'B'&&curr.grant == 'F')
curr = curr.ch1ld,

tf(root.request == 'B')
root.request = 'R';

if (root.request == 'W')
root.request= 'F';

if(root.grant == 'R' && (root.request== 'R' II root.request== 'B'))
{

while(temp2.child != null)
{

temp2 = temp2.child;
if((temp2.request=='R'lltemp2.request=='B')&&

temp2.grant != 'R')
temp2.grant = 'R';

}
while(temp3.child!=null)
{

temp3 = temp3.child;
if((temp3.request =='R' II temp3.request == 'B') &&

temp3.grant == 'R')
{}

while((temp3.request == 'R' II temp3.request== 'B') &&
temp3.grant == 'R')
{}

temp3.grant = 'F';
}
if(root.request == 'B')

root.request= 'W';
if(root.request == 'R')

root.request= 'F';
}

}

I*
*Root execution

*/
public void RootExecution()
{

root.grant =W';
if(curr.plD < N8R)
{

}
else
{

if((curr.request =='W' II curr.request =='8') && curr.grant !='W')
curr.grant = 'W';

if(curr.request !='W' && curr.request != 'B' && curr.grant != 'F')
curr.grant = 'F';

if(curr.request !='W' && curr.request !='B' && curr.grant == 'F')
curr = curr.child;

Processes temp = root;
Processes temp2 = root;
while(temp.ch1ld != null)
{

}

if((temp.child.request == 'R' II temp.child.request== 'B')
&& temp.child.grant !='R')
temp.child.grant= 'R';

temp = temp.child;

while(temp2.child !=null)
{

}

if((temp2.child.request =='R' II temp2.child.request
== 'B')&& temp2.child.grant == 'R')

{}
while((temp2.child.request == 'R' II temp2.child.request

== '8') && temp2.child.grant == 'R')
0
temp2.child.grant = 'F';
temp2 = temp2.child;

curr = root.child;
}

}

/**
*Local Application execution
*/
public void Application Execution (Processes p)
{

if(p.request == 'W')

91

}

{
while{p.grant!='W')
{

if(p.grant == 'W')
break;

}
}
else if(p.request == 'R')
{

}

while(p.grant !='R')
{

}

if(p.grant =='R')
break;

}/* end of class */

92

Appendix XII TreeToken.java

/**
*File name: TreeToken.java
*This class is used for Fairness-tree algorithm, which includes how the processes
*are used to build the tree;how each process recognizes its privilege to access to
*the critical section;how the processes communicate with the server to read or
*overwrite the source
*I

import java.io. *;
import java.net.*;
import java.lang.*;
import java.awt. *;
import java.awt.event. *;

I**
* TreeToken Class
*I
public class TreeToken implements Runnable, Windowlistener, Actionlistener
{

I**
* Variables used in this class
*I
protected String host;
protected int port;
protected Frame frame;
protected TextArea output;
protected TextField input;
protected PrintWriter out;
static int tempCounter=0;
protected DatalnputStream dataln;
protected DataOutputStream dataOut;
protected FileOutputStream fileOut;
protected Thread listener;
protected Socket socket ;
private lnetAddress localAddress;
static Algorithm alg= new Algorithm();
protected Processes p = new Processes();
protected int clientPort□ = {3000, 3200, 3400, 3600};
static int pCounter = 0;
static char tokenMode = 'F';

/*Static variables used for the matrix*/
static int array1 DD = new int[16][16];
static int array2DD = new int [16][16];
static int array3DD = new int [16][16];
static Matrix arrayA = new Matrix (16, 16, array1);
static Matrix arrays = new Matrix (16, 16, array2);
static Matrix arrayC = new Matrix (16, 16, array3);

93

/*Variables used for recording the waiting time*/
protected long startWait1ng = 0,
protected long endWaiting = 0,
protected long wa1tingT1me = O;

/**
* Constructor with two paras
*I
public TreeToken (String host, int port) throws FileNotFoundException
{

}

/**

this.host= host;
this.port= port;

frame = new Frame ("TokenClient [" + host + ':' + port+ "]");
frame.addWindowListener (this);
output = new TextArea ();
output.setEditable (false);
input= new TextF1eld ();
input.addActionListener (this);
frame.add ("Center", output);
frame.add ("South", input);
frame.pack (),
out=new PrintWnter(new F1leOutputStream("output"+tempCounter

+ II txt")),
tempCounter++;

*Function will be called in main
*/

public synchronized void start () throws IOException
{

if (listener == null)
{

Socket socket = new Socket (host, port,
I netAdd ress .getlocal Host(), clientPort[pCounter]);

pCounter++;
localAddress = socket.getlocalAddress();
p = new Processes(socket.getlocalPort(), 1000, localAddress,

socket.get! netAddress());
try
{

dataln = new DatalnputStream
(new BufferedlnputStream (socket.getlnputStream ()));

dataOut = new DataOutputStream

94

(new BufferedOutputStream (socket.getOutputStream ()));
} catch (IOException ex) {
socket.close();
throw ex;

}
listener = new Thread (this);
listener.start();

}

I**

frame.setVisible (true);
}

* function stop
*I
protected synchronized void stop() throws IOException
{

frame.setVisible (false);
if (listener != null)
{

listener. interrupt ();
listener= null;
dataOut.close ();

}
}

/**
* run the threads

*/
public void run ()
{

try
{

while (!Thread.interrupted ())
{

}

getlDFromServer();
assign Neighbor();
exeOrder(p);
out.close();

} catch (IOException ex) {
handlelOException (ex);

} catch (lnterruptedException e) O
catch (ClassNotFoundException c) O

}

/**
* Each client is assigned the id by the server, gets different port numbers
* and the information about their neighbors
*I
protected void getlDFromServer() throws IOException
{

int newlD = dataln.readlnt();
p.setlD (newlD);
output.append("\nThis is Arbiter# : " + p.plD);
out.println("This is Arbiter# : " + p.plD);
p.localApp.setMode(generateRandomMode());
p.setRequest(p.localApp.mode);
dataOut.writeChar(p.request);

95

dataOut.flush();
}

/**
*The neighbor arbiter is set

*/

96

protected void assignNeighbor() throws IOException, ClassNotFoundException
{

}

p.child = new Processes();
output.append("\nset id -- 11 + p.child.plD);
output.append(11\nset request -- 11 + p.child.request);

/** '
* Generates the random mode for each process
*I
protected char generateRandomMode() throws IOException
{

}

I**

char mode□ = {'W', 'R'};
int mode_id = 2;
int index= (int)(Math random()*mode_id);
output.append("\nMy mode rs . " +mode[index]),
out.println("My mode 1s : "+ mode[index]),
return mode[index];

*It calls the algorithm to control the access of entering the critical section
*I
protected void exeOrder (Processes temp)throws IOException,

Interrupted Exception
{

startWaiting = System.currentTimeMillis();
if(temp.plD==0)
{

}
else
{

}

alg.root = temp;
alg.curr = alg.root;
alg. RootExecution ();
temp.grant = temp.request;

alg. Branch Execution();

if(temp.grant I= temp.request)
{

while(temp.grant != temp.request)
{

Thread.yield();
int readlD = dataln.readlnt();
output.append("readlD 11 + readlD);

}

/**

}

if(readlD == temp.plD&& temp.request !='F')
{

}
}

alg.root.setGrant(temp.request);
temp.grant= temp.request;
break;

if(temp.grant == temp.request)
{

}

endWaiting = System.currentTimeMillis();
waitingTime = endWaiting - startWaiting;
output.append("\nMy Waiting Time is : "+ waitingTime);
tokenMode = temp.localApp.mode;
dataOut.writeChar(temp.request);
dataOut.flush();
if(temp.request=='R')
{

}

readFromFile();
tokenMode ='F';

else 1f(temp request=='W')
{

writeToF1le();
tokenMode ='F';

}
else

System.out.println("***WRONG***");
data Out. write I nt(temp. p ID);

dataOut.flush();
temp.request= 'F';
temp.grant ='F';
dataOut.close();
dataln.close();

* Read the files from server if the client has the token and has read mode
*/
public synchronized void readFromFile() throws IOException,

Interrupted Exception
{

output.append("\nl'm going to read now ... ");
out.println("\nl'm going to read now ... ");
output.append("\nFirst Matrix \n");
out.println("First Matrix \n");
for(int i =0;i<arrayA.rows; i++)
{

for(int j = 0;j<arrayA.cols; j++)
{

97

}

I**

}

}

arrayA.M[i]U]= dataln.readlnt();
output.append(" " + arrayA.M[i][J] + " ");
out.print(" " + arrayA.M[i]U] + 11 11

);

output.append("\n");
out.print(11\n ");

output.append(11\nSecond Matrix \n");
out.println("Second Matrix \n");
for(int i =0;i<arrayB.rows; i++)
{

}

for(int j = 0;j<arrayB.cols; j++)
{

arrayB.M[i]□]= dataln.readlnt();
output.append(" " + arrayB.M[i]U] + " ");
out.print(" 11 + arrayB.M[i]□] +" ");

}
output.append("\n");
out.println(11 11

);

output.append(11\n Third Matrix \n");
out.println("\nThird Matrix \n"),
for(int 1 =0;i<16; i++)
{

}

for(int j = 0;j<16; j++)
{

int temp = dataln.readlnt();
output.append(" "+temp+" I");
out.print(" 11 + temp + " 1

11
);

}
output.append("\n11

);

out.println(11
");

output.append("\n I finished reading \n");
out.println(" I finished reading \n");

* Write to file in the server if the client has the token and has the write mode
*/

protected synchronized void writeToFile() throws IOException,
I nterruptedException

{
output.append("\nl'm going to write now ... ");
out.println("\nl'm going to write now ... ");
output.append("\nFirst Matrix \n");
out.println("First Matrix \n");
for(int i =0;i<arrayA.rows; i++)
{

for(int j = 0;j<arrayA.cols; j++)
{

98

}

arrayA.M[i]D]= dataln.readlnt();
output.append('' " + arrayA.M[1][J] + " ");
out.print(" " + arrayA.M[i][J] +" ");

}
output.append("\n");
out.print("\n ");

output.append("\nSecond Matrix \n");
out.println("Second Matrix \n");
for(int i =0;i<arrayB.rows; i++)
{

}

for(int j = 0;j<arrayB.cols; j++)
{

arrayB.M[i]□]= dataln.readlnt();
output.append(" " + arrayB.M[@] +" I ");
out.print(" "+ arrayB.M[i][j] + 11 I 11

);

}
output.append("\n");
out.println(" ");

output.append("\nTh1rd Matrix \n"),
out pnntln("Th1rd Matrix \n"),

for(1nt 1 =0;1<arrayC.rows; 1++)
{

for(int j = 0;j<arrayC.cols; J++)
{

arrayC.M[i][j] = dataln.readlnt();
output.append(" 11 + arrayC.M[i] □] +" I ");
out.print(" " + arrayC.M[i][j] + " I ");

}
output.append("\n");

out.println(" ");
}
int sum;
for(int 1=0;1<16;1++)
{

}
}

for(int j=0;j<16;j++)
{

sum=0;
for(int k=0;k<16;k++)
sum = (int)sum + arrayA.M[l][k] * arrayB.M[k]U];
arrayC.M[l]U] = sum + arrayC.M[l][j];

output.append("\nThe new source is: \n");
out.println("The new source is: \n");
for(int i =0;i<arrayC.rows; i++)
{

for(int j = 0;j<arrayC.cols; j++)
{

dataOut.writelnt(arrayC.M[i]D]);

99

}

/**

}

dataOut.flush();
output.append(" "+ arrayC.M[i]O] + " I ");
out.print(" 11 + arrayC.M[i][J] + 11 I ");

}
output.append("\n");
out.println(" ");

output.append("\nl'm finished writing now ... \n");
out.println("l'm finished writing now ... \n");

* Function handles 10 exceptions
*I
protected synchronized void handlelOException (IOException ex)
{

if (listener != null)
{

output.append (ex + "\n");
input.setVisible (false);
frame. validate ();
1f (listener I= Thread.currentThread ())
hstener.,nterrupt ();
listener= null,
try {

dataOut close();
} catch (IOException ignored) {}

}
}
public void windowOpened (WindowEvent event)
{

input.requestFocus ();
}
public void windowClosing (WindowEvent event)
{

try {
stop();

} catch (IOException ex) {
ex.printStackTrace ();

}
}
public void windowClosed (WindowEvent event) O
public void windowlconified (WindowEvent event){}
public void windowDeiconified (WindowEvent event) {}
public void windowActivated (WindowEvent event) {}
public void windowDeactivated (WindowEvent event) O
public void actionPerformed (ActionEvent event)
{

try {
input.selectAII();
dataOut.writeUTF (event.getActionCommand ());

100

}

I**

dataOut.flush ();
} catch (IOException ex) {

handlelOException (ex);
}

* Function main
*I

101

public static void main (String□ args) throws IOException, lnterruptedException,
FileNotFoundException

{

}

for (int i = 0;i<4;i++)
{

}

TreeToken theClient = newTreeToken ("147.26.101.141", 1000);
theClient.start ();

}/*end of TokenC class*/

Appendix XIII Matrix.java

/**
*File name: "Matnx.java"
*It is a utility file to create and initialize three matrices
*which are hold by the server and are updated by the clients
*I

I**
* Matrix class
*I
public class Matrix
{

public int rows, cols;
public int MOO;
protected int temp1 =O;
protected int counter =O;

I**
* Constructor with 3 parameters
*/

public Matnx(int tRows, mt tCols, int TOD)
{

M = new int[tRows][tCols];
rows= tRows;
cols= tCols;
for(int i = O;i<rows; i++)

for(int j = O;j<cols; J++)
M[i] □] = T[i]U];

}

I**
* fills in the empty matrix with some numbers
*I
public void makeMatrix(int tempMO□)
{

temp1 = 1;
counter= 1;
for(int i = O; i<rows;i++)
{

}
}

for(int j = O; j<cols; j++)
{

}

tempM[i] □] = temp1 ;
M[i] □] = tempM[i] □] ;
temp1 = temp1 +2;

counter= counter +1;
temp1 = counter;

}/*end of Matrix class*/

102

Appendix XIIII TokenServer.java

/**
*File name: TokenServeqava
*It is used for Dynamic-tree algorithm. Since for different algorithms, it has a slight
*difference among the algorithms. Here only append one TokenServer class in the
*thesis. This class connects with all the clients, handles sending the matrices to
*the clients respect to the requests and taking updated matrices back from
*the clients to overwrite the original source
*I

import java.io.*;
import java.net.*;
import java.util.*;
import java.lang.*;

I**
* TokenServer Class
*I
public class TokenServer implements Runnable
{

protected Socket socket,

I**
*Constructor with one para
*I
public TokenServer(Socket socket)
{

this.socket= socket;
}

/*Variables used in the class*/
protected DatalnputStream oln;
protected DataOutputStream oOut;
protected Thread listener;
protected static Vector handlers = new Vector ();
protected String mode;
protected int portN;
static Processes clientArray0 = new Processes[4];
static int pOrder = -1 ;
static long waitingTime = O;
static int clientCounter = O;
static lnetAddress holder=null;
static lnetAddress temp = null;

/*Static variables used for the matrix*/
static int array1 DD = new int[16][16];
static int array2D0 = new int [16][16];
static int array3[]□ = new int[16][16];
static Matrix arrayA = new Matrix (16, 16, array1);
static Matrix arrays = new Matrix (16, 16, array2);

103

static Matrix arrayC = new Matrix (16, 16, array3);

/**
*Function will be called in main
*/
public synchronized void start ()
{

if (listener == null)
{

try{
oln = new DatalnputStream
(new BufferedlnputStream (socket.getlnputStream ()));
oOut = new DataOutputStream

104

(new BufferedOutputStream (socket.getOutputStream ()));
listener= new Thread (this);

}

I**

listener.start ();
} catch (IOException ignored) { }

}

*Function stop
*I
public synchronized void stop ()
{

}

/**

1f (listener != null)
{

try
{

if (listener!= Thread.currentThread ())
listener.interrupt ();

listener= null;
oOut.close ();

} catch (IOException ignored) { }
}

* Function run
*I
public synchronized void run ()
{

try
{

handlers.addElement (this);
while (!Thread.interrupted ())
{

AssignlDToClient();
while(true)
if(clientArray[3]!=null)
handleReadWrite();

}

}
}catch (EOFException ignored) {}
catch (lnterruptedException e) {}
catch(ClassNotFoundException c) {}
catch (IOException ex) {

} finally {

}
stop();

if (listener== Thread.currentThread ())
ex.printStackTrace ();

handlers.removeElement (this);

static int j = 0;
static int computerlD = 0;
I**
* Assigns the ids and send the neighbors' port
* number to each client.
*/

105

protected void AssignlDToClient()throws IOExcept1on,ClassNotFoundExcept1on
{

}

/**

oOut.writelntU);
oOut.flush();
clientArrayU]=new Processes(socket.getPort(), 1000,

socket.getlnetAddress(), socket.getlocalAddress());
j++;
itU<4)
assignNeighbor(clientArrayO]);

* Sends the source to the read for reading.
*/

protected synchronized void sendFileToReader() throws IOException,
Interrupted Exception

{
for(int i = 0;i<arrayA.rows;i++)

for(int j = 0;j <array A.cols; j++)
{

}

oOut.writelnt(arrayA.M[i]O]);
oOut. flush();

for(int i = 0;i<arrayB.rows;i++)
for(int j = 0;j <arrayB.cols; j++)
{

}

oOut. write Int(arrayB. M[i] U]);
oOut. flush();

for(int i = 0;i<arrayC.rows;i++)
for(int j = 0;j <arrayC.cols; j++)

}

/**

{

}

oOut.wntelnt(arrayC.M[1][j]);
oOut.flush();

* Function sendFileToWriter send the source to each client and read the
* modified data from them
*I
protected synchronized void sendFileToWriter() throws IOException,

Interrupted Exception
{

for(int i = 0;i<arrayA.rows;i++)
for(int j = 0;j <array A.cols; j++)
{

}

oOut.writelnt(arrayA.M[i]U]);
oOut. flush();

for(int i = 0;i<arrayB.rows;i++)
for(mt J = 0;J <arrayB.cols, J++)
{

}

oOut.writelnt(arrayB M[1]U]);
oOut.flush();

for(int i = 0;i<arrayC.rows;i++)
for(int j = 0;j <arrayC.cols; j++)
{

}

oOut.writelnt(arrayC.M[i]U]);
oOut.flush();

for(int i =0;1<arrayC.rows; i++)
for(int j = 0;j<arrayC.cols; j++)

arrayC.M[i]U]= oln.readlnt();
}

I**
* Response to the client for the readers and writers for different requests
*I
protected synchronized void handleReadWrite() throws IOException,

I nterruptedException
{

String getmode = "UNDEF";
getmode =oln.readUTF();
if(getmode.eq uals("READ"))

send File ToReader();
else if (getmode .equals{"WRITE"))

send File ToWriter();
else

System.out.println("***WRONG***");
pOrder = oln.readlnt();

106

}

I**

System.out.println("VALUE---" + pOrder);
pOrder = pOrder + 1 ;
broadcast(pOrder);

* Function broadcast sends the neighbors' port numbers to each client
*I
protected void broadcast (int k)
{

synchronized (handlers)
{

Enumeration enum = handlers.elements ();
while (enum.hasMoreElements ())
{

107

TokenServer handler = (TokenServer) enum.nextElement();
try

}
}

/**

}

{
handler.oOut. write I nt(k);
handler.oOut.flush();

}catch (IOExcept1on ex) {
handler.stop ();

}

* Function broadcast sends the neighbors' port numbers to each client
*/

protected void assignNeighbor (Processes pNext)
{

}

synchronized (handlers)
{

}

Enumeration enum = handlers.elements ();
while (enum.hasMoreElements ())
{

}

TokenServer handler = (TokenServer) enum.nextElement();
try {

if(clientArray[3]!= null)
{

}

handler.oOut.writelnt(pNext.plD);
handler.oOut.flush();

}catch (IOException e){
handler.stop ();

}

I**
* Function main
*/
public static void main (String args□) throws IOException
{

array A. make Matrix(array1);
arrayB. make Matrix(array2);
holder = temp;
ServerSocket server= new ServerSocket (1000);
while(true)
{

}
}

Socket client = server.accept ();
temp = client.getlnetAddress ();

if(!temp.eq uals(holder))
computerlD ++;
holder =temp;
System.out.println ("Accepted from" +temp);
TokenServer the Server = new Token Server(client);
theServer.start();

}//end of TokenServer class

108

REFERENCE

1. [BaCh96] S. Banerjee and P. Chrysanthis. A New Token Passing Distributed

Mutual Exclusion Algorithm. Proceedings of the Intl. Conf. on Distributed

Computing Systems (ICKCS), 1996.

2. [BWRL02] J. Bishop, B. Worrall, K. Renaud and J. Lo. Java and Distribution

of Application Requiring Mutual Exclusion and Deadlock Detection. Technical

Report, November 2002.

3. [Chan96] Y. I. Chang, "A Simulation Study on Distributed Mutual Exclusion",

Journal of Parallel and Distributed Computing, vol. 33, no. 2, pp. 107-121 1

March 1996.

4. [DaHa02] P. K. Dash and R. C. Hansdah. "An Efficient Token-Based

Algorithm for Distributed Mutual Exclusion." International Council for

Computer Communication, pp. 955-971, 2002.

5. [Fidg91] C. Fidge. "Logical Time in Distributed Computing Systems."

Computer, vol. 24, pp. 28-33, 1991.

6. [FuTL97]S. Fu, N. Tzeng, and Z. Li. "Empirical Evaluation of Distributed

Mutual Exclusion Algorithms." International Parallel Processing Symposium,

pp. 255-259, 1997.

7. [Hadd04] F. Haddix. "Tree-based Mutual Exclusion with Fairness."

Unpublished manuscript, 2004.

8. [John95] T. Johnson, "A Performance Comparison of Fast Distributed Mutual

Exclusion Algorithms", Proc. 9th Int. Parallel Processing Symp., pp. 258-264,

109

110

April 1995.

9. [Lamp78] L. Lamport. "Time, Clocks and Ordering of Events in Distributed

Systems." Communication of the ACM, vol. 21, no. 7, pp. 558-565, June 1978.

10. [LiHu89] K. Li and P. Hudak. Memory coherence in shared virtual memory

systems. Communication of the ACM, vol. 21, no. 7, pp. 321-359. November

1989.

11. [Maek85] M. Maekawa. A N Algorithm for Mutual Exclusion in Decentralized

Systems. ACM Transactions on Computer Systems, vol. 3, no. 2, pp. 145-159,

May 1985.

12. [Muel98] F. Mueller. "Prioritized Token-based Mutual Exclusion for Distributed

Systems." International Parallel Processing Symposium, pp. 791-795, 1998.

13. [Muel97] F. Mueller. Distributed shared-memory threads: DSM-threads. In

Workshop on Run-Time Systems for Parallel Programming. vol. 39, pp. 31-40,

April 1997.

14. [NaTr96] M. Naimi, M. Trehel, and A. Arnold. "A log(N) Distributed Mutual

Exclusion Algorithm Based on Path Reversal." JPDC: Journal of Parallel and

Distributed Computing, vol. 34, no. 1, pp. 1-13, April 1996.

15.[NeMi91] M. L. Neilsen and M. Mizuno, "A Dag-Based Algorithm for

Distributed Mutual Exclusion," Proc. 11th Int. Cont. Distributed Computer

Systems, pp. 354-360, May 1991.

16. [Raym89] K. Raymond, "A Tree based Algorithm for Distributed Mutual

Exclusion." ACM Trans. On Computer Systems, vol. 7, no. 1, pp. 61-77,

February 1989.

111

17. [SuKa85] I. Suzuki and T. Kasami, "A distributed Mutual Exclusion Algorithm."

ACM Transactions on Computer Systems, vol. 3, no. 4, pp. 344-349,

November 1985.

18.[TrHo01] M. Trehel and A. Housni. Comparison of Techniques used in

Prioritized Mutual Exclusion by Groups. PDCA T, 2001.

19. [WaMu00] C. Wagner and F. Mueller. "Token-Based Read/Write-Locks for

Distributed Mutual Exclusion." A. Bode ct al. (Eds.), Euro-Par 2000, LNCS

1900,pp. 1185-1195,2000.

20. [XuHw96] A. Xu and K. Hwang. Modeling Communication Overhead: MPI

and MPL Performance on the IBM SP2. IEEE Parallel & Distributed

Technology, Spring 1996.

VITA

Yun hong Jiang was born in Shunchang, Fujian, P.R. China, on August 18,

1976, the daughter of ShaoTai Jiang and Yadian Zheng. After completing her

study at Shunchang High School, Shunchang, Fujian, in 1994, she entered

Fujian Normal University. She received the degree of Bachelor of Arts from

Fujian Normal University in July 1998. After two years as a graduate student in

Music at Fujian Normal University, she moved to United States to study

Computer Science at Texas State University-San Marcos.

Permanent Address: 1620 W. 6th
, Apt. C

Austin, Texas 78703

This thesis was typed by Yunhong Jiang.

	Jiang_Yunhong_2004_0001
	Jiang_Yunhong_2004_0002
	Jiang_Yunhong_2004_0003
	Jiang_Yunhong_2004_0004
	Jiang_Yunhong_2004_0005
	Jiang_Yunhong_2004_0006
	Jiang_Yunhong_2004_0007
	Jiang_Yunhong_2004_0008
	Jiang_Yunhong_2004_0009
	Jiang_Yunhong_2004_0010
	Jiang_Yunhong_2004_0011
	Jiang_Yunhong_2004_0012
	Jiang_Yunhong_2004_0013
	Jiang_Yunhong_2004_0014
	Jiang_Yunhong_2004_0015
	Jiang_Yunhong_2004_0016
	Jiang_Yunhong_2004_0017
	Jiang_Yunhong_2004_0018
	Jiang_Yunhong_2004_0019
	Jiang_Yunhong_2004_0020
	Jiang_Yunhong_2004_0021
	Jiang_Yunhong_2004_0022
	Jiang_Yunhong_2004_0023
	Jiang_Yunhong_2004_0024
	Jiang_Yunhong_2004_0025
	Jiang_Yunhong_2004_0027
	Jiang_Yunhong_2004_0029
	Jiang_Yunhong_2004_0030
	Jiang_Yunhong_2004_0031
	Jiang_Yunhong_2004_0034
	Jiang_Yunhong_2004_0035
	Jiang_Yunhong_2004_0037
	Jiang_Yunhong_2004_0038
	Jiang_Yunhong_2004_0039
	Jiang_Yunhong_2004_0040
	Jiang_Yunhong_2004_0041
	Jiang_Yunhong_2004_0042
	Jiang_Yunhong_2004_0043
	Jiang_Yunhong_2004_0044
	Jiang_Yunhong_2004_0045
	Jiang_Yunhong_2004_0046
	Jiang_Yunhong_2004_0047
	Jiang_Yunhong_2004_0048
	Jiang_Yunhong_2004_0049
	Jiang_Yunhong_2004_0050
	Jiang_Yunhong_2004_0051
	Jiang_Yunhong_2004_0053
	Jiang_Yunhong_2004_0054
	Jiang_Yunhong_2004_0056
	Jiang_Yunhong_2004_0057
	Jiang_Yunhong_2004_0058
	Jiang_Yunhong_2004_0059
	Jiang_Yunhong_2004_0060
	Jiang_Yunhong_2004_0061
	Jiang_Yunhong_2004_0062
	Jiang_Yunhong_2004_0063
	Jiang_Yunhong_2004_0064
	Jiang_Yunhong_2004_0065
	Jiang_Yunhong_2004_0066
	Jiang_Yunhong_2004_0067
	Jiang_Yunhong_2004_0068
	Jiang_Yunhong_2004_0069
	Jiang_Yunhong_2004_0070
	Jiang_Yunhong_2004_0071
	Jiang_Yunhong_2004_0072
	Jiang_Yunhong_2004_0073
	Jiang_Yunhong_2004_0074
	Jiang_Yunhong_2004_0075
	Jiang_Yunhong_2004_0076
	Jiang_Yunhong_2004_0077
	Jiang_Yunhong_2004_0078
	Jiang_Yunhong_2004_0079
	Jiang_Yunhong_2004_0080
	Jiang_Yunhong_2004_0081
	Jiang_Yunhong_2004_0082
	Jiang_Yunhong_2004_0083
	Jiang_Yunhong_2004_0084
	Jiang_Yunhong_2004_0085
	Jiang_Yunhong_2004_0086
	Jiang_Yunhong_2004_0087
	Jiang_Yunhong_2004_0088
	Jiang_Yunhong_2004_0089
	Jiang_Yunhong_2004_0090
	Jiang_Yunhong_2004_0091
	Jiang_Yunhong_2004_0092
	Jiang_Yunhong_2004_0093
	Jiang_Yunhong_2004_0094
	Jiang_Yunhong_2004_0095
	Jiang_Yunhong_2004_0096
	Jiang_Yunhong_2004_0097
	Jiang_Yunhong_2004_0098
	Jiang_Yunhong_2004_0099
	Jiang_Yunhong_2004_0100
	Jiang_Yunhong_2004_0101
	Jiang_Yunhong_2004_0102
	Jiang_Yunhong_2004_0103
	Jiang_Yunhong_2004_0104
	Jiang_Yunhong_2004_0105
	Jiang_Yunhong_2004_0106
	Jiang_Yunhong_2004_0107
	Jiang_Yunhong_2004_0108
	Jiang_Yunhong_2004_0109
	Jiang_Yunhong_2004_0110
	Jiang_Yunhong_2004_0111
	Jiang_Yunhong_2004_0112
	Jiang_Yunhong_2004_0113
	Jiang_Yunhong_2004_0114
	Jiang_Yunhong_2004_0115
	Jiang_Yunhong_2004_0116
	Jiang_Yunhong_2004_0117
	Jiang_Yunhong_2004_0118
	Jiang_Yunhong_2004_0119
	Jiang_Yunhong_2004_0120
	Jiang_Yunhong_2004_0121

