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SOLVABILITY OF NEUMANN BOUNDARY-VALUE PROBLEMS
WITH CARATHÉODORY NONLINEARITIES

ABDELKADER BOUCHERIF & NAWAL AL-MALKI

Abstract. We propose a sufficient condition, on the nonlinear term, for the

existence of solutions. This new condition is weaker than the usual sign con-
dition and than the assumption on the existence of constant upper and lower
solutions.

1. Introduction

This paper is devoted to the study of the existence of solutions to Neumann
boundary-value problems for nonlinear second order differential equations with
Carathéodory nonlinearities. More specifically, we consider the problem

y′′(t) = f(t, y(t), y′(t)) 0 < t < 1

y′(0) = y′(1) = 0
(1.1)

where f : [0, 1] × R2 → R is an L1-Carathéodory function, i.e. f satisfies the
following conditions:

(i) f(·, y, z) is measurable for all (y, z) ∈ R2.
(ii) f(t, ·, ·) is continuous for almost all t ∈ [0, 1].
(iii) For each K > 0 there exists hK ∈ L1(0, 1) such that |y| + |z| ≤ K implies

|f(t, y, z)| ≤ hK(t) for almost all t ∈ [0, 1].

Problem (1.1) has been investigated by several authors under suitable conditions
on the nonlinearity. See for instance [1, 2, 4, 5, 6] and the references therein. In
most of these works the nonlinearity is assumed to be either continuous or of the
Carathéodory class. The techniques involved are based on the upper and lower
solution method, the topological degree, or the topological transversality theorem.
We should point out that a different class of Neumann problems has been considered
in [7, 8, 9, 10]. Our assumptions and techniques of proofs are different and our
results cannot be trivially deduced from the previous works. In fact, we generalize
the results in [5, 6] and some of the results in [2, 4].
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topological transversality theorem.
c©2004 Texas State University - San Marcos.

Submitted February 24, 2004. Published April 6, 2004.

1



2 ABDELKADER BOUCHERIF & NAWAL AL-MALKI EJDE-2004/51

2. Preliminaries

Let I denote the real interval [0, 1]. Let X = AC1(I) denote the Banach space
of real-valued functions that are absolutely continuous, together with their first
derivatives, on I. This space is endowed with the norm

‖y‖ = max{|y(t)|+ |y′(t)|; t ∈ I} .

Let Car(I × R2) be the set of real-valued functions satisfying the Carathéodory
conditions (i), (ii), (iii) above.

By a solution to (1.1) we mean a function y ∈ X0 := {u ∈ X : u′(0) = u′(1) = 0}
satisfying the differential equation in (1.1) almost everywhere on I. Note that the
homogeneous problem y′′ = 0, y′(0) = y′(1) = 0 has nontrivial solutions. So, we
shall consider the following problem, for m > 1:

y′′(t) =
1
m

y(t) + f(t, y(t), y′(t)), 0 < t < 1

y′(0) = y′(1) = 0
(2.1)

and consider (1.1) as a limiting case when m → +∞.
Our aim is to provide sufficient conditions on f that will make (2.1) solvable.

First, we show that solutions to (2.1) are uniformly bounded, independently of m.
Then, we use the Arzela-Ascoli theorem to obtain the solvability of (1.1).

Since our arguments are based on the topological transversality theorem (see
[3, 1] for definitions and properties), we shall consider a one-parameter family of
problems related to (2.1). For 0 ≤ λ ≤ 1, consider

y′′(t) =
1
m

y(t) + λf(t, y(t), y′(t)), 0 < t < 1

y′(0) = y′(1) = 0 .
(2.2)

Note that for λ = 1, the above equation is exactly (2.1). Also note that when λ = 0,
equation (2.2) has only the trivial solution. It is clear that (2.2) is equivalent to

y′(t)− y′(0)− 1
m

∫ t

0

y(s)ds = λ

∫ t

0

f(s, y(s), y′(s))ds .

Define the linear operator Lm : X0 → C0(I) by

(Lmy)(t) = y′(t)− y′(0)− 1
m

∫ t

0

y(s)ds, t ∈ I .

Here C0(I) = {u ∈ C(I);u(0) = 0}. Also, define Nf (λ, ·) : X0 → C(I) by

Nf (λ, y)(t) = λ

∫ t

0

f(s, y(s), y′(s))ds, t ∈ I .

It follows that (2.2) is equivalent to

Lmy = Nf (λ, y), (2.3)

in the sense that every solution of (2.2) is a solution of (2.3) and vice-versa.

Lemma 2.1. The operator Lm is invertible.

Proof. Note that the equation Lmy = p is equivalent to

y(t) = y(0) +
1
m

∫ t

0

(t− s)y(s)ds +
∫ t

0

p(s)ds .
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Since this equation is a linear Volterra integral equation, it has a unique solution
(see for instance [11]). This completes the proof. �

Lemma 2.2. The operator Nf (λ, ·) is continuous and completely continuous.

The proof of this lemma can be found in [5].

3. A Priori Estimates

In this section we present a new sufficient condition on f ∈ Car(I ×R2) in order
to obtain a priori bounds, independent of λ and m, on solutions y of (2.2). This
condition is an improvement of condition (H1) in [6] and is more general than the
assumption on the existence of constant upper and lower solutions in the correct
order or in the reverse order in [2].

Proposition 3.1. Assume f ∈ Car(I × R2) satisfies the condition

(C1) There exists M0 > 0 such that
[ ∫ 1

0
f(t, M0, 0)dt

][ ∫ 1

0
f(t,−M0, 0)dt

]
< 0.

Then any possible solution y of

y′′(t) =
1
m

y(t) + λf1(t, y(t), y′(t)) 0 < t < 1

y′(0) = y′(1) = 0
(3.1)

satisfies |y(t)| ≤ M0 for all t ∈ I .

Proof. The proof is similar to that of Lemma 2.2 in [6], but we reproduce it here
for the sake of completeness. Without loss of generality, we prove only the case
when

∫ 1

0
f(t, M0, 0)dt > 0 and

∫ 1

0
f(t, −M0, 0)dt < 0. The other case is similar.

Consider the modified problem (3.1) with

f1(t, y, z) =


max

{
f(t, y, z),−M0

m +
∫ 1

0
f(t, M0, 0)dt

}
y > M0

f(t, y, z) −M0 ≤ y ≤ M0

min
{

f(t, y, z), M0
m +

∫ 1

0
f(t,−M0, 0)dt

}
y < −M0

We remark that any solution y of (3.1) that satisfies |y(t)| ≤ M0 is a solution of
(2.2), because in this case f1(t, y(t), y′(t) ≡ f(t, y(t), y′(t)).

Let y be a solution of (3.1), and let t0 ∈ I be a value where y achieves its positive
maximum. Then y′(t0) = 0.

Assume that y(t0) > M0 and t0 ∈ (0, 1). Then there exists a > 0 such that
y(t) > M0 for all t ∈ [t0, t0 + a]. It follows from the differential equation in (3.1)
and the definition of f1 that for all t ∈ [t0, t0 + a],

y′′(t) ≥ y(t)
m

− M0

m
+

∫ 1

0

f(t, M0, 0)ds =
y(t)−M0

m
+

∫ 1

0

f(t, M0, 0)ds > 0 .

This implies that y′(t) =
∫ t

t0
y′′(s)ds > 0 for all t ∈ [t0, t0 + a], which yields

y(t)− y(t0) =
∫ t

t0

y′(τ)dτ > 0 for all t ∈ [t0, t0, a].

This contradicts that y(t0) is the maximum of y. Hence y(t) ≤ M0 for all t ∈ (0, 1).
If t0 = 0, then assuming y(0) > M0 we shall arrive at a contradiction. Indeed,

y′′(0) =
y(0)
m

+ λf1(0, y(0), 0)
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implies

y′′(0) ≥ y(0)−M0

m
+

∫ 1

0

f(s,M0, 0)ds > 0 .

So y′ is strictly increasing to the right of t = 0 (but sufficiently near 0). Then
y′(t) > y′(0) = 0 for t near 0; and so, y is strictly increasing to the right of t = 0
and y(0) is not the maximum of y on I. This is the desired contradiction. Hence
y(0) ≤ M0.

Similarly, we can show that y(1) ≤ M0. Thus y(t) ≤ M0 for all t ∈ I.
Now, in case y achieves a negative minimum at t = τ0 such that y(τ0) < −M0

and τ0 ∈ (0, 1) then there exists b > 0 such that y(t) < −M0 for all t ∈ [τ0, τ0 + b].
It follows from the differential equation in (3.1) and the definition of f1 that for all
t ∈ [τ0, τ0 + b],

y′′(t) ≤ y(t) + M0

m
+

∫ 1

0

f(s,−M0, 0)ds ≤ 0

which leads to y′(t) =
∫ t

τ0
y′′(s)ds < 0 for all t ∈ [τ0, τ0 + b] and

y(t)− y(τ0) =
∫ t

τ0

y′(s)ds < 0 for all t ∈ [τ0, τ0 + b] .

This contradicts that y(τ0) is the minimum of y on I.
We can handle the case of a minimum at τ0 = 0 or τ0 = 1 in a similar way as

above. Hence, we have proved that

−M0 ≤ y(t) ≤ M0 for all t ∈ I,

which completes the proof. �

Remark 3.2. Hypothesis (H1) in [6] states that there exists M > 0 such that
f(t, M, 0) ≥ 0 and f(t,−M, 0) ≤ 0 almost everywhere in I. Our condition is
much weaker than (H1), since we allow the possibility of f(t, M0, 0) < 0 on a
subset of I with positive measure as long as

∫ 1

0
f(t, M0, 0)dt remains positive; or

f(t,−M0, 0) > 0 on a subset of I with positive measure as long as
∫ 1

0
f(t,−M0, 0)dt

remains negative.

Remark 3.3. From the definition of upper and lower solutions, it follows that
(H1) in [6] implies that −M0 is a lower solution and M0 is an upper solution.
Hence our condition is more general than the assumption of the existence of con-
stant upper and lower solutions. Moreover, the case

∫ 1

0
f(t, M0, 0)dt < 0 and∫ 1

0
f(t,−M0, 0)dt > 0 is more general than the condition of existence of constant

upper and lower solutions in the reverse order (see [2]).

Our next result gives an a priori bound on the first derivative of any solution y
of (3.1) satisfying |y(t)| ≤ M0 for all t ∈ I.

Proposition 3.4. Assume f ∈ Car(I × R2) satisfies the condition
(C2) There exist q ∈ L1(I), Φ : [0,+∞) → (0,+∞) nondecreasing with 1/Φ

integrable over bounded intervals, and∫ +∞

M0

dσ

Φ(σ)
> ‖q‖L1

such that |f(t, y, z))| ≤ q(t)Φ(|z|) for all (t, y) ∈ I × [−M0,M0] and all
z ∈ R.
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Then, there exists M1 > 0 such that |y′(t)| ≤ M1 for all t ∈ I for any solution y of
(3.1) with |y(t)| ≤ M0 for all t ∈ I.

Proof. Let y be a solution of (3.1) such that |y(t)| ≤ M0 for all t ∈ I. Condition
(C2) implies

|y′′(t)| ≤ |y(t)|
m

+ q(t)Φ(|y′(t)|) for all t ∈ I

Since m > 1 and |y(t)| ≤ M0, we have

|y′′(t)| ≤ M0 + q(t)Φ(|y′(t)|) for all t ∈ I .

On the other hand,

|y′(t)| =
∣∣∣ ∫ t

0

y′′(s)ds
∣∣∣ ≤ ∫ t

0

|y′′(s)|ds for all t ∈ I.

Hence

|y′(t)| ≤ M0t +
∫ t

0

q(s)Φ(|y′(s)|)ds for all t ∈ I .

Since 0 ≤ t ≤ 1, we infer that

|y′(t)| ≤ M0 +
∫ t

0

q(s)Φ(|y′(s)|)ds for all t ∈ I .

Let

u(t) = M0 +
∫ t

0

q(s)Φ(|y′(s)|)ds for all t ∈ I

Then |y′(t)| ≤ u(t) and u′(t) = q(t)Φ(|y′(t)|) for all t ∈ I. Since Φ is nondecreasing,

u′(t) ≤ q(t)Φ(u(t)) for all t ∈ I

Therefore,
u′(t)

Φ(u(t))
≤ q(t) for all t ∈ I.

It follows that ∫ t

0

u′(s)ds

Φ(u(s))
≤

∫ t

0

q(s)ds ≤
∫ 1

0

q(s)ds = ‖q‖L1 .

This implies ∫ u(t)

M0

dσ

Φ(σ)
≤ ‖q‖L1 .

The condition on Φ implies that there exists M1 > 0 such that u(t) ≤ M1 for all
t ∈ I. Therefore, |y′(t)| ≤ M1 for all t ∈ I, which completes the proof. �

4. Existence of Solutions

In this section we state and prove our existence result.

Theorem 4.1. Assume that f ∈ Car(I × R2) satisfies conditions (C1) and (C2).
Then problem (1.1) has at least one solution.
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Proof. We have seen in the above discussion that any possible solution y of (3.1)
satisfies

|y(t)| ≤ M0 and |y′(t)| ≤ M1 for all t ∈ I .

Let M := M0 +M1. Then ‖y‖ ≤ M . It is clear that problem (3.1) is equivalent to

y = L−1
m Nf1(λ, y) (4.1)

Let U := {y ∈ X0; ‖y‖ < 1+M}. Then we can easily show that for any λ, the oper-
ator L−1

m Nf1(λ, ·) is compact (see [4]) and has no fixed point on ∂U , the boundary
of U . Therefore, L−1

m Nf1(., .) : [0, 1] × U → X0 is a compact homotopy without
fixed point on ∂U . Since L−1

m Nf1(0, ·) ≡ 0 is essential, then by the topological
transversality theorem (see [1, 3]) L−1

m Nf1(1, ·) is essential. Consequently, there ex-
ists y ∈ U such that y = L−1

m Nf1(1, y), which means that y is a solution of (3.1) for
λ = 1. But, we have seen that any solution of (3.1), satisfying |y(t)| ≤ M0 is also
a solution of (2.2). Hence (2.2), with λ = 1, has at least one solution. But (2.2)
is exactly (2.1) for λ = 1. Hence, we have proved that for each m > 1, problem
(2.1) has at least one solution, which we denote by ym. Moreover, ym, satisfies the
estimates

|ym(t)| ≤ M0 and |y′m(t)| ≤ M1 for allt ∈ I.

Furthermore, M0 and M1 are independent of m. This shows that the sequences
{ym(t)} and {y′m(t)} are uniformly bounded.

Now,

y′m(t) =
∫ t

0

y′′(s)ds =
1
m

∫ t

0

ym(s)ds +
∫ t

0

f(s, ym(s), y′m(s)ds.

This implies

y′m(t2)− y′(t1) =
1
m

∫ t2

t1

ym(s)ds +
∫ t2

t1

f(s, ym(s), y′m(s))ds .

Since m > 1 and f ∈ Car(I × R2), we have

|y′m(t2)− y′m(t1)| ≤ M0|t2 − t1|+
∫ t2

t1

hM0(s)ds .

This shows that {y′m} is equicontinuous. Also, ym(t) = ym(0) +
∫ t

0
y′m(s)ds implies

ym(τ2)− ym(τ1) =
∫ τ2

τ1

y′m(s)ds

By proposition 3.4 we have |y′m(t) ≤ M1 for all t. Thus

|ym(τ2)− ym(τ1)| ≤ M1|τ2 − τ1|
So that {ym} is also equicontinuous.

By the Arzela-Ascoli theorem, we can extract from {ym} and {y′m} subsequences,
which we label the same, and that are uniformly convergent on I. Let y(t) =
limm→+∞ ym(t) and z(t) = limm→+∞ y′m(t). Since ym(t) = ym(0) +

∫ t

0
y′m(s)ds,

and the convergence of {ym} {y′m} is uniform, we obtain

y(t) = y(0) +
∫ t

0

z(s)ds

which implies that y′(t) = z(t); i.e., y′(t) = limm→ y′m(t). Moreover y is a solution
of (1.1). This completes the proof �
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