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EXISTENCE OF SOLUTIONS TO A HAMILTONIAN SYSTEM
WITHOUT CONVEXITY CONDITION ON THE NONLINEARITY

GREGORY S. SPRADLIN

Abstract. We study a Hamiltonian system that has a superquadratic poten-

tial and is asymptotic to an autonomous system. In particular, we show the

existence of a nontrivial solution homoclinic to zero. Many results of this type
rely on a convexity condition on the nonlinearity, which makes the problem

resemble in some sense the special case of homogeneous (power) nonlinear-

ity. This paper replaces that condition with a different condition, which is
automatically satisfied when the autonomous system is radially symmetric.

Our proof employs variational and mountain-pass arguments. In some simi-

lar results requiring the convexity condition, solutions inhabit a submanifold
homeomorphic to the unit sphere in the appropriate Hilbert space of functions.

An important part of the proof here is the construction of a similar manifold,
using only the mountain-pass geometry of the energy functional.

1. Introduction

As Poincaré showed, the structure of homoclinic orbits of a system of differential
equations, or of a dynamical system, can reveal part of the structure of the entire
set of solutions. For nonautonomous differential equations, dynamical systems tools
may be insufficient to find homoclinic solutions. Variational methods can be used to
find periodic solutions of differential equations fairly easily [10]. When one searches
for homoclinic solutions, the variational problem lacks some compactness properties
present in the periodic case. However, these difficulties can be overcome by careful
arguments (see [11]).

Consider the system
−u′′ + u = g(t)V ′(u), (1.1)

where u : R → RN , V ′ is the gradient of V : RN → R, and V (q) is a positive
potential function similar to a superquadratic power of q (i.e., |q|p, for some p > 2).
Assume that g is positive and bounded away from zero (see [5] for a relaxation
of this condition). We seek nontrivial solutions homoclinic to zero, or simply,
“homoclinics.” That is, solutions u 6≡ 0 with u(t) → 0 and u′(t) → 0 as t → ±∞.

A natural and surprisingly difficult question is, what conditions must be assumed
on g and V to conclude the existence of a nontrivial homoclinic solution? That we
must assume something is shown by the following counterexample (see [8] for a
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PDE version): let N = 1 (the single equation case), V (q) = q4 (but any suitable
V will do), and let g be monotone and nonconstant. Then (1.1) has no nontrivial
homoclinic. To prove, multiply both sides of (1.1) by u′, and integrate from −∞
to ∞, using integration by parts on the right side. Then the left side is zero, while
the right side is nonzero.

On the affirmative side, existence of homoclinics has been proven for when g
is periodic, and more recently, g almost periodic ([16],[6]). [1] contains results
for “slowly oscillating” g (g oscillates between two positive values and g′ → 0 as
t →∞). This author has existence results for g a perturbation of a periodic function
([13]), and for g approaching a constant exponentially quickly as t → ±∞ ([14]).

Between the counterexample cited above and the positive results to date, there
is a large gap.

Most of the results cited above (all except for [11]), and many newer ones (e.g.,
[6]) rely on a certain convexity assumption on V . This assumption is given below,
but for now, we note that this assumption makes the variational problem similar
to the power case (V (q) = |q|p). It is an interesting challenge to remove or at least
weaken this assumption and attempt to reach similar conclusions.

In order to state the theorem, we must introduce the variational framework.
Consider an “unfactored” version of (1.1),

−u′′ + u = W ′(t, u),

where W : R× RN → R and W ′ = ∇qW = (∂W
∂q1

, . . . , ∂W
∂qN

). Let E = W 1,2(R, RN ),
with the inner product (u, w) =

∫
Ru′ · w′ + u · w dt and the corresponding norm

‖u‖ =
√

(u, u). The functional I : E → R corresponding to (1) is

I(u) =
1
2
‖u‖2 −

∫
R
W (t, u(t)) dt. (1.2)

Conditions will be put on W to ensure that I is well-defined, and has a continuous
Frechét derivative. Critical points of I correspond exactly to homoclinic solutions
of (1) (see [12]).

Let V : RN → R and satisfy W (t, q) → V (q) as t → ±∞ (this will be made more
precise in a moment). The functional I0, defined by

I0(u) =
1
2
‖u‖2 −

∫
R
V (u(t)) dt, (1.3)

corresponds to the autonomous system

−u′′ + u = V ′(u). (1.4)

I0 and I have “mountain-pass geometry.” That is (in the case of I0, for exam-
ple), 0 is a strict local minimum of I0 (with I0(0) = 0, and for some r > 0,
inf{I(u) | ‖u‖ = r} > 0), and I0(u) < 0 for some u ∈ E. Therefore the set of
“mountain-pass curves”

Γ0 = {γ ∈ C([0, 1], E) | γ(0) = 0, I0(γ(1)) < 0}

is nonempty, and the “mountain pass” value c0 defined by

c0 = inf
γ∈Γ0

max
θ∈[0,1]

I0(γ(θ))

is positive.
The result proven here is:
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Theorem 1.1. Let N ∈ N. Let V and F satisfy
(V1) V ∈ C1,1(RN , R)
(V2) V (0) = 0, V (q) > 0 for all q 6= 0
(V3) There exists µ > 2 such that V ′(q)q ≥ µV (q) for all q ∈ RN , where V ′(q) ≡

∇V (q)
(V4) There exists d > 0 such that I0 (defined by (1.3)) has no critical values

other than c0 in the interval (0, c0 + d).
(F1) F ∈ C(R+, R+)
(F2) lim sups→0+

F (s)
s2 < ∞.

Then there exists ε = ε(V, F ) with the following property: If W satisfies
(W1) W ∈ C1,1(R× RN , R)
(W2) W (t, 0) = 0, W (t, q) > 0 for all t ∈ R, q ∈ RN \ {0}.
(W3) There exists µ > 2 such that W ′(t, q)q ≥ µW (t, q) for all t ∈ R, q ∈ RN

(W4) For q 6= 0, |W ′(t, q)− V ′(q)|/|q| → 0 as |t| → ∞, uniformly in q
(W5) W (t, q) ≥ V (q)− εF (|q|) for all t ∈ R, q ∈ RN ,

then (1) has a nontrivial solution u homoclinic to zero. 0 < I(u) < 2c0, where I is
as in (1.2).

Assumptions (V1)–(V3) and (W1)–(W3) imply that the functions V and W are
“superquadratic,” that is, for small q, W (t, q) = o(|q|2) and for large q, W (t, q) >
O(|q|2) (similarly for V ) . Therefore, I(u) < 0 for some u ∈ E, and Γ and Γ0 are
nonempty. Also, I(u) = 1

2‖u‖
2−o(‖u‖2) for small ‖u‖ (similarly for I0), so c0 (and

the similarly defined c) are positive. (V1)-(V3) are all satisfied in the canonical
case V (q) = |q|α/α for α > 2.
The “missing convexity assumption” on V and W is the following:

For all t ∈ R and q ∈ RN \ {0}, W (t, sq)/s2 is
a nondecreasing function of s for s > 0, and

V (sq)/s2 is a nondecreasing function of s for s > 0.

(1.5)

This condition holds in the power case, V (q) = |q|α/α, α > 2. (V4) is apparently
independent of (1.5). Although (V4) may be difficult to verify in general, it is true
if (V1) and (V2) are satisfied, and V is radially symmetric, that is, V (q) ≡ V (|q|)
(a proof is at the end of the paper).

Let us examine the implications of the “non-assumption” (1.5). Under (1.5), for
any u ∈ E \ {0} and s > 0,

I(su) =
1
2
s2‖u‖2 −

∫
R

W (t, su) dt

= s2
(1
2
‖u‖2 −

∫
R

W (t, su)
s2

dt
)
.

So for any u ∈ E \ {0}, the mapping s 7→ I(su) begins at 0 at s = 0, increases to a
positive maximum, then decreases to −∞. Defining

S = {u ∈ E \ {0} | I ′(u)u = 0},
S is a codimension-one submanifold of E, homeomorphic to the unit sphere in E
via radial projection. Any ray of the form {su | s > 0} (u 6= 0) intersects S
exactly once. All nonzero critical points of I are on S. Conversely, under suitable
smoothness assumptions on V , any critical point of I constrained to S is a critical
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point of I (in the large) (see [13]). Therefore, one can work with S instead of E,
and look for, say, a local minimum of I constrained to S (which may be easier
than looking for a saddle point of I). There is another way to use (1.5): for any
u 6= 0, the ray from 0 passing through u can be used (after rescaling in θ) as a
mountain-pass curve along which the maximum value of I is I(u). Conversely, any
mountain-pass curve γ ∈ Γ intersects S at least once ([7]). Therefore, one may
work with points on S instead of paths in Γ.

Without assumption (1.5), the topology of S is unclear, though any ray through
the origin in E must intersect S at least once.

Unfortunately, (V4) is not weaker than (1.5), but merely (at least apparently)
independent of (1.5). While (1.5) ensures that the functional I0 (or even I, for a
non-autonomous problem) has no critical values below the mountain-pass value c0,
it implies nothing about what critical values may exist above c0.

The proof of Theorem 1.1 has a feature that may be new and of interest for
other problems. A set is constructed with some of the properties enjoyed by S.
This set is the boundary of the basin of attraction of the zero function, under a
gradient flow for the functional I. The construction of that set relies only on the
mountain-pass geometry of I.

This paper is organized as follows: Section 2 contains some properties of I and the
associated gradient vector flow. Section 3 contains the rest of the proof of Theorem
1.1. Also ε is constructed for the power case, V (q) = |q|α/α, F (s) = sα/α.

2. Properties of I and the Associated Flow

First, some fairly unsurprising facts about the functional I.

Lemma 2.1. (i) I ∈ C1(E, R).
(ii) I and I ′ are bounded on bounded subsets of E.
(iii) I ′ is Lipschitz on bounded subsets of E.

A proof of (i) is found in [12]. (ii) and (iii) are proven in [13], and probably
elsewhere.

A Palais-Smale sequence for I is a sequence (um) ⊂ E with (I(um)) convergent
and ‖I ′(um)‖ → 0 as m → ∞. Here ‖I ′(um)‖ is defined using the operator norm,
‖I ′(um)‖ = sup{I ′(u)w | w ∈ E, ‖w‖ ≤ 1}. I does not satisfy the Palais-Smale
condition, that is, a Palais-Smale condition need not be precompact. However, any
Palais-Smale sequence is bounded in norm. This is well known, but the lemma
below gives a formula we will need for the bound.

Lemma 2.2. For all u ∈ E,

‖u‖ ≤
2‖I ′(u)‖+

√
2µ(µ− 2) max(0, I(u))

µ− 2
.

Proof.

−‖I ′(u)‖ ‖u‖ ≤ I ′(u)u = ‖u‖2 −
∫

R
h(t)W ′(t, u)u dt

≤ ‖u‖2 − µ

∫
R
W (t, u) dt

= µI(u)− (
µ− 2

2
)‖u‖2,
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so

(
µ− 2

2
)‖u‖2 − ‖I ′(u)‖ ‖u‖ − µI(u) ≤ 0. (2.1)

Applying the quadratic formula to (2.1), and the inequality
√

A2 + B2 ≤ |A|+ |B|,
yields

‖u‖ ≤
‖I ′(u)‖+

√
‖I ′(u)‖2 + 2µ(µ− 2)max(0, I(u))

µ− 2

≤ 2‖I ′(u)‖+
√

2µ(µ− 2) max(0, I(u))
µ− 2.

�

To describe the fate of Palais-Smale sequences, it will be convenient to define
the translation operator τ : for a function u on the reals and a ∈ R, define let τau
be u shifted by a, that is, (τau)(t) = u(t− a). The proposition below states that a
Palais-Smale sequence “splits” into the sum of a critical point of I and translates
of critical points of I0:

Proposition 2.3. If (um) ⊂ E with I ′(um) → 0 and I(um) → a > 0, then there
exist k ≥ 0, v0, v1, . . . , vk ∈ E, and sequences (tim)1≤i≤k

m≥1 ⊂ R, such that

(i) I ′(v0) = 0
(ii) I ′0(vi) = 0 for all i = 1, . . . , k

and along a subsequence (also denoted (um))

(iii) ‖um − (v0 +
∑k

i=1 τti
m

vi)‖ → 0 as m →∞
(iv) |tim| → ∞ m →∞ for i = 1, . . . , k
(v) ti+1

m − tim →∞ as m →∞ for i = 1, . . . , k − 1
(iii) I(v0) +

∑k
i=1 I0(vi) = a

A proof for the case of periodic W is found in [7], and essentially the same
proof works here. Similar propositions for nonperiodic coefficient functions, for
both ODE and PDE, are found in [6], [1], and [15], for example. All are inspired
by the “concentration-compactness” theorems of P. -L. Lions ([9]).

Let ∇I : E → E be the gradient of I; that is, for all u, w ∈ E, (∇I(u), w) =
I ′(u)w. Define the flow η to be the solution of the initial value problem

dη

dt
= −∇I(η); η(0, u) = u.

Since I ′ is locally Lipschitz, η is well defined on an open subset of R × E. It is
unclear whether η is well-defined on all of R× E. However,

Lemma 2.4. For all u ∈ E, either

(i) η(s, u) is well-defined for all s > 0, I(η(s, u)) ≥ 0 for all s > 0, and the
forward trajectory {η(s, u) | s > 0} is bounded, or

(ii) For all b < I(u), there exists s > 0 with I(η(s, u)) = b.

Proof. let u ∈ E, and assume (ii) does not hold. We will show that (i) holds.
Let b < I(u) such that for all s > 0 with η(s, u) well-defined, I(η(s, u)) > b.

Let η ≡ η(s) ≡ η(s, u). Suppose the forward trajectory of η is unbounded; that is,
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there exists a sequence (si) with 0 < s1 < s2 < . . . < si → s̄ ∈ (0,∞] as i → ∞,
and ‖I ′(η(si))‖ → ∞. Then by Lemma 2.1(ii), ‖η(sm)‖ → ∞. Let

R = 1 + ‖u‖+
4µ

√
max(0, I(u))
µ− 2

+
16(I(u)− b)3

µ− 2
.

Let 0 < s1 < s2 < s̄ with ‖η(s1)‖ = R, ‖η(s2)‖ = 2R, and R < ‖η(s)‖ < 2R for all
s ∈ (s1, s2). By Lemma 2.2, for all s ∈ (s1, s2),

‖I ′(η(s))‖ ≥ 1
2
((µ− 2)‖η(s)‖ −

√
2µ(µ− 2) max(0, I(η(s))))

≥ 1
2
((µ− 2)R− 2µ

√
I(u)) ≥ µ− 2

4
R.

Therefore,
I(u)− b > I(η(s1))− I(η(s2))

= −
∫ s2

s1

d

ds
I(η) ds

=
∫ s2

s1

‖I ′(η)‖2 ds ≥ (s2 − s1)
(µ− 2)2

16
R.

(2.2)

Also,

R = ‖η(s2)− η(s1)‖ = ‖
∫ s2

s1

dη

ds
ds‖

≤
∫ s2

s1

‖dη

ds
‖ ds =

∫ s2

s1

‖I ′(η(s))‖ ds

≤
√

s2 − s1 ·

√∫ s2

s1

‖I ′(η(s))‖2 ds

=
√

s2 − s1 ·

√
−

∫ s2

s1

d

ds
I(η(s)) ds

=
√

s2 − s1 ·
√

I(η(s1))− I(η(s2))

<
√

s2 − s1 ·
√

I(u)− b

(2.3)

by the Cauchy-Schwarz Inequality. Combining (2.2) and (2.3) yields

R2

(I(u)− b)2
≤ s2 − s1 ≤

16(I(u)− b)
(µ− 2)R2

,

R4 ≤ 16(I(u)− b)3

µ− 2
,

which contradicts the definition of R. Therefore the assumption is false, and the
forward trajectory of η is bounded. Since I ′ is locally Lipschitz, and bounded on
bounded subsets of E, η(s) is well defined for all s > 0.

Finally, we must show that I(η(s)) ≥ 0 for all s > 0. Since (ii) does not
hold, lims→∞ I(η(s)) > −∞. Since d

dsI(η) = −‖I ′(η)‖2, there exists a sequence
(sm) with ‖I ′(η(sm))‖ → 0. By Lemma 2.2, lim supm→∞I(η(sm)) ≥ 0. Therefore
I(η(s)) ≥ 0 for all s > 0. The lemma is proven. �

There exists a mountain pass curve γ0 ∈ Γ0 along which the maximum value of
autonomous functional I0 is exactly c0. The proof below is by Caldiroli ([3]). It



EJDE-2004/21 EXISTENCE OF SOLUTIONS TO A HAMILTONIAN SYSTEM 7

generalizes his paper [4], which proved the result for when I0 is restricted to the
space of even functions:

Lemma 2.5. There exists γ0 ∈ Γ0 with maxθ∈[0,1] I0(γ0(θ)) = c0. Furthermore, γ0

is even in t; that is, for all θ ∈ [0, 1] and t ∈ R, γ(θ)(−t) = γ(θ)(t).

Proof. set

Eeven = {u ∈ E | u(−t) = u(t) a.e.},

Ω = {q ∈ Rn : −1
2
|q|2 + V (q) < 0} ∪ {0},

M = {u ∈ E : range u ⊂ Ω, range u ∩ ∂Ω 6= ∅},
M∗ = M∩ Eeven, Γ∗0 = Γ0 ∩ C([0, 1], Eeven),

m0 = inf
u∈M

I0(u), c0 = inf
γ∈Γ0

sup
θ∈[0,1]

I0(γ(θ)),

m∗
0 = inf

u∈M∗
I0(u), c∗0 = inf

γ∈Γ∗0
sup

θ∈[0,1]

I0(γ(θ)).

In [4] it is proven that there exists γ0 ∈ Γ∗0 with maxθ∈[0,1] I0(γ0)(θ) = c∗0. Thus
it suffices to show c0 = c∗0. Clearly c0 ≤ c∗0. We will show c∗0 = m∗

0 ≤ m0 ≤ c0.
The equality c∗0 = m∗

0 is proven in [4]. For every γ ∈ Γ0, there exists θ̄ ∈ [0, 1] with
γ(θ̄) ∈ M. Hence m0 ≤ I0(γ(θ̄)) ≤ maxθ∈[0,1] I0(γ(θ)). Therefore, m0 ≤ c0. Last,
we must show m∗

0 ≤ m0.
Let u ∈ M and set t− = min{t ∈ R : u(t) ∈ ∂Ω} and t+ = max{t ∈ R : u(t) ∈

∂Ω} ≥ t−. Then, define u−(t) = u(t− − |t|) and u+(t) = u(t+ + |t|). u± ∈ M∗.
Since u ∈M, 1

2 |u(t)|2 + 1
2 |u

′(t)|2 − V (u(t)) ≥ 0 for all t ∈ R, hence

I0(u) =
∫

R

1
2
|u(t)|2 +

1
2
|u′(t)|2 − V (u(t)) dt

≥
∫ t−

−∞

1
2
|u(t)|2 +

1
2
|u′(t)|2 − V (u(t)) dt

+
∫ ∞

t+

1
2
|u(t)|2 +

1
2
|u′(t)|2 − V (u(t)) dt

=
1
2
I0(u−) +

1
2
I0(u+).

Therfore, min{I0(u−), I0(u+)} ≤ I0(u). This obviously implies m∗
0 ≤ m0. �

3. Proof of Theorem 1.1

Define Γ and c analogously to Γ0 and c0:

Γ = {γ ∈ C([0, 1], E) | γ(0) = 0, I(γ(1)) < 0}
c = inf

γ∈Γ
max

θ∈[0,1]
I(γ(θ)).

It is easy to show that c ≤ c0: let ε > 0 be arbitrary, and take γ ∈ Γ0 with
I0(γ) < c0 + ε. For t > 0, define τtγ by (τtγ)(θ) = τt(γ(θ)). It is easy to show that
by (W4), τtγ ∈ Γ for large t, and

c0 + ε > I0(γ) = lim
t→∞

I0(τtγ) = lim
t→∞

I(τtγ) ≥ c.

If c < c0, then by a deformation argument found, for example, in [12], there exists
a Palais-Smale sequence (um) for I with I(um) → c and I ′(um) → 0 as m → ∞.
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Applying Proposition 2.3 shows that I must have a positive critical value less than
or equal to c. So from now on, assume

c = c0. (3.1)

Without (1.5), we do not have the “Nehari manifold” S to work with. However,
we can find a set with similar properties. Let B be the basin of attraction of 0
under the flow η. That is,

B = {u ∈ E | ‖η(s, u)− 0‖ → 0 as s →∞}.

∂B, the topological boundary of B, has similar properties to S. Call a set A ⊂ E
forward-η-invariant for all s > 0 and u ∈ A, η(s, u) ∈ A whenever η(s, u) is well-
defined.

Lemma 3.1. (i) B is an open neighborhood of 0 ∈ E.
(ii) B and ∂B are forward-η-invariant.
(iii) For any K > 0, the set B ∩ {u ∈ E | I(u) < K} is bounded.

Proof. (i): 0 is an isolated critical point and local minimum of I, so B contains an
open neighborhood U of 0. Let u ∈ B. For some s > 0, η(s, u) ∈ U . For small
enough r > 0, ‖w − u‖ < r implies η(s, w) ∈ U . So Br(u) ≡ {w | ‖w − u‖ < r} is
an open neighborhood of u that is contained in B.
(ii) Let u ∈ B and s1 > 0. Since η(s, u) → 0 as s → ∞, η(s + s1, u) =
η(s, η(s1, u)) → 0 as s → ∞, and η(s1, u) ∈ B. Next, let u ∈ ∂B and s > 0.
Since B is open, u 6∈ B. η(s, u) is not in B, for if it were, the definition of B
would imply u ∈ B. u is in the closure of B, so let (um) ⊂ B with um → u.
η(s, um) → η(s, u) and η(s, um) ∈ B, so η(s, u) belongs to the closure of B.
(iii) We use an “annulus” argument, similar to Lemma 2.4. Let K > 0, and let

R = 1 +
2µK

µ− 2
+

16K2

(µ− 2)2
.

Let u ∈ ∂B with I(u) ≤ K. Assume ‖u‖ > 2R. This will lead to a contradiction.
By the definition of B and the fact that B is open, it is clear that I(u) ≥ 0. For

any w ∈ E with I(w) ≤ 0 and ‖w‖ ≥ R, Lemma 2.2 gives

‖I ′(w)‖ ≥ 1
2
(
(µ− 2)‖w‖ −

√
2µ(µ− 2)I(w)

)
≥ 1

2
(
(µ− 2)R− 2µ

√
K

)
≥ µ− 2

4
R.

(3.2)

By Lemma 2.4, η(s, u) is well-defined for all s > 0. Since I(η(s, u)) > 0 for all
s > 0, and d

dsI(η(s, u)) = −‖I ′(η(s, u))‖2, ‖η(s∗, u)‖ = R for some s∗ > 0. Let
η ≡ η(s) ≡ η(s, u). Let 0 < s1 < s2 with ‖η(s1)‖ = 2R, ‖η(s2)‖ = R, and
‖η(s1)‖ ∈ (R, 2R) for all s ∈ (R, 2R). Then by (3.2),

K ≥ I(η(s1))− I(η(s2)) = −
∫ s2

s1

d

ds
I(η(s)) ds

=
∫ s2

s1

‖I ′(η(s))‖2 ds ≥ (s2 − s1)
(µ− 2)2

16
R2.

(3.3)



EJDE-2004/21 EXISTENCE OF SOLUTIONS TO A HAMILTONIAN SYSTEM 9

But

R = ‖η(s1)− η(s2)‖ = ‖
∫ s2

s1

dη

ds
ds‖

≤
∫ s2

s1

‖dη

ds
‖ ds =

∫ s2

s1

‖I ′(η)‖ ds

≤
√

s2 − s1 ·

√∫ s2

s1

‖I ′(η)‖2 ds

=
√

s2 − s1 ·

√∫ s2

s1

d

ds
I(η(s)) ds

=
√

s2 − s1 ·
√

I(η(s1))− I(η(s1)) ≤
√

(s2 − s1)K

(3.4)

by the Cauchy-Schwarz Inequality. (3.3)-(3.4) gives

R2

K
≤ s2 − s1 ≤

16K

(µ− 2)2R2
,

R4 ≤ 16K2

(µ− 2)2
.

This contradicts the definition of R. Lemma 3.1 is proven. �

Note: it is unclear whether ∂B must be homeomorphic to the unit ball of E. For
the rest of this article, we assume, in addition to c = c0, that

The interval (0, 2c0) does not contain critical values of I. (3.5)

This will lead to a contradiction. (3.5) implies that for all u ∈ ∂B,

I(u) ≥ c0. (3.6)

To see why, suppose u ∈ ∂B, with I(u) < c0. Define (um) by um = η(m,u). By
the arguments of [6], ‖I ′(um)‖ → 0. By Lemma 2.2, limm→∞ I(um) > 0. Applying
Proposition 2.3 and Lemma 3.1(i) shows that I has a positive critical value that is
less than c0. This contradicts assumption (3.5).

Define the “location” function L : E \ {0} → R by∫
R
|u|2 tan−1(t− L(u)) dt = 0. (3.7)

By the Implicit Function Theorem, L is a well defined and continuous function.
Roughly, L tells where on the real line a function is located. For a ∈ R, L(τau) =
L(u) + a. Now,

Lemma 3.2. Assuming (3.1) and (3.5), there exists δ > 0 such that if u ∈ ∂B with
L(u) = 0, then I(u) > c0 + δ.

Proof. Let
b = inf{I(u) | u ∈ ∂B, L(u) = 0}.

We must show that b > c0. Let (um) ⊂ ∂B with L(um) = 0 for all m and I(um) → b.
If b ≥ 2c0, then obviously b > c0. So assume b < 2c0. Suppose inf{‖I ′(um)‖ | m ≥
1} = 0. Then, applying Proposition 2.3, there exists a subsequence (also denoted
(um)), k ≥ 0, v0, and, if k > 0, vi for 1 ≤ i ≤ k as in the conclusion of Proposition
2.3. By Proposition 2.3(vi), k ≥ 1 since b < 2c0. If k = 1, then |L(um)| → ∞.
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Therefore k = 0, and (um) converges to a critical point v0 of I with I(v0) = b < 2c0.
v0 ∈ ∂B , so I(v0) ≥ c0 ((3.6)). This contradicts assumption (3.5).

Therefore, inf{‖I ′(um)‖ | m ≥ 1} > 0. Since ∂B∩{I < 2c0} is bounded (Lemma
3.1(iii)), and I ′ is Lipschitz on bounded subsets of E (Lemma 2.1(ii)), there exists
p > 0 with I(η(1, um)) < b− p for large enough m. Thus, c0 ≤ b− p, so b > c0. �

Now the end of the proof of Theorem 1.1. Let γ0 be from Lemma 2.5. We
need a path γ1 ∈ Γ0 with I0(γ1(1)) ≤ −c0. If I0(γ0(1)) ≤ −c0, then let γ1 = γ0.
Otherwise, let s > 0 be large enough so that I0(η(s, γ0(1))) ≤ −c0. This is possible
by Lemma 2.4. Then join γ0(1) with η(s, γ0(1)), that is, define γ1 by

γ1(θ) =

{
γ0(2θ) if 0 ≤ θ ≤ 1

2

η(s(2θ − 1), γ0(1)) if 1
2 ≤ θ ≤ 1.

Define

K = max
θ∈[0,1]

∫
R
F (|γ1(θ)(t)|) dt.

where F is from the statement of Theorem 1.1, and let ε in the statement of Theorem
1.1 satisfy

ε < min(
c0

2K
,

d

2K
) (3.8)

where d is from (V4). For all θ ∈ [0, 1] and a ∈ R,

I(τaγ1(θ)) = I0(τaγ1(θ)) +
(
I(τaγ0(θ))− I0(τaγ0(θ))

)
≤ I0(γ1(θ)) + ε

∫
R
F (|γ0(η)(t)|) dt

≤ I0(γ1(θ)) + min(
c0

2
,
d

2
).

(3.9)

Let δ be given by Lemma 3.2, and let R > 0 be big enough so that for all θ ∈ [0, 1],

I(τ−Rγ1(θ)) < c0 +
2
3
δ and I(τRγ1(θ)) < c0 +

2
3
δ.

This is possible by (W4). Define a map G : [−R,R]× [0, 1] → E by

G(t, θ) = τtγ1(θ).

Note that for all t ∈ [−R,R] and θ ∈ [0, 1], I(G(t, θ)) < c0 + d/2 by (3.9). Also, for
all θ ∈ [0, 1], I(G(±R, θ)) ≤ c0 + δ/2, and for all t ∈ [−R,R], I(G(t, 1)) < 0.

Define T : [−R,R]× [0, 1] → R+ by

T (t, θ) = min{s ≥ 0 | I(η(s,G(t, θ))) ≤ c0 + δ/2}.

T is well-defined because by assumption (3.5) and Proposition 2.3,

inf{‖I ′(u)‖ | c0 +
δ

2
≤ I(u) ≤ c0 +

d

2
} > 0. (3.10)

It is easy to show, also using (3.10), that T is continuous. Define G1 : [−R,R] ×
[0, 1] → E by

G1(t, θ) = η(T (t, θ), G(t, θ)).

Now for all (t, θ) ∈ [−R,R]× [0, 1],

I(G1(t, θ)) ≤ c0 +
1
2
δ. (3.11)
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We will show that G1([−R,R] × [0, 1]) contains a point u ∈ ∂B with L(u) = 0,
which is impossible, by (3.11) and Lemma 3.2. Let g be a path from the bottom
side of the rectangle [−R,R]× [0, 1] to the top side, that is, g : [0, 1] → [−R,R]×
[0, 1] with g(0)2 = 0 and g(1)2 = 1, where “2” denotes projection to the second
coordinate. Define γ : [0, 1] → E by γ(s) = G1(g(s)).

Since γ(0) = G1(g(0)) = 0 and I(γ(1)) = I(G1(g(1))) < 0, γ ∈ Γ. Therefore,
γ(s) ∈ ∂B for some s ∈ (0, 1), and G1(g([0, 1])) intersects ∂B.

Since for any path g connecting the bottom and top sides of the rectangle
[−R,R] × [0, 1], G1(g([0, 1])) intersects ∂B, there must exist a connected set C ⊂
[−R,R]× [0, 1] with

(i) For all (t, θ) ∈ C, G1(t, θ) ∈ ∂B
(ii) There exist θ−, θ+ ∈ (0, 1) with (−R, θ−) ∈ C and (R, θ+) ∈ C.

Since G1(±R, θ) = G(±R, θ) and I(G(±R, θ)) < c0+δ/2 for all θ, L(G1(−R, θ−)) =
−R and L(G1(R, θ+)) = R. C is a connected set and L is continuous, so L(G1(C))
is an interval on the real line containing −R and R, and 0 ∈ L(G1(C)). Thus there
exists (t∗, θ∗) ∈ C with L(G1(t∗, θ∗)) = 0. This is impossible, because G1(t∗, θ∗) ∈
∂B and I(G1(t∗, θ∗)) < c0 + δ (Lemma 3.2). The proof of Theorem 1.1 is complete.

If V (q) depends on on |q| alone, i.e., V (q) ≡ V (|q|), then (V4) holds. To prove
this, it suffices to show that all solutions of the autonomous problem (1.4) are radial.
For if u has the form u(t) = av(t) for some unit vector a ∈ RN and positive scalar
function v, then v is a positive solution of the scalar equation −v′′ + v = V (v). A
phase plane analysis of this equation shows that that equation has only one positive
solution, modulo translational symmetry.

To show that all homoclinic solutions of (1.4) are radial, let u be such a solution
and consider the quantity (u · u′)2 − |u|2|u′|2. This expression tends to zero as
t → ±∞. If it equals zero for some t, then u′(t) and u(t) are parallel (this is
the equality case of the Cauchy-Schwarz Inequality). So it suffices to show that
d
dt [(u · u

′)2 − |u|2|u′|2] is always zero. Since V ′(q) points away from the origin,
V ′(q) = (|V ′(q)|/|q|)q, and

d

dt

[
(u · u′)2 − |u|2|u′|2

]
= 2(u · u′)(|u′|2 + u · u′′)− 2(u · u′)|u′|2 − 2|u|2(u′ · u′′)

= 2
[
(u · u′)(u · u′′)− |u|2(u′ · u′′)

]
= 2

[
(u · u′)(u · (u− V ′(u)))− |u|2(u′ · (u− V ′(u)))

]
= 2

[
|u|2(u′ · V ′(u))− (u · u′)(u · V ′(u))

]
= 2

[
|u|(u · u′)|V ′(u)| − (u · u′)|u||V ′(u)|

]
= 0.

Calculating ε for the power case. If V (q) = |q|α/α for some α > 2 and F (s) =
sα/α, then (W5) becomes W (t, q) ≥ (1− ε)|q|α/α. In this case it is possible to get
an explicit formula for ε in terms of α. This V is radially symmetric, so as shown
above, d = ∞ in (V4). Therefore we need only estimate c0/(2K) in (3.8).

Let ω be the unique positive, even solution of the scalar equation −ω′′ + ω =
ωα−1. Multiplying both sides of the equation by ω and integrating by parts yields∫

R
(ω′)2 + ω2 =

∫
R
ωα.
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For ease in notation, identify ω with ω ≡ (ω, 0, 0, . . . , 0) : R → RN . For T ≥ 0,

I0(Tω) =
∫

R

1
2
T 2(ω′)2 +

1
2
T 2ω2 − 1

α
Tαωα = (

1
2
T 2 − 1

α
Tα)

∫
R
ωα.

To define K, we need γ1 ∈ Γ0 with I0(γ1(1)) ≤ −c0. To do this, we will find
T ≡ T (α) > 1 with I0(Tω) ≤ −c0 and set γ1(θ) = Tθω. Set

T = α
1

α−2 > 1.

Then

I0(Tω) + c0 = I0(T (ω)) + I0(ω)

= (
1
2
T 2 − 1

α
Tα +

1
2
− 1

α
)
∫

R
ωα

< (T 2 − 1
α

Tα)
∫

R
ωα = 0,

so this choice of T works. Now

K =
∫

R
F (Tω) =

Tα

α

∫
R
ωα,

and we can set

ε ≡ ε(α) =
c0

2K
=

I0(ω)
2K

=
( 1
2 −

1
α )

∫
Rωα

2
αTα

∫
Rωα

=
α− 2
4α

α
α−2

.

Note that ε(α) → 0 as α → 2+ and ε(α) → 1
4 as α → ∞. However, ε(α) may not

be a sharp bound.
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