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ABSTRACT

EXTREMAL CAYLEY GRAPHS

by

Joni J. Schneider, M.S.

Texas State University-San Marcos 

August 2012

SUPERVISING PROFESOR: XINGDE JIA

Let E be a finite group with m  elements. Let A be a nonempty subset of E. 

The Cayley digraph o f E generated by A, denoted by Cay(E, A), is the digraph with 

vertex set E and arc set {uv \ u_1v G A}.  A  simple example of a Cayley digraph is the 

n-Cube.

A Cayley digraph can be considered as a graphical representation of a finite 

group by its generating set. Cayley digraphs of finite abelian groups are often used to 

model communication networks. Because of their complex algebraic structure and their 

applications in network theory, Cayley digraphs have been studied extensively in recent 

years. In this thesis, we focus on some optimization problems about Cayley digraphs. 

In particular, we study how large the number o f vertices a Cayley digraph can have for a

x



given diameter and degree. This is one of the central problems in the study of extremal 

Cayley digraphs.

Let Zm denote the cyclic group of residue classes o f integers modulo m  with 

addition. Given any two positive integers d and k, define m(d, k) as the largest positive 

integer m  such that there exists a set A o f k integers with diam(Cay(Zm, A)) <  d, 

where diam(G') denotes that diameter o f a graph G. In other words,

m(d,k ) =  max{m  | diam(Cay(Zm, A)) <  d}.
\ A \ - k

We will study this extremal function. In particular, we will prove a lower bound for

m(d, k).

We will introduce a geometric representation of Zm with respect to a generating 

set A. This representation was first introduced by C. K. Wong and Don Coppersmith in 

1974. This geometric representation of Zm is very useful in establishing upper bounds 

for m(d, k). We will discuss some properties of the ^-representation of Zm in two 

and three dimensional cases. We will also use this method to prove upper bounds for 

m(d,  2). Some other related extremal functions will also be studied in this thesis.
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Chapter 1

INTRODUCTION

1.1 Information Networks

A network is traditionally referred to as a computer network which is a collec­

tion of hardware components and computers interconnected by communication chan­

nels that allow sharing o f resources and information. However, a network can consist 

of a variety of entities (or nodes) such as computers, cellphones, télévisons, fire alarms, 

and refrigerators. It can also consist of people, organizations, companies, and nations. 

A network has emerged as a necessary mechanism to exchange information between 

various sources. As such, network takes a new name, which is modem and meaningful: 

information networks.

Information networks have played a crucial role in the function of the infor­

mation society. There are two types of information networks: one is called natural 

networks and the other is designed networks. These networks have to be robust, effi­

cient, reliable, and cost effective. Therefore, the design of such information networks 

is extremely important.

Graphs are often used to model information networks. In fact, a network is a 

graph where the nodes of the network are represented by the vertices and the network 

links by the edges of the graph.

A major concern in the design of networks is the balance between some key 

parameters of the network, namely:

n—the size of the network,
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d—the transmission delay, and 

k— the number of links each node can have.

With a fixed number of nodes to connect, the transmission delay can be decreased by 

adding more links to the network. However, more links might result in lower perfor­

mance because o f physical restraints. Therefore, designs to optimize these parameters 

are extremely desirable in the construction of networks. Extensive research has been 

done in this area by both computer scientists and mathematicians (see, e.g. Bermond, 

Cornelias and Hsu (1995) and Du and Hsu (1996)).

l .  2 Cayley Graphs

Another key issue in designing communication networks is reducing the com­

plexity of massively parallel processing systems. Symmetric graphs can be used to 

model networks so that the same routing algorithms apply to all the vertices. A good 

example would be the hypercube, a popular communication network design noted for 

its symmetry and expandability. However, recent studies have shown that optimal Cay­

ley digraphs constructed by using groups can outperform hypercubes and other popular 

network topologies in terms of capacity and efficiency of the network.

Definition 1. Let T be a finite group with m elements. Let A be a nonempty subset of 

T. The Cayley digraph of L generated by A , denoted by Cay(T, A), is the digraph with 

vertex set T and arc set {uv \ u~xv E A}.

For any given positive integer m,  let Zm denote the set of residue classes modulo

m. We also use ZTO to denote the cyclic group of residue classes modulo m  under 

addition. As shown in Figure 1.1, a 3-cube has 8 vertices with degree 3 and diameter 3, 

while the Cayley digraph of Z12 generated by A =  ( ± 1, ± 6}, as an undirected graph,
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has 12 vertices, degree 3 and diameter 3. It is also easy to verify that Cayley digraph o f  

Z4i generated by {±11, ±17} has degree 4 and diameter 4. Note that the Cayley graph 

has 41 vertices while a 4-cube has only 16 vertices with the same degree 4 and same 

diameter 4.

Figure 1.1: Two 3-regular graphs have the same diameter 3.

Let Zm denote the cyclic group of residue classes modulo m  with addition. 

Given any two positive integers d and k, define m(d. k) as the largest positive integer 

m such that there exists a set A  o f k integers with diam(Cay(Zm, A)) < d, where 

diam(G) denotes that diameter o f a graph G. In other words,

m(d,k ) =  max{m | diam(Cay(Zm, A)) <  d}.
\A \ = k

In this thesis, we focus on some optimization problems for Cayley digraphs, including 

m(d, k). In particular, we study how large the number of vertices a Cayley digraph 

could have for a given diameter and degree. This is one o f the central problems in the 

study of extremal Cayley digraphs.

1.3 Organization of the thesis

As mentioned earlier, this thesis focuses on some important optimization prob­

lems about Cayley digraphs. This is still an on-going research area in mathematics and
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computer science. In order to effectively describe our new results and expose research 

topics, we include in Chapter 2 some basic concepts and results in graph theory.

In Chapter 3, we first introduce Cayley digraphs. We discuss the connectivity 

of Cayley digraphs of the finite abelian group Um. In Section 3.3 we define various 

extremal functions related to Cayley digraphs, including m(d, k), which is our main 

focus o f this thesis.

In Chapter 4, we limit our focus to Cayley digraphs of finite cyclic groups. Our 

main concern is the extremal function m(d, k). Because of a recursive inequality, one 

is able to use lower bounds for m(d, k) with k being small to establish lower bounds 

for m{d , k) with k large. Therefore, we first establish lower bounds for m(d, k) when 

k= 2 ,3 .

In Chapter 5, we study the geometry of finite cyclic groups. The elements of 

a finite cyclic group can be represented by a fc-dimensional solid with respect to a 

^-element generating set. This geometric representation can be regarded as a repre­

sentation of the Cayley digraph of a finite cyclic group, which was first introduced by 

Wong and Coppersmith in the 1970’s. This geometric representation is an essential tool 

in establishing upper bounds for m(d, k) (see, e.g. Mask, Schneider and Jia, 2011).

In Chapter 6, we first summarize the key results in this thesis. Then we list 

some new and old open problems in related areas. In addition, we include remarks 

about some o f the open problems.



Chapter 2

GRAPHS AND DIGRAPHS

In this chapter, some basic concepts and results in graph theory that are used in 

this thesis will be introduced. This is not intended to be an introduction to graph theory 

by any means. For more on graphs, the reader should see a very good book by Douglas 

B. West (West, 1996) titled Introduction to Graph Theory.

2.1 Definitions and Examples

Definition 2. A simple graph G =  (V, E ) consists o f a nonempty set V  o f objects 

called vertices and a set E  o f 2-element subsets of V  called edges.

In a graph G, the two vertices on an edge are called end vertices o f the edge, and 

the edge is said to be incident to its end vertices. Two vertices are said to be adjacent 

if  they are the end vertices of an edge. If u and v are adjacent vertices in a graph, it 

is often more convenient to represent the edge {u, v}  by uv (or vu). A simple graph 

G =  (V, E) defined by V  =  {u, v, w, x, y, z }  and E =  {uv, uw, ux, v y , wx } can be 

represented by a graph as shown in Figure 2.1. This drawing of G is often referred to 

as the graph G. Note that the graphical representation of the graph is not unique.

The following are a few examples of graphs.

Path Pn: A path Pn o f length n is a graph with n + 1  vertices Vi, . . . ,  vn+i and edges 

v%vt+i (i =  1, 2, . . . ,  n), where v\ and vn+i are called the end vertices o f the path.

5
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U  U V  V

Figure 2.1: A simple graph G with 6 vertices.

Cycle Cn: A cycle Cn o f length n is a path of length n with the end vertices being the

same vertex.

Complete Graph K n: A complete graph with n vertices, denoted as K n, is a simple

graph with all possible edges.

n-Cube Qn: An n-cube, denoted by Qn, is a simple graph with vertices that can be

labeled with the 2" bit strings1 o f length n so that two vertices are adjacent if  and only 

if  the corresponding bit strings differ in exactly one bit.

Bipartite Graphs: A simple graph G =  (V, E ) is said to be a bipartite graph if  the

vertex set V  can be colored with two colors so that every edge connects vertices with 

different colors.

Multigraphs, Pseudographs, and Digraphs: A multigraph G — (V, E) consists o f 

a set V  o f vertices and a multiset E  o f edges with distinct end vertices. A pseudograph 

G =  (V, E) consists o f a set V  o f vertices and a multiset E  o f unordered pairs (edges) 

of not necessarily distinct vertices in V. An edge with the same end vertex is called a

'For convenience we sometimes use n-tuples of 0’s and l ’s instead of bit strings to label the vertices.
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loop or a self loop. A digraph is a graph where the edges have a direction associated 

with them.

2.2 Connectivity

Graph connectivity is a central property of graphs. There are many problems 

related to the connectivity of graphs. Connectivity o f a special kind of graphs, called 

Cayley digraphs, is one o f the main focuses in this paper. In this section, some basic 

definitions shall be introduced along with Menger’s Theorem.

Definition 3. Let & be a positive integer.

(*) A walk is a list o f vertices and edges

Vo, e2, V2 , ..  •, e/c, Vk

such that e% has endpoints and vt.

(n) A trail is a walk with distinct edges.

{m) A tour or a circuit is a walk with the ending vertex being the same as the 

starting vertex.

(w ) A path is a walk without repeated vertices.

(v) A cycle is a closed path with the same starting and ending vertex. In other 

words, a cycle is a tour without repeated vertices.

(■vi) The length o f a walk, a path, or a cycle is the number of its edges.

Definition 4. An undirected graph is said to be connected if  there exists a path between 

every pair of vertices. A directed graph is said to be strongly connected if  there is a
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directed path between eveiy pair of vertices of the graph. A directed graph is said to 

be weekly connected if  the underlining undirected graph is connected. A disconnected 

graph is the union of connected subgraphs, called connected components.

Definition 5. Let G =  (V, E) be a graph.

(*) A vertex v G V  is called a cut vertex if  G becomes disconnected after the 

removal o f v and edges incident to v.

(n) A set of vertices W  C V  is called a cut vertex set if  G becomes disconnected 

after the removal of W  and edges incident to the vertices in W.

{in) A minimal cut vertex set is a cut vertex set such that none of its proper subset 

is again a cut vertex set.

Definition 6. Let G be a graph. The size of a minimal cut vertex set is called the 

connectivity o f G, and denoted by k(G). A graph G is fc-connected if k(G) >  k. The 

edge-connectivity X(G) o f a nontrivial graph G is the minimum number of edges whose 

removal from G results in a nonconnected graph.

Obviously, if  W  is a minimal cut vertex set o f G, then G contains two vertices 

u, v such that every path between u and v contains a vertex in S.

It is easy to see that k{Cu) =  2 and n(Kn) =  n — 1. If 5(G) is used to denote 

the minimum degree o f G, then

k(G) <  A(G) < 5(G).

Theorem 1 (H. Whitney, 1932). A graph G with order n >  3 is 2-connected if and 

only if any two vertices of G are joined by at least two internally-disjoint paths.
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Definition 7. Let G be a graph. An independent edge set is a subset of edges o f G 

such that no two edges share a common vertex. An independent edge set is also called 

a matching. The maximum number o f edges in an independent edge set is called the 

edge independence number, denoted by fii(G).

Definition 8. Let G be a graph. A vertex cover o f G is a subset W  o f vertices of G 

such that each edge of G is incident to at least one vertex in W. The minimum number 

of vertices in a vertex cover is called the vertex covering number, denoted by a(G).

Let u and v be nonadjacent vertices in a graph G. A (u, v)-cut is a set X  C 

V(G)  — {u, v}  whose removal from G leaves u and v in different components. Let 

«(it, v ) denote the minimum number o f vertices in a (it, v)-cut, and A (it, v) the maxi­

mum number of intemally-disjoint u-v paths. The following is the Menger’s Theorem.

Theorem 2 (K. Menger, 1927). Let u and v be nonadjacent vertices in a graph G. 

Then k {u , v) — A(u,v).

2.3 Distance and Diameter

Distance between vertices in a graph is an important parameter of the graph. In 

this section, we study the diameter and the average distance of graphs.

2.3.1 Eccentricity

Recall that the distance between two vertices in a graph is the number o f edges 

in a shortest path connecting them. We use dc(u, v ) to denote the distance between 

vertices u and v in G.

Definition 9. Let G be an undirected graph.
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(*) The eccentricity e(v) o f a vertex v is the greatest distance between v and any 

other vertex in the graph.

(n) The radius o f G, denoted as r(G),  is the minimum eccentricity of any vertex.

(m)  The diameter o f G, denoted as diam(G), is the maximum eccentricity o f any 

vertex in the graph. In other words, the diameter is the greatest distance be­

tween any pair of vertices.

(:iv) The girth o f G is the length o f the shortest closed path of the graph.

(v) A central vertex in a graph o f radius r is one that is distance r  from some other 

vertex.

(vi) A peripheral vertex in a graph of diameter d is one that is distance d from some 

other vertex.

Example 1. The graph shown in Figure 2.2 is connected. It is easy to see that the radius 

is 2 and the diameter is 3. The central vertices are the filled vertices while the rest of 

the vertices are the peripheral vertices of the graph.

6

Figure 2.2: Filled vertices are central vertices. r(G) =  2 and diam(G) =  3.

Example 2. Because the n-cube Qn is distance symmetric, every vertex has the same 

eccentricity n. Therefore, r(Qn) =  diam(Qn) =  n. Hence, every vertex is a central 

vertex and a peripheral vertex.
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2.3.2 Average Distance

Definition 10. Let G =  (V, E) be a connected simple graph with n >  2 vertices. The 

average distance d(G) o f G is defined as

d(G) =  t ^y  Y  d{u,V).
( J u,vEV
w

Let G be a graph. Since d(u, v) < d(G) for any two vertices u and v, we see 

that d(G) < d(G).

Proposition 1. Let G be a connected graph. Then d{G) =  d(G) if  and only if  G is a 

complete graph.

Proof. Let G be a graph with n vertices. If G is a complete graph, it is obvious that

d{G) =  d(G) =  1.

Now assume that d(G) =  d{G). We only need to prove that d(G) =  1. If not, 

assume that

U =  U 0,Ui,...,Ud =  V

is a shortest path of length d — d(G) > 1 in G. Then d — 1 >  0 and

1
d(G) =  d(n,v)

/ lb \
u,v£V

n(n — 1) 
2

d(uQ,u1) +  Y  d(æ,y)
{x,y}ÿ£{u0,u i}

1
< —----- -- 1 + d • -n(n -  1) -  1

n(n — 1) \  V 2
,  2( d - l )

n(n -  1)
< d  =  d{G). □
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Tl Tl
Proposition 2. The average distance of the n-cube Qn is — +

2 2n+1 -  2 '

Proof. By the definition of Qn, its 2n vertices can be represented by the bit strings of 

length n so that two vertices are adjacent if  their labels differ in exactly one bit. Because 

of the symmetry o f Qn, the average distance of Qn is

d{Qn) =  S  d(0,v),
0=££(v)E&n

where Sdn is the set of bit strings of length n, and £(v) is the bit string labeling of v. 

The vertices that have distance k to the vertex with label 0 are the vertices with labels 

that have exactly k l ’s. Since there are distinct bit strings with exactly k l ’s and 

n — k 04 5s, we see that

d{Qn) =  ( rf ) k  =  x—~—-n2n lv ’ 2n - \  / - ' \ k )  2" — 1k=1 V 7

n n
2 +  2n+1 -  2

□

4 12
In particular, d(Q2) =  -  and d{Qf) =  — .

O I

Proposition 3. Let C m be the directed cycle of length m. Then d(Cm) =

Proof It follows from the fact

d( i , j ) +  d(j, i) =  m  for any 1 <  i < j  < m

that

d{ C m) =
1

m(m — 1) 

1
X ]  (d(hj )  +d( j , i ) )

1<1<J<771
(

m[m
i

=  -m .

1) \2 m

□

It is easy to verify the following proposition.
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Proposition 4. Let Cn be the cycle o f length n, then

, ifn  =  2k 

ifn  =  2k +  l

Compared with the diameter of a graph, the average distance of the graph re­

flects more accurate information about the distance between vertices in the graph. The 

following example shows an extreme situation. For any given integer d > 2, let G be 

the graph obtained by attaching one of the end node of a path Pd to any vertex of a 

complete graph K m as showed in Figure 2.3. Then d(G) =  d. Noting that the dis-

d{Cn) =

k2 +  l 
2 k - 1  
k +  1

-O

Figure 2.3: A graph that shows d(G) —»■ 1 for any given d — d{G).

tance between a vertex on Pd and any other vertex in G is at most d while the distance 

between any two vertices in K m is one, we see that

l < d ( G )  < ( { d ~  l ) (m +  d -  2) +

2 d(m +  d) +  m 2 
~ (m +  d — l)(m  +  d — 2)'

This shows that the average distance d(G) o f this graph G has a limit 1 as m —> oo. 

Given any positive integer d, define

D(d) =  sup d(G).
G

d{G)=d
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Then D(  1) =  1 as shown by the complete graph K m. Let Grn denote the star graph 

with m +  1 vertices. It is easy to verify that

\ 2m
ciiCjm) — -------~ —y 2 as Tit —y oo,m +  1

i.e ., Z?(2) =  2.

Let T(m)  denote the following graph: a star graph with m  leaves each of which

is the center vertex of a star graph with rn leaves. Figure 2.4 shows the construction of 

T(6). Then T(m)  has m2 +  m +  1 vertices and m2 +  m  edges. Easy to see that

d(T(m)) =  ' J 2  d(u, v )
V 2 ) uv&E(T(m))

Am2 (to2 — 2)
(m2 +  m  +  1) (m2 +  m )

Therefore, jD(4) =  4.

as m  —̂ oo.

Figure 2.4: T (6) is a graph that shows that D (4) =  4.

2.4 Degree-Diameter Problem

The Degree-Diameter Problem is to determine the largest graphs with given 

maximum degree k and diameter d. In this section we address an upper bound, known 

as the Moore bound.
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Let k and d be positive integers. A (k,d)-graph is a graph with maximum 

degree k and diameter at most d. Let f ( k , d ) denote the maximum number of vertices 

that a (k, fi)-graph can have.

Theorem 3. f(k,  d) <  1 +  - — - - ((k — l ) d — l) .

Proof. Let G =  (V, E) be a (k , ri)-graph with rn =  \V\. We only need to prove that
k

m < 1 +  - — -  {fk — l ) d — l ) . Pick any vertex u € V. For each integer i : 1 < i < d,
rv A

define

Vt =  {v  G V  | d(u,v) =  i}.

Since the diameter o f G is d, we see that
d

m= \ V\  = 1 +

Because the maximum degree of G is k, we have that

|Vi| <  k,

and

IK I < k ( k -  I f - 1 for all i.

Therefore,
d d

m  =  1 +  IKI < 1 +  k(k — 1)*_1
2=1 2=1

=  1 +  ~  ^  ~  h  ■ n

Now consider a graph G with minimum degree k and girth g.

Theorem 4. Let G be a graph with minimum degree k and girth g. If d =  

then

\ V( G) \ >l  + f - ^ ( { k - l ) d - l ) .

2
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Proof. This proof follows a similar argument as the previous theorem. Let G be a 

graph with m  vertices, with minimum degree k and girth g. Pick any vertex u. For each 

integer ? . : ! < ? . <  d, define

Since the diameter of G is at least d

V% =  {v £ V  | d(u, v ) =  ?}. 

9 ~  1 , we see that

m inG )l> i + £ l y*l-
1=1

Furthermore, it follows from the fact that the minimum degree of G is k that

|Vi| >  k,

and

\Vt\ > k(k -  l ) l~l for all i : l < i <  d.

Therefore, we have

m =  1 +  y ' j K l  >  1 +  k(k -  1)* 1
1=1 1=1

=  1 +  A ^ 2 (( i - 1 ) i - 1) '
□

The upper bound in Theorem 3 is sometimes called the Moore bound. A regular
k

graph with degree k and diameter d that has 1 +  - — -  (fk — l ) d — l)  vertices is called
Ki ¿L

a Moore graph. Equivalently, a Moore graph is a fe--regular graph with diameter d that 

has girth 2d +  1. The following is another equivalent definition.

Definition 11. A graph G is called a Moore graph if  the following conditions hold:

if) G is connected with maximum degree k and diameter d,
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(**) G has minimum degree k and girth g =  2d +  1,

k
(iii) G has 1 +  - — -  ((k — l ) d — l)  vertices.

The following Table 2.1 shows the order o f some large known (k, c/)-graphs. 

The sizes in bold face in the table indicate the optimal value f(k,  d). For more informa­

tion on (k, d)-graphs, please visit http://www-mat.upc.es/grup_de_grafs/table_g.html.

http://www-mat.upc.es/grup_de_grafs/table_g.html


Table 2.1: The size o f large (k, d) -graphs

k \ d 2 3 4 5 6 7 8 9 10
3 10 20 38 70 132 192 330 576 1250
4 15 41 96 364 740 1 320 3 243 7 575 17 703
5 24 72 210 624 2 772 5 516 17 030 53 352 164 720
6 32 110 390 1 404 7 917 19 282 75 157 295 025 1 212 117
7 50 168 672 2 756 11 988 52 768 233 700 1 124 990 5 311 572
8 57 253 1 100 5 060 39 672 130 017 714 010 4 039 704 17 823 532
9 74 585 1 550 8 200 75 893 270 192 1 485 498 10 423 212 31 466 244
10 91 650 2 223 13 140 134 690 561 957 4 019 736 17 304 400 104 058 822
11 104 715 3 200 18 700 156 864 971 028 5 941 864 62 932 488 250 108 668
12 133 786 4 680 29 470 359 772 1 900 464 10 423 212 104 058 822 600 105 100
13 162 851 6 560 39 576 531 440 2 901 404 17 823 532 180 002 472 1 050 104 118
14 183 916 8 200 56 790 816 294 6 200 460 41 894 424 450 103 771 2 050 103 984
15 186 1 215 11 712 74 298 1 417 248 8 079 298 90 001 236 900 207 542 4 149 702 144
16 198 1 600 14 640 132 496 1 771 560 14 882 658 104 518 518 1 400 103 920 7 394 669 856

Bold face numbers indicate the optimal values.



Chapter 3

EXTREMAL CAYLEY D[GRAPHS

3.1 Cayley Digraphs

Recall that we have the following definition in Section 1.2.

Definition 1. Let F be a finite group with m elements. Let A b e  a nonempty subset o f 

T. The Cayley digraph ofT  generated by A, denoted by Cay(r, A), is the digraph with 

vertex set F and arc set {uv \ u~lv G A}.

Example 3. A directed cycle C m is a Cayley digraph of Z m with a single generating 

element 1, or, as a matter of fact, any a G Z m that is relatively prime to m.

Example 4. Cayley digraphs Cay(Z47, {1,11})  and Cay(Z57, (1,13 , 33}):

Cay(Z57, {1,13,33}) Cay(Z47, {1,11})

Figure 3.1: Two Cayley digraphs.

The edges in the graphs are supposed to be directed. The graphs are symmetric.

19
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Clearly, Cayley digraph Cay(r, A) is connected if  and only if  A  can generate 

the whole group T.

Definition 12. A subset A o f a group F is said to be symmetric if  a-1 € A for all a £ A.

Note that Cayley digraphs are directed graphs. However, if  the generating set A 

is symmetric, the Cayley digraph Cay(r, A) can be considered as an undirected graph.

Example 5. The hypercube Qn is actually a Cayley digraph of with generating set

{e% 11 =  1 , 2 , . . . ,  77.}, where e8 =' ( 0 , . . . ,  0, 0 , . . . ,  0) is the 7th basis vector in Z£.
%

Cayley digraphs of finite abelian groups are often used to model information 

networks. Because o f their applications, extremal Cayley digraphs have been studied 

extensively in recent years.

3.2 Connectivity of Cayley Digraphs

In this section, we discuss the connectivity of the Cayley digraph Cay(T, A) o f  

a finite abelian group T generated by an r-element subset A, where r =  rank(F) is the 

rank of T, is discussed.

Theorem 5. Let T =  lfm. Let A =  {ai, a2, . . . ,  ar} be a subset ofY. Assume that 

a l =  {all ,al2, . . . , a ir) for  7 =  1,2

Define Ma =  [a%J]rxr. Then the Cayley digraph Cay(F, A) is connected if  and only if 

Ma is an invertible matrix.

Proof. (=>) Assume that the Cayley digraph Cay(r, A) is connected. Then A  =  

{ai, a2, . . . ,  ar} is a generating set of the finite abelian group T. Therefore, for each 

7 :1  < i < r ,  there exists an r-tuple =  (x*i, a;,2, . . . ,  xtr) with

0 < x%3 < m — 1 for j  =  1 , 2 . . . ,  r
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such that

B-^A Gjj

where e* =  (0 , . . . ,  0, v_l^, 0 , . . . ,  0) is the zth unit vector in T. Let B  be the r x r
l

matrix consisting £,i, Bi, B  as its row vectors, i .e. ,

B  =  [iCij]rxr

Then BMa =  B,  the r x r identity matrix.

Define a function a  : T —>■ T defined by

r

cr : x  h-> xM a =  Xja*
«=1

for every x  =  (xi, £2, • • •, ay) E T. Since A is a generating set of T, we see that a  is 

an onto function. Noting that T is finite, we know that a  is also one-to-one. Therefore, 

xMa =  0 has a unique solution.

It follows from B M a — B  that

MaBMa =  MaB =  Ma-

Then

0 =  MaBM a — Ma =  (MaB  — / r) Ma - 

Hence, MaB  — B =  0, i .e. , MaB =  B ■ Therefore, B  is the inverse matrix of Ma - 

(<£=) Assume that Ma is invertible. Let x  G Fbe any element. Define

C = (d, c2, . . . , Cr) = x M j 1 e r,

where

0 <  c% < m  — 1 for i =  l , 2, . . . , r .
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Then
r

x  =  c MA =  '^Tclal.
1=1

This implies that A is a generating set of T. Hence, the Cayley digraph Cay(T, A) of T 

generated by A is connected. □

Theorem 6. Let T =  Um be the direct product ofr copies ofLm. Let A =  { a i , a2, . . . ,  ar} 

be a generating set ofY. Then Cay (T, A) is connected and

diam(Cay(T, A)) =  rm  — r.

Proof. Because of the symmetry o f Cay(T, A), we may assume that

r
d =  diam(Cay(T, A) =  d(0, u) =  uz,

1=1

r
for some u =  «¡a*. Since

1=1

0 <  u% < m — 1 for i =  1, 2, . . . ,  r.

Therefore,
r

d =  u% < rm  — r.
t=i

It is now proven that there exists an element u e  T such that

d( 0, u) =  rm  — r.

Define
r

u  =  1) a «-
1=1

If d(0, u) <  rm  — r, then u can be written as

r

u =
1=1
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where

0 < Q < m  — 1 for z =  l,2 , . . . , r

such that
r

^ 2 c% <  d-
1=1

Then

v  =  (m — 1, m  — 1, . . . ,  m  — 1) — (ci, C2, . . . ,  cr) ^  0.

This implies that

((m — 1, . . .  ,m  — 1) — (ci , . . . ,  ct))Ma =  u — u =  0,

contradicting the fact that Ma is invertible. Hence, d(0, u) =  rm  — r. Therefore, the 

diameter of Cay(T, A) is rm — r. The proof of Theorem 6 is complete. □

3.3 Extremal Functions Related to Cayley Digraphs

In this section, we shall define a few extremal functions related to Cayley di­

graphs of Zm, the finite cyclic group of order m. A subset A o f Zm is called a d-basis 

forZm if  diam(Cay(Zm, A)) <  d.

3.3.1 m(d, k)

Definition 13. Given any two positive integers d and k, define m(d, k) as the largest 

positive integer m  such that there exists a d-basis A o ik  integers for Zm, i.e .,

diam(Cay(Zm, A)) <  d,

where diam(G) denotes the diameter of a graph G. In other words,

m(d,k) — max{m | diam(Cay(Zm, A)) <  d}.
1̂1=*:
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Theorem 7. For any given positive integer d,

m(d, 1) =  d +  1.

Proof. On one hand, we assume G =  Cay(Zm, {a}) has diameter at most d. Since 

every vertex of G can be written as xa where x is a nonnegative integer that is less than 

or equal to d. This implies that m  =  \V{G) \ < d +  1. Hence, m(d, 1) <  d +  1.

On the other hand, we let A =  {1} and m =  d +  1. It is clear that 

diam(Cay(Zm, A)) =  d.

This means that we have d +  1 < m(d, 1) Therefore, we proved the required identity in 

the theorem. □

Theorem 8. For any given positive integer k,

m( 1, k) =  k +  1.

Proof. First, let A =  {01,02, . . . ,  a*,} be a set of k elements so that G =  Cay(Zm, A) 

has diameter 1. Then eveiy vertex of G is an immediate neighbor o f 0 £ Zm. Since the 

neighbors of 0 are the elements in A:

Therefore, m (l, k) < k +  1.

Now Let A =  {1 ,2 , . . .  ,k}.  Then it is easy to see that diam(Cay(Zfc+1, A)) =

Theorem 9 (Wong-Coppersmith, 1974). For any given positive integers d and k, we 

have

®1) 2̂} • • • 5

1. This means that m (l, k) >  k +  1. Therefore, we have m (l, k) =  k +  1. □
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Proof. We first prove the upper-bound. If A is a k element set with diam(Cay (Zm, A ) ) <  

d, then every element in Zm is a sum of at most d elements from A. Noting that the 

addition o f integers is commutative, we see that

m <
'k + l + d - 1

d
k +  d' 

k

which shows the upper bound o f the required inequality. 

Now we prove the lower-bound. Let

t = + 1

and

For any x € [0, tk — 1], then

A = { l , t , t  }

k - 1

X Cjf* with 0 <  ct < t — 1.
i= 0

Since

y  Cj <  k(t — 1) =  k[d/k\  < d,

we see that d(0, x) < d. Therefore, the diameter of Cay(Zii , A) is at most d, which 

implies

m(d, k) >  tk □

Corollary 1. For any given positive integer k, as d —» oo,

^  +  0 {d k- 1) < m(d, k ) < ^  +  0 {d k~l ).

Proof. This follows immediately from Theorem 9. □
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Hsu and Jia (1994) proved that, for any integer d >  2,

m(d, 2)
d(d +  4) 

3
+ 1.

We will prove this exact formula in Chapters 4 and 5.

(3-1)

Table 3.1 contains the exact values of m(d, 3) for 2 <  d <  20 together with 

the corresponding generating sets. We do not list the so called “isomorphic” generat­

ing sets. For instance, A — {1 ,3 ,4 }  is a generating set for Cay(Zg,A) which gives 

diameter 2. The inverse element of 4 in Z9 is 7. Since

1 -7  =  7, 3 - 7  =  3, and 4 - 7 = 1  (mod 9),

we see that {1, 3 ,7} is an isomorphic generating set of {1 ,3 ,4 }. So the generating set 

{1 ,3 ,7 }  is not listed in the table.

3.3.2 m(X,k)

Definition 14. Given any positive integer k and any real number A, define m(A, k) as 

the largest positive integer m  such that there exists a set A o f k  integers with

J(Cay(Zm, A)) <  A,

where d{G) denotes the average distance of a graph G. In other words, 

m(X,k) =  max{m | J(Cay(Zm, 4̂)) <  A}.
l-4|=fc

Theorem 10. For any given positive integer k,

m(  1, k) =  k +  1.

Proof. First, we prove that m (l, k) <  k +  1. Let A =  (ax, «2, - - -, Ofc} be a gener­

ating set of Zm so that J(Cay(Zm, A)) <  1. However, the average distance o f any
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Table 3.1: m(d, 3) for 2 < d <  20 with corresponding extremal generating sets.

d m(d, 3) Corresponding extremal generating sets
2 9 {1 ,3 ,4 }, {1 ,4 ,6 }
3 16 {1 ,4 ,5 } , {1,5,12}
4 27 {1 ,4 ,1 7 } ,{1 ,5 ,1 2 } ,{1 ,6 ,8 } ,{1 ,1 6 ,2 3 }
5 40 {1 ,6 ,15}, {1 ,6 ,25}, {1 ,16,35}, {1, 26,35}
6 57 {1 ,13,33}, {1 ,16,36}
7 78 {1 ,6 ,49}, {1 ,7 ,48}, {1 ,12 ,61}, {1,30,73}
8 111 {1,31,69}
9 138 {1 ,11,78}, {1 ,17,96}, {1 ,19 ,26}, {1,43,122}

10 176
{1 ,17,56}, {1 ,24,33}, {1,32,153}, {1,41,64}, 
{1,81,104}, {1,121,160}

11 217 {1,13,119}, {1 ,18 ,46}, {1,34,161}, {1,51,92}
12 273 {1 ,14 ,153},{1 ,49 ,104}, {1,53,186}, {1,88,221}
13 340 {1,90,191}
14 395 {1,35,271}, {1,125,361}

15 462

{1 ,29 ,97}, {1,33,254}, {1 ,44 ,56}, {1,44,408},
{1 ,55 ,419},{1 ,89 ,121}, {1,110,254}, {1,122,165}, 
{1,165,188}, {1,209,430}, {1,224,380}, {1,275,298}, 
{1 ,282 ,296},{1 ,298 ,341}, {1,342,374}, {1,366,434}

16 560 {1,215,326}, {1,235,346}
17 648 {1,76,237}, {1,412,573}
18 748 {1,41,147}, {1,174,362}, {1,490,676}, {1,602,708}
19 861 {1,27,463}, {1,84,298}, {1,84,319}, {1,543,778}
20 979 {1 ,22 ,351},{1 ,138 ,787}, {1,193,842}, {1,374, 637}
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graph is always at least one. Thus, d(Cay(Zm, A)) =  1. Therefore, the Cayley graph 

Cay(Zm, A) is a complete digraph. Since 0 € Zm has out-degree k (because each 

element of A contributes at most one to the out-degree o f 0), we see that m < k +  1.

Now we prove that m (l, k) > k +  1. Define

A =  {1 ,2 , . . .  ,k}.

Then diam(Cay(Zfc+i, A)) =  1, which implies that J(Cay(Zfc+i, AL)) =  1. Therefore, 

m (l, k) > k +  1. The proof is complete. □

Theorem 11. For any given positive real number A,

m(  A, 1) =  [2AJ.

Proof. First we prove that m(A, 1) <  |_2AJ. Let A =  {a} be a generating set of Zm so 

that the average distance of G =  Cay(Zm, A) is no more than A. Since A =  {a} is a 

generating set of Zm, G =  Cm is a directed cycle. It follows from Example 3 that

d(G) =  d(Cm) =  \ m .

Therefore, \m  <  A, i.e ., m <  2A. Thus, m <  j_2Aj. This shows that m(A, 1) <  (2AJ.

We now prove that m{A, 1) >  [2AJ. Let A =  {1}, and let m =  [2AJ. It follows 

from Example 3 that the average distance of Cay(Zm, A) =  C m is

- m  =  - 12AJ <  -  • 2A =  A 
2 2 L J — 2

Therefore, by definition, m(A, 1) >  m  =  [2AJ. The proof is complete. □
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3.3.3 Undirected Cases

Recall that when the generating set is symmetric, the Cayley digraph can be 

regarded as an undirected graph. In this subsection, we discuss two extremal functions 

that are related to undirected Cayley graphs. They are actually the undirected analogue 

of m(d, k) and m(A, k). These have been studied by several authors and many results 

have been discovered. However, the focus of the thesis is on the extremal function 

m(d, k). Here we only introduce the definitions. For more information on the undi­

rected cases, see Chen and Jia (1993) and Lee, Sheu and Jia (2008).

Definition 15. Given any two positive integers d and k, define M(d, k) as the largest 

positive integer m  such that there exists a symmetric set A =  {± « i, ± 02, . . . ,  ± a k} 

with

diam(Cay(Zm, At)) <  d,

In other words,

M(d,k) =  max {m  | diam(Cay(ZTO, A)) <  d}.
A={±ai,±a,2, ,±0*.}

Definition 16. Given any positive integer k and any real number A, define M(A, k) as 

the largest positive integer m  such that there exists a symmetric set

A =  {±ax, ± a 2, . . . ,  ± a k}

with

d(C&y(Zm,A)) <  A,

where d(G) denotes the average distance of a graph G. In other words,

M ( d , k ) =  max {m \ d(Cay(ZTO, A)) <  A}.
A = { ± a 1, ± a 2 , , ± a k }
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LOWER BOUNDS OF m(d, k)

4.1 Introduction

In order to establish lower bounds for m(d, k), one only needs to construct a 

“good” generating set A so that the diameter of Cay(Zm, A) is less than or equal to 

d. In this chapter, some lower bounds for m(d, 2) and m(d, 3) will be discussed. A 

recursive theorem will be used to establish a lower bound for the general case.

4.2 Case k =  2

We prove the following lower bound for m(d, 2).

Theorem 12. Let d >  2 be an integer. Then

m(d, 2) >
d(d +  4) 

3
+  1. (4.1)

Proof. Let mo =  [d(d +  4)/3j +  1.

Part One: We show that m(d, 2) >  m0, i.e ., we need to find a set A =  {a, b} 

so that A is a d-basis for Zm. Let A0 =  {0, a, b}. We divide this part o f the proof into 

three cases according to d modulo 3.

Case I. Suppose d =  3£ for some positive integer t. Then

mQ =
3£(3£ +  4) 
' 3

+ 1 3£2 +  At +  1.

Let a =  1 and b =  3t +  3. Let n e  [0, mo). If n > tb =  312 +  31, then n — tb >  0 and

(n — £6) +  £ <  mo — 1 — tb t — 3£2 4£ L 1 — 1 — 3/ ' — 3£ 1 — 2/ <c d.

30
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Therefore,

n =  (n — tb) • 1 + 1 • 6 E dAq.

Now assume that (u — 1 )6 < n < u b  for some u : 1 <  u < t. Noting that

(u +  t)b — mo =  ub — t — 1,

we see that

(u — 1)6 <  (u +  t)b — m0 < bu — 1. 

Thus, we can further divide this case into two subcases. 

Subcase Ia . If (u — 1)6 <  n < (u +  t)b — mo, then

n — (it — 1)6 < {u + t ) b  — rriQ — 1 — {u — 1)6

= (t + l)(3t + 3) -  (3i2 + 4i + 1) -  1 

=  2t + 1 .

Therefore, n =  (n — (u — 1)6) • 1 +  (u — 1) • 6 € eL4o because

(n — (u — 1)6) +  (« — ! ) <  (21 +  1) +  (t — 1) =  3t =  d.

Subcase Ib . (u +  t ) b - m 0 < n  < ub. Then

0 <  n — {(u +  t)b — mo) < ub — 1 — (u +  t)b +  m0 =  m0 — tb — 1

=  (3f2 T 4i T 1) — t(3t +  3) — 1 =  t.

Hence,

Since

n =  ( n — ((u +  t)b — mo)) • 1 +  (u + 1) • 6 (mod mo).

(n — (u +  6)6 — m0) +  (u +  t) < t  +  u +  t < 3 t  =  d.
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Case II. Suppose that d =  St +  1 for some positive integer t. Then

Therefore, n G dA0.

m0 =
(St +  l)(3 t +  5) 

3
+  1 =  3i2 +  6i +  2.

Let a =  1 and 6 =  St +  2. Let n G [0, mo). If (t +  1 )b < n <  mo, then

0 <  n — (t +  1)6 <  mo — 1 — (t +  1)6

=  (3t2 +  6i +  2) -  1 -  (t +  l)(3 i +  2) =  t -  1.

It therefore follows from

(n — (t T- 1)6) +  (t T" 1) ^  (t — 1) T- (t fr 1) — 2t <  d

that

n  =  (n — (t +  1)6) • 1 +  (t  +  1) • 6 G (Mo-

Next, we assum e that ub <  n <  (u +  1)6 for som e integer u with 0 <  u <  t. N oting 

that

(u T i  2)6 — mo =  ub H- 2/ 4~ 2 — (u ~\~ 1)6 — /.

we see that

ub <  (u + 1 +  2)6 — mo <  (u +  1)6.

As in CASE I, we further divide the argument into two subcases.

S u b c a s e  IIa . I f  ub <  n <  (u +  t  +  2)6 — mo, then

0 <  n — ub <  (u +  t  +  2)6 — mo — 1 — ub =  (t +  2)6 — mo — 1 

=  (t +  2 )(31 +  2) -  (St2 +  66 +  2) -  1 =  2t +  1.

Therefore, n — (n — ub) ■ 1 +  ub G cM q because

(n — u6) +  « < t  +  2i +  l  — 3i T- 1 — d.
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Subcase IIb . If (u + £  +  2)6 -  m0 < n < (u +  1)6, then

0 < n — ((u +  £ +  2)6 — m0) <  (u +  1)6 — 1 — ((u +  £ +  2)6 — m0)

=  mo — 1 — (£ +  1)6

=  3£2 +  6£ +  2 -  (£ +  1)(3£ +  2) -  1 =  £ -  1.

Noting that

(n — ((u +  i +  2)6 — mo)) ~l~ (m +  t _l_ 2) U (̂ t — 1) -I- i ~ i  “t- 2 =  3 / -l-1 =  d, 

we have

n =  n +  mo =  (n — ( u +  t +  2)6 — mo)o +  (it +  t +  2)6 6 gL40.

CASE III. Suppose that d =  St +  2 for some nonnegative integer t. Then

m0
(3£ +  2 )(3 t +  6) 

3
T  1 — 3£2 T  81 T  5.

Let a =  1 and 6 =  3t 4- 4. Let n e  [0, mo). If (f +  1)6 < n <  m0, then

0 ^  n — {t 1)6 U mo — 1 — (i T- 1)6 — 2>1?  T  81 5 — 1 — (t T l)(3 i T- 4) — t.

Therefore,

(n — (f T" 1)6) +  (i +  1) <  £ +  (i +  1) =  2£ +  1 < d, 

which implies that n =  (n — (£ +  1)6) • 1 +  (£ +  1) • 6 e  cL4o.

Now assume that ub <  n < (u +  1)6 for some integer u with 0 <  u < t. It is 

clear that

ub < (u +  t +  2)6 — mo < (u +  1)6.

If ub < n <  (u +  t +  2)6 — mo, then

n — ub < ((u +  £ +  2)6 — mo) — 1 — ub

=  (£ +  2)(3£ +  4) -  (3£2 +  8£ +  5) -  1 =  2£ +  2.
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n =  (n — ub) ■ 1 +  u • b e  dAo.

If (u +  t +  2)6 — m0 < n < (u +  1)6, then

n — ((u +  t  +  2)6 — mo) <  (u +  1)6 — 1 — ((u +  t +  2)6 — mo)

=  mo — (i +  1)6 — 1

=  (312 +  8i +  5) -  (t +  l)(3 i +  4) -  1 =  t.

Therefore, (n — ub) +  u < 2 t  +  2 +  t =  d implies that

Hence,

(7i — ((^ "ft"!- 2)6 — m o)) T t ~t~ 2) ^ 6 T ( t _t~t-l- 2) — St T 2 — d ,

which implies that

n =  n +  m0 =  (n — ((u + 1 +  2)6 — mo)) • l  +  (u +  t +  2 ) -b E  dA0.

Summarizing the above three cases, we conclude that

d(d +  4)
m(d, 2) > mo = 1 for all d > 2. □

4.3 Case k =  3

It seems more complex to handle bases for Zm when compared with bases for 

[1, m]. An exact formula for m(d, 3), is yet to be discovered. We now turn our attention 

to the estimates for m(d, 3). In this section, we prove a lower bound for m(d, 3) by 

constructing a good d-basis, which was first proved by Hsu and Jia (1994).

1 3
Theorem 13. m(d, 3) > — d3 +  - d2 +  0(d) as d —> oo.

16 8



Proof. Let d > 4 be a positive integer. Define

r =  |_d/4j , h — M  — 8r +  5,

c =  rb +  d — 3r +  2, mo =  rc +  2d — 6r +  3.

Define A =  {1 ,b, c}, and denote A0 =  {0} U A. Then

mo =  rc +  2d — 6r +  3 =  r2b +  rd — 3 r2 +  2r +  2d — 6r +  3

=  r2(3d — 8r +  2) +  r(d — 4) +  2d +  3 =  -^d3 +  ^d2 +  7(d),
16 8

where 7(d) is linear in d with coefficients depending only on d modulo 4. Therefore, 

we only need to show that A is a d-basis for Zmo, i.e ., dA0 =  Zmo.

For any nonnegative integers v, w with v +  w < d, define 

Iv,w =  [vb +  wc, vb +  wc +  d — v — w].

Let v, w G [1, r]. Then v +  w < 2r < d. If n G then n can be written as

n =  (n — vb — rwc) • 1 +  vb +  wc.

Since n — vb — wc >  0 and

n — vb — wc +  v +  w < d — v — w +  v +  w =  d, 

we see that n £ dA0. Hence, IVtW C dAa. Similarly, for any v, w e  [1, r], we have 

Ir+v,w — d*10 and ^  d-10 ■

The basic idea in the proof is to arrange all these intervals modulo m0 to cover an 

interval of length mo.

It follows from d — (v — 1) — w < d — 2r +  l < d  that Iv-i,w C dA0. Since

35

b — 3d — 8r + 5 and mo = rc +  2d — 6r + 3
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we see

mo +  (v — l)b+wc  +  d — (v — 1) — w

>  m0 +  vb — b +  wc +  d — 2r +  1

=  (rc +  2d — 6r +  3) +  vb — (3 d — 8r +  5) +  wc +  d — 2t +  1 

=  vb +  (r +  w)c — 1.

Hence,

[mo +  (v — 1)6 +  wc , vb +  (r +  w)c — 1] C cL40. (4.2)

Similarly, it follows from the definition of mo, 6, and c that 

m0+ (r  +  n)6 +  (w — l)c  — 1
=  (rc +  2d — 6r +  3) +  rb +  vb +  wc — (rb +  d — 3r +  2) — 1 

=  v b +  (r +  w)c +  d — 3r 

< v b +  (r +  w)c +  d — v — (r +  w).

Since v +  (r +  w) < 3r < d, Iv>r+w C dv40- Hence,

[vb +  (r +  iu)c, mo +  (r +  v)b +  (w — l)c  — 1] C dA0. (4.3)

Noting that c =  rb +  d — 3r +  2, we see

mo +  (r +  v)b +  (w — 1 )c+d — (r +  v) — (w — 1)

>  m0 +  vb +  wc — c +  rb +  d — 3r +  1 

=  mo +■ vb wc — 1.

Hence, m0 +  Ir+v,w-i Q dA0 implies that

[m0 +  (r +  v)b + (w — l)c, m0 +  vb +  wc — 1] C dA0. (4-4)
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4 -

TUq +  Iv — l,v

mo +  (r +  u)6 +  (it; — 1 )c

mo -f- I r -̂ -v ,w—l

-A

7710 + (v — l)v + WC
4 -

“ V mo +  vb  +  w c

vb  +  (r +  u>)c

Figure 4.1: Coverage of [mo +  (v — 1)6 +  wc, uiq +  vb +  wc — 1] 

Therefore, it follows from (4.2), (4.3), and (4.4) that

[mo +  (v — 1)6 +  wc, mo +  vb +  wc — 1] C dAo for all v, w G [1, r\.

This implies that

[mo +  wc, mo +  rb +  wc — 1] C cL4o for all w e  M -  (4-5)

When r > 1, we have

rb +  wc +  d — r — w > rb +  wc +  d — 2r

=  wc +  (rb +  d — 3r +  2) +  r — 2 

>  (w +  l)c  — 1,

which implies that

[m0 +  rb +  wc, mo +  (w +  l)c  — 1] C d̂ 40.

It then follows from (4.5) that

[mo +  wc, mo +  (w +  l)c  — 1] C dAg for all 1 < w < r.
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[m0 +  c, m 0 +  (r +  l)c  -  1] C dA0. (4.6)

When d >  12, we have r =  [d/4J > 3. Then

(r +  l)c  +  d — (r +  1) =  mo +  c — d +  5r — 4

> m 0 +  c +  r — 4 

>  mo +  c — 1.

Hence, the fact that J0,r+i Q dA0 implies that [m0 +  (r +  l)c, 2m0 +  c — 1] C dA0 

when d >  12. Then

[mo +  c, 2m0 +  c — 1] C dAo.

This proves that cL4o =  Zmo, i.e ., the diameter of Cay(ZTO0, A) is at most d. The proof 

of the theorem is complete. □

4.4 General Case

The following theorem can be used to construct large efficient generating sets 

A  so that m(d, A) is large by using small efficient generating sets.

Theorem 14. Let di >  2, ¿2 >  2, ki >  1, and >  1 be integers. Then

m(di  +  d2, h  +  k2) >  m(di, ki)m{d2, k2).

Proof. Let As =  (0 <  asi < as2 < ■ ■ ■ < ask„} be a set of integers with

m(ds, As) =  m(ds, ks) =  ms for s =  1,2.

We may assume, without loss of generality, that ask3 < ms for s =  1,2. Define

Therefore, we have

A = A x U {mia23 | J =  1 , 2 , . . . ,  k2}.
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Since |A| =  k\ +  k2, we only need to prove that A is a (di +  d2)-basis for Zmim2.

Let n be any nonnegative integer. Since A1 is an dy-basis for Zmi, we see that

fci
n =  x%ai% (mod m i),

1=1

ki
where xt’s are nonnegative integers with x% < d\. Assume

2=1

k i

n =  ^ 2  xiai% +  Qm i 
1=1

for some integer q. It follows from the fact that A2 is a c?2-basis for Zm2 that

k2

q =  ^ 2 y 3a23 + P m2,
3= 1

k 2

where y3’s are nonnegative integers with ^  y3 < d2, and p  is an integer. Therefore,
i= i

k± k 2

n =  '^2xlau +  'Y^y3m\a2j (mod m im 2),
2=1 3 =  1

where
k i  k 2

+ Y L y3 - d i + d 2 -
*=i j=i

This implies that n e  (d\ +  d2) A0, where Ao =  A U {0}. Hence, A is a (d\ +  d2) -basis 

for Zmim2. Therefore,

m(d1, ki)m(d2j k2) =  mym2 < m{d\ +  d2, k\ +  k2).

The proof is complete. □

Theorem 15. Let d be a sufficiently large positive integer. Let r =  [d/5j and define

c =  ar +  d — 4r +  2,b =  Ad — 15r +  7, 

d =  br +  2d — 4r +  4, m =  cr +  3d — 12r +  5.
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Then A =  { l ,b ,c ,d }  is a d-basisfor Zm. Therefore,

m(d, 4) >  — +  0 (d 3) as d oo.
IZO

(4.7)

If interested, a proof can be found in (Jia, 1992). Now we are ready to prove the 

following lower bound for m(d, k) for any fixed k > 4 as d approaches infinity.

Theorem 16. For fixed k >  4 as d —» oo,

'2 5 6 \Lfc/4j

where

m(d ,k ) >  ek ( —  )
d

+  0 (d fc- 1),

£ k  =  <

1, if  k =  0 or 1 (mod 4)

4 
3 ’
27 
16’

i i k  =  2 (mod 4)

7

if  k =  3 (mod 4)

Proof Recall that

m(d , 1) =  d +  1, 

m(d, 2 ) =  ^ ± ^ 1 1 — - d 2 +  0(d ),

1
m ( d , 3 ) > — d3 +  0 ( d 2) .

Therefore, for 1 <  r <  3, we have

m(d , r) >  er +  O (dr_1) ,

where er is defined as in the theorem.

Now we assume that

d =  ku +  v and k =  Aq +  r
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where 0 <  v < k and 0 <  r <  3. For convenience, let m(0,0) =  1. Then

m(d, k) =  m(ku +  v, k)

>  m(4qu +  ru, 4q +  r)

>  m(4qu, 4q) ■ m(ru, r)

> 777,(4«, 4)q • (£rUT +  0 ( « r_1))

This proves the theorem. □

4.5 Remarks

The lower bound o f Wong and Coppersmith has been improved several times 

by various authors. The best known lower bound was proved by Su in early 1990’s. Jia 

and Su (1997) proved

where

m(d, k) > Tfc
g5 . y4\ L̂ /sJ

“ 175“ J
d
k

k

+  0 {d k~l)

rk(5.2844)Lfc/5J +  0 ( d k~1),

Tk
3 ’

< 4752
2197 ^  
165888

, 50625

2.163,

=  3.2768,

if  A; =  0,1 (mod 5) 

if  k =  2 (mod 5)

if  k =  3 (mod 5)

if  k =  4 (mod 5)



Chapter 5

GEOMETRIC REPRESENTATION OF Zm

In this chapter, we will introduce a geometric representation of Zm, the cyclic 

group o f residue classes modulo m. This method was introduced by Wong and Copper­

smith (1974). In order to do so, we first introduce a special function called the A-norm, 

where A is a generating set of Zm.

5.1 A-norm and Minimal Representations

Let d, k, and m  be positive integers. Let A =  {ai, a,2 , ■ ■ ■, a*,} be a «¿-basis for 

Zm. Then every element s £ Zm can be written as a linear combination

Zm, the number of elements in A needed in the above representations may be less than 

d. The A-norm o f an element s £  Zm, denoted as | | s | | a , is the smallest nonnegative 

integer £ such that s is a sum o f l  not necessarily distinct elements in A. In other words,

Example 6. Let A =  {1 ,3}. Then A is a generating set for Z9. It can be verified that

k

(mod m),
i=i

k

where xu . . . ,  Xk are nonnegative integers with <  d. For some elements in
i=i

42
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the following are the “shortest” representations by A:

0 =  1 -0  +  3- 0, 1 =  1- 1 +  3-0. 2 =  1 - 2  +  3 -0

3 =  1- 1  +  3- 1, 4 =  1- 1  +  3- 1, 5 =  1 - 2  +  3-1,

6 =  1 - 0  +  3- 2 , 7 =  1- 1  +  3 - 2 8 =  1 - 2  +  3 -2.

Hence,
s 0 1 2 3 4 5 6 7 8

s\\A 0 1 2 1 2 3 2 3 4

Therefore, A is a 4-basis for Z9.

Example 7. Let A =  {1 ,7}. Then A is a 5-basis for Zi0. Note that 116| \a  =  4 because 

6 =  1 • 2 +  7 • 2 (mod 10).

Example 8. Let A =  {1 ,11}. Then it can be verified that A is a 10-basis for Z47. It 

can be verified (see Figure 5.3) that

||0|U  =  0, ||13|U  =  3, ||28|U  =  8, ||43|U =  10, and ||44|U =  4.

If A =  {1 ,11 ,78}, then the A-norm o f 113 in Z i38 is 6.

Proposition 5. Let s , t  G Zm, and let A be a subset o fh m. Then

(i) | | s  +  t m  <  | | s | | a  +  | | t | U ;

(n) 11 as  11,4 <  a  11 s 11 a for any nonnegative integer a.

Proposition 6. Let A  =  {ai, 02, . . . ,  a*,} be a subset o f 1 m, and s G Zm. Assume that

k
where ||s +  Q+IU =

l—l=̂l

-^Hs + a»olU ^ M a, then xlQ =  0.
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Proof. Suppose that xU) >  1. Then

k
S =  (5 +  Q«o) ^ XlCLl (Zj0 =  y   ̂XlO,l +  (xlQ

1=1 ifao

is a valid representation of s by A,  which implies that

k

115 1 \a  — ^  ^ “f  ( ^ z 0 1 )  ^  ^ ^ z  1 115  “h  CL%q I | t! 1 ^  H ^ I I a  1?

z^zo z = l

which is a contradiction. □

P roposition  7. Ze/ A =  { a i ,  a 2 , . . . ,  a^} ¿e a subset ofZm, and s G Zm. If

I k  ~~ a z l U  >  I k l U  for all % =  1, 2 , . . . ,  k,

then 5 =  0.

Proof I f s f O ,  then 5 can be written as

k k

s ~ ^ ^ x lal and IN U  =
Z=1 Z=1

where at least one xt is positive, say, xi >  1. Then

S —  Cti =  (X\ — l ) o i  +  X 2 U 2  +  ' ' ‘ T  Xkdki

which implies that

||s -  a i|U  <  (xi -  1) +  x2 + ----- \-xk =  ||s |U  -  1,

which is a contradiction. □

5.2 Ordering of 2-Dimensional Lattice Points

Before describing the geometric representation o f Zm, an ordering o f the lattice 

points in the first quadrant of R2 is introduced. Let P  =  (xi,yi)  and Q — (a?2,2/2)
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be two lattice points in the first quadrant, i.e ., x\, x2, yi, and y2 are all nonnegative 

integers. We say that P  =4 Q if

xi +  yi < x2 +  y2

or

yi < y2 when xi +  y1 =  x2 +  y2-

If P  =4 Q and P  ^  Q, we write P  -< Q. It is easy to see that ~< is a total ordering of 

the set of all lattice points in the first quadrant of R2 as shown in Figure 5.1.

(0,0) -< (1,0) -< (0,1)
(2,0) -< (1,1) -< (0,2)

^  (3, 0) -< (2,1) -< (1,2) -< (0,3)
(4,0) -< (3, 1) -< (2,2) -<; (1,3) -< (0,4)

-< (5,0) -< (5, 1) -< (5,2) -< (5,3) ^ (5,4) (5,5)

Figure 5.1: Total ordering of lattice points in the first quadrant of R2.

Definition 17. Let d and m  be positive integers. Assume that A =  {a, b} is a d-basis 

for Zm. The following representation of s G 7Lm as a linear combination of the elements 

in A

s =  ax +  by (mod m) (x and y are nonnegative integers) 

is said to be minimal if

s =  ax' +  by' (mod m) implies (x, y) ^  (x1, y1),

where x' and y' are nonnegative integers.
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(0 .9 ) (1 .9 ) (2 ,9) (3 ,9 ) (4 ,9 ) (5, 9) (6 ,9) (7 ,9 ) (8 ,9 ) (9 ,9 )

(0 ,8) (1 ,8 ) (2,8) (3 ,8 ) (4 ,8 ) (5 ,8 ) (6 ,8) (7 ,8 ) (8 ,8 ) (9 ,8 )

(0, 7) (1-7) (2 ,7) (3, 7) (4 .7 ) (5,7) (6 ,7 ) ( V ) (8 ,7 ) (9 ,7 )

(0, 6) (1 ,0 ) (2, 6) (3 ,6) (4 ,0 ) (5 ,6) (6 ,6 ) (7, 6) (8 ,6 ) (0 ,6 )

(0,5) (1 ,5 ) (2 ,5) (3 ,5) (4 ,5 ) (5 ,5) (0 .5) (7 ,5) (8, 5) (9, 5)

(0,4) (1 .4) (2 .4) (3 ,4) (4 ,4 ) (5 ,4) (6 ,4 ) (7 ,4) (8 ,4 ) (9. 4)

(0,3) (1 ,3 ) (2, 3) (3 .3) (4 ,3 ) (5 ,3) (6 ,3) (7 ,3 ) (8,3) (9 ,3 )

(0 ,2) (1 ,2 ) (2 ,2 ) (3 ,2) (4 ,2 ) (5,2) (6 ,2) ( % ? ) (8 ,2 ) (0, 2)

(0 ,1) ( h  1) (2 ,1) (3, l ) (4 ,1 ) (5 ,1 ) (6, 1) (7 ,1) (8, 1) (9 ,1 )

(0, 0) (1 ,0 ) (2, 0) (3 ,0 ) (4 ,0 ) (5 ,0 ) (6 ,0 ) (7 ,0) (8, 0) (9, 0)

Figure 5.2: Ordering of the lattice points in R2.

It follows immediately from the definition that every element in Zm has a unique 

minimal representation by a d-basis A = {a, b}. It is also easy to see that \ \s \\a = x + y 

if s = ax +  by is a minimal representation of s G Zm. However, the converse is not 

true. For instance, A =  { l , l l } i s a  10-basis for Z2o. Then both representations

13 =  1- 0 + 1 1 -  3 =  1- 2 + 1 1 - 1  (mod 20)

give ||13||a =  3. But only one is a minimal representation of 13 by A  in Z20.

5.3 Geometric Representation of Zm

Definition 18. Let A  =  {ci,b} be a d-basis for Zm. The A-representation of Zm, 

denoted as &(A, m),  is the set of all the lattice points (x, y) in the first quadrant such 

that y) — ax +  by is the minimal representation in Zm.
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Let A — {a, b} be a d-basis for Zm. Because each element s E Zm has a unique 

minimal representation by using A =  {a, b}, £ is a one-to-one and onto function from 

&(A, m) to Zm. This function £ may be regarded as a function from Z2 -*■ Zm with 

£(x, y) =  ax +  6i/, where Z2 is the set of all integer lattice points in IR2.

This geometric representation o f Zm by a generating set A was first introduced 

by Wong and Coppersmith (1974). This representation can be generalized to arbitrary 

k generators which will be discussed later in this chapter.

The yl-representation of ZTO is often displayed by using a chart of lattice points 

(x, y) arranged at their relative locations and filled with its labeling £(x, y) =  ax+by E 

Zm. With this arrangement, the ^4-norm ||s||^  of an element is equal to the I,1-norm in 

Z2. In other words,

IN U  =  =  x +  y,

where s =  £(x, y) — ax +  by E Zm is the minimal representation o f s.

For example, Figure 5.3 shows the ^-representation o f Z65, where A =  (5 ,21}, 

followed by two more examples o f geometric representations.

59 64 4 9 14

38 43 48 53 58
17 22 27 32 37

61 1 6 11 16
40 45 50 55 60
19 24 29 34 39 44 49 54

63 3 8 13 18 23 28 33

42 47 52 57 62 2 7 12

21 26 31 36 41 46 51 56

0 5 10 15 20 25 30 35

Figure 5.3: &(A, 65), the ^-representation of Z65 with A =  (5 ,21}.
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60 67 4 11 18 25 32 39 46 53

50 57 64 1 8 15 22 29 36 43

40 47 54 61 68 5 12 19 26 33

30 37 44 51 58 65 2 9 16 23

20 27 34 41 48 55 62 69 6 13

10 17 24 31 38 45 52 59 66 3

0 7 14 21 28 35 42 49 56 63

Figure 5.4: ^-representation o f Z70 with A =  (7 ,10} (left) and ^-representation o f  
Z47 with A =  (1 ,11} (right).

Let A be a set of integers. Let d(A, Zm) denote the smallest positive integer d 

such that A is a d-basis for Zm.

Theorem 17 (Wong and Coppersmith, 1974). Let A =  {a, b} be a set of integers with 

gcd(a, b) =  1. If m is a positive integer, then (£ { A , m ) is of the form as shown in 

Figure 5.5, where u > 0 ,  v > 0, p > 0 and q >  0. Therefore,

d(A, Zm) =  u +  q +  max{r/,p} — 2. 

u

v
I P

q

Figure 5.5: &(A, m ), the geometric representation of ZTO by A =  {a, b}.

In order to prove this theorem, the following lemma is needed.

Lemma 1. Let A =  {a,b} with gcd(a,b) =  1. If(xo,yo) ^ &(A,m), then (x,y) £ 

&(A, m ) for all lattice points (x, y) with

x > xq and y >  yo.
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Proof. If not, then there exists (xi,yi)  G &(A,m)  with (x0,y0) -< (xi,yi).  As­

sume without loss of generality, that (x i,y i) is such a lattice point that is closest 

to (xo,yo) and xi >  x0 and yi >  y0. Since {x\ — l ,y i )  <£ it follows

from the construction of &(A, m) that there exists a lattice (m2,2/2) € &(A, m) with 

(x2,2/2) ■< (xi -  1,2/1) such that

ax2 +  by2 =  a(xi — 1) +  byi (mod m).

Therefore,

a(x2 +  l) +  by2 =  axi +  byi (mod m).

Since (x2 + 1 , y2) -< (24,2/1), we see (24, 2/1) ^ &{A, m), which is a contradiction. □

Proof of Theorem 17. For convenience, let R =  &(A,m).  It follows from Lemma 1 

that R  shapes as shown in Figure 5.6.

Figure 5.6: In &(A, m ), the number of Bl comers must be at most one.

It only needs to be shown that R  contains at most one comer like B% as shown 

in the above figure.

First, for each 1 : 1 <  1 < t, assume that (&,, yt) G Bt with 

(xt -  1, yz) G R  and (xt, yz -  1) G R.

Since (xt , y%) ^ R, there is a lattice point (x[, y[) G R such that

axt +  byl =  ax{ +  by[ (mod m ).
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We claim that (x[, y[) =  (0,0). Otherwise, then either {x[ — 1, y[) £ R  or (x[, y[ — 1) G 

R  or both, say, (x[ — 1, y') G R. Since

a(x% — 1) +  by% =  axz +  byt — a =  ax[ +  by[ — a =  a(x[ — 1) +  by[ (mod m), 

we see that (x[ — 1, y') G R  implies (xt — 1 ,y t) ^ R, a contradiction. Therefore, 

axj +  6|/j =  a- 0 +  6- 0 =  0 (mod m ).

A ssum e that t  >  1. Since

axt +  byt =  0 (m od m ), for * =  1 ,2 , 

we see that, in particular,

a(x i -  1) +  fo/i =  a ( x 2 -  1) +  by2 (m od m).

This is a  contradiction because both (xi — 1 ,2/1) and (x 2 — 1 , 2/2) are in R. Therefore 

t  =  1, i .e . , R  has at m ost one com er that is strictly inside the first quadrant as shown in 

Figure 5.5. □

5.4 Tiling Z 2

Let A  =  {a, b} be a d-basis for Z m. Define

Lq =  { ( x 0, 2/0 ) e  Z 2 | ax0 +  6yo =  0 (m od m ) } .

I f  (m0, 2/0 ) e  L 0, then

ax +  by =  a(xo +  x) +  b(yo +  y)  (m od m ) for all (x, y)  G ^ ( A ,  m).

Hence, £ (x , y)  =  £(zo +  x, y0 +  y)  for all [x, y)  G &{A, m ). This m eans that &(A, m)  

and its translation by (rro, 2/0)

(®o,Vo) +  m)  =  { ( x 0 +  x , 2/0 +  y) \ ( x, y)  G & ( A , m ) }
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have the same labeling £. Note that the translation has the same shape as the original

i f  (A, m).

On the other hand, if (x, y) G Z2 is a lattice point, then £(a;, ?/) =  £(3;', y') for 

some (x'i y') G i f  (A, m). Then

£ , ( x - x ' , y -  y') =  a(a; -  a;') +  6(y -  ?/') =  £ (x ,y) -  £(a/, ?/) =  0 (mod m).

Let x 0 = x — x' and y0 — y — y'. Then

(x,y) = {x0,y0) +  (x\y ') ,

which implies that (x,y)  G (xo,y0) +  i f  {A, m). Therefore, the following theorem is 

obtained.

Theorem 18. Let A = {a, b} be a d-basis for rL mfor some integer d. Then

(a) Z2 = |J  ((x0,y0) + if(A,m));
(xo ,yo)eLo

(b) ((^¡n Vo) + &(A,m))  0  ((a^j/J) +  i f (A ,m))  = 0 for all (x fy ' f)  G L0 and 

K ,  Vo) € U  with ( x f  y 'f f  K ,  y").

In other words, Z2 cc//7 be tiled by i f  (A, m) as shown in Figure 5.7.

y

0

Figure 5.7: i f  (A, rn) tiles Z2.



5.5 An Upper Bound for m(d, 2) 

Theorem 19. Let d >  2 be an integer. Then

52

m(d, 2) <
d{d +  4) 

3
+ 1 for all d >  2. (5.1)

Proof. First, we show that mo is indeed also an upper bound for m  =  m(d, 2). Assume 

that A =  {a, 6} is an optimal d-basis for Zm. Then Theorem 17 shows that the 21- 

representation if (A, m ) is an L-shaped block of m lattice points labelled with elements 

in Zm as shown in Figure 5.5. We again divide this part of the proof into the following 

three cases.

Case 1. Assume that d =  St for some positive integer t. It follows from Theorem 17 

that

u +  q +  m ax{u,p} — 2 <  d — St.

The L-shaped A-representation &(A, m) o f Zm would contain the maximum number 

of lattice points when u =  q =  t +  1 and v =  p =  t, in which case we would have

m  — (/< -I- i f  T  2 (f -(- l ) i  — 3 /2 -f- 41 T  1 — m q.

Case 2. Assume that d =  3t +  1 for some positive integer t. Then

u +  q +  max(v,p) — 2 < d =  St +  1, (5.2)

where u, v, p and q are as defined in Theorem 17. It is easy to see that, when u =  v =  

p =  q =  t +  1, the L-shaped if(A,m)  would contain the maximum number of lattice 

points: 3(i +  l ) 2 =  St2 +  Qt +  3 > m0. However, we prove that the A-representation 

if (A, m) o f Zm cannot have this shape with u =  v =  p =  q =  t +  1. Otherwise, then 

the number oflattice points in if (A,m)  is m =  3 ( t + l ) 2. The lattice point (i + 1 , i + 1 )  

at the comer must represent 0 in Zm. Hence, as shown in Figure 5.8, we have
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t +  1

t +  1 

t -h i

t +  1

Figure 5.8: This cannot be an ^-representation &(A, m) in any case.

(t +  1) • a +  (t +  1) • b =  0 (mod m),

which implies that

a +  & =  0 (mod 3(t +  1)).

Then there exists an integer Ao such that

a +  b — m — 3(t +  l)Ao-

Noting that m  =  3(t +  l ) 2, we see that

a b ; in -\- 3 (/, T  1) A q =  3 ( /  T  1) ( t  T  1 T  A o )  —  3 ( /  T  X ) A ,

where A =  t  + 1 +  Ao- Since l < a < h < m  =  3(i + 1 )2, we see that 1 <  A <  2(t + 1). 

We claim that gcd(A, t +  1) =  1. Otherwise, we may write

A =  r \ '  and t  +  1 =  rt' for some integer r with 2 <  r <  t +  1.

Then

t' • a + 1' ■ b =  t'(a +  b) = t r ■ 3(i +  1)A

=  3(t +  l ) 2t,rA/ =  3(i +  1)2A' =  0 (mod m).

Hence, the lattice point also represents 0, i.e ., £ (i',t/) =  0. It is easy to see 

that 1 <  t1 < t +  1, which implies that e  if(A,m).  This is a contradiction
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because there are at least two distinct lattice points, (0,0) and (t t ' ) ,  both representing 

0. Therefore, we must have gcd(A, t +  1) =  1. This implies that the equation

Ax =  a (mod (t +  1))

has a solution x0 : t +  2 <  x0 < 2t 4- 1. Then

Ax0 =  a + ( f + l ) a  for some integer a.

Therefore, we have

x0b =  xQ(a +  b) — xQa 

=  xo • 3(f +  1)A — xoa 

— 3(t A- 1)(u -T (t -T l)<r) — XqQ,

=  (3(t +  1) — xo)a (mod m).

This means

C(0, x0) =  0 • a +  x0 ■ b

== (3(i +  1) — xo) • u H- 0 • b 

— ^(3(f +  1) — xo, 0) (mod m).

However,

/ 4~ 1 <' xq 4  21 +  1 and / 4  1 4  3(t4~l)  — Xq 4  214~ 1

imply that

(0, xq) € &(A, m) and (3(f 4-1) — x q , 0) £ &(A, m).

Hence, we have two distinct lattice points (0, xo) and (3(i 4- 1) — xo, 0) in if  (A, m) 

representing the same value in Zm, which is a contradiction. This proves that, when
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d =  3i 3-1, the optimal L-shaped block with maximum number of lattice points cannot 

be a geometric representation by any generating set A =  {a, b}. Therefore, the next 

best possible dimension for &(A, m) with maximum number of lattice points is

u =  t +  1, q =  t +  2, and p =  v =  t,

which gives

Tii — (t T 1)(t 3~ 2) T" tit 3~1) 3~ t(t -(- 2) — 31 ~ -1- 613-2 — n̂ o-

C a s e  3. Suppose that d =  3t +  2 for some nonnegative integer t. It is easy to see that 

the best possible dimension for (A, m) is

u =  v =  p =  t + 1 and q =  t +  2.

Then

T il  — i t  T- 1)(f "T 2) -f (t T- 1)  ̂3" (f "T 1)(f H- 2) =  3 ( ~ 3- 8i T 5 =  t t i q .

Com bining CASES 1, 2, and 3, we have that

m(d, 2) <  mo =
did 3~ 4) 

3
+ 1 for all d >  2.

This completes the proof of Theorem 12.

Therefore, from the previous we have the following theorem.

Theorem 20 (Hsu and Jia (1994)). Let d >  2 bean integer. Then

did 3” 4)

□

m id , 2) =
3

(5.3)
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5.6 Ordering ^-dimensional Lattice Points and Minimal A-Representations

In this section, the geometric representation of ZTO is extended by a generating A 

with k integers. This representation will be used in developing upper bound for m(d, k) 

for arbitrary positive integers d and k. The A-representation of ZTO is A;-dimensional if  

the generating set A contains k integers.

In order to describe the A;-dimensional A-representation of Zm, the total or­

dering -<: for the lattice points in the first quadrant of R2 defined earlier needs to be 

extended to one for the lattice points Nfe where N is the set of all nonnegative integers.

L etx =  (xi,X 2 , . . . ,  Xk) G Nfc. The iA-norm o f x, denoted as ||x||x,i, is defined 

by ||x ||£i = x i  +  x2 H------- Yxk.

The binary relation ^  for N2 is defined on page 45. Let A; be a positive integer 

>  3. Assume that a binary relation ^  on N*"1 is already defined. Now define a binary 

relation1 =<! on recursively as follows. Let Nfc denote the set of all A:-tuples of non­

negative integers. Let x  =  (x \ , . . . , Xk) G Nfc and y  =  (y i , . . .  ,yk) G Nfc be any two 

lattice points. We say that x  y  if

(•) I |x| |xi < I |y| Iz,1; °r

(it) ||x ||Li =  ||y ||L! andxfc <  yk; or

(m) ||x ||Li =  ||y ||£i and xk =  yk and ( s i , . . . ,  x fc_i) ^  (yl t yk-i )  as elements in 

Nfc_1.

I f x  ^  y  and x  ^  y, we write x  -< y. In the 3-dimensional case, Figure 5.9 

shows the ordering of lattice points in N3 arranged according to the ordering

1 Strictly speaking, different notations for the ordenngs on with different ft’s are needed.
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(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1),
(0,1,1), (0,0,2), (3,0,0), (2,1,0), (1,2,0), (0,3,0), (2,0,1), (1,1,1),
(0,2,1), (1,0,2), (0,1,2), (0,0,3), (4,0,0), (3,1,0), (2,2,0), (1,3,0),
(0,4,0), (3,0,1), (2,1,1), (1,2,1), (0,3,1), (2,0,2), (1,1,2), (0,2,2),

Figure 5.9: Ordering of lattice points in N3

Figure 5.10: Ordering lattice points in N3.

Let A = {a\ < a2 < • • • < u/J be a d-basis for 7Lm. We use a  to denote the 

/¿-tuple with elements in A  as the components, namely

a  (cli , ci2 :•••■) fl fc) •

Define £a : Nfc —> Zm by

k
£a(x) =  a  • x =  V  diXi (mod m) for all x £ Nk.

2— 1
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Let s G Zm. Then
k

s =  a  • x  =  (mod m)
l—l

is called a minimal representation of s by A  (or a minimal ^-representation of s) if  

s =  a • y  (mod m ) implies x  y.

Example 9. Let A  =  {1 ,11,78}, then A is a 10-basis for Z i38. It is easy to verify that 

43 =  3 • 1 +  2 • 11 +  2 • 78 (mod 138) 

is a minimal representation of 43.

Let A be a d-basis for Zm. Since -< is a total ordering, we see that every element 

in Zm has a unique minimal representation by A.

5.7 A;-dimensional Geometric Representation

Definition 19. Let k be a positive integer and let A =  {a\ <  02 <  • • • <  a*,} be a 

generating set of Zm. The A-representation o f Zm, denoted by ^ (A , m), is the set of 

all the lattice points x  =  (x i, . . . ,  Xk) G Nfe such that ^(x) =  is the minimal

representation in Zm.

For any given d-basis A =  { a i , . . . ,  a*,}, the construction of the A-representation 

of ZTO is similar to that in the 2-dimensional case. We proceed to fill each lattice point 

x  =  (x i, . . . ,  Xk) € Nfc with an element s G ZTO where

k
(mod m).

l— l

Start with the origin (0 , . . . ,  0), and then follow the ordering for the elements in Nfc. 

At each point x  if  the value s has not appeared so far, fill x  with s; otherwise the lattice
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point x  is left blank. The process ends when all values of s G Zm have been exhausted. 

It follows from definition that the set of lattice points that have elements filled is the 

yf-representation (A, m)  of Zm. Figure 5.11 shows the ^-representation of Z i38 with

A  = {1,11,78}.

Figure 5.11: &{A,  138), the ^-representation of Z138 with A = { 1,11, 78}.

Let nn and k  be two positive integers with m  >  k . Let e2 denote the lattice 

point (xi ,X2 , ■ ■ ■ ,Xk) G Nfc such that Xi — 1 and Xj =  0 for all j  ^  i. Let A = 

{a i,a 2, ■ • • ,a/cj be a/c-element subset of Zm. Let& (A,m ) denote the ^-representation 

of Zm.

The following are a few examples.
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Figure 5.12: 57), the ^-representation of Z57 with A  = {1,13,33}.
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Figure 5.13: &(A,  340), the yl-representation of Z340 with A = {1,90,191}.



Chapter 6

REMARKS AND OPEN PROBLEMS

Undirected Extremal Cayley Graphs. We only briefly mentioned the definitions for 

M(d, k) and M (X,k), the two extremal functions related to undirected Cayley graphs. 

They have been studied by various authors. In particular, Chen and Jia (1993) and Lee, 

Sheu and Jia (2008) proved that

M{d, 2) =  2d2 +  2d +  1,

M(A,2) =  ^A2 +  0(A).

It is still an open problem to compute these functions for k >  3.

An Extremal Problem on Multi-dimensional Tori: Minimum Diameter. Given 

positive integers k and m, let d =  dm{k) be the least positive integer such that there 

exists a generating set A  =  {«4,02, ,  Ufc+i} C Z^ so that

diam(Cay(Z^, A)) < d.

If A is a d-basis for then

This implies that, for any given fixed positive integer k,

d >  k+-\/(k +  1)!(1 +  o(l))mfc+I as m  —» 00.

One open question is to determine the correct leading coefficient. Note that, 

when k =  1, the problem has been studied extensively.

k 2 -f~ d — 1 
d

> mk.
fk  + 1 + d\

V * +  1

62
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Another Extremal Problem on Multi-dimensional Tori: Maximum Size. Another 

aspect of the above problem is to determine the largest possible m  with given d and k. 

Namely, for any given positive integers d and k, let m  =  mk(d) be the largest possible 

integer m  such that there exists a generating set A =  {ax, a2, ...iXfc+]} so that

diam(Cay(Z£j, A)) < d.

It is easy to verify that

m =  rrik(d) <  ° ^ =rf1+fc.
v ÿ ( * T I ) ï

It can be proved that

(jfc+ i ) » - i ( 1 + ° (1))‘i l + i '

It is an open problem to determine rrik(d). Note that

d{d +  A)
mi(d) =  m (d , 2) = +  1.

The Undirected and The Average Cases. The undirected and average versions of 

dk(m) and rrik{d) have never been studied for k >  2. It is open to determine their 

values. In the case k =  1, these extremal functions have been studied, and approximate 

formulae or estimates have been proved. See the book Combinatorial Networks (under 

preparation) by Hsu and Jia for more information.

The Geometric Representation of Finite Cyclic Groups. The geometric represen­

tation o f Zm by a generating set can be used in establishing upper bounds for m(d, k), 

M(d, k), m(A, k), and M(A, k). It is a wide open problem to determine these extremal 

functions for k >  3.
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