
Electronic Journal of Differential Equations, Vol. 2021 (2021), No. 25, pp. 1–11.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS

FOR SINGULAR p&q-LAPLACIAN PROBLEMS VIA

SUB-SUPERSOLUTION METHOD

SUELLEN CRISTINA Q. ARRUDA, RÚBIA G. NASCIMENTO

Abstract. In this work we show the existence and multiplicity of positive
solutions for a singular elliptic problem which the operator is non-linear and

non-homogenous. We use the sub-supersolution method to study the following
class of p&q-singular problems

− div(a(|∇u|p)|∇u|p−2∇u) = h(x)u−γ + f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in RN with N ≥ 3, 2 ≤ p < N and γ > 0. The
hypotheses on the functions a, h, and f allow us to extend this result to a

large class of problems.

1. Introduction

Let us consider the semilinear problem

−∆u = m(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.1)

The classical sub-supersolution method asserts that if we can find a pair of sub-
supersolution v1, v2 ∈ H1

0 (Ω) with v1(x) ≤ v2(x) a.e. in Ω, then there exists a
solution v ∈ H1

0 (Ω) such that v1(x) ≤ v(x) ≤ v2(x) a.e. in Ω.
In general, a candidate to be a subsolution of (1.1) is v1 = εφ1, where φ1 is a

eigenfunction associated with λ1, the first eigenvalue of the operator (−∆, H1
0 (Ω)).

A candidate to be a supersolution, in general, is the unique positive solution of the
problem

−∆u = M in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where M is a constant. The sizes of ε and M together with the Comparison
Principle for operator (−∆, H1

0 (Ω)) allow us to show that the sub-supersolution
are ordered.
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When the operator is non-linear and non-homogeneous, in general, we do not
have eigenvalues and eigenfunctions. In this work we show that the sub-supersolution
method still can be applied. More precisely, we consider a general singular elliptic
problem

−div(a(|∇u|p)|∇u|p−2∇u) = h(x)u−γ + f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.2)

where Ω is a bounded smooth domain in RN , N ≥ 3, 2 ≤ p < N , γ > 0 is a
fixed constant, a : R+ → R+ is a function of class C1, and h ≥ 0 is a nontrivial
measurable function. In this article we use the following assumptions:

(A1) There exists 0 < φ0 ∈ C1
0 (Ω) such that hφ−γ0 ∈ L∞(Ω).

Remark 1.1. Note that by (A1), we have h ∈ L∞(Ω) because

|h| = |hφ
−γ

0 φ
γ

0 | ≤ ‖hφ
−γ

0 ‖∞φ
γ

0 .

Here f is a Caracthéodory function defined on Ω× [0,∞) and satisfying:

(A2) There exists 0 < δ < 1/2 such that

−h(x) ≤ f(x, t) ≤ 0 a.e. in Ω for 0 ≤ t ≤ δ.
The function a : R+ → R+ belongs to C1 and satisfies the following assumptions:

(A3) There exist constants k1, k2, k3, k4 > 0 and q with 2 ≤ p ≤ q < N such
that

k1t
p + k2t

q ≤ a(tp)tp ≤ k3t
p + k4t

q, ∀t ≥ 0.

(A4) The function t 7→ a(tp)tp−2 is increasing.

(A5) The function t 7→ A(tp) with A(t) =
∫ t

0
a(s) ds is strictly convex.

(A6) There exist positive constants µ and θ, with θ ∈ (q, q∗) and q/p ≤ µ < θ/p,
such that

1

µ
a(t) t ≤ A(t), ∀t ≥ 0.

We point out that, since p < q and Ω is bounded, it follows that W 1,p
0 (Ω) ∩

W 1,q
0 (Ω) = W 1,q

0 (Ω). Therefore, to prove the existence and multiplicity of solutions

for (1.2), we consider the Sobolev space W 1,q
0 (Ω) endowed with the norm

‖u‖1,q =
(∫

Ω

|∇u|qdx
)1/q

.

Moreover, we say that u ∈ W 1,q
0 (Ω) is a weak solution of (1.2) if u > 0 in Ω and

satisfies∫
Ω

a(|∇u|p)|∇u|p−2∇u∇φdx =

∫
Ω

h(x)u−γφdx+

∫
Ω

f(x, u)φdx, ∀φ ∈W 1,q
0 (Ω).

Our first result is the existence of a weak solution for (1.2).

Theorem 1.2. Assume that conditions (A1)–(A5) hold. If ‖h‖∞ is sufficiently
small, then problem (1.2) has a weak solution.

Setting F (x, t) =
∫ t

0
f(x, s) ds, we define the conditions below for proving the

existence of two solutions for problem (1.2).

(A7) There exists 1 < r < q∗ = Nq
(N−q) (q∗ =∞ if q ≥ N) such that

f(x, t) ≤ h(x)(tr−1 + 1) a.e. in Ω for all t ≥ 0.
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(A8) There exists t0 > 0 such that

0 < θF (x, t) ≤ tf(x, t) a.e. in Ω for all t ≥ t0,
where θ is defined by (A6).

Theorem 1.3. Assume that conditions (A1)–(A8) hold. If ‖h‖∞ is sufficiently
small, then problem (1.2) has two weak solutions.

This class of problems has been extensively studied in the previous ten years.
The singular term presents difficulties that make the problem very interesting. Since
it is not possible to cite all, we make a brief bibliographical review in chronological
order of the papers with singular term and the sub-supersolution method.

In [3, 13] the authors studied the problem (1.2) with p-Laplacian operator and
suitable truncation techniques. The case with p-Laplacian operator without the
Ambrosetti and Rabinowitz condition was studied in [10]. The case with p-Laplacian
operator and concave and convex nonlinearities was considered in [8]. In [12] the
authors studied the case with Laplacian operator and the singular term appear-
ing in the left-hand side. In [6] was studied the case with Laplacian operator and
a nonlinearity depending on the gradient. The case supercritical with Laplacian
operator was studied in [17]. In [5] it was studied the existence of solutions for
nonlocal systems involving the p(x)-Laplacian operator.

Our arguments are strongly influenced by results in [3, 5, 6, 8, 10, 12, 13, 17].
Below we list the main contributions of our article.

(i) This work considers a large class of quasilinear operators which includes
but it is not restricted to p-Laplacian operator. In general, operators p&q-
Laplacian type are non-linear and non-homogeneous. See below several
examples of operators we can consider.

(ii) Since we work with a general operator, some estimates are more refined
then the standard ones. See for example the proof of Theorems 1.2 and
1.3.

(iii) Unlike the works mentioned above, no truncation was necessary in this
paper. Moreover, we do not use the parameter as it was used there.

(iv) In the same way as in [13], our result is valid for every γ > 0.
(v) The results in this paper are valid for a general function f , including when

f is negative near on the origin.

We would like to indicate that our theorems can be applied for the nonlinearity

f(x, t) = h(x)(tr−1 − δr−1).

To illustrate the degree of generality of the kind of problems studied here, we present
some examples of functions a which are also interesting from the mathematical point
of view, and have a wide range of applications in physics and related sciences.

Example 1.4. If a ≡ 1, our operator is the p-Laplacian and so problem (1.2)
becomes

−∆pu = h(x)u−γ + f(x, u) in Ω,

u = 0 on ∂Ω,

with q = p, k1 + k2 = 1 and k3 + k4 = 1.

Example 1.5. If a(t) = 1 + t
q−p
p , we obtain

−∆pu−∆qu = h(x)u−γ + f(x, u) in Ω,



4 S. C. Q. ARRUDA, R. G. NASCIMENTO EJDE-2021/25

u = 0 on ∂Ω,

with k1 = k2 = k3 = k4 = 1.

Example 1.6. If a(t) = 1 + 1

(1+t)
p−2
p

, we obtain

−div(|∇u|p−2∇u+
|∇u|p−2∇u

(1 + |∇u|p)
p−2
p

) = h(x)u−γ + f(x, u) in Ω,

u = 0 on ∂Ω,

with q = p, k1 + k2 = 1 and k3 + k4 = 2.

Example 1.7. If a(t) = 1 + t
q−p
p + 1

(1+t)
p−2
p

, we obtain

−∆pu−∆qu− div(
|∇u|p−2∇u

(1 + |∇u|p)
p−2
p

) = h(x)u−γ + f(x, u) in Ω,

u = 0 on ∂Ω,

where k1 = k2 = k4 = 1 and k3 = 2.

2. Proof of Theorem 1.2

We combine the sub-supersolution method with minimization arguments. For
this, the lemma below establishes the existence of a subsolution and a supersolution
for problem (1.2) whenever we fix the value of ‖h‖∞.

We say that the pair (u, u) is a sub-supersolution for problem (1.2), if u, u ∈
W 1,q

0 (Ω) ∩ L∞(Ω) with

(i) u ≤ u in Ω and u = 0 ≤ u on ∂Ω,

(ii) for each φ ∈W 1,q
0 (Ω), with φ ≥ 0, we have∫

Ω

a(|∇u|p)|∇u|p−2∇u∇φdx ≤
∫

Ω

h(x)u−γφdx+

∫
Ω

f(x, u)φdx,∫
Ω

a(|∇u|p)|∇u|p−2∇u∇φdx ≥
∫

Ω

h(x)u−γφdx+

∫
Ω

f(x, u)φdx.

Lemma 2.1. Assume that (A1)–(A4) are satisfied. If ‖h‖∞ is sufficiently small,
then there exist u, u ∈ C1(Ω) such that

(i) hu−γ ∈ L∞(Ω) and ‖u‖∞ ≤ δ, where δ is given by (A2).
(ii) 0 < u(x) ≤ u(x) a.e. in Ω.
(iii) u is a subsolution and u is a supersolution for problem (1.2).

Proof. From [4, Lemma 2.1], Minty-Browder’s Theorem [2, Theorem 5.15], and the
Maximum Principle, the problem

−div(a(|∇u|p)|∇u|p−2∇u) = h(x) in Ω,

u = 0 on ∂Ω
(2.1)

has an unique positive solution u ∈ W 1,q
0 (Ω). By Remark 1.1 and (A3), we can

use the same arguments in [9] to obtain that u ∈ C1(Ω). Thus, it follows from
Lemmas 4.1 and 4.2 in the Appendix that there exists C > 0 such that u/φ0 ≥ C.
Consequently, by (A1) we obtain

|hu−γ | =
∣∣hu−γ
φ−γ0

φ−γ0

∣∣ ≤ C−γ‖hφ−γ0 ‖∞, (2.2)
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implying that hu−γ ∈ L∞(Ω). Moreover, arguing as in [16, Lemma 4.5], there
exist C∗ > 0 and α > 0 such that ‖u‖∞ ≤ C∗‖h‖α∞, where C∗ is a constant that
does not depend on h or u. Therefore, we choose ‖h‖∞ sufficiently small such that
‖u‖∞ ≤ δ < 1/2. This completes the proof of (i).

To prove (ii), we use [4, Lemma 2.1], Minty-Browder’s Theorem [2, Theorem
5.15], and the Maximum Principle once again to obtain that the problem

−div(a(|∇u|p)|∇u|p−2∇u) = h(x)u−γ in Ω,

u = 0 on ∂Ω,
(2.3)

has an unique positive solution u ∈ W 1,q
0 (Ω). Since hu−γ ∈ L∞(Ω), we can repeat

the same arguments above to obtain u ∈ C1(Ω). Furthermore, using (2.2) we can
write

‖u‖∞ ≤ C∗‖hu−γ‖α∞ ≤ C∗‖h‖α∞C−γα‖φ0‖−γα∞ .

So, choosing ‖h‖∞ sufficiently small we conclude that

‖u‖∞ ≤ δ <
1

2
. (2.4)

Now, since ‖u‖∞ and ‖u‖∞ are small from 2.1 and 2.3 it follows that∫
Ω

a(|∇u|p)|∇u|p−2∇u∇φdx =

∫
Ω

h(x)u−γφdx

≥
∫

Ω

h(x)φdx

=

∫
Ω

a(|∇u|p)|∇u|p−2∇u∇φdx.

Therefore, applying the Weak Comparison Principle for the p&q-Laplacian opera-
tor, see [4, Lemma 2.2], we conclude that 0 < u(x) ≤ u(x) a.e. in Ω.

Finally it is necessary to verify that condition (iii) is satisfied. Indeed, we use
(A2), (2.1) and (i) to obtain∫

Ω

a(|∇u|p)|∇u|p−2∇u∇φdx−
∫

Ω

h(x)u−γφdx−
∫

Ω

f(x, u)φdx

≤ 2

∫
Ω

h(x)φdx−
∫

Ω

h(x)u−γφdx ≤ 0,

which implies that u is a subsolution for problem (1.2). On the other hand, we use
(A2), (2.3), (2.4) and (ii) to obtain∫

Ω

a(|∇u|p)|∇u|p−2∇u∇φdx−
∫

Ω

h(x)u−γφdx−
∫

Ω

f(x, u)φdx

≥
∫

Ω

(u−γ − u−γ)h(x)φdx ≥ 0,

which implies that u is a supersolution for problem (1.2). �

Proof of Theorem 1.2. Consider the function

g(x, t) =


h(x)u(x)−γ + f(x, u(x)), t > u(x)

h(x)t−γ + f(x, t), u(x) ≤ t ≤ u(x)

h(x)u(x)−γ + f(x, u(x)), t < u(x)

(2.5)
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and the auxiliary problem

−div(a(|∇u|p)|∇u|p−2∇u) = g(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(2.6)

We define the energy functional Φ : W 1,q
0 (Ω)→ R associated with (2.6) by

Φ(u) =
1

p

∫
Ω

A(|∇u|p) dx−
∫

Ω

G(x, u) dx,

where G(x, t) =
∫ t

0
g(x, s) ds. It follows from Lemma 2.1(i)-(ii), (A2), (2.4) and

(2.5) that

|g(x, t)| ≤ K a.e. in Ω, for some K > 0 and all t ∈ R. (2.7)

Note that by (A3), the functional Φ(u) is well defined. Moreover, by standard

arguments, Φ is of class C1 on W 1,q
0 (Ω).

Next, consider the set

M = {u ∈W 1,q
0 (Ω) : u ≤ u ≤ u a.e. in Ω}.

For all u ∈M , we apply (A3), (2.7) and continuous embedding W 1,q
0 (Ω) ↪→ L1,q(Ω)

to get that Φ is coercive in M . Moreover, since (A5) holds and g ∈ L∞(Ω) we have
that Φ is weak lower semi-continuous on M . Thus, as M is closed and convex in
W 1,q

0 (Ω), we use [15, Theorem 1.2] to conclude that Φ is bounded from below in M
and attains it is infimum at a point u ∈M .

Using the same argument as in the proof of [15, Theorem 2.4], we see that this
minimum point is a critical point of Φ in all space and hence, u is a weak solution
of the auxiliary problem (2.6). However, since g(x, t) = h(x)t−γ + f(x, t) for all

t ∈ [u, u], problem (1.2) has a weak solution u ∈W 1,q
0 (Ω) such that

0 < u(x) ≤ u(x) ≤ u(x) a.e. in Ω. �

3. Proof of Theorem 1.3

Let u ∈ C1(Ω) be the subsolution of problem (1.2) and let ĝ be a Carathéodory
function defined on Ω× R given by

ĝ(x, t) =

{
h(x)t−γ + f(x, t), t > u(x),

h(x)u(x)−γ + f(x, u(x)), t ≤ u(x).
(3.1)

We consider the auxiliary problem

−div(a(|∇u|p)|∇u|p−2∇u) = ĝ(x, u) in Ω,

u = 0 on ∂Ω,
(3.2)

and define the energy functional Φ̂ : W 1,q
0 (Ω)→ R associated with (3.2) by

Φ̂(u) =
1

p

∫
Ω

A(|∇u|p) dx−
∫

Ω

Ĝ(x, u) dx, ∀u ∈W 1,q
0 (Ω),

where Ĝ(x, t) =
∫ t

0
ĝ(x, s) ds.

Note that by the definition of ĝ and (A7), there exists c1 > 0 such that

Ĝ(x, t) ≤ h(x)u(x)−γ |t|+ h(x)(c1|t|r + |t|) a.e. in Ω and all t ∈ R. (3.3)
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Again, we can prove that Φ̂ ∈ C1(W 1,q
0 (Ω),R) with the Fréchet derivative

Φ̂′(u)φ =

∫
Ω

a(|∇u|p)|∇u|p−2∇u∇φdx−
∫

Ω

ĝ(x, u)φdx, ∀φ ∈W 1,q
0 (Ω).

Furthermore, a straightforward calculation shows that any critical point of Φ̂ is a
weak solution for the auxiliary problem (3.2).

The next result shows that Φ̂ satisfies the geometries of the Mountain Pass
Theorem [1].

Lemma 3.1. Suppose (A1)–(A8) are satisfied. Then Φ̂ satisfies the following con-
ditions

(1) There exist R,α, β with R > ‖u‖1,q and α < β such that

Φ̂(u) ≤ α < β ≤ inf
∂BR(0)

Φ̂.

(2) There exists e ∈W 1,q
0 (Ω) \BR(0) such that Φ̂(e) < β.

Proof. Since u is a subsolution of problem (1.2) it follows from (A2), Lemma 2.1(i),
and (3.1) that

Ĝ(x, u) ≥
(
h(x)u(x)−γ − h(x)

)
u(x) a.e. in Ω

and hence, there exists 0 < α ∈ R such that

Φ̂(u) ≤ 1

p

∫
Ω

A(|∇u|p) dx ≡ α. (3.4)

We invoke (A3), (3.3), Lemma 2.1(i), Remark 1.1 and the Sobolev embedding to
obtain c2, c3, c4 > 0 such that

Φ̂(u) ≥ k2

q
‖u‖q1,q − c2‖hu−γ‖∞‖u‖1,q − c3‖h‖∞‖u‖1,q − c4‖h‖∞‖u‖r1,q, (3.5)

for all u ∈ W 1,q(Ω). Thus, taking ‖u‖1,q = R with R > max{1, ‖u‖1,q}, we may

choice ‖h‖∞ sufficiently small so that there exists 0 < β ∈ R such that Φ̂(u) ≥ β >
α, for all u ∈ ∂BR(0). Therefore, the choices of α, β, R and ‖h‖∞ combined with
the inequalities (3.4) and (3.5) show that the condition (1) is satisfied.

Now, by the definition of ĝ, we have

Ĝ(x, tu) ≥ F (x, tu) a.e. in Ω, and all t ≥ 1

and hence, using (A3), (A8) and Sobolev embedding, there exist c5, c6 > 0 such
that

Φ̂(x, tu) ≤ k3

p
tp‖u‖p1,p +

k4

q
tq‖u‖q1,q − c5tθ‖u‖θ1,q + c6.

Since 2 ≤ p ≤ q < θ < q∗ there exists t∗ > 0 such that e = t∗u ∈W 1,q
0 (Ω) satisfying

‖e‖1,q > R and Φ̂(e) < β, which completes the proof. �

Lemma 3.2. The functional Φ̂ satisfies the Palais-Smale condition.

Proof. Consider (un) ⊂W 1,p
0 (Ω) a sequence such that

Φ̂(un)→ c ∈ R, Φ̂′(un)→ 0. (3.6)

Thus, for all n sufficiently large, we use (A3) and (A6) to obtain C > 0 such that

C(1 + ‖un‖1,q) ≥
( 1

pµ
− 1

θ

)
k2‖un‖q1,q +

∫
Ω

[1
θ
ĝ(x, un)un − Ĝ(x, un)

]
dx. (3.7)



8 S. C. Q. ARRUDA, R. G. NASCIMENTO EJDE-2021/25

For t0 given in (A8), from (3.1) it follows that∫
Ω

[1
θ
ĝ(x, un)un − Ĝ(x, un)

]
dx

=
(1

θ
− 1
) ∫
{un≤u}

h(x)u1−γ
n dx+

(1

θ
− 1

1− γ
) ∫
{un>u}

h(x)u1−γ
n dx

+

∫
Ω∩{|un|≥t0}

(1

θ
f(x, un)un − F (x, un)

)
dx

+

∫
Ω∩{|un|<t0}

(1

θ
f(x, un)un − F (x, un)

)
dx

and hence, by (A8) and (3.7) there exists Ĉ > 0 such that

C(1 + ‖un‖1,q) ≥
( 1

pµ
− 1

θ

)
k2‖un‖q1,q +

(1

θ
− 1
) ∫
{un≤u}

h(x)u1−γ
n dx

+
(1

θ
− 1

1− γ
) ∫
{un>u}

h(x)u1−γ
n dx− Ĉ.

(3.8)

Now, applying (A6), Lemma 2.1(i), and (3.8) we consider the following cases:

Case 1: γ > 1. Then there exists M > 0 such that

M + C‖un‖1,q ≥
( 1

pµ
− 1

θ

)
k2‖un‖q1,q.

Case 2: 0 < γ < 1. We can apply Holder’s inequality in (3.8) to obtain M > 0
such that

M + C‖un‖1,q +
( 1

1− γ
− 1

θ

)
‖h‖q+(γ−1)

1,q ‖un‖1−γ1,q ≥
( 1

pµ
− 1

θ

)
k2‖un‖q1,q.

Case 3: γ = 1 in (3.1). Then there exists M > 0 such that

M + C‖un‖1,q + ‖h‖∞‖un‖1,q ≥
( 1

pµ
− 1

θ

)
k2‖un‖q1,q.

Therefore, by analyzing the three cases above, since θ > pµ we conclude that
(un) is bounded in W 1,q

0 (Ω). Thus, up to subsequence, there exists u ∈ W 1,q
0 (Ω)

such that
un ⇀ u in W 1,q

0 (Ω),

un → u in Ls(Ω), 1 ≤ s < q∗,

un(x)→ u(x) a.e. in Ω,

|un(x)| ≤ ϕ(x) ∈ Ls(Ω), 1 ≤ s < q∗.

(3.9)

Invoking (A4) we can argue as in [4, Lemma 2.1] to obtain

Cq‖un−u‖q1,q ≤
∫

Ω

a(|∇un|p)|∇un|pdx−
∫

Ω

a(|∇un|p)|∇un|p−2∇un∇u dx+ on(1),

where

on(1) =

∫
Ω

a(|∇u|p)|∇u|pdx−
∫

Ω

a(|∇u|p|∇u|p−2∇un∇u dx.

But, in view of (3.6) and (3.9) we have

Cq‖un − u‖q1,q ≤
∫

Ω

ĝ(x, un)(un − u) dx. (3.10)
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Now, we use Lemma 2.1(i), Remark 1.1, (3.9) and the Lebesgue Dominated Con-
vergence Theorem to conclude that∫

Ω

ĝ(x, un)(un − u) dx→ 0 as n→ 0, (3.11)

and hence, from (3.10) and (3.11) it follows that un → u in W 1,q
0 (Ω). �

Proof of Theorem 1.3. Let u, u be the subsolution and the supersolution, respec-
tively, of problem (1.2) given in Lemma 2.1, and w be the weak solution of (1.2)
obtained in Theorem 1.2. By using Lemmas 3.1 and 3.2, from the Mountain Pass
Theorem it follows that there exists v ∈W 1,q

0 (Ω) such that

Φ̂′(v) = 0 and β < Φ̂(v) = c,

where c = infγ∈Γ maxt∈[0,1] Φ̂(γ(t)) with

Γ =
{
γ ∈ C

(
[0, 1],W 1,q

0 (Ω)
)

: γ(0) = u and γ(1) = e
}

which is the minimax value of Φ̂.
Since g(x, t) = ĝ(x, t), for all t ∈ [0, u], it follows that Φ(u) = Φ̂(u), for all

u ∈ [0, u]. Therefore, Φ̂(w) = infM Φ, where w ∈ [u, u] and M is given in the proof
of Theorem 1.2. Thus, auxiliary problem (3.2) has two positive weak solutions

w, v ∈W 1,q
0 (Ω) such that

Φ̂(w) ≤ Φ̂(u) ≤ α < β ≤ Φ̂(v) = c.

Finally, let us show that u ≤ v. Indeed, taking (u− v)+ ∈ C∞0 (Ω), we have∫
Ω

a(|∇v|p)|∇v|p−2∇v∇(u− v)+dx =

∫
Ω

ĝ(x, v)(u− v)+dx

=

∫
{v<u}

[h(x)u−γ + f(x, u)](u− v)+dx.

Since u is a subsolution for problem (1.2), it follows that∫
Ω

a(|∇u|p)|∇u|p−2∇u∇(u− v)+dx−
∫

Ω

a(|∇v|p)|∇v|p−2∇v∇(u− v)+dx ≤ 0

and hence,

Cq

∫
Ω

|∇(u− v)+|q ≤ 0,

which implies that (u − v)+ = 0. So, we conclude that 0 < u ≤ v a.e. in Ω, as
claimed.

It follows from (3.1) that ĝ(x, v) = h(x)v−γ + f(x, v) in Ω. Therefore, v, w ∈
W 1,q

0 (Ω) are two weak solutions for problem (1.2). �

4. Appendix

Lemma 4.1. Let Ω ⊂ RN be a bounded domain with smooth boundary. If u ∈
C1(Ω) ∩W 1,q

0 (Ω), with 2 ≤ p ≤ q < N , and

−div(a(|∇u|p)|∇u|p−2∇u) ≥ 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Then, ∂u/∂η < 0 on ∂Ω, where η is the outward normal to ∂Ω.
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Proof. The proof of this lemma is the same as that of [14, Hoppf’s Lemma], re-
placing the operator −∆pu by − div(a(|∇u|p)|∇u|p−2∇u), and replacing the Weak
Comparison Principle for p-Laplacian operator by the Weak Comparison Principle
given in [4, Lemma 2.2]. �

The following result can be found in [11, Lemma 2.6], and its proof is presented
for the completeness of this paper.

Lemma 4.2. Let φ, ω > 0 be any functions on C1
0 (Ω). If ∂φ/∂ν > 0 in ∂Ω, where

ν is the inward normal to ∂Ω, then there exists C > 0 such that

φ(x)

ω(x)
≥ C > 0, ∀x ∈ Ω.

Proof. For δ > 0 sufficiently small, we consider the set

Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}.

Since φ, ω > 0 in Ω, and Ω \ Ωδ is compact, there exists m > 0 such that

φ(x)

ω(x)
≥ m, ∀x ∈ Ω \ Ωδ. (4.1)

It follows from ∂φ/∂ν > 0 on ∂Ω that ∂φ/∂η < 0, where η is the outwards
normal to ∂Ω. Furthermore, since Ω ⊂ Rn is bounded domain, ∂Ω is a compact set
and consequently, there exists C1 < 0 satisfying

∂φ(x)

∂η
≤ C1, ∀x ∈ Ωδ.

Thus, since ω ∈ C1
0 (Ω), there exists C2 > 0 such that |∂ω(x)

∂η | ≤ C2 for all x ∈ Ωδ.

Consider K0 = infΩδ
∂ω
∂η < 0 and define the function

H(x) = αω(x)− φ(x), ∀x ∈ Ωδ and α ∈ R to be chosen.

Since 0 < α < C1/K0 we obtain

∂H(x)

∂η
= α

∂ω(x)

∂η
− ∂φ(x)

∂η
≥ αK0 − C1 > 0, ∀x ∈ Ωδ.

Now, we fix x ∈ Ωδ and consider the function

f(x) = H(x+ sη), ∀s ∈ R.

For each x ∈ Ωδ, we choose an unique x̃ ∈ Ωδ, so that there exists ŝ > 0 for which
x+ ŝη = x̃ ∈ ∂Ω. Since H(∂Ω) ≡ 0, we have f(ŝ) = H(x+ ŝη) = H(x̃) = 0.

Next, applying the Medium Value Theorem, there exists ξ ∈ (0, ŝ) such that

f(ŝ)− f(0) = f ′(ξ)(ŝ− 0),

which implies

−H(x) =
∂H

∂η
(x+ ξη)ŝ > 0 in Ωδ.

Therefore, H(x) ≤ 0 for all x ∈ Ωδ and hence, αω(x) − φ(x) ≤ 0 for all x ∈ Ωδ,
which implies αω(x) ≤ φ(x) for all x ∈ Ωδ. Therefore,

φ(x)

ω(x)
≥ α > 0, ∀x ∈ Ωδ. (4.2)
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From (4.1) and (4.2) we conclude that there exists C > 0 such that

φ(x)

ω(x)
≥ C, ∀x ∈ Ω. �
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[12] N. S. Papageorgiou, V. Rãdulescu; Combined effects of singular and sublinear nonlinearities

in some elliptic problems, Nonlinear Anal., 109 (2014), 236–244.
[13] K. Perera, E. A. B. Silva; Existence and multiplicity of positive solutions for singular quasi-

linear problems, J. Math. Anal. Appl., 323 (2006), No. 2, 1238–1252.

[14] S. Sakaguchi; Concavity properties of solutions to some degenerate quasilinear elliptic Dirich-
let problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14 (1987), No. 3, 403–421.

[15] M. Struwe; Variational methods. Applications to nonlinear partial differential equations and

Hamiltonian systems, Fourth edition, Springer-Verlag, Berlin, 2008.
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