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FRACTIONAL ELLIPTIC PROBLEMS WITH TWO CRITICAL
SOBOLEV-HARDY EXPONENTS

WENJING CHEN

Communicated by Giovanni Molica Bisci

Abstract. By using the mountain pass lemma and a concentration compact-
ness principle, we obtain the existence of positive solutions to the fractional

elliptic problem with two critical Hardy-Sobolev exponents at the origin.

1. Introduction

In this article, we study the following doubly critical problem involving the frac-
tional Laplacian

(−∆)su− γ u

|x|2s
=
|u|2∗s(α)−2u

|x|α
+
|u|2∗s(β)−2u

|x|β
, u > 0, in Rn, (1.1)

where s ∈ (0, 1), 0 < α, β < 2s < n with α 6= β, γ < γH with

γH = 4s
Γ2(n+2s

4 )
Γ2(n−2s

4 )

being the fractional best Hardy constant on Rn, and 2∗s(α) = 2(n−α)/(n−2s) is the
fractional critical Hardy-Sobolev exponent. The operator (−∆)s is the fractional
Laplacian defined as

(−∆)su(x) = cn,s pv
∫

Rn

u(x)− u(y)
|x− y|n+2s

dy, s ∈ (0, 1),

where pv stands for the Cauchy principle value and

cn,s = 22s−1π−
n
2

Γ
(
n+2s

2

)
|Γ(−s)|

is the normalization constant so that the identity

(−∆)su = F−1(|ξ|2s(Fu)) ∀ξ ∈ Rn, s ∈ (0, 1), u ∈ S(Rn),

holds, here Fu denotes the Fourier transform of u, Fu(ξ) =
∫

Rn e
−2πix·ξu(x) dx,

and S(Rn) the Schwartz class, see [14] and references therein for the basics on the
fractional Laplacian.
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In previous twenty years, the nonlocal elliptic problems have been investigated
by many researchers, for example, [18, 27, 29, 30, 31] for the subcritical case, [3,
8, 23, 19, 28, 32, 33] for the critical case, [9, 10, 11] for the existence of solutions
to fractional Laplacian system. Moreover, a great attention has been devoted to
study the existence of solutions for the nonlocal problems with Hardy potential or
nonlinearity term, we refer to see [1, 2, 4, 13, 15, 16, 34, 35, 36] and the references
therein. In particular, the existence of solutions to the problem

(−∆)su− γ u

|x|2s
=
u2∗s(α)−1

|x|α
, u > 0 in Rn, (1.2)

corresponds to the minimization problem

µs,γ,α(Rn) = inf
u∈Hs(Rn)\{0}

∫
Rn |(−∆)s/2u|2 dx− γ

∫
Rn
|u|2
|x|2s dx( ∫

Rn
|u|2∗s (α)

|x|α dx
) 2

2∗s (α)
. (1.3)

Fall et al. [16] proved the existence of extremals for µs,0,α(Rn) in the case s = 1
2 .

Yang [35] proved that there exists a positive, radially symmetric and non-increasing
extremal for µs,0,α(Rn) when s ∈ (0, 1). Asymptotic properties of the positive
solutions was given by Lei [24] and Yang-Yu [37]. The existence of extremals for
µs,γ,α(Rn) in (1.3), when α ∈ [0, 2s) and γ ∈ (−∞, γH), was recently studied by
Ghoussoub and Shakerian in [21]. Moreover, the authors in [21] used the mountain
pass lemma to establish the existence of a nontrivial weak solution to the problem

(−∆)su− γ u

|x|2s
= |u|2

∗
s−2u+

|u|2∗s(α)−2u

|x|α
, u > 0, in Rn.

Furthermore, the authors in [36] showed the existence of nontrivial solutions for
fractional elliptic problem in Rn with the critical nonlocal Hartree term and critical
fractional Hardy-Sobolev term.

It is worth pointing out that in the local case, i.e. s = 1, the existence and
multiplicity of solutions for the Laplacian problems with Hardy terms have been
extensively studied, we refer the reader to [5, 7, 12, 17, 22] and references therein.

The aim of this paper is to consider the existence of nontrivial weak solutions
of (1.1), which has a single pole with different powers of singularity and fractional
critical Hardy-Sobolev exponents. We get the existence of nontrivial weak solutions
of our problem by the Mountain Pass Lemma with concentration-compactness prin-
ciple. Our result can be stated as follows.

Theorem 1.1. Let 0 < s < 1, 0 < α, β < 2s < n with α 6= β, and γ < γH . Then
problem (1.1) admits a nontrivial solution.

This article is organized as follows: in Section 2, we give some preliminaries
about fractional Laplacian harmonic extension and function space, and also the
fractional Hardy-Sobolev inequality. We prove the compactness of the energy in
Section 3. Section 4 is concerned with the proof of our main result.

2. Preliminary results

In this section, we first introduce suitable function spaces for the variational
principles that will be needed in the sequel. Caffarelli and Silvestre in [6] showed
that the fractional Laplacian operator can be realized in a local way by using
one more variable and the so-called s−harmonic extension, that is, for a function
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u ∈ Hs(Rn), we say that U = Es(u) is its s-harmonic extension to the upper
half-space, Rn+1

+ , i.e. it is a solution to the problem

div(y1−2s∇U) = 0 in Rn+1
+ , U = u on Rn × {y = 0}.

Define the space Xs(Rn+1
+ ) as the closure of C∞0 (Rn+1

+ ) with the norm

‖U‖Xs(Rn+1
+ ) :=

(
ks

∫
Rn+1

+

y1−2s|∇U(x, y)|2 dx dy
)1/2

,

where ks = Γ(s)
21−2sΓ(1−s) is a normalization constant chosen in such a way that

the extension operator U : Hs(Rn)→ Xs(Rn+1
+ ) is an isometry, that is, for any

u ∈ Hs(Rn), we have

‖U‖Xs(Rn+1
+ ) = ‖u‖Hs(Rn) = ‖(−∆)s/2u‖L2(Rn). (2.1)

Conversely, for a function U ∈ Xs(Rn+1
+ ), we denote its trace on Rn × {y = 0} as

u = Tr(U) := U(·, 0). This trace operator is also well defined and satisfies

‖u‖Hs(Rn) = ‖U(·, 0)‖Hs(Rn) ≤ ‖U‖Xs(Rn+1
+ ). (2.2)

Caffarelli and Silvestre [6] showed that the extension function U := Es(u) is related
to the fractional Laplacian of the original function u in the following way:

(−∆)su(x) =
∂U

∂νs
:= −ks lim

y→0+
y1−2s ∂U

∂y
(x, y).

Thus, problem (1.1) can be written as the local problem

−div(y1−2s∇U) = 0 in Rn+1
+

∂U

∂νs
= γ

u

|x|2s
+
|u|2∗s(α)−2u

|x|α
+
|u|2∗s(β)−2u

|x|β
on Rn,

(2.3)

where and in the follows u = U(·, 0). A function U ∈ Xs(Rn+1
+ ) is said to be a

weak solution to (2.3), if for all Ψ ∈ Xs(Rn+1
+ ),

ks

∫
Rn+1

+

y1−2s〈∇U,∇Ψ〉 dx dy =
∫

Rn
γ

u

|x|2s
ψ dx+

∫
Rn

|u|2∗s(α)−2u

|x|α
ψ dx

+
∫

Rn

|u|2∗s(β)−2u

|x|β
ψ dx,

where ψ = Ψ(·, 0). The energy functional corresponding to (2.3) is

J(U) =
1
2
‖U‖2

Xs(Rn+1
+ )
− γ

2

∫
Rn

|u|2

|x|2s
dx− 1

2∗s(α)

∫
Rn

|u|2∗s(α)

|x|s
dx

− 1
2∗s(β)

∫
Rn

|u|2∗s(β)

|x|s
dx.

We note that for any weak solution U ∈ Xs(Rn+1
+ ) to (2.3), the function u = U(·, 0)

is in Hs(Rn) and is a weak solution to problem (1.1). Hence the associated trace
of any critical point U of J in Xs(Rn+1

+ ) is a weak solution for (1.1). Let us recall
the following results.
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Lemma 2.1. Assume that 0 < s < 1.
(i) (The fractional Hardy inequality [20]) For all u ∈ Hs(Rn), we have

γH

∫
Rn

|u|2

|x|2s
dx ≤

∫
Rn
|(−∆)s/2u|2 dx, (2.4)

where γH = 4s Γ2(n+2s
4 )

Γ2(n−2s
4 )

is the best constant in the above inequality on Rn.

(ii) (The fractional Hardy-Sobolev inequality [21]) Assume 0 ≤ α ≤ 2s < n.
Then, there exist positive constants c and C, such that for all u ∈ Hs(Rn),(∫

Rn

|u|2∗s(α)

|x|α
dx
) 2

2∗s (α) ≤ c
∫

Rn
|(−∆)s/2u|2 dx. (2.5)

Moreover, if γ < γH , then

C
(∫

Rn

|u|2∗s(α)

|x|α
dx
) 2

2∗s (α) ≤
∫

Rn
|(−∆)s/2u|2 dx− γ

∫
Rn

|u|2

|x|2s
dx, (2.6)

for all u ∈ Hs(Rn).

Remark 2.2. One can use (2.1) to rewrite inequalities (2.4), (2.5) and (2.6) as the
following trace class inequalities:

γH

∫
Rn

|u|2

|x|2s
dx ≤ ‖U‖2

Xs(Rn+1
+ )

, (2.7)(∫
Rn

|u|2∗s(α)

|x|α
dx
) 2

2∗s (α) ≤ c‖U‖2
Xs(Rn+1

+ )
, (2.8)

C
(∫

Rn

|u|2∗s(α)

|x|α
dx
) 2

2∗s (α) ≤ ‖U‖2
Xs(Rn+1

+ )
− γ

∫
Rn

|u|2

|x|2s
dx. (2.9)

In what follows, we will denote by Xs(Rn+1
+ ) the closure of C∞0 (Rn+1

+ ) for the
following norm

‖U‖ :=
(
ks

∫
Rn+1

+

y1−2s|∇U |2 dx dy − γ
∫

Rn

|u|2

|x|2s
dx
)1/2

for all γ < γH . (2.10)

Note that inequality (2.7) asserts that Xs(Rn+1
+ ) is embedded in the weighted

space L2(Rn, |x|−2s) and this embedding is continuous. Set γ+ = max{γ, 0} and
γ− = −max{γ, 0}. The following inequalities hold for any u ∈ Xs(Rn+1

+ ),

(1− γ+

γH
)‖U‖2

Xs(Rn+1
+ )
≤ ‖U‖2 ≤ (1 +

γ−
γH

)‖U‖2
Xs(Rn+1

+ )
. (2.11)

Thus, ‖ · ‖ is equivalent to the norm ‖ · ‖Xs(Rn+1
+ ).

The best constant µs,γ,α(Rn) in inequality (2.6) can be written as

S(n, s, γ, α) = inf
U∈Xs(Rn+1

+ )\{0}
Iγ,α(U), with

Iγ,α(U) =
ks
∫

Rn+1
+

y1−2s|∇U |2 dx dy − γ
∫

Rn
|u|2
|x|2s dx

(
∫

Rn
|u|2∗s (α)

|x|α dx)
2

2∗s (α)
.

If S(n, s, γ, α) is attained at some function U ∈ Xs(Rn+1
+ ), then u = U(., 0) will

be a function in Hs(Rn), where µs,γ,α(Rn) is attained. Recently, Ghoussoub and
Shakerian [21] proved the extremal function of S(n, s, γ, α) is attained as following.
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Lemma 2.3 ([21]). Suppose 0 < s < 1, 0 ≤ α < 2s < n, and γ < γH . Then
(1) If {α > 0} or α = 0 and γ ≥ 0, then S(n, s, γ, α) is attained in Xs(Rn+1

+ )
by Wγ,α.

(2) If α = 0 and γ < 0, then there are no extremals for S(n, s, γ, α) in
Xs(Rn+1

+ ).

3. Compactness lemmas

In this section, we study the compactness properties of the functional

J(U) =
1
2
‖U‖2 − 1

2∗s(α)

∫
Rn

|u|2∗s(α)

|x|α
dx− 1

2∗s(β)

∫
Rn

|u|2∗s(β)

|x|β
dx (3.1)

for U ∈ Xs(Rn+1
+ ), where again u := U(·, 0). From Lemma 2.1, we have that

J ∈ C1(Xs(Rn+1
+ )).

Definition 3.1. Let c ∈ R , E be a Banach space and J ∈ C1(E,R).
(i) {uk} is a (PS)c sequence in E for J if J(uk) = c + o(1) and J ′(uk) = o(1)

strongly in E∗ as k →∞.
(ii) We say that J satisfies the (PS)c condition if any (PS)c sequence {uk} for

J in E has a convergent subsequence.

Proposition 3.2. Suppose 0 < α, β < 2s and γ < γH , then the functional J
defined in (3.1) satisfies the Palais-Smale condition (PS)c for c < c∗, where

c∗ := min
{ 2s− α

2(n− α)
S(n, s, γ, α)

n−α
2s−α ,

2s− β
2(n− β)

S(n, s, γ, β)
n−β
2s−β

}
. (3.2)

Proof. Let {Uk}k∈N be the Palais-Smale sequence of the functional J , i.e.

J(Uk)→ c, J ′(Uk)→ 0 in (Xs(Rn+1
+ ))′ as k →∞.

Then

J(Uk) =
1
2
‖Uk‖2 −

1
2∗s(α)

∫
Rn

|uk|2
∗
s(α)

|x|α
dx− 1

2∗s(β)

∫
Rn

|uk|2
∗
s(β)

|x|β
dx

= c+ ok(1),
(3.3)

and

〈J ′(Uk), Uk〉 = ‖Uk‖2 −
∫

Rn

|uk|2
∗
s(α)

|x|α
dx−

∫
Rn

|uk|2
∗
s(β)

|x|β
dx = ok(1)‖wk‖, (3.4)

where again uk = Uk(·, 0) and ok(1)→ 0 as k →∞. From (3.3) and (3.4), we have

c+ ok(1)‖Uk‖ = J(Uk)− 1
2
〈J ′(Uk), Uk〉

=
(1

2
− 1

2∗s(α)

)∫
Rn

|uk|2
∗
s(α)

|x|α
dx+

(1
2
− 1

2∗s(β)

)∫
Rn

|uk|2
∗
s(β)

|x|β
dx.

Since 2∗s(α) > 2, 2∗s(β) > 2, we have∫
Rn

|uk|2
∗
s(α)

|x|α
dx ≤ C + ok(1)‖Uk‖,

∫
Rn

|uk|2
∗
s(β)

|x|β
dx ≤ C + ok(1)‖Uk‖. (3.5)

By (3.4) and (3.5), we obtain

‖Uk‖2 + ok(1)‖Uk‖ =
∫

Rn

|uk|2
∗
s(α)

|x|α
dx+

∫
Rn

|uk|2
∗
s(β)

|x|β
dx ≤ C + ok(1)‖Uk‖, (3.6)
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which implies that {Uk}k∈N is bounded in Xs(Rn+1
+ ). It follows that there exists

a subsequence, still denote by Uk, such that Uk ⇀ U in Xs(Rn+1
+ ). For any Ψ ∈

C∞0 (Rn+1
+ ), we have

ok(1)

= 〈J ′(Uk),Ψ〉

= ks

∫
Rn+1

+

y1−2s〈∇Uk,∇Ψ〉 dx dy − γ
∫

Rn

uk(x)
|x|2s

ψ(x) dx

−
∫

Rn

|uk(x)|2∗s(α)−2uk(x)
|x|α

ψ(x) dx−
∫

Rn

|uk(x)|2∗s(β)−2uk(x)
|x|β

ψ(x) dx.

(3.7)

Since Uk ⇀ U in Xs(Rn+1
+ ) as k →∞, we have that∫

Rn+1
+

y1−2s〈∇Uk,∇Ψ〉 dx dy − γ
∫

Rn

uk(x)
|x|2s

ψ(x) dx

→
∫

Rn+1
+

y1−2s〈∇U,∇Ψ〉 dx dy − γ
∫

Rn

u(x)
|x|2s

ψ(x) dx,

for all Ψ ∈ C∞0 (Rn+1
+ ), where u = U(·, 0).

Moreover, the boundedness of Uk in Xs(Rn+1
+ ) implies that |uk|2

∗
s(α)−2uk and

|uk|2
∗
s(β)−2uk are bounded in L

2∗s (α)
2∗s (α)−1 (Rn, |x|−α) and L

2∗s (β)
2∗s (β)−1 (Rn, |x|−β) respec-

tively. Therefore,

|uk|2
∗
s(α)−2uk ⇀ |u|2

∗
s(α)−2u in L

2∗s (α)
2∗s (α)−1 (Rn, |x|−α),

|uk|2
∗
s(β)−2uk ⇀ |u|2

∗
s(β)−2u in L

2∗s (β)
2∗s (β)−1 (Rn, |x|−β).

Thus, taking limits as k →∞ in (3.7), we obtain

0 = 〈J ′(U),Ψ〉

= ks

∫
Rn+1

+

y1−2s〈∇U,∇Ψ〉 dx dy − γ
∫

Rn

u(x)
|x|2s

ψ(x) dx

−
∫

Rn

|u(x)|2∗s(α)−2u(x)
|x|α

ψ(x) dx−
∫

Rn

|u(x)|2∗s(β)−2u(x)
|x|β

ψ(x) dx.

(3.8)

Hence U is a weak solution of (2.3).
The set Rn ∪ {∞} is compact for the standard topology which means that the

measures can be identified as the dual space C(Rn∪{∞}). For example, δ∞ is well
defined and δ∞ = ϕ(∞). By the concentration compactness principle [25, 26], there
exist a subsequence, still denoted by Uk and real numbers µ0, µ∞, ν0, ν∞, η0, η∞
and ζ0, ζ∞ such that

‖Uk‖2Xs(Rn+1
+ )

⇀ dµ ≥ ‖U‖2
Xs(Rn+1

+ )
+ µ0δ0 + µ∞δ∞, (3.9)

|uk|2|x|−2s ⇀ dν = |u|2|x|−2s + ν0δ0 + ν∞δ∞, (3.10)

|uk|2
∗
s(α)|x|−α ⇀ dη = |u|2

∗
s(α)|x|−α + η0δ0 + η∞δ∞, (3.11)

|uk|2
∗
s(β)|x|−β ⇀ dζ = |u|2

∗
s(β)|x|−β + ζ0δ0 + ζ∞δ∞, (3.12)

where δ0 and δ∞ are the Dirac mass at the origin and infinity respectively.
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For % > 0, define B+
% := {(x, y) ∈ Rn+1

+ : |(x, y)| < %}, B% := {x ∈ Rn : |x| < %}
and let Φ ∈ C∞0 (Rn+1

+ ) be a cut-off function such that Φ ≡ 1 in B+
1
2

and 0 ≤ Φ ≤ 1

in Rn+1
+ . We use ΦUk as test function, we have

〈J ′(Uk),ΦUk〉

= ks

∫
Rn+1

+

y1−2s〈∇Uk,∇(ΦUk)〉 dx dy − γ
∫

Rn

uk(x)2φ(x)
|x|2s

dx

−
∫

Rn

|uk(x)|2∗s(α)φ(x)
|x|α

dx−
∫

Rn

|uk(x)|2∗s(β)φ(x)
|x|β

dx

= ks

∫
Rn+1

+

y1−2s|∇Uk|2Φ(x) dx dy − γ
∫

Rn

uk(x)2φ(x)
|x|2s

dx

+ ks

∫
Rn+1

+

y1−2sUk〈∇Uk,∇Φ〉 dx dy

−
∫

Rn

|uk(x)|2∗s(α)φ(x)
|x|α

dx−
∫

Rn

|uk(x)|2∗s(β)φ(x)
|x|β

dx,

(3.13)

where φ = Φ(·, 0). First, we have

lim
%→0

lim
k→∞

(
ks

∫
Rn+1

+

y1−2sUk〈∇Uk,∇Φ〉 dx dy
)

= 0.

Moreover, from (3.9)-(3.12), we obtain

lim
%→0

lim
k→∞

(
ks

∫
Rn+1

+

y1−2s|∇Uk|2Φ dx dy
)
≥ µ0,

lim
%→0

lim
k→∞

∫
Rn

uk(x)2φ(x)
|x|2s

dx = ν0,

lim
%→0

lim
k→∞

∫
Rn

|uk|2
∗
s(α)φ(x)
|x|α

dx = η0, lim
%→0

lim
k→∞

∫
Rn

|uk|2
∗
s(β)φ(x)
|x|β

dx = ζ0.

Thus we obtain

lim
%→0

lim
k→∞

〈J ′(Uk),ΦUk〉 ≥ µ0 − γν0 − η0 − ζ0. (3.14)

By the fractional Hardy-Sobolev inequalities, we have

η
2

2∗s (α)

0 S(n, s, γ, α) ≤ µ0 − γν0, ζ
2

2∗s (β)

0 S(n, s, γ, β) ≤ µ0 − γν0. (3.15)

By (3.14) and (3.15), we find

η
2

2∗s (α)

0 S(n, s, γ, α) ≤ η0 + ζ0, ζ
2

2∗s (β)

0 S(n, s, γ, β) ≤ η0 + ζ0. (3.16)

So

η
2

2∗s (α)

0

(
1− S(n, s, γ, α)−1η

2∗s (α)−2
2∗s (α)

0

)
≤ S(n, s, γ, α)−1ζ0,

ζ
2

2∗s (β)

0

(
1− S(n, s, γ, β)−1ζ

2∗s (β)−2
2∗s (β)

0

)
≤ S(n, s, γ, β)−1η0.
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Since {Uk}k∈N is bounded in Xs(Rn+1
+ ), we have η0 ≤ c1 and ζ0 ≤ c2 for positive

constants c1, c2, thus

η
2

2∗s (α)

0

(
1− S(n, s, γ, α)−1c

2∗s (α)−2
2∗s (α)

1

)
≤ S(n, s, γ, α)−1ζ0,

ζ
2

2∗s (β)

0

(
1− S(n, s, γ, β)−1c

2∗s (β)−2
2∗s (β)

2

)
≤ S(n, s, γ, β)−1η0.

Therefore, there exist constants A = A(α, 2∗s(α), c1) and B = B(β, 2∗s(β), c2) such
that

η
2

2∗s (α)

0 ≤ Aζ0, and ζ
2

2∗s (β)

0 ≤ Bη0.

In particular, we have that either η0 = 0 and ζ0 = 0, or

η0 ≥ S(n, s, γ, α)
n−α
2s−α , ζ0 ≥ S(n, s, γ, β)

n−β
2s−β .

On the other hand, we know that

c = J(Uk)− 1
2
〈J ′(Uk), Uk〉+ ok(1)

≥ 2s− α
2(n− α)

(∫
Rn

|uk(x)|2∗s(α)

|x|α
dx+ η0

)
+

2s− β
2(n− β)

(∫
Rn

|uk(x)|2∗s(β)

|x|β
dx+ ζ0

)
≥ 2s− α

2(n− α)
η0 +

2s− β
2(n− β)

ζ0.

(3.17)

By the assumption that c < c∗, we obtain that η0 = 0, ζ0 = 0.
For the concentration at infinity, we define B+

R := {(x, y) ∈ Rn+1
+ : |(x, y)| < R},

BR := {x ∈ Rn : |x| < R} and let Ψ ∈ C∞0 (Rn+1
+ ) be a cut-off function such that

Ψ = 0 in B+
R and Ψ ≡ 1 in Rn+1

+ \B+
2R and 0 ≤ Ψ ≤ 1 in Rn+1

+ . Consider

µ∞ = lim
R→∞

lim
k→∞

sup
(
ks

∫
Rn+1

+ \B+
2R

y1−2s|∇Uk|2Ψ dx dy
)
,

ν∞ = lim
R→∞

lim
k→∞

sup
∫

Rn\B2R

uk(x)2ψ(x)
|x|2s

dx,

η∞ = lim
R→∞

lim
k→∞

sup
∫

Rn\B2R

|uk(x)|2∗s(α)ψ(x)
|x|α

dx,

ζ∞ = lim
R→∞

lim
k→∞

sup
∫

Rn\B2R

|uk(x)|2∗s(β)ψ(x)
|x|β

dx.

By the same arguments as the concentration at the origin, we can get the following
facts: either η∞ = 0 and ζ∞ = 0, or

η∞ ≥ S(n, s, γ, α)
n−α
2s−α , ζ∞ ≥ S(n, s, γ, β)

n−β
2s−β .

As for (3.17), we obtain

c ≥ 2s− α
2(n− α)

η∞ +
2s− β

2(n− β)
ζ∞. (3.18)

By the assumption that c < c∗, we obtain that η∞ = 0, ζ∞ = 0. Therefore, up to
a subsequence {Uk}k converges strongly to U in Xs(Rn+1

+ ). �



EJDE-2018/22 CRITICAL SOBOLEV-HARDY EXPONENTS 9

Let Wγ,α be the extremal function of S(n, s, γ, α) in Xs(Rn+1
+ ), whose existence

was obtained by Ghoussoub and Shakerian in [21] for α > 0 or α = 0 and 0 ≤ γ <
γH .

Lemma 3.3. Let 0 < s < 1, 0 < α, β < 2s < n, and γ < γH . Then

sup
t≥0

J(tWγ,ϑ) < c∗ for ϑ = α, β,

where c∗ is defined in Proposition 3.2.

Proof. For ϑ = α, we have

J(tWγ,α) =
t2

2
‖Wγ,α‖2 −

t2
∗
s(α)

2∗s(α)

∫
Rn

|wγ,α|2
∗
s(α)

|x|α
dx− t2

∗
s(β)

2∗s(β)

∫
Rn

|wγ,α|2
∗
s(β)

|x|β
dx.

where wγ,α := Tr(Wγ,α) = Wγ,α(·, 0). By construction, we have that

J(tWγ,α) ≤ fα(t) :=
t2

2
‖Wγ,α‖2 −

t2
∗
s(α)

2∗s(α)

∫
Rn

|wγ,α|2
∗
s(α)

|x|α
dx

Straightforward computations yield that fα(t) attains its maximum at the point

t̃ =
( ‖Wγ,α‖2∫

Rn
|wγ,α|2

∗
s (α)

|x|α dx

) 1
2∗s (α)−2

.

It follows that

sup
t≥0

fα(t) =
2s− α

2(n− α)

( ‖Wγ,α‖2

(
∫

Rn |wγ,α|2
∗
s(α)/|x|α dx)

2
2∗s (α)

) n−α
2s−α

.

Since Wγ,α is an extremal for S(n, s, γ, α) on Xs(Rn+1
+ ), we obtain that

sup
t≥0

J(tWγ,α) ≤ sup
t≥0

fα(t) =
2s− α

2(n− α)
S(n, s, γ, α)

n−α
2s−α . (3.19)

We now need to show that equality does not hold in (3.19). Indeed, otherwise we
would have that supt≥0 J(tWγ,α) = supt≥0 fα(t). Consider t1 (resp. t2 > 0) where
supt≥0 J(tWγ,α) (resp. supt≥0 fα(t)) is attained. We obtain

fα(t1)− t
2∗s(β)
1

2∗s(β)

∫
Rn

|wγ,α|2
∗
s(β)

|x|β
dx = fα(t2),

which means that fα(t1) > fα(t2) since t1 > 0. This contradicts the fact that t2 is
a maximum point of fα(t), hence the strict inequality holds in (3.19).

Similarly, for ϑ = β, we obtain

sup
t≥0

J(tWγ,β) < sup
t≥0

fβ(t) =
2s− β

2(n− β)
S(n, s, γ, β)

n−β
2s−β .

This completes the proof. �
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4. Proof of main result

Proof of Theorem 1.1. For any U ∈ Xs(Rn+1
+ ), the energy functional to problem

(2.3) is

J(U) =
1
2
‖U‖2 − 1

2∗s(α)

∫
Rn

|u|2∗s(α)

|x|α
dx− 1

2∗s(β)

∫
Rn

|u|2∗s(β)

|x|β
dx,

where again u := Tr(U) = U(·, 0). By fractional Hardy-Sobolev inequality, we have

J(U) ≥ 1
2
‖U‖2 − 1

2∗s(α)
S(n, s, γ, α)−

2∗s (α)
2 ‖U‖2

∗
s(α)

− 1
2∗s(β)

S(n, s, γ, β)−
2∗s (β)

2 ‖U‖2
∗
s(β)

=
(1

2
− 1

2∗s(α)
S(n, s, γ, α)−

2∗s (α)
2 ‖U‖2

∗
s(α)−2

− 1
2∗s(β)

S(n, s, γ, β)−
2∗s (β)

2 ‖U‖2
∗
s(β)−2

)
‖U‖2.

Since α, β ∈ (0, 2s), we have that 2∗s(α) > 2, 2∗s(β) > 2. By (2.11), we then get that
there exists R > 0 such that J(U) ≥ ρ for all U ∈ Xs(Rn+1

+ ) with ‖U‖Xα(Rn+1
+ ) = R.

Moreover, for ϑ = α or ϑ = β,

J(tWγ,ϑ) =
t2

2
‖Wγ,ϑ‖2 −

t2
∗
s(α)

2∗s(α)

∫
Rn

|wγ,ϑ|2
∗
s(α)

|x|α
dx− t2

∗
s(β)

2∗s(β)

∫
Rn

|wγ,ϑ|2
∗
s(β)

|x|α
dx,

hence limt→+∞ J(tWγ,ϑ) = −∞ , then there exists t0 > 0 such that ‖t0Wγ,ϑ‖ > R
and J(t0Wγ,ϑ) < 0. Set

cϑ := inf
g∈Γϑ

max
t∈[0,1]

J(g(t)),

where

Γϑ :=
{
g ∈ C0([0, 1], Xs(Rn+1

+ )) : g(0) = 0, g(1) = t0Wγ,ϑ

}
.

Thus by Mountain Pass Lemma, there exists a sequence {Uk} in Xs(Rn+1
+ ) such

that

J(Uk)→ c, J ′(Uk)→ 0 in (Xs(Rn+1
+ ))′ as k →∞.

By Lemma 3.3, we have

0 < c ≤ sup
t∈[0,1]

J(tt0Wγ,ϑ) ≤ sup
t>0

J(tWγ,ϑ) < c∗.

By Proposition 3.2, we deduce that {Uk} has a subsequence, still denote by {Uk} ,
such that Uk → U strongly in Xs(Rn+1

+ ). Thus U is a nontrivial solution of problem
(2.3), and u := Tr(U) = U(·, 0) is a nontrivial solution of problem (1.1). �
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