EXTREMAL CAYLEY GRAPHS

THESIS

Presented to the Graduate Council of Texas State University-San Marcos in Partial Fulfillment of the Requirements
for the Degree

Master of SCIENCE
by

Joni J. Schneider, B.S.

San Marcos, Texas
August 2012

COPYRIGHT

by

Joni J. Schneider

2012

FAIR USE AND AUTHOR'S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgment. Use of this material for financial gain without the author's express written permission is not allowed.

Duplication Permission

As the copyright holder of this work, I, Joni J. Schneider, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only.

ACKNOWLEDGEMENTS

Many people have helped in the development of this thesis. I would like to thank the committee members for reading through the thesis and giving me many helpful comments, suggestions, and corrections. A special thanks goes to Abby Gail Mask for ber support, encouragement, and time spent helping with calculations. And most importantly, I would like to thank Dr. Xingde Jia. Without his assistance and support, this thesis would not have been possible. Over the years, he has been a great teacher and advisor, and now he is someone I would call a great friend.

This manuscript was submitted on 15 April 2012.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
ABSTRACT X
CHAPTER

1. INTRODUCTION 1
1.1 Information Networks 1
1.2 Cayley Graphs 2
1.3 Organization of the thesis 3
2. GRAPHS AND DIGRAPHS 5
2.1 Definitions and Examples 5
2.2 Connectivity 7
2.3 Distance and Diameter 9
2.4 Degree-Diameter Problem 14
3. EXTREMAL CAYLEY DIGRAPHS 19
3.1 Cayley Digraphs 19
3.2 Connectivity of Cayley Digraphs 20
3.3 Extremal Functions Related to Cayley Digraphs 23
4. LOWER BOUNDS OF $m(d, k)$ 30
4.1 Introduction 30
4.2 Case $k=2$ 30
4.3 Case $k=3$ 34
4.4 General Case 38
4.5 Remarks 41
5. GEOMETRIC REPRESENTATION OF \mathbb{Z}_{m} 42
5.1 A-norm and Minimal Representations 42
5.2 Ordering of 2-Dimensional Lattice Points 44
5.3 Geometric Representation of \mathbb{Z}_{m} 46
5.4 Tiling \mathbb{Z}^{2} 50
5.5 An Upper Bound for $m(d, 2)$ 52
5.6 Ordering k-dimensional Lattice Points and Minimal A-Representations 56
$5.7 k$-dimensional Geometric Representation 58
6. REMARKS AND OPEN PROBLEMS 62
BIBLIOGRAPHY 64

LIST OF TABLES

TABLE Page
2.1 The size of large (k, d)-graphs 18
$3.1 m(d, 3)$ for $2 \leq d \leq 20$ with corresponding extremal generating sets. 27

LIST OF FIGURES

FIGURE

Page
1.1 Two 3-regular graphs have the same diameter 3. 3
2.1 A simple graph G with 6 vertices. 6
2.2 Filled vertices are central vertices. $r(G)=2$ and $\operatorname{diam}(G)=3 . \quad$. . . 10
2.3 A graph that shows $\bar{d}(G) \rightarrow 1$ for any given $d=d(G)$. 13
$2.4 T(6)$ is a graph that shows that $\bar{D}(4)=4$. 14
3.1 Two Cayley digraphs. 19
4.1 Coverage of $\left[m_{0}+(v-1) b+w c, m_{0}+v b+w c-1\right] \ldots 37$
5.1 Total ordering of lattice points in the first quadrant of \mathbb{R}^{2}. 45
5.2 Ordering of the lattice points in \mathbb{R}^{2}. 46
$5.3 \mathscr{G}(A, 65)$, the A-representation of \mathbb{Z}_{65} with $A=\{5,21\}$. 47
$5.4 \begin{aligned} & A \text {-representation of } \mathbb{Z}_{70} \text { with } A=\{7,10\} \text { (left) and } A \text {-representation } \\ & \text { of } \mathbb{Z}_{47} \text { with } A=\{1,11\} \text { (right). } 48\end{aligned}$
$5.5 \mathscr{G}(A, m)$, the geometric representation of \mathbb{Z}_{m} by $A=\{a, b\} \ldots 48$
5.6 In $\mathscr{G}(A, m)$, the number of B_{\imath} corners must be at most one. 49
$5.7 \mathscr{G}(A, m)$ tiles \mathbb{Z}^{2}. 51
5.8 This cannot be an A-representation $\mathscr{G}(A, m)$ in any case. 53
5.9 Ordering of lattice points in \mathbb{N}^{3}. 57
5.10 Ordering lattice points in \mathbb{N}^{3}. 57
$5.11 \mathscr{G}(A, 138)$, the A-representation of \mathbb{Z}_{138} with $A=\{1,11,78\} . \ldots 59$
$5.12 \mathscr{G}(A, 57)$, the A-representation of \mathbb{Z}_{57} with $A=\{1,13,33\} . \ldots 60$
$5.13 \mathscr{G}(A, 340)$, the A-representation of \mathbb{Z}_{340} with $A=\{1,90,191\} \ldots \ldots 61$

ABSTRACT
\title{ EXTREMAL CAYLEY GRAPHS }
by
Joni J. Schneider, M.S.
Texas State University-San Marcos

August 2012

SUPERVISING PROFESOR: XINGDE JIA

Let Γ be a finite group with m elements. Let A be a nonempty subset of Γ. The Cayley digraph of Γ generated by A, denoted by $\operatorname{Cay}(\Gamma, A)$, is the digraph with vertex set Γ and arc set $\left\{u v \mid u^{-1} v \in A\right\}$. A simple example of a Cayley digraph is the n-Cube.

A Cayley digraph can be considered as a graphical representation of a finite group by its generating set. Cayley digraphs of finite abelian groups are often used to model communication networks. Because of their complex algebraic structure and their applications in network theory, Cayley digraphs have been studied extensively in recent years. In this thesis, we focus on some optimization problems about Cayley digraphs. In particular, we study how large the number of vertices a Cayley digraph can have for a
given diameter and degree. This is one of the central problems in the study of extremal Cayley digraphs.

Let \mathbb{Z}_{m} denote the cyclic group of residue classes of integers modulo m with addition. Given any two positive integers d and k, define $m(d, k)$ as the largest positive integer m such that there exists a set A of k integers with $\operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq d$, where $\operatorname{diam}(G)$ denotes that diameter of a graph G. In other words,

$$
m(d, k)=\max _{|A|=k}^{\mid A}\left\{m \mid \operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq d\right\}
$$

We will study this extremal function. In particular, we will prove a lower bound for $m(d, k)$.

We will introduce a geometric representation of \mathbb{Z}_{m} with respect to a generating set A. This representation was first introduced by C. K. Wong and Don Coppersmith in 1974. This geometric representation of \mathbb{Z}_{m} is very useful in establishing upper bounds for $m(d, k)$. We will discuss some properties of the A-representation of \mathbb{Z}_{m} in two and three dimensional cases. We will also use this method to prove upper bounds for $m(d, 2)$. Some other related extremal functions will also be studied in this thesis.

Chapter 1

INTRODUCTION

1.1 Information Networks

A network is traditionally referred to as a computer network which is a collection of hardware components and computers interconnected by communication channels that allow sharing of resources and information. However, a network can consist of a variety of entities (or nodes) such as computers, cellphones, televisons, fire alarms, and refrigerators. It can also consist of people, organizations, companies, and nations. A network has emerged as a necessary mechanism to exchange information between various sources. As such, network takes a new name, which is modern and meaningful: information networks.

Information networks have played a crucial role in the function of the information society. There are two types of information networks: one is called natural networks and the other is designed networks. These networks have to be robust, efficient, reliable, and cost effective. Therefore, the design of such information networks is extremely important.

Graphs are often used to model information networks. In fact, a network is a graph where the nodes of the network are represented by the vertices and the network links by the edges of the graph.

A major concern in the design of networks is the balance between some key parameters of the network, namely:
n-the size of the network,
d-the transmission delay, and
k - the number of links each node can have.

With a fixed number of nodes to connect, the transmission delay can be decreased by adding more links to the network. However, more links might result in lower performance because of physical restraints. Therefore, designs to optimize these parameters are extremely desirable in the construction of networks. Extensive research has been done in this area by both computer scientists and mathematicians (see, e.g. Bermond, Comellas and Hsu (1995) and Du and Hsu (1996)).

1.2 Cayley Graphs

Another key issue in designing communication networks is reducing the complexity of massively parallel processing systems. Symmetric graphs can be used to model networks so that the same routing algorithms apply to all the vertices. A good example would be the hypercube, a popular communication network design noted for its symmetry and expandability. However, recent studies have shown that optimal Cayley digraphs constructed by using groups can outperform hypercubes and other popular network topologies in terms of capacity and efficiency of the network.

Definition 1. Let Γ be a finite group with m elements. Let A be a nonempty subset of Γ. The Cayley digraph of Γ generated by A, denoted by $\operatorname{Cay}(\Gamma, A)$, is the digraph with vertex set Γ and arc set $\left\{u v \mid u^{-1} v \in A\right\}$.

For any given positive integer m, let \mathbb{Z}_{m} denote the set of residue classes modulo m. We also use \mathbb{Z}_{m} to denote the cyclic group of residue classes modulo m under addition. As shown in Figure 1.1, a 3-cube has 8 vertices with degree 3 and diameter 3, while the Cayley digraph of \mathbb{Z}_{12} generated by $A=\{ \pm 1, \pm 6\}$, as an undirected graph,
has 12 vertices, degree 3 and diameter 3 . It is also easy to verify that Cayley digraph of \mathbb{Z}_{41} generated by $\{ \pm 11, \pm 17\}$ has degree 4 and diameter 4 . Note that the Cayley graph has 41 vertices while a 4 -cube has only 16 vertices with the same degree 4 and same diameter 4.

Figure 1.1: Two 3-regular graphs have the same diameter 3.

Let \mathbb{Z}_{m} denote the cyclic group of residue classes modulo m with addition. Given any two positive integers d and k, define $m(d, k)$ as the largest positive integer m such that there exists a set A of k integers with $\operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq d$, where $\operatorname{diam}(G)$ denotes that diameter of a graph G. In other words,

$$
m(d, k)=\max _{|A|=k}^{|A|}\left\{m \mid \operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq d\right\}
$$

In this thesis, we focus on some optimization problems for Cayley digraphs, including $m(d, k)$. In particular, we study how large the number of vertices a Cayley digraph could have for a given diameter and degree. This is one of the central problems in the study of extremal Cayley digraphs.

1.3 Organization of the thesis

As mentioned earlier, this thesis focuses on some important optimization problems about Cayley digraphs. This is still an on-going research area in mathematics and
computer science. In order to effectively describe our new results and expose research topics, we include in Chapter 2 some basic concepts and results in graph theory.

In Chapter 3, we first introduce Cayley digraphs. We discuss the connectivity of Cayley digraphs of the finite abelian group \mathbb{Z}_{m}^{r}. In Section 3.3 we define various extremal functions related to Cayley digraphs, including $m(d, k)$, which is our main focus of this thesis.

In Chapter 4, we limit our focus to Cayley digraphs of finite cyclic groups. Our main concern is the extremal function $m(d, k)$. Because of a recursive inequality, one is able to use lower bounds for $m(d, k)$ with k being small to establish lower bounds for $m(d, k)$ with k large. Therefore, we first establish lower bounds for $m(d, k)$ when $k=2,3$.

In Chapter 5, we study the geometry of finite cyclic groups. The elements of a finite cyclic group can be represented by a k-dimensional solid with respect to a k-element generating set. This geometric representation can be regarded as a representation of the Cayley digraph of a finite cyclic group, which was first introduced by Wong and Coppersmith in the 1970's. This geometric representation is an essential tool in establishing upper bounds for $m(d, k)$ (see, e.g. Mask, Schneider and Jia, 2011).

In Chapter 6, we first summarize the key results in this thesis. Then we list some new and old open problems in related areas. In addition, we include remarks about some of the open problems.

Chapter 2

GRAPHS AND DIGRAPHS

In this chapter, some basic concepts and results in graph theory that are used in this thesis will be introduced. This is not intended to be an introduction to graph theory by any means. For more on graphs, the reader should see a very good book by Douglas B. West (West, 1996) titled Introduction to Graph Theory.

2.1 Definitions and Examples

Definition 2. A simple graph $G=(V, E)$ consists of a nonempty set V of objects called vertices and a set E of 2-element subsets of V called edges.

In a graph G, the two vertices on an edge are called end vertices of the edge, and the edge is said to be incident to its end vertices. Two vertices are said to be adjacent if they are the end vertices of an edge. If u and v are adjacent vertices in a graph, it is often more convenient to represent the edge $\{u, v\}$ by $u v$ (or $v u$). A simple graph $G=(V, E)$ defined by $V=\{u, v, w, x, y, z\}$ and $E=\{u v, u w, u x, v y, w x\}$ can be represented by a graph as shown in Figure 2.1. This drawing of G is often referred to as the graph G. Note that the graphical representation of the graph is not unique.

The following are a few examples of graphs.

Path P_{n} : A path P_{n} of length n is a graph with $n+1$ vertices v_{1}, \ldots, v_{n+1} and edges $v_{\imath} v_{\imath+1}(\imath=1,2, \ldots, n)$, where v_{1} and v_{n+1} are called the end vertices of the path.

Figure 2.1: A simple graph G with 6 vertices.
Cycle C_{n} : A cycle C_{n} of length n is a path of length n with the end vertices being the same vertex.

Complete Graph K_{n} : A complete graph with n vertices, denoted as K_{n}, is a simple graph with all possible edges.
n-Cube Q_{n} : An n-cube, denoted by Q_{n}, is a simple graph with vertices that can be labeled with the 2^{n} bit strings ${ }^{1}$ of length n so that two vertices are adjacent if and only if the corresponding bit strings differ in exactly one bit.

Bipartite Graphs: A simple graph $G=(V, E)$ is said to be a bipartite graph if the vertex set V can be colored with two colors so that every edge connects vertices with different colors.

Multigraphs, Pseudographs, and Digraphs: A multigraph $G=(V, E)$ consists of a set V of vertices and a multiset E of edges with distinct end vertices. A pseudograph $G=(V, E)$ consists of a set V of vertices and a multiset E of unordered pairs (edges) of not necessarily distinct vertices in V. An edge with the same end vertex is called a

[^0]loop or a self loop. A digraph is a graph where the edges have a direction associated with them.

2.2 Connectivity

Graph connectivity is a central property of graphs. There are many problems related to the connectivity of graphs. Connectivity of a special kind of graphs, called Cayley digraphs, is one of the main focuses in this paper. In this section, some basic definitions shall be introduced along with Menger's Theorem.

Definition 3. Let k be a positive integer.
(2) A walk is a list of vertices and edges

$$
v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{k}, v_{k}
$$

such that e_{\imath} has endpoints $v_{\imath-1}$ and v_{\imath}.
(22) A trail is a walk with distinct edges.
(222) A tour or a circuit is a walk with the ending vertex being the same as the starting vertex.
(zv) A path is a walk without repeated vertices.
(v) A cycle is a closed path with the same starting and ending vertex. In other words, a cycle is a tour without repeated vertices.
(vi) The length of a walk, a path, or a cycle is the number of its edges.

Definition 4. An undirected graph is said to be connected if there exists a path between every pair of vertices. A directed graph is said to be strongly connected if there is a
directed path between every pair of vertices of the graph. A directed graph is said to be weekly connected if the underlining undirected graph is connected. A disconnected graph is the union of connected subgraphs, called connected components.

Definition 5. Let $G=(V, E)$ be a graph.
(2) A vertex $v \in V$ is called a cut vertex if G becomes disconnected after the removal of v and edges incident to v.
(22) A set of vertices $W \subseteq V$ is called a cut vertex set if G becomes disconnected after the removal of W and edges incident to the vertices in W.
(222) A minimal cut vertex set is a cut vertex set such that none of its proper subset is again a cut vertex set.

Definition 6. Let G be a graph. The size of a minimal cut vertex set is called the connectivity of G, and denoted by $\kappa(G)$. A graph G is k-connected if $\kappa(G) \geq k$. The edge-connectivity $\lambda(G)$ of a nontrivial graph G is the minimum number of edges whose removal from G results in a nonconnected graph.

Obviously, if W is a minimal cut vertex set of G, then G contains two vertices u, v such that every path between u and v contains a vertex in S.

It is easy to see that $\kappa\left(C_{n}\right)=2$ and $\kappa\left(K_{n}\right)=n-1$. If $\delta(G)$ is used to denote the minimum degree of G, then

$$
\kappa(G) \leq \lambda(G) \leq \delta(G)
$$

Theorem 1 (H. Whitney, 1932). A graph G with order $n \geq 3$ is 2 -connected if and only if any two vertices of G are joined by at least two internally-disjoint paths.

Definition 7. Let G be a graph. An independent edge set is a subset of edges of G such that no two edges share a common vertex. An independent edge set is also called a matching. The maximum number of edges in an independent edge set is called the edge independence number, denoted by $\beta_{1}(G)$.

Definition 8. Let G be a graph. A vertex cover of G is a subset W of vertices of G such that each edge of G is incident to at least one vertex in W. The minimum number of vertices in a vertex cover is called the vertex covering number, denoted by $\alpha(G)$.

Let u and v be nonadjacent vertices in a graph G. A (u, v)-cut is a set $X \subseteq$ $V(G)-\{u, v\}$ whose removal from G leaves u and v in different components. Let $\kappa(u, v)$ denote the minimum number of vertices in a (u, v)-cut, and $\lambda(u, v)$ the maximum number of internally-disjoint $u-v$ paths. The following is the Menger's Theorem.

Theorem 2 (K. Menger, 1927). Let u and v be nonadjacent vertices in a graph G. Then $\kappa(u, v)=\lambda(u, v)$.

2.3 Distance and Diameter

Distance between vertices in a graph is an important parameter of the graph. In this section, we study the diameter and the average distance of graphs.

2.3.1 Eccentricity

Recall that the distance between two vertices in a graph is the number of edges in a shortest path connecting them. We use $d_{G}(u, v)$ to denote the distance between vertices u and v in G.

Definition 9. Let G be an undirected graph.
(2) The eccentricity $e(v)$ of a vertex v is the greatest distance between v and any other vertex in the graph.
(2i) The radius of G, denoted as $r(G)$, is the minimum eccentricity of any vertex.
(2vi) The diameter of G, denoted as $\operatorname{diam}(G)$, is the maximum eccentricity of any vertex in the graph. In other words, the diameter is the greatest distance between any pair of vertices.
(2v) The girth of G is the length of the shortest closed path of the graph.
(v) A central vertex in a graph of radius r is one that is distance r from some other vertex.
(vi) A peripheral vertex in a graph of diameter d is one that is distance d from some other vertex.

Example 1. The graph shown in Figure 2.2 is connected. It is easy to see that the radius is 2 and the diameter is 3 . The central vertices are the filled vertices while the rest of the vertices are the peripheral vertices of the graph.

Figure 2.2: Filled vertices are central vertices. $r(G)=2$ and $\operatorname{diam}(G)=3$.

Example 2. Because the n-cube Q_{n} is distance symmetric, every vertex has the same eccentricity n. Therefore, $r\left(Q_{n}\right)=\operatorname{diam}\left(Q_{n}\right)=n$. Hence, every vertex is a central vertex and a peripheral vertex.

2.3.2 Average Distance

Definition 10. Let $G=(V, E)$ be a connected simple graph with $n \geq 2$ vertices. The average distance $\bar{d}(G)$ of G is defined as

$$
\bar{d}(G)=\frac{1}{\binom{n}{2}} \sum_{u, v \in V} d(u, v)
$$

Let G be a graph. Since $d(u, v) \leq d(G)$ for any two vertices u and v, we see that $\bar{d}(G) \leq d(G)$.

Proposition 1. Let G be a connected graph. Then $\bar{d}(G)=d(G)$ if and only if G is a complete graph.

Proof. Let G be a graph with n vertices. If G is a complete graph, it is obvious that $\bar{d}(G)=d(G)=1$.

Now assume that $\bar{d}(G)=d(G)$. We only need to prove that $d(G)=1$. If not, assume that

$$
u=u_{0}, u_{1}, \ldots, u_{d}=v
$$

is a shortest path of length $d=d(G)>1$ in G. Then $d-1>0$ and

$$
\begin{aligned}
\bar{d}(G) & =\frac{1}{\binom{n}{2}} \sum_{u, v \in V} d(u, v) \\
& =\frac{2}{n(n-1)}\left(d\left(u_{0}, u_{1}\right)+\sum_{\{x, y\} \neq\left\{u_{0}, u_{1}\right\}} d(x, y)\right) \\
& \leq \frac{2}{n(n-1)}\left(1+d \cdot\left(\frac{1}{2} n(n-1)-1\right)\right) \\
& =d-\frac{2(d-1)}{n(n-1)} \\
& <d=d(G) .
\end{aligned}
$$

Proposition 2. The average distance of the n-cube Q_{n} is $\frac{n}{2}+\frac{n}{2^{n+1}-2}$.
Proof. By the definition of Q_{n}, its 2^{n} vertices can be represented by the bit strings of length n so that two vertices are adjacent if their labels differ in exactly one bit. Because of the symmetry of Q_{n}, the average distance of Q_{n} is

$$
\bar{d}\left(Q_{n}\right)=\frac{1}{2^{n}-1} \sum_{\mathbf{0} \neq \ell(v) \in \mathscr{B}_{n}} d(\mathbf{0}, v)
$$

where \mathscr{B}_{n} is the set of bit strings of length n, and $\ell(v)$ is the bit string labeling of v. The vertices that have distance k to the vertex with label 0 are the vertices with labels that have exactly $k 1$'s. Since there are $\binom{n}{k}$ distinct bit strings with exactly k 's and $n-k 0$'s, we see that

$$
\bar{d}\left(Q_{n}\right)=\frac{1}{2^{n}-1} \sum_{k=1}^{n}\binom{n}{k} k=\frac{1}{2^{n}-1} n 2^{n-1}=\frac{n}{2}+\frac{n}{2^{n+1}-2} .
$$

In particular, $\bar{d}\left(Q_{2}\right)=\frac{4}{3}$ and $\bar{d}\left(Q_{3}\right)=\frac{12}{7}$.
Proposition 3. Let \mathbf{C}_{m} be the directed cycle of length m. Then $\bar{d}\left(\mathbf{C}_{m}\right)=\frac{1}{2} m$.
Proof. It follows from the fact

$$
d(\imath, \jmath)+d(\jmath, \imath)=m \quad \text { for any } 1 \leq i<\jmath \leq m
$$

that

$$
\begin{aligned}
\bar{d}\left(\mathbf{C}_{m}\right) & =\frac{1}{m(m-1)} \sum_{1 \leq \imath<\jmath \leq m}(d(\imath, \jmath)+d(\jmath, \imath)) \\
& =\frac{1}{m(m-1)}\binom{m}{2} m \\
& =\frac{1}{2} m .
\end{aligned}
$$

It is easy to verify the following proposition.

Proposition 4. Let C_{n} be the cycle of length n, then

$$
\bar{d}\left(C_{n}\right)=\left\{\begin{array}{ll}
\frac{k^{2}+1}{2 k-1}, & \text { if } n=2 k \\
\frac{k+1}{2}, & \text { if } n=2 k+1
\end{array} .\right.
$$

Compared with the diameter of a graph, the average distance of the graph reflects more accurate information about the distance between vertices in the graph. The following example shows an extreme situation. For any given integer $d \geq 2$, let G be the graph obtained by attaching one of the end node of a path P_{d} to any vertex of a complete graph K_{m} as showed in Figure 2.3. Then $d(G)=d$. Noting that the dis-

Figure 2.3: A graph that shows $\bar{d}(G) \rightarrow 1$ for any given $d=d(G)$.
tance between a vertex on P_{d} and any other vertex in G is at most d while the distance between any two vertices in K_{m} is one, we see that

$$
\begin{aligned}
1 \leq \bar{d}(G) & \leq \frac{1}{\binom{m+d-1}{2}}\left((d-1)(m+d-2)+\binom{m}{2}\right) \\
& \leq \frac{2 d(m+d)+m^{2}}{(m+d-1)(m+d-2)}
\end{aligned}
$$

This shows that the average distance $\bar{d}(G)$ of this graph G has a limit 1 as $m \rightarrow \infty$. Given any positive integer d, define

$$
\bar{D}(d)=\sup _{\substack{G \\ d(G)=d}} \bar{d}(G)
$$

Then $\bar{D}(1)=1$ as shown by the complete graph K_{m}. Let G_{m} denote the star graph with $m+1$ vertices. It is easy to verify that

$$
\bar{d}\left(G_{m}\right)=\frac{2 m}{m+1} \rightarrow 2 \quad \text { as } \quad m \rightarrow \infty
$$

i.e., $\bar{D}(2)=2$.

Let $T(m)$ denote the following graph: a star graph with m leaves each of which is the center vertex of a star graph with m leaves. Figure 2.4 shows the construction of $T(6)$. Then $T(m)$ has $m^{2}+m+1$ vertices and $m^{2}+m$ edges. Easy to see that

$$
\begin{aligned}
\bar{d}(T(m)) & =\frac{1}{\binom{m^{2}+m+1}{2}} \sum_{u v \in E(T(m))} d(u, v) \\
& =\frac{4 m^{2}\left(m^{2}-2\right)}{\left(m^{2}+m+1\right)\left(m^{2}+m\right)} \rightarrow 4 \quad \text { as } \quad m \rightarrow \infty .
\end{aligned}
$$

Therefore, $\bar{D}(4)=4$.

Figure 2.4: $T(6)$ is a graph that shows that $\bar{D}(4)=4$.

2.4 Degree-Diameter Problem

The Degree-Diameter Problem is to determine the largest graphs with given maximum degree k and diameter d. In this section we address an upper bound, known as the Moore bound.

Let k and d be positive integers. A (k, d)-graph is a graph with maximum degree k and diameter at most d. Let $f(k, d)$ denote the maximum number of vertices that a (k, d)-graph can have.

Theorem 3. $f(k, d) \leq 1+\frac{k}{k-2}\left((k-1)^{d}-1\right)$.
Proof. Let $G=(V, E)$ be a (k, d)-graph with $m=|V|$. We only need to prove that $m \leq 1+\frac{k}{k-2}\left((k-1)^{d}-1\right)$. Pick any vertex $u \in V$. For each integer $\imath: 1 \leq \imath \leq d$, define

$$
V_{\imath}=\{v \in V \mid d(u, v)=\imath\} .
$$

Since the diameter of G is d, we see that

$$
m=|V|=1+\sum_{\imath=1}^{d}\left|V_{\imath}\right| .
$$

Because the maximum degree of G is k, we have that

$$
\left|V_{1}\right| \leq k
$$

and

$$
\left|V_{\imath}\right| \leq k(k-1)^{\imath-1} \quad \text { for all } \quad \imath
$$

Therefore,

$$
\begin{aligned}
m & =1+\sum_{\imath=1}^{d}\left|V_{\imath}\right| \leq 1+\sum_{\imath=1}^{d} k(k-1)^{\imath-1} \\
& =1+\frac{k}{k-2}\left((k-1)^{d}-1\right) .
\end{aligned}
$$

Now consider a graph G with minimum degree k and girth g.
Theorem 4. Let G be a graph with minimum degree k and girth g. If $d=\left\lfloor\frac{g-1}{2}\right\rfloor$, then

$$
|V(G)| \geq 1+\frac{k}{k-2}\left((k-1)^{d}-1\right)
$$

Proof. This proof follows a similar argument as the previous theorem. Let G be a graph with m vertices, with minimum degree k and girth g. Pick any vertex u. For each integer $\imath: 1 \leq \imath \leq d$, define

$$
V_{\imath}=\{v \in V \mid d(u, v)=\imath\}
$$

Since the diameter of G is at least $d=\left\lfloor\frac{g-1}{2}\right\rfloor$, we see that

$$
m=|V(G)| \geq 1+\sum_{\imath=1}^{d}\left|V_{\imath}\right|
$$

Furthermore, it follows from the fact that the minimum degree of G is k that

$$
\left|V_{1}\right| \geq k,
$$

and

$$
\left|V_{\imath}\right| \geq k(k-1)^{\imath-1} \quad \text { for all } \quad \imath: 1 \leq \imath \leq d
$$

Therefore, we have

$$
\begin{aligned}
m & =1+\sum_{\imath=1}^{d}\left|V_{\imath}\right| \geq 1+\sum_{\imath=1}^{d} k(k-1)^{\imath-1} \\
& =1+\frac{k}{k-2}\left((k-1)^{d}-1\right) .
\end{aligned}
$$

The upper bound in Theorem 3 is sometimes called the Moore bound. A regular graph with degree k and diameter d that has $1+\frac{k}{k-2}\left((k-1)^{d}-1\right)$ vertices is called a Moore graph. Equivalently, a Moore graph is a k-regular graph with diameter d that has girth $2 d+1$. The following is another equivalent definition.

Definition 11. A graph G is called a Moore graph if the following conditions hold:
($) ~ G$ is connected with maximum degree k and diameter d,
(22) G has minimum degree k and girth $g=2 d+1$,
(2u2) G has $1+\frac{k}{k-2}\left((k-1)^{d}-1\right)$ vertices.
The following Table 2.1 shows the order of some large known (k, d)-graphs. The sizes in bold face in the table indicate the optimal value $f(k, d)$. For more information on (k, d)-graphs, please visit http://www-mat.upc.es/grup_de_grafs/table_g.html.

Table 2.1: The size of large (k, d)-graphs

$k \backslash d$	2	3	4	5	6	7	8	9	10
3	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 8}$	70	132	192	330	576	1250
4	$\mathbf{1 5}$	41	96	364	740	1320	3243	7575	17703
5	$\mathbf{2 4}$	72	210	624	2772	5516	17030	53352	164720
6	32	110	390	1404	7917	19282	75157	295025	1212117
7	$\mathbf{5 0}$	168	672	2756	11988	52768	233700	1124990	5311572
8	57	253	1100	5060	39672	130017	714010	4039704	17823532
9	74	585	1550	8200	75893	270192	1485498	10423212	31466244
10	91	650	2223	13140	134690	561957	4019736	17304400	104058822
11	104	715	3200	18700	156864	971028	5941864	62932488	250108668
12	133	786	4680	29470	359772	1900464	10423212	104058822	600105100
13	162	851	6560	39576	531440	2901404	17823532	180002472	1050104118
14	183	916	8200	56790	816294	6200460	41894424	450103771	2050103984
15	186	1215	11712	74298	1417248	8079298	90001236	900207542	4149702144
16	198	1600	14640	132496	1771560	14882658	104518518	1400103920	7394669856

Bold face numbers indicate the optimal values.

Chapter 3

EXTREMAL CAYLEY DIGRAPHS

3.1 Cayley Digraphs

Recall that we have the following definition in Section 1.2.

Definition 1. Let Γ be a finite group with m elements. Let A be a nonempty subset of Γ. The Cayley digraph of Γ generated by A, denoted by $\operatorname{Cay}(\Gamma, A)$, is the digraph with vertex set Γ and arc set $\left\{u v \mid u^{-1} v \in A\right\}$.

Example 3. A directed cycle C_{m} is a Cayley digraph of \mathbb{Z}_{m} with a single generating element 1 , or, as a matter of fact, any $a \in \mathbb{Z}_{m}$ that is relatively prime to m.

Example 4. Cayley digraphs $\operatorname{Cay}\left(\mathbb{Z}_{47},\{1,11\}\right)$ and $\operatorname{Cay}\left(\mathbb{Z}_{57},\{1,13,33\}\right)$:

Figure 3.1: Two Cayley digraphs.

The edges in the graphs are supposed to be directed. The graphs are symmetric.

Clearly, Cayley digraph $\operatorname{Cay}(\Gamma, A)$ is connected if and only if A can generate the whole group Γ.

Definition 12. A subset A of a group Γ is said to be symmetric if $a^{-1} \in A$ for all $a \in A$.

Note that Cayley digraphs are directed graphs. However, if the generating set A is symmetric, the Cayley digraph $\operatorname{Cay}(\Gamma, A)$ can be considered as an undirected graph.

Example 5. The hypercube Q_{n} is actually a Cayley digraph of \mathbb{Z}_{2}^{n} with generating set $\left\{e_{\imath} \mid \imath=1,2, \ldots, n\right\}$, where $e_{\imath}=(0, \ldots, 0, \underbrace{1}_{\imath}, 0, \ldots, 0)$ is the \imath th basis vector in \mathbb{Z}_{2}^{n}.

Cayley digraphs of finite abelian groups are often used to model information networks. Because of their applications, extremal Cayley digraphs have been studied extensively in recent years.

3.2 Connectivity of Cayley Digraphs

In this section, we discuss the connectivity of the Cayley digraph $\operatorname{Cay}(\Gamma, A)$ of a finite abelian group Γ generated by an r-element subset A, where $r=\operatorname{rank}(\Gamma)$ is the rank of Γ, is discussed.

Theorem 5. Let $\Gamma=\mathbb{Z}_{m}^{r}$. Let $A=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{r}\right\}$ be a subset of Γ. Assume that

$$
\mathbf{a}_{\imath}=\left(a_{\imath 1}, a_{22}, \ldots, a_{\imath r}\right) \quad \text { for } \quad \imath=1,2, \ldots, r .
$$

Define $M_{A}=\left[a_{\imath \jmath}\right]_{r \times r}$. Then the Cayley digraph $\operatorname{Cay}(\Gamma, A)$ is connected if and only if M_{A} is an invertible matrix.

Proof. (\Rightarrow) Assume that the Cayley digraph $\mathrm{Cay}(\Gamma, A)$ is connected. Then $A=$ $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{r}\right\}$ is a generating set of the finite abelian group Γ. Therefore, for each $\imath: 1 \leq \imath \leq r$, there exists an r-tuple $\xi_{\imath}=\left(x_{\imath 1}, x_{\imath 2}, \ldots, x_{\imath r}\right)$ with

$$
0 \leq x_{\imath \jmath} \leq m-1 \quad \text { for } \quad \jmath=1,2 \ldots, r
$$

such that

$$
\xi_{\imath} M_{A}=\mathbf{e}_{i},
$$

where $\mathbf{e}_{\imath}=(0, \ldots, 0, \underbrace{1}_{\imath}, 0, \ldots, 0)$ is the \imath th unit vector in Γ. Let B be the $r \times r$ matrix consisting $\xi_{1}, \xi_{2}, \ldots, \xi_{r}$ as its row vectors, i.e.,

$$
B=\left[x_{\imath \imath}\right]_{r \times r}
$$

Then $B M_{A}=I_{r}$, the $r \times r$ identity matrix.
Define a function $\sigma: \Gamma \rightarrow \Gamma$ defined by

$$
\sigma: \mathbf{x} \mapsto \mathbf{x} M_{A}=\sum_{\imath=1}^{r} x_{\imath} \mathbf{a}_{\imath}
$$

for every $\mathrm{x}=\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in \Gamma$. Since A is a generating set of Γ, we see that σ is an onto function. Noting that Γ is finite, we know that σ is also one-to-one. Therefore, $\mathrm{x} M_{A}=\mathbf{0}$ has a unique solution.

It follows from $B M_{A}=I_{r}$ that

$$
M_{A} B M_{A}=M_{A} I_{r}=M_{A}
$$

Then

$$
0=M_{A} B M_{A}-M_{A}=\left(M_{A} B-I_{r}\right) M_{A} .
$$

Hence, $M_{A} B-I_{r}=0$, i.e., $M_{A} B=I_{r}$. Therefore, B is the inverse matrix of M_{A}.
(\Leftarrow) Assume that M_{A} is invertible. Let $\mathrm{x} \in \Gamma$ be any element. Define

$$
\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{r}\right)=\mathbf{x} M_{A}^{-1} \in \Gamma
$$

where

$$
0 \leq c_{\imath} \leq m-1 \quad \text { for } \quad \imath=1,2, \ldots, r
$$

Then

$$
\mathbf{x}=\mathbf{c} M_{A}=\sum_{\imath=1}^{r} c_{\imath} \mathbf{a}_{\imath}
$$

This implies that A is a generating set of Γ. Hence, the Cayley digraph $\operatorname{Cay}(\Gamma, A)$ of Γ generated by A is connected.

Theorem 6. Let $\Gamma=\mathbb{Z}_{m}^{r}$ be the direct product ofr copies of \mathbb{Z}_{m}. Let $A=\left\{\mathbf{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{r}\right\}$ be a generating set of Γ. Then $\operatorname{Cay}(\Gamma, A)$ is connected and

$$
\operatorname{diam}(\operatorname{Cay}(\Gamma, A))=r m-r .
$$

Proof. Because of the symmetry of $\operatorname{Cay}(\Gamma, A)$, we may assume that

$$
d=\operatorname{diam}\left(\operatorname{Cay}(\Gamma, A)=d(\mathbf{0}, \mathbf{u})=\sum_{i=1}^{r} u_{\imath},\right.
$$

for some $\mathbf{u}=\sum_{\imath=1}^{r} u_{\imath} \mathbf{a}_{\imath}$. Since

$$
0 \leq u_{\imath} \leq m-1 \quad \text { for } \quad \imath=1,2, \ldots, r
$$

Therefore,

$$
d=\sum_{i=1}^{r} u_{\imath} \leq r m-r
$$

It is now proven that there exists an element $\mathbf{u} \in \Gamma$ such that

$$
d(\mathbf{0}, \mathbf{u})=r m-r
$$

Define

$$
\mathbf{u}=\sum_{i=1}^{r}(m-1) \mathbf{a}_{\imath}
$$

If $d(\mathbf{0}, \mathbf{u})<r m-r$, then \mathbf{u} can be written as

$$
\mathbf{u}=\sum_{\imath=1}^{r} c_{\imath} \mathbf{a}_{\imath}
$$

where

$$
0 \leq c_{\imath} \leq m-1 \quad \text { for } \quad \imath=1,2, \ldots, r
$$

such that

$$
\sum_{\imath=1}^{r} c_{\imath}<d
$$

Then

$$
\mathbf{v}=(m-1, m-1, \ldots, m-1)-\left(c_{1}, c_{2}, \ldots, c_{r}\right) \neq \mathbf{0}
$$

This implies that

$$
\left((m-1, \ldots, m-1)-\left(c_{1}, \ldots, c_{r}\right)\right) M_{A}=\mathbf{u}-\mathbf{u}=\mathbf{0}
$$

contradicting the fact that M_{A} is invertible. Hence, $d(\mathbf{0}, \mathbf{u})=r m-r$. Therefore, the diameter of $\operatorname{Cay}(\Gamma, A)$ is $r m-r$. The proof of Theorem 6 is complete.

3.3 Extremal Functions Related to Cayley Digraphs

In this section, we shall define a few extremal functions related to Cayley digraphs of \mathbb{Z}_{m}, the finite cyclic group of order m. A subset A of \mathbb{Z}_{m} is called a d-basis for \mathbb{Z}_{m} if $\operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq d$.

3.3.1 $m(d, k)$

Definition 13. Given any two positive integers d and k, define $m(d, k)$ as the largest positive integer m such that there exists a d-basis A of k integers for \mathbb{Z}_{m}, i.e.,

$$
\operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq d
$$

where $\operatorname{diam}(G)$ denotes the diameter of a graph G. In other words,

$$
m(d, k)=\max _{|A|=k}\left\{m \mid \operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq d\right\}
$$

Theorem 7. For any given positive integer d,

$$
m(d, 1)=d+1
$$

Proof. On one hand, we assume $G=\operatorname{Cay}\left(\mathbb{Z}_{m},\{a\}\right)$ has diameter at most d. Since every vertex of G can be written as $x a$ where x is a nonnegative integer that is less than or equal to d. This implies that $m=|V(G)| \leq d+1$. Hence, $m(d, 1) \leq d+1$.

On the other hand, we let $A=\{1\}$ and $m=d+1$. It is clear that

$$
\operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right)=d
$$

This means that we have $d+1 \leq m(d, 1)$ Therefore, we proved the required identity in the theorem.

Theorem 8. For any given positive integer k,

$$
m(1, k)=k+1
$$

Proof. First, let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a set of k elements so that $G=\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)$ has diameter 1 . Then every vertex of G is an immediate neighbor of $0 \in \mathbb{Z}_{m}$. Since the neighbors of 0 are the elements in A :

$$
a_{1}, a_{2}, \ldots, a_{k}
$$

Therefore, $m(1, k) \leq k+1$.
Now Let $A=\{1,2, \ldots, k\}$. Then it is easy to see that $\operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{k+1}, A\right)\right)=$ 1. This means that $m(1, k) \geq k+1$. Therefore, we have $m(1, k)=k+1$.

Theorem 9 (Wong-Coppersmith, 1974). For any given positive integers d and k, we have

$$
\left\lfloor\frac{d}{k}+1\right\rfloor^{k} \leq m(d, k) \leq\binom{ k+d}{k}
$$

Proof. We first prove the upper-bound. If A is a k element set with $\operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq$ d, then every element in \mathbb{Z}_{m} is a sum of at most d elements from A. Noting that the addition of integers is commutative, we see that

$$
m \leq\binom{ k+1+d-1}{d}=\binom{k+d}{k}
$$

which shows the upper bound of the required inequality.
Now we prove the lower-bound. Let

$$
t=\left\lfloor\frac{d}{k}\right\rfloor+1
$$

and

$$
A=\left\{1, t, t^{2}, \ldots, t^{k-1}\right\} .
$$

For any $x \in\left[0, t^{k}-1\right]$, then

$$
x=\sum_{\imath=0}^{k-1} c_{\imath} t^{\imath} \quad \text { with } \quad 0 \leq c_{\imath} \leq t-1
$$

Since

$$
\sum c_{2} \leq k(t-1)=k\lfloor d / k\rfloor \leq d
$$

we see that $d(0, x) \leq d$. Therefore, the diameter of $\operatorname{Cay}\left(\mathbb{Z}_{t^{k}}, A\right)$ is at most d, which implies

$$
m(d, k) \geq t^{k}=\left\lfloor\frac{d}{k}+1\right\rfloor^{k}
$$

Corollary 1. For any given posittve integer k, as $d \rightarrow \infty$,

$$
\left(\frac{d}{k}\right)^{k}+O\left(d^{k-1}\right) \leq m(d, k) \leq \frac{d^{k}}{k!}+O\left(d^{k-1}\right)
$$

Proof. This follows immediately from Theorem 9.

Hsu and Jia (1994) proved that, for any integer $d \geq 2$,

$$
\begin{equation*}
m(d, 2)=\left\lfloor\frac{d(d+4)}{3}\right\rfloor+1 \tag{3.1}
\end{equation*}
$$

We will prove this exact formula in Chapters 4 and 5.
Table 3.1 contains the exact values of $m(d, 3)$ for $2 \leq d \leq 20$ together with the corresponding generating sets. We do not list the so called "isomorphic" generating sets. For instance, $A=\{1,3,4\}$ is a generating set for $\operatorname{Cay}\left(\mathbb{Z}_{9}, A\right)$ which gives diameter 2 . The inverse element of 4 in \mathbb{Z}_{9} is 7 . Since

$$
1 \cdot 7=7, \quad 3 \cdot 7=3, \quad \text { and } \quad 4 \cdot 7=1 \quad(\bmod 9)
$$

we see that $\{1,3,7\}$ is an isomorphic generating set of $\{1,3,4\}$. So the generating set $\{1,3,7\}$ is not listed in the table.

3.3.2 $\bar{m}(\lambda, k)$

Definition 14. Given any positive integer k and any real number λ, define $\bar{m}(\lambda, k)$ as the largest positive integer m such that there exists a set A of k integers with

$$
\bar{d}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq \lambda
$$

where $\bar{d}(G)$ denotes the average distance of a graph G. In other words,

$$
\bar{m}(\lambda, k)=\max _{\substack{A \\|A|=k}}\left\{m \mid \bar{d}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq \lambda\right\} .
$$

Theorem 10. For any given positive integer k,

$$
\bar{m}(1, k)=k+1 .
$$

Proof. First, we prove that $\bar{m}(1, k) \leq k+1$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a generating set of \mathbb{Z}_{m} so that $\bar{d}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq 1$. However, the average distance of any

Table 3.1: $m(d, 3)$ for $2 \leq d \leq 20$ with corresponding extremal generating sets.

d	$m(d, 3)$	Corresponding extremal generating sets
2	9	$\{1,3,4\},\{1,4,6\}$
3	16	$\{1,4,5\},\{1,5,12\}$
4	27	$\{1,4,17\},\{1,5,12\},\{1,6,8\},\{1,16,23\}$
5	40	$\{1,6,15\},\{1,6,25\},\{1,16,35\},\{1,26,35\}$
6	57	$\{1,13,33\},\{1,16,36\}$
7	78	$\{1,6,49\},\{1,7,48\},\{1,12,61\},\{1,30,73\}$
8	111	$\{1,31,69\}$
9	138	$\{1,11,78\},\{1,17,96\},\{1,19,26\},\{1,43,122\}$
10	176	$\{1,17,56\},\{1,24,33\},\{1,32,153\},\{1,41,64\}$, $\{1,81,104\},\{1,121,160\}$
11	217	$\{1,13,119\},\{1,18,46\},\{1,34,161\},\{1,51,92\}$
12	273	$\{1,14,153\},\{1,49,104\},\{1,53,186\},\{1,88,221\}$
13	340	$\{1,90,191\}$
14	395	$\{1,35,271\},\{1,125,361\}$
		$\{1,29,97\},\{1,33,254\},\{1,44,56\},\{1,44,408\}$, $\{1,55,419\},\{1,89,121\},\{1,110,254\},\{1,122,165\}$, 13
462	$\{1,165,188\},\{1,209,430\},\{1,224,380\},\{1,275,298\}$, $\{1,282,296\},\{1,298,341\},\{1,342,374\},\{1,366,434\}$	
16	560	$\{1,215,326\},\{1,235,346\}$
17	648	$\{1,76,237\},\{1,412,573\}$
18	748	$\{1,41,147\},\{1,174,362\},\{1,490,676\},\{1,602,708\}$
19	861	$\{1,27,463\},\{1,84,298\},\{1,84,319\},\{1,543,778\}$
20	979	$\{1,22,351\},\{1,138,787\},\{1,193,842\},\{1,374,637\}$

graph is always at least one. Thus, $\bar{d}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right)=1$. Therefore, the Cayley graph $\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)$ is a complete digraph. Since $0 \in \mathbb{Z}_{m}$ has out-degree k (because each element of A contributes at most one to the out-degree of 0), we see that $m \leq k+1$.

Now we prove that $\bar{m}(1, k) \geq k+1$. Define

$$
A=\{1,2, \ldots, k\}
$$

Then $\operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{k+1}, A\right)\right)=1$, which implies that $\bar{d}\left(\operatorname{Cay}\left(\mathbb{Z}_{k+1}, A\right)\right)=1$. Therefore, $\bar{m}(1, k) \geq k+1$. The proof is complete.

Theorem 11. For any given positive real number λ,

$$
\bar{m}(\lambda, 1)=\lfloor 2 \lambda\rfloor .
$$

Proof. First we prove that $\bar{m}(\lambda, 1) \leq\lfloor 2 \lambda\rfloor$. Let $A=\{a\}$ be a generating set of \mathbb{Z}_{m} so that the average distance of $G=\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)$ is no more than λ. Since $A=\{a\}$ is a generating set of $\mathbb{Z}_{m}, G=\mathbf{C}_{m}$ is a directed cycle. It follows from Example 3 that

$$
\bar{d}(G)=\bar{d}\left(\mathbf{C}_{m}\right)=\frac{1}{2} m
$$

Therefore, $\frac{1}{2} m \leq \lambda$, i.e., $m \leq 2 \lambda$. Thus, $m \leq\lfloor 2 \lambda\rfloor$. This shows that $\bar{m}(\lambda, 1) \leq\lfloor 2 \lambda\rfloor$.
We now prove that $\bar{m}(\lambda, 1) \geq\lfloor 2 \lambda\rfloor$. Let $A=\{1\}$, and let $m=\lfloor 2 \lambda\rfloor$. It follows from Example 3 that the average distance of $\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)=\mathbf{C}_{m}$ is

$$
\frac{1}{2} m=\frac{1}{2}\lfloor 2 \lambda\rfloor \leq \frac{1}{2} \cdot 2 \lambda=\lambda
$$

Therefore, by definition, $\bar{m}(\lambda, 1) \geq m=\lfloor 2 \lambda\rfloor$. The proof is complete.

3.3.3 Undirected Cases

Recall that when the generating set is symmetric, the Cayley digraph can be regarded as an undirected graph. In this subsection, we discuss two extremal functions that are related to undirected Cayley graphs. They are actually the undirected analogue of $m(d, k)$ and $\bar{m}(\lambda, k)$. These have been studied by several authors and many results have been discovered. However, the focus of the thesis is on the extremal function $m(d, k)$. Here we only introduce the definitions. For more information on the undirected cases, see Chen and Jia (1993) and Lee, Sheu and Jia (2008).

Definition 15. Given any two positive integers d and k, define $M(d, k)$ as the largest positive integer m such that there exists a symmetric set $A=\left\{ \pm a_{1}, \pm a_{2}, \ldots, \pm a_{k}\right\}$ with

$$
\operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq d
$$

In other words,

$$
M(d, k)=\max _{A=\left\{ \pm a_{1}, \pm a_{2},, \pm a_{k}\right\}}\left\{m \mid \operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq d\right\}
$$

Definition 16. Given any positive integer k and any real number λ, define $\bar{M}(\lambda, k)$ as the largest positive integer m such that there exists a symmetric set

$$
A=\left\{ \pm a_{1}, \pm a_{2}, \ldots, \pm a_{k}\right\}
$$

with

$$
\bar{d}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq \lambda
$$

where $\bar{d}(G)$ denotes the average distance of a graph G. In other words,

$$
\bar{M}(d, k)=\max _{\substack{A \\ A=\left\{ \pm a_{1}, \pm a_{2},, \pm a_{k}\right\}}}\left\{m \mid \bar{d}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)\right) \leq \lambda\right\}
$$

Chapter 4

LOWER BOUNDS OF $m(d, k)$

4.1 Introduction

In order to establish lower bounds for $m(d, k)$, one only needs to construct a "good" generating set A so that the diameter of $\operatorname{Cay}\left(\mathbb{Z}_{m}, A\right)$ is less than or equal to d. In this chapter, some lower bounds for $m(d, 2)$ and $m(d, 3)$ will be discussed. A recursive theorem will be used to establish a lower bound for the general case.

4.2 Case $k=2$

We prove the following lower bound for $m(d, 2)$.

Theorem 12. Let $d \geq 2$ be an integer. Then

$$
\begin{equation*}
m(d, 2) \geq\left\lfloor\frac{d(d+4)}{3}\right\rfloor+1 \tag{4.1}
\end{equation*}
$$

Proof. Let $m_{0}=\lfloor d(d+4) / 3\rfloor+1$.
Part One: We show that $m(d, 2) \geq m_{0}$, i.e., we need to find a set $A=\{a, b\}$ so that A is a d-basis for \mathbb{Z}_{m}. Let $A_{0}=\{0, a, b\}$. We divide this part of the proof into three cases according to d modulo 3 .

CASE I. Suppose $d=3 t$ for some positive integer t. Then

$$
m_{0}=\left\lfloor\frac{3 t(3 t+4)}{3}\right\rfloor+1=3 t^{2}+4 t+1 .
$$

Let $a=1$ and $b=3 t+3$. Let $n \in\left[0, m_{0}\right)$. If $n \geq t b=3 t^{2}+3 t$, then $n-t b \geq 0$ and

$$
(n-t b)+t \leq m_{0}-1-t b+t=3 t^{2}+4 t+1-1-3 t^{2}-3 t+t=2 t<d
$$

Therefore,

$$
n=(n-t b) \cdot 1+t \cdot b \in d A_{0} .
$$

Now assume that $(u-1) b \leq n<u b$ for some $u: 1 \leq u \leq t$. Noting that

$$
(u+t) b-m_{0}=u b-t-1
$$

we see that

$$
(u-1) b<(u+t) b-m_{0}<b u-1 .
$$

Thus, we can further divide this case into two subcases.
SUbCASE IA. If $(u-1) b \leq n<(u+t) b-m_{0}$, then

$$
\begin{aligned}
n-(u-1) b & \leq(u+t) b-m_{0}-1-(u-1) b \\
& =(t+1)(3 t+3)-\left(3 t^{2}+4 t+1\right)-1 \\
& =2 t+1
\end{aligned}
$$

Therefore, $n=(n-(u-1) b) \cdot 1+(u-1) \cdot b \in d A_{0}$ because

$$
(n-(u-1) b)+(u-1) \leq(2 t+1)+(t-1)=3 t=d
$$

SUbCASE Ib. $(u+t) b-m_{0} \leq n<u b$. Then

$$
\begin{aligned}
0 \leq n-\left((u+t) b-m_{0}\right) & \leq u b-1-(u+t) b+m_{0}=m_{0}-t b-1 \\
& =\left(3 t^{2}+4 t+1\right)-t(3 t+3)-1=t
\end{aligned}
$$

Hence,

$$
n \equiv\left(n-\left((u+t) b-m_{0}\right)\right) \cdot 1+(u+t) \cdot b \quad\left(\bmod m_{0}\right) .
$$

Since

$$
\left(n-(u+t) b-m_{0}\right)+(u+t) \leq t+u+t \leq 3 t=d
$$

Therefore, $n \in d A_{0}$.
CASE II. Suppose that $d=3 t+1$ for some positive integer t. Then

$$
m_{0}=\left\lfloor\frac{(3 t+1)(3 t+5)}{3}\right\rfloor+1=3 t^{2}+6 t+2
$$

Let $a=1$ and $b=3 t+2$. Let $n \in\left[0, m_{0}\right)$. If $(t+1) b \leq n<m_{0}$, then

$$
\begin{aligned}
0 \leq n-(t+1) b & \leq m_{0}-1-(t+1) b \\
& =\left(3 t^{2}+6 t+2\right)-1-(t+1)(3 t+2)=t-1 .
\end{aligned}
$$

It therefore follows from

$$
(n-(t+1) b)+(t+1) \leq(t-1)+(t+1)=2 t<d
$$

that

$$
n=(n-(t+1) b) \cdot 1+(t+1) \cdot b \in d A_{0} .
$$

Next, we assume that $u b \leq n<(u+1) b$ for some integer u with $0 \leq u \leq t$. Noting that

$$
(u+t+2) b-m_{0}=u b+2 t+2=(u+1) b-t
$$

we see that

$$
u b<(u+t+2) b-m_{0}<(u+1) b .
$$

As in CASE I, we further divide the argument into two subcases.
Subcase IIA. If $u b \leq n<(u+t+2) b-m_{0}$, then

$$
\begin{aligned}
0 \leq n-u b & \leq(u+t+2) b-m_{0}-1-u b=(t+2) b-m_{0}-1 \\
& =(t+2)(3 t+2)-\left(3 t^{2}+6 t+2\right)-1=2 t+1 .
\end{aligned}
$$

Therefore, $n=(n-u b) \cdot 1+u b \in d A_{0}$ because

$$
(n-u b)+u \leq t+2 t+1=3 t+1=d
$$

Subcase IIb. If $(u+t+2) b-m_{0} \leq n<(u+1) b$, then

$$
\begin{aligned}
0 \leq n-\left((u+t+2) b-m_{0}\right) & \leq(u+1) b-1-\left((u+t+2) b-m_{0}\right) \\
& =m_{0}-1-(t+1) b \\
& =3 t^{2}+6 t+2-(t+1)(3 t+2)-1=t-1
\end{aligned}
$$

Noting that

$$
\left(n-\left((u+t+2) b-m_{0}\right)\right)+(u+t+2) \leq(t-1)+t+t+2=3 t+1=d
$$

we have

$$
n \equiv n+m_{0}=\left(n-(u+t+2) b-m_{0}\right) a+(u+t+2) b \in d A_{0} .
$$

CASE III. Suppose that $d=3 t+2$ for some nonnegative integer t. Then

$$
m_{0}=\left\lfloor\frac{(3 t+2)(3 t+6)}{3}\right\rfloor+1=3 t^{2}+8 t+5
$$

Let $a=1$ and $b=3 t+4$. Let $n \in\left[0, m_{0}\right)$. If $(t+1) b \leq n<m_{0}$, then

$$
0 \leq n-(t+1) b \leq m_{0}-1-(t+1) b=3 t^{2}+8 t+5-1-(t+1)(3 t+4)=t
$$

Therefore,

$$
(n-(t+1) b)+(t+1) \leq t+(t+1)=2 t+1<d
$$

which implies that $n=(n-(t+1) b) \cdot 1+(t+1) \cdot b \in d A_{0}$.
Now assume that $u b \leq n<(u+1) b$ for some integer u with $0 \leq u \leq t$. It is clear that

$$
u b<(u+t+2) b-m_{0}<(u+1) b .
$$

If $u b \leq n<(u+t+2) b-m_{0}$, then

$$
\begin{aligned}
n-u b & \leq\left((u+t+2) b-m_{0}\right)-1-u b \\
& =(t+2)(3 t+4)-\left(3 t^{2}+8 t+5\right)-1=2 t+2 .
\end{aligned}
$$

Therefore, $(n-u b)+u \leq 2 t+2+t=d$ implies that

$$
n=(n-u b) \cdot 1+u \cdot b \in d A_{0}
$$

If $(u+t+2) b-m_{0} \leq n<(u+1) b$, then

$$
\begin{aligned}
n-\left((u+t+2) b-m_{0}\right) & \leq(u+1) b-1-\left((u+t+2) b-m_{0}\right) \\
& =m_{0}-(t+1) b-1 \\
& =\left(3 t^{2}+8 t+5\right)-(t+1)(3 t+4)-1=t
\end{aligned}
$$

Hence,

$$
\left(n-\left((u+t+2) b-m_{0}\right)\right)+(u+t+2) \leq t+(t+t+2)=3 t+2=d
$$

which implies that

$$
n \equiv n+m_{0}=\left(n-\left((u+t+2) b-m_{0}\right)\right) \cdot 1+(u+t+2) \cdot b \in d A_{0} .
$$

Summarizing the above three cases, we conclude that

$$
m(d, 2) \geq m_{0}=\left\lfloor\frac{d(d+4)}{3}\right\rfloor+1 \quad \text { for all } d \geq 2
$$

4.3 Case $k=3$

It seems more complex to handle bases for \mathbb{Z}_{m} when compared with bases for $[1, m]$. An exact formula for $m(d, 3)$, is yet to be discovered. We now turn our attention to the estimates for $m(d, 3)$. In this section, we prove a lower bound for $m(d, 3)$ by constructing a good d-basis, which was first proved by Hsu and Jia (1994).

Theorem 13. $m(d, 3) \geq \frac{1}{16} d^{3}+\frac{3}{8} d^{2}+O(d)$ as $d \rightarrow \infty$.

Proof. Let $d \geq 4$ be a positive integer. Define

$$
\begin{aligned}
r & =\lfloor d / 4\rfloor, & b & =3 d-8 r+5 \\
c & =r b+d-3 r+2, & m_{0} & =r c+2 d-6 r+3 .
\end{aligned}
$$

Define $A=\{1, b, c\}$, and denote $A_{0}=\{0\} \cup A$. Then

$$
\begin{aligned}
m_{0} & =r c+2 d-6 r+3=r^{2} b+r d-3 r^{2}+2 r+2 d-6 r+3 \\
& =r^{2}(3 d-8 r+2)+r(d-4)+2 d+3=\frac{1}{16} d^{3}+\frac{3}{8} d^{2}+\gamma(d)
\end{aligned}
$$

where $\gamma(d)$ is linear in d with coefficients depending only on d modulo 4 . Therefore, we only need to show that A is a d-basis for $\mathbb{Z}_{m_{0}}$, i.e., $d A_{0}=\mathbb{Z}_{m_{0}}$.

For any nonnegative integers v, w with $v+w<d$, define

$$
I_{v, w}=[v b+w c, v b+w c+d-v-w] .
$$

Let $v, w \in[1, r]$. Then $v+w \leq 2 r<d$. If $n \in I_{v, w}$, then n can be written as

$$
n=(n-v b-w c) \cdot 1+v b+w c .
$$

Since $n-v b-w c \geq 0$ and

$$
n-v b-w c+v+w \leq d-v-w+v+w=d
$$

we see that $n \in d A_{0}$. Hence, $I_{v, w} \subseteq d A_{0}$. Similarly, for any $v, w \in[1, r]$, we have

$$
I_{r+v, w} \subseteq d A_{0} \quad \text { and } \quad I_{v, r+w} \subseteq d A_{0}
$$

The basic idea in the proof is to arrange all these intervals modulo m_{0} to cover an interval of length m_{0}.

It follows from $d-(v-1)-w \leq d-2 r+1<d$ that $I_{v-1, w} \subseteq d A_{0}$. Since

$$
b=3 d-8 r+5 \quad \text { and } \quad m_{0}=r c+2 d-6 r+3
$$

we see

$$
\begin{aligned}
m_{0}+(v-1) b+ & w c+d-(v-1)-w \\
& \geq m_{0}+v b-b+w c+d-2 r+1 \\
& =(r c+2 d-6 r+3)+v b-(3 d-8 r+5)+w c+d-2 t+1 \\
& =v b+(r+w) c-1
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left[m_{0}+(v-1) b+w c, v b+(r+w) c-1\right] \subseteq d A_{0} \tag{4.2}
\end{equation*}
$$

Similarly, it follows from the definition of m_{0}, b, and c that

$$
\begin{aligned}
m_{0}+ & (r+v) b+(w-1) c-1 \\
& =(r c+2 d-6 r+3)+r b+v b+w c-(r b+d-3 r+2)-1 \\
& =v b+(r+w) c+d-3 r \\
& \leq v b+(r+w) c+d-v-(r+w)
\end{aligned}
$$

Since $v+(r+w) \leq 3 r<d, I_{v, r+w} \subseteq d A_{0}$. Hence,

$$
\begin{equation*}
\left[v b+(r+w) c, m_{0}+(r+v) b+(w-1) c-1\right] \subseteq d A_{0} \tag{4.3}
\end{equation*}
$$

Noting that $c=r b+d-3 r+2$, we see

$$
\begin{aligned}
m_{0}+(r+v) b+(w-1) c+d & -(r+v)-(w-1) \\
\geq & m_{0}+v b+w c-c+r b+d-3 r+1 \\
& =m_{0}+v b+w c-1
\end{aligned}
$$

Hence, $m_{0}+I_{r+v, w-1} \subseteq d A_{0}$ implies that

$$
\begin{equation*}
\left[m_{0}+(r+v) b+(w-1) c, m_{0}+v b+w c-1\right] \subseteq d A_{0} \tag{4.4}
\end{equation*}
$$

Figure 4.1: Coverage of $\left[m_{0}+(v-1) b+w c, m_{0}+v b+w c-1\right]$
Therefore, it follows from (4.2), (4.3), and (4.4) that.

$$
\left[m_{0}+(v-1) b+w c, m_{0}+v b+w c-1\right] \subseteq d A_{0} \quad \text { for all } v, w \in[1, r]
$$

This implies that

$$
\begin{equation*}
\left[m_{0}+w c, m_{0}+r b+w c-1\right] \subseteq d A_{0} \quad \text { for all } w \in[1, r] \tag{4.5}
\end{equation*}
$$

When $r \geq 1$, we have

$$
\begin{aligned}
r b+w c+d-r-w & \geq r b+w c+d-2 r \\
& =w c+(r b+d-3 r+2)+r-2 \\
& \geq(w+1) c-1
\end{aligned}
$$

which implies that

$$
\left[m_{0}+r b+w c, m_{0}+(w+1) c-1\right] \subseteq d A_{0}
$$

It then follows from (4.5) that

$$
\left[m_{0}+w c, m_{0}+(w+1) c-1\right] \subseteq d A_{0} \quad \text { for all } \quad 1 \leq w \leq r
$$

Therefore, we have

$$
\begin{equation*}
\left[m_{0}+c, m_{0}+(r+1) c-1\right] \subseteq d A_{0} \tag{4.6}
\end{equation*}
$$

When $d \geq 12$, we have $r=\lfloor d / 4\rfloor \geq 3$. Then

$$
\begin{aligned}
(r+1) c+d-(r+1) & =m_{0}+c-d+5 r-4 \\
& \geq m_{0}+c+r-4 \\
& \geq m_{0}+c-1
\end{aligned}
$$

Hence, the fact that $I_{0, r+1} \subseteq d A_{0}$ implies that $\left[m_{0}+(r+1) c, 2 m_{0}+c-1\right] \subseteq d A_{0}$ when $d \geq 12$. Then

$$
\left[m_{0}+c, 2 m_{0}+c-1\right] \subseteq d A_{0}
$$

This proves that $d A_{0}=\mathbb{Z}_{m_{0}}$, i.e., the diameter of $\operatorname{Cay}\left(\mathbb{Z}_{m_{0}}, A\right)$ is at most d. The proof of the theorem is complete.

4.4 General Case

The following theorem can be used to construct large efficient generating sets A so that $m(d, A)$ is large by using small efficient generating sets.

Theorem 14. Let $d_{1} \geq 2, d_{2} \geq 2, k_{1} \geq 1$, and $k_{2} \geq 1$ be integers. Then

$$
m\left(d_{1}+d_{2}, k_{1}+k_{2}\right) \geq m\left(d_{1}, k_{1}\right) m\left(d_{2}, k_{2}\right)
$$

Proof. Let $A_{s}=\left\{0<a_{s 1}<a_{s 2}<\cdots<a_{s k_{s}}\right\}$ be a set of integers with

$$
m\left(d_{s}, A_{s}\right)=m\left(d_{s}, k_{s}\right)=m_{s} \quad \text { for } \quad s=1,2
$$

We may assume, without loss of generality, that $a_{s k_{s}}<m_{s}$ for $s=1,2$. Define

$$
A=A_{1} \cup\left\{m_{1} a_{2 \jmath} \mid \jmath=1,2, \ldots, k_{2}\right\}
$$

Since $|A|=k_{1}+k_{2}$, we only need to prove that A is a $\left(d_{1}+d_{2}\right)$-basis for $\mathbb{Z}_{m_{1} m_{2}}$.
Let n be any nonnegative integer. Since A_{1} is an d_{1}-basis for $\mathbb{Z}_{m_{1}}$, we see that

$$
n \equiv \sum_{\imath=1}^{k_{1}} x_{\imath} a_{1 \imath} \quad\left(\bmod m_{1}\right)
$$

where x_{\imath} 's are nonnegative integers with $\sum_{\imath=1}^{k_{1}} x_{\imath} \leq d_{1}$. Assume

$$
n=\sum_{\imath=1}^{k_{1}} x_{\imath} a_{1 \imath}+q m_{1}
$$

for some integer q. It follows from the fact that A_{2} is a d_{2}-basis for $\mathbb{Z}_{m_{2}}$ that

$$
q=\sum_{\jmath=1}^{k_{2}} y_{\jmath} a_{2 \jmath}+p m_{2}
$$

where y_{\jmath} 's are nonnegative integers with $\sum_{j=1}^{k_{2}} y_{\jmath} \leq d_{2}$, and p is an integer. Therefore,

$$
n \equiv \sum_{\imath=1}^{k_{1}} x_{\imath} a_{1 \imath}+\sum_{\jmath=1}^{k_{2}} y_{\jmath} m_{1} a_{2 \jmath} \quad\left(\bmod m_{1} m_{2}\right)
$$

where

$$
\sum_{i=1}^{k_{1}} x_{\imath}+\sum_{j=1}^{k_{2}} y_{j} \leq d_{1}+d_{2}
$$

This implies that $n \in\left(d_{1}+d_{2}\right) A_{0}$, where $A_{0}=A \cup\{0\}$. Hence, A is a $\left(d_{1}+d_{2}\right)$-basis for $\mathbb{Z}_{m_{1} m_{2}}$. Therefore,

$$
m\left(d_{1}, k_{1}\right) m\left(d_{2}, k_{2}\right)=m_{1} m_{2} \leq m\left(d_{1}+d_{2}, k_{1}+k_{2}\right)
$$

The proof is complete.
Theorem 15. Let d be a sufficiently large positive integer. Let $r=\lfloor d / 5\rfloor$ and define

$$
\begin{array}{ll}
b=4 d-15 r+7, & c=a r+d-4 r+2, \\
d=b r+2 d-4 r+4, & m=c r+3 d-12 r+5 .
\end{array}
$$

Then $A=\{1, b, c, d\}$ is a d-basis for \mathbb{Z}_{m}. Therefore,

$$
\begin{equation*}
m(d, 4) \geq \frac{1}{125} d^{4}+O\left(d^{3}\right) \quad \text { as } \quad d \rightarrow \infty \tag{4.7}
\end{equation*}
$$

If interested, a proof can be found in (Jia, 1992). Now we are ready to prove the following lower bound for $m(d, k)$ for any fixed $k \geq 4$ as d approaches infinity.

Theorem 16. For fixed $k \geq 4$ as $d \rightarrow \infty$,

$$
m(d, k) \geq \varepsilon_{k}\left(\frac{256}{125}\right)^{\lfloor k / 4\rfloor}\left(\frac{d}{k}\right)^{k}+O\left(d^{k-1}\right)
$$

where

$$
\varepsilon_{k}= \begin{cases}1, & \text { if } k \equiv 0 \text { or } 1 \quad(\bmod 4) \\ \frac{4}{3}, & \text { if } k \equiv 2 \quad(\bmod 4) \\ \frac{27}{16}, & \text { if } k \equiv 3 \quad(\bmod 4)\end{cases}
$$

Proof. Recall that

$$
\begin{aligned}
& m(d, 1)=d+1 \\
& m(d, 2)=\left\lfloor\frac{d(d+2)}{3}\right\rfloor+1=\frac{1}{3} d^{2}+O(d) \\
& m(d, 3) \geq \frac{1}{16} d^{3}+O\left(d^{2}\right)
\end{aligned}
$$

Therefore, for $1 \leq r \leq 3$, we have

$$
m(d, r) \geq \varepsilon_{r}\left(\frac{d}{r}\right)^{r}+O\left(d^{r-1}\right)
$$

where ε_{r} is defined as in the theorem.
Now we assume that

$$
d=k u+v \quad \text { and } \quad k=4 q+r
$$

where $0 \leq v<k$ and $0 \leq r \leq 3$. For convenience, let $m(0,0)=1$. Then

$$
\begin{aligned}
m(d, k) & =m(k u+v, k) \\
& \geq m(4 q u+r u, 4 q+r) \\
& \geq m(4 q u, 4 q) \cdot m(r u, r) \\
& \geq m(4 u, 4)^{q} \cdot\left(\varepsilon_{r} u^{r}+O\left(u^{r-1}\right)\right) \\
& \geq\left(\frac{256}{125} u^{4}+O\left(u^{3}\right)\right)^{q}\left(\varepsilon_{r} u^{r}+O\left(u^{r-1}\right)\right) \\
& =\varepsilon_{r}\left(\frac{256}{125}\right)^{q} u^{4 q+r}+O\left(u^{4 q+r-1}\right) \\
& =\varepsilon_{r}\left(\frac{256}{125}\right)^{q}\left(\frac{d-v}{k}\right)^{k}+O\left(\left(\frac{d-v}{k}\right)^{k-1}\right) \\
& =\varepsilon_{r}\left(\frac{256}{125}\right)^{\lfloor k / 4\rfloor}\left(\frac{d}{k}\right)^{k}+O\left(d^{k-1}\right) .
\end{aligned}
$$

This proves the theorem.

4.5 Remarks

The lower bound of Wong and Coppersmith has been improved several times by various authors. The best known lower bound was proved by Su in early 1990's. Jia and Su (1997) proved

$$
\begin{aligned}
m(d, k) & \geq \tau_{k}\left(\frac{5^{5} \cdot 7^{4}}{17^{5}}\right)^{\lfloor k / 5\rfloor}\left(\frac{d}{k}\right)^{k}+O\left(d^{k-1}\right) \\
& \approx \tau_{k}(5.2844)^{\lfloor k / 5\rfloor}\left(\frac{d}{k}\right)^{k}+O\left(d^{k-1}\right)
\end{aligned}
$$

where

$$
\tau_{k}= \begin{cases}1, & \text { if } k \equiv 0,1 \quad(\bmod 5) \\ \frac{4}{3}, & \text { if } k \equiv 2 \quad(\bmod 5) \\ \frac{4752}{2197} \approx 2.163, & \text { if } k \equiv 3 \quad(\bmod 5) \\ \frac{165888}{50625}=3.2768, & \text { if } k \equiv 4 \quad(\bmod 5)\end{cases}
$$

Chapter 5

GEOMETRIC REPRESENTATION OF \mathbb{Z}_{m}

In this chapter, we will introduce a geometric representation of \mathbb{Z}_{m}, the cyclic group of residue classes modulo m. This method was introduced by Wong and Coppersmith (1974). In order to do so, we first introduce a special function called the A-norm, where A is a generating set of \mathbb{Z}_{m}.

5.1 A-norm and Minimal Representations

Let d, k, and m be positive integers. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a d-basis for \mathbb{Z}_{m}. Then every element $s \in \mathbb{Z}_{m}$ can be written as a linear combination

$$
\sum_{\imath=1}^{k} a_{\imath} x_{\imath} \equiv s \quad(\bmod m)
$$

where x_{1}, \ldots, x_{k} are nonnegative integers with $\sum_{\imath=1}^{k} x_{\imath} \leq d$. For some elements in \mathbb{Z}_{m}, the number of elements in A needed in the above representations may be less than d. The A-norm of an element $s \in \mathbb{Z}_{m}$, denoted as $\|s\|_{A}$, is the smallest nonnegative integer ℓ such that s is a sum of ℓ not necessarily distinct elements in A. In other words,

$$
\|s\|_{A}=\min \left\{\ell \mid s=\sum_{\imath=1}^{k} a_{\imath} x_{\imath}, \quad \sum_{\imath=1}^{k} x_{\imath} \leq \ell \quad \text { and } x_{\imath} \geq 0 \text { integers }\right\} .
$$

Example 6. Let $A=\{1,3\}$. Then A is a generating set for \mathbb{Z}_{9}. It can be verified that
the following are the "shortest" representations by A :

$$
\begin{array}{lll}
0=1 \cdot 0+3 \cdot 0, & 1=1 \cdot 1+3 \cdot 0, & 2=1 \cdot 2+3 \cdot 0, \\
3=1 \cdot 1+3 \cdot 1, & 4=1 \cdot 1+3 \cdot 1, & 5=1 \cdot 2+3 \cdot 1, \\
6=1 \cdot 0+3 \cdot 2, & 7=1 \cdot 1+3 \cdot 2, & 8=1 \cdot 2+3 \cdot 2 .
\end{array}
$$

Hence,

$$
\begin{array}{c|lllllllll}
s & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline\|s\|_{A} & 0 & 1 & 2 & 1 & 2 & 3 & 2 & 3 & 4
\end{array}
$$

Therefore, A is a 4-basis for \mathbb{Z}_{9}.

Example 7. Let $A=\{1,7\}$. Then A is a 5 -basis for \mathbb{Z}_{10}. Note that $\|6\|_{A}=4$ because $6 \equiv 1 \cdot 2+7 \cdot 2(\bmod 10)$.

Example 8. Let $A=\{1,11\}$. Then it can be verified that A is a 10 -basis for \mathbb{Z}_{47}. It can be verified (see Figure 5.3) that

$$
\|0\|_{A}=0, \quad\|13\|_{A}=3, \quad\|28\|_{A}=8, \quad\|43\|_{A}=10, \quad \text { and } \quad\|44\|_{A}=4 .
$$

If $A=\{1,11,78\}$, then the A-norm of 113 in \mathbb{Z}_{138} is 6 .

Proposition 5. Let $s, t \in \mathbb{Z}_{m}$, and let A be a subset of \mathbb{Z}_{m}. Then
(v) $\|s+t \mid\|_{A} \leq\|s\|_{A}+\|t\|_{A}$;
(2u) $\|\alpha s\|_{A} \leq \alpha\|s\|_{A}$ for any nonnegative integer α.

Proposition 6. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a subset of \mathbb{Z}_{m}, and $s \in \mathbb{Z}_{m}$. Assume that

$$
s+a_{\imath_{0}}=\sum_{\imath=1}^{k} x_{\imath} a_{\imath}, \quad \text { where } \quad\left\|s+a_{\imath 0}\right\|_{A}=\sum_{\imath=1}^{k} x_{\imath} .
$$

If $\left\|s+a_{2_{0}}\right\|_{A} \leq\|s\|_{A}$, then $x_{2_{0}}=0$.

Proof. Suppose that $x_{2_{0}} \geq 1$. Then

$$
s=\left(s+a_{\imath_{0}}\right)-a_{\imath_{0}}=\sum_{\imath=1}^{k} x_{\imath} a_{\imath}-a_{\imath_{0}}=\sum_{\imath \neq \imath_{0}} x_{\imath} a_{\imath}+\left(x_{\imath_{0}}-1\right) a_{\imath_{0}}
$$

is a valid representation of s by A, which implies that

$$
\|s\|_{A} \leq \sum_{\imath \neq \imath_{0}} x_{\imath}+\left(x_{\imath_{0}}-1\right)=\sum_{\imath=1}^{k} x_{\imath}-1=\left\|s+a_{\imath_{0}}\right\|_{A}-1 \leq\|s\|_{A}-1
$$

which is a contradiction.

Proposition 7. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a subset of \mathbb{Z}_{m}, and $s \in \mathbb{Z}_{m}$. If

$$
\left\|s-a_{\imath}\right\|_{A} \geq\|s\|_{A} \quad \text { for all } \quad \imath=1,2, \ldots, k
$$

then $s=0$.

Proof. If $s \neq 0$, then s can be written as

$$
s=\sum_{\imath=1}^{k} x_{\imath} a_{\imath} \quad \text { and } \quad\|s\|_{A}=\sum_{\imath=1}^{k} x_{\imath},
$$

where at least one x_{\imath} is positive, say, $x_{1} \geq 1$. Then

$$
s-a_{1}=\left(x_{1}-1\right) a_{1}+x_{2} a_{2}+\cdots+x_{k} a_{k},
$$

which implies that

$$
\left\|s-a_{1}\right\|_{A} \leq\left(x_{1}-1\right)+x_{2}+\cdots+x_{k}=\|s\|_{A}-1,
$$

which is a contradiction.

5.2 Ordering of 2-Dimensional Lattice Points

Before describing the geometric representation of \mathbb{Z}_{m}, an ordering of the lattice points in the first quadrant of \mathbb{R}^{2} is introduced. Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$
be two lattice points in the first quadrant, i.e., x_{1}, x_{2}, y_{1}, and y_{2} are all nonnegative integers. We say that $P \preccurlyeq Q$ if

$$
x_{1}+y_{1}<x_{2}+y_{2}
$$

or

$$
y_{1} \leq y_{2} \quad \text { when } \quad x_{1}+y_{1}=x_{2}+y_{2}
$$

If $P \preccurlyeq Q$ and $P \neq Q$, we write $P \prec Q$. It is easy to see that \prec is a total ordering of the set of all lattice points in the first quadrant of \mathbb{R}^{2} as shown in Figure 5.1.

$$
\begin{aligned}
(0,0) & \prec(1,0) \prec(0,1) \\
& \prec(2,0) \prec(1,1) \prec(0,2) \\
& \prec(3,0) \prec(2,1) \prec(1,2) \prec(0,3) \\
& \prec(4,0) \prec(3,1) \prec(2,2) \prec(1,3) \prec(0,4) \\
& \prec(5,0) \prec(5,1) \prec(5,2) \prec(5,3) \prec(5,4) \prec(5,5) \\
& \prec \cdots \cdots
\end{aligned}
$$

Figure 5.1: Total ordering of lattice points in the first quadrant of \mathbb{R}^{2}.

Definition 17. Let d and m be positive integers. Assume that $A=\{a, b\}$ is a d-basis for \mathbb{Z}_{m}. The following representation of $s \in \mathbb{Z}_{m}$ as a linear combination of the elements in A

$$
s \equiv a x+b y \quad(\bmod m) \quad(x \text { and } y \text { are nonnegative integers })
$$

is said to be minimal if

$$
s \equiv a x^{\prime}+b y^{\prime} \quad(\bmod m) \quad \text { implies } \quad(x, y) \preccurlyeq\left(x^{\prime}, y^{\prime}\right),
$$

where x^{\prime} and y^{\prime} are nonnegative integers.

Figure 5.2: Ordering of the lattice points in \mathbb{R}^{2}.

It follows immediately from the definition that every element in \mathbb{Z}_{m} has a unique minimal representation by a d-basis $A=\{a, b\}$. It is also easy to see that $\|s\|_{A}=x+y$ if $s=a x+b y$ is a minimal representation of $s \in \mathbb{Z}_{m}$. However, the converse is not true. For instance, $A=\{1,11\}$ is a 10 -basis for \mathbb{Z}_{20}. Then both representations

$$
13 \equiv 1 \cdot 0+11 \cdot 3 \equiv 1 \cdot 2+11 \cdot 1 \quad(\bmod 20)
$$

give $\|13\|_{A}=3$. But only one is a minimal representation of 13 by A in \mathbb{Z}_{20}.

5.3 Geometric Representation of \mathbb{Z}_{m}

Definition 18. Let $A=\{a, b\}$ be a d-basis for \mathbb{Z}_{m}. The A-representation of \mathbb{Z}_{m}, denoted as $\mathscr{G}(A, m)$, is the set of all the lattice points (x, y) in the first quadrant such that $\xi(x, y)=a x+b y$ is the minimal representation in \mathbb{Z}_{m}.

Let $A=\{a, b\}$ be a d-basis for \mathbb{Z}_{m}. Because each element $s \in \mathbb{Z}_{m}$ has a unique minimal representation by using $A=\{a, b\}, \xi$ is a one-to-one and onto function from $\mathscr{G}(A, m)$ to \mathbb{Z}_{m}. This function ξ may be regarded as a function from $\mathbb{Z}^{2} \rightarrow \mathbb{Z}_{m}$ with $\xi(x, y)=a x+b y$, where \mathbb{Z}^{2} is the set of all integer lattice points in \mathbb{R}^{2}.

This geometric representation of \mathbb{Z}_{m} by a generating set A was first introduced by Wong and Coppersmith (1974). This representation can be generalized to arbitrary k generators which will be discussed later in this chapter.

The A-representation of \mathbb{Z}_{m} is often displayed by using a chart of lattice points (x, y) arranged at their relative locations and filled with its labeling $\xi(x, y)=a x+b y \in$ \mathbb{Z}_{m}. With this arrangement, the A-norm $\|s\|_{A}$ of an element is equal to the L^{1}-norm in \mathbb{Z}^{2}. In other words,

$$
\|s\|_{A}=\|(x, y)\|_{L^{1}}=x+y
$$

where $s=\xi(x, y)=a x+b y \in \mathbb{Z}_{m}$ is the minimal representation of s.
For example, Figure 5.3 shows the A-representation of \mathbb{Z}_{65}, where $A=\{5,21\}$, followed by two more examples of geometric representations.

59	64	4	9	14			
38	43	48	53	58			
17	22	27	32	37			
61	1	6	11	16			
40	45	50	55	60			
19	24	29	34	39	44	49	54
63	3	8	13	18	23	28	33
42	47	52	57	62	2	712	12
21	26	31	36	41	46	51	56
0	5	10	15	20	25	30	35

Figure 5.3: $\mathscr{G}(A, 65)$, the A-representation of \mathbb{Z}_{65} with $A=\{5,21\}$.

60	67	4	11	18	25	32	39	46	53
50	57	64	1	8	15	22	29	36	43
40	47	54	61	68	5	12	19	26	33
30	37	44	51	58	65	2	9	16	23
20	27	34	41	48	55	62	69	6	13
10	17	24	31	38	45	52	59	66	3
0	7	14	21	28	35	42	49	56	63

41	42	43	
30	31	32	
19	20	21	
8	9	10	
44	45	46	
33	34	35	36
	37	38	39
22	23	24	25
11	26	27	28
12	13	14	15
0	16	17	

Figure 5.4: A-representation of \mathbb{Z}_{70} with $A=\{7,10\}$ (left) and A-representation of \mathbb{Z}_{47} with $A=\{1,11\}$ (right).

Let A be a set of integers. Let $d\left(A, \mathbb{Z}_{m}\right)$ denote the smallest positive integer d such that A is a d-basis for \mathbb{Z}_{m}.

Theorem 17 (Wong and Coppersmith, 1974). Let $A=\{a, b\}$ be a set of integers with $\operatorname{gcd}(a, b)=1$. If m is a positive integer, then $\mathscr{G}(A, m)$ is of the form as shown in Figure 5.5, where $u \geq 0, v \geq 0, p>0$ and $q>0$. Therefore,

$$
d\left(A, \mathbb{Z}_{m}\right)=u+q+\max \{v, p\}-2
$$

Figure 5.5: $\mathscr{G}(A, m)$, the geometric representation of \mathbb{Z}_{m} by $A=\{a, b\}$.
In order to prove this theorem, the following lemma is needed.
Lemma 1. Let $A=\{a, b\}$ with $\operatorname{gcd}(a, b)=1$. If $\left(x_{0}, y_{0}\right) \notin \mathscr{G}(A, m)$, then $(x, y) \notin$ $\mathscr{G}(A, m)$ for all lattice points (x, y) with

$$
x \geq x_{0} \quad \text { and } \quad y \geq y_{0}
$$

Proof. If not, then there exists $\left(x_{1}, y_{1}\right) \in \mathscr{G}(A, m)$ with $\left(x_{0}, y_{0}\right) \prec\left(x_{1}, y_{1}\right)$. Assume without loss of generality, that $\left(x_{1}, y_{1}\right)$ is such a lattice point that is closest to $\left(x_{0}, y_{0}\right)$ and $x_{1}>x_{0}$ and $y_{1} \geq y_{0}$. Since $\left(x_{1}-1, y_{1}\right) \notin \mathscr{G}(A, m)$, it follows from the construction of $\mathscr{G}(A, m)$ that there exists a lattice $\left(x_{2}, y_{2}\right) \in \mathscr{G}(A, m)$ with $\left(x_{2}, y_{2}\right) \prec\left(x_{1}-1, y_{1}\right)$ such that

$$
a x_{2}+b y_{2} \equiv a\left(x_{1}-1\right)+b y_{1} \quad(\bmod m) .
$$

Therefore,

$$
a\left(x_{2}+1\right)+b y_{2} \equiv a x_{1}+b y_{1} \quad(\bmod m)
$$

Since $\left(x_{2}+1, y_{2}\right) \prec\left(x_{1}, y_{1}\right)$, we see $\left(x_{1}, y_{1}\right) \notin \mathscr{G}(A, m)$, which is a contradiction.

Proof of Theorem 17. For convenience, let $R=\mathscr{G}(A, m)$. It follows from Lemma 1 that R shapes as shown in Figure 5.6.

Figure 5.6: In $\mathscr{G}(A, m)$, the number of B_{\imath} corners must be at most one.

It only needs to be shown that R contains at most one corner like B_{\imath} as shown in the above figure.

First, for each $\imath: 1 \leq \imath \leq t$, assume that $\left(x_{\imath}, y_{\imath}\right) \in B_{\imath}$ with

$$
\left(x_{\imath}-1, y_{\imath}\right) \in R \quad \text { and } \quad\left(x_{\imath}, y_{\imath}-1\right) \in R
$$

Since $\left(x_{i}, y_{\imath}\right) \notin R$, there is a lattice point $\left(x_{\imath}^{\prime}, y_{\imath}^{\prime}\right) \in R$ such that

$$
a x_{\imath}+b y_{\imath} \equiv a x_{\imath}^{\prime}+b y_{\imath}^{\prime} \quad(\bmod m)
$$

We claim that $\left(x_{\imath}^{\prime}, y_{\imath}^{\prime}\right)=(0,0)$. Otherwise, then either $\left(x_{\imath}^{\prime}-1, y_{\imath}^{\prime}\right) \in R$ or $\left(x_{\imath}^{\prime}, y_{\imath}^{\prime}-1\right) \in$ R or both, say, $\left(x_{\imath}^{\prime}-1, y_{\imath}^{\prime}\right) \in R$. Since

$$
a\left(x_{\imath}-1\right)+b y_{\imath}=a x_{\imath}+b y_{\imath}-a \equiv a x_{\imath}^{\prime}+b y_{\imath}^{\prime}-a=a\left(x_{\imath}^{\prime}-1\right)+b y_{\imath}^{\prime} \quad(\bmod m)
$$

we see that $\left(x_{\imath}^{\prime}-1, y_{\imath}^{\prime}\right) \in R$ implies $\left(x_{\imath}-1, y_{\imath}\right) \notin R$, a contradiction. Therefore,

$$
a x_{\imath}+b y_{\imath} \equiv a \cdot 0+b \cdot 0 \equiv 0 \quad(\bmod m)
$$

Assume that $t>1$. Since

$$
a x_{\imath}+b y_{\imath} \equiv 0 \quad(\bmod m), \quad \text { for } \quad \imath=1,2, \ldots, t
$$

we see that, in particular,

$$
a\left(x_{1}-1\right)+b y_{1} \equiv a\left(x_{2}-1\right)+b y_{2} \quad(\bmod m)
$$

This is a contradiction because both $\left(x_{1}-1, y_{1}\right)$ and $\left(x_{2}-1, y_{2}\right)$ are in R. Therefore $t=1$, i.e., R has at most one corner that is strictly inside the first quadrant as shown in Figure 5.5.

5.4 Tiling \mathbb{Z}^{2}

Let $A=\{a, b\}$ be a d-basis for \mathbb{Z}_{m}. Define

$$
L_{0}=\left\{\left(x_{0}, y_{0}\right) \in \mathbb{Z}^{2} \mid a x_{0}+b y_{0} \equiv 0(\bmod m)\right\} .
$$

If $\left(x_{0}, y_{0}\right) \in L_{0}$, then

$$
a x+b y \equiv a\left(x_{0}+x\right)+b\left(y_{0}+y\right) \quad(\bmod m) \quad \text { for all }(x, y) \in \mathscr{G}(A, m)
$$

Hence, $\xi(x, y)=\xi\left(x_{0}+x, y_{0}+y\right)$ for all $(x, y) \in \mathscr{G}(A, m)$. This means that $\mathscr{G}(A, m)$ and its translation by $\left(x_{0}, y_{0}\right)$

$$
\left(x_{0}, y_{0}\right)+\mathscr{G}(A, m)=\left\{\left(x_{0}+x, y_{0}+y\right) \mid(x, y) \in \mathscr{G}(A, m)\right\}
$$

have the same labeling ξ. Note that the translation has the same shape as the original $\mathscr{G}(A, m)$.

On the other hand, if $(x, y) \in \mathbb{Z}^{2}$ is a lattice point, then $\xi(x, y)=\xi\left(x^{\prime}, y^{\prime}\right)$ for some $\left(x^{\prime}, y^{\prime}\right) \in \mathscr{G}(A, m)$. Then

$$
\xi\left(x-x^{\prime}, y-y^{\prime}\right)=a\left(x-x^{\prime}\right)+b\left(y-y^{\prime}\right)=\xi(x, y)-\xi\left(x^{\prime}, y^{\prime}\right) \equiv 0 \quad(\bmod m) .
$$

Let $x_{0}=x-x^{\prime}$ and $y_{0}=y-y^{\prime}$. Then

$$
(x, y)=\left(x_{0}, y_{0}\right)+\left(x^{\prime}, y^{\prime}\right),
$$

which implies that $(x, y) \in\left(x_{0}, y_{0}\right)+\mathscr{G}(A, m)$. Therefore, the following theorem is obtained.

Theorem 18. Let $A=\{a, b\}$ be a d-basis for \mathbb{Z}_{m} for some integer d. Then
(a) $\mathbb{Z}^{2}=\bigcup_{\left(x_{0}, y_{0}\right) \in L_{0}}\left(\left(x_{0}, y_{0}\right)+\mathscr{G}(A, m)\right) ;$
(b) $\left(\left(x_{0}^{\prime}, y_{0}^{\prime}\right)+\mathscr{G}(A, m)\right) \cap\left(\left(x_{0}^{\prime \prime}, y_{0}^{\prime \prime}\right)+\mathscr{G}(A, m)\right)=\emptyset$ for all $\left(x_{0}^{\prime}, y_{0}^{\prime}\right) \in L_{0}$ and $\left(x_{0}^{\prime \prime}, y_{0}^{\prime \prime}\right) \in L_{0}$ with $\left(x_{0}^{\prime}, y_{0}^{\prime}\right) \neq\left(x_{0}^{\prime \prime}, y_{0}^{\prime \prime}\right)$.

In other words, \mathbb{Z}^{2} can be tiled by $\mathscr{G}(A, m)$ as shown in Figure 5.7.

Figure 5.7: $\mathscr{G}(A, m)$ tiles \mathbb{Z}^{2}.

5.5 An Upper Bound for $m(d, 2)$

Theorem 19. Let $d \geq 2$ be an integer. Then

$$
\begin{equation*}
m(d, 2) \leq\left\lfloor\frac{d(d+4)}{3}\right\rfloor+1 \quad \text { for all } \quad d \geq 2 \tag{5.1}
\end{equation*}
$$

Proof. First, we show that m_{0} is indeed also an upper bound for $m=m(d, 2)$. Assume that $A=\{a, b\}$ is an optimal d-basis for \mathbb{Z}_{m}. Then Theorem 17 shows that the A representation $\mathscr{G}(A, m)$ is an L-shaped block of m lattice points labelled with elements in \mathbb{Z}_{m} as shown in Figure 5.5. We again divide this part of the proof into the following three cases.

CASE 1. Assume that $d=3 t$ for some positive integer t. It follows from Theorem 17 that

$$
u+q+\max \{v, p\}-2 \leq d=3 t
$$

The L-shaped A-representation $\mathscr{G}(A, m)$ of \mathbb{Z}_{m} would contain the maximum number of lattice points when $u=q=t+1$ and $v=p=t$, in which case we would have

$$
m=(t+1)^{2}+2(t+1) t=3 t^{2}+4 t+1=m_{0}
$$

CASE 2. Assume that $d=3 t+1$ for some positive integer t. Then

$$
\begin{equation*}
u+q+\max (v, p)-2 \leq d=3 t+1 \tag{5.2}
\end{equation*}
$$

where u, v, p and q are as defined in Theorem 17. It is easy to see that, when $u=v=$ $p=q=t+1$, the L -shaped $\mathscr{G}(A, m)$ would contain the maximum number of lattice points: $3(t+1)^{2}=3 t^{2}+6 t+3>m_{0}$. However, we prove that the A-representation $\mathscr{G}(A, m)$ of \mathbb{Z}_{m} cannot have this shape with $u=v=p=q=t+1$. Otherwise, then the number of lattice points in $\mathscr{G}(A, m)$ is $m=3(t+1)^{2}$. The lattice point $(t+1, t+1)$ at the corner must represent 0 in \mathbb{Z}_{m}. Hence, as shown in Figure 5.8, we have

Figure 5.8: This cannot be an A-representation $\mathscr{G}(A, m)$ in any case.

$$
(t+1) \cdot a+(t+1) \cdot b \equiv 0 \quad(\bmod m)
$$

which implies that

$$
a+b \equiv 0 \quad(\bmod 3(t+1)) .
$$

Then there exists an integer λ_{0} such that

$$
a+b-m=3(t+1) \lambda_{0} .
$$

Noting that $m=3(t+1)^{2}$, we see that

$$
a+b=m+3(t+1) \lambda_{0}=3(t+1)\left(t+1+\lambda_{0}\right)=3(t+1) \lambda,
$$

where $\lambda=t+1+\lambda_{0}$. Since $1 \leq a<b<m=3(t+1)^{2}$, we see that $1 \leq \lambda<2(t+1)$. We claim that $\operatorname{gcd}(\lambda, t+1)=1$. Otherwise, we may write

$$
\lambda=r \lambda^{\prime} \quad \text { and } \quad t+1=r t^{\prime} \quad \text { for some integer } r \text { with } \quad 2 \leq r \leq t+1
$$

Then

$$
\begin{aligned}
t^{\prime} \cdot a+t^{\prime} \cdot b & =t^{\prime}(a+b)=t^{\prime} \cdot 3(t+1) \lambda \\
& =3(t+1)^{2} t^{\prime} r \lambda^{\prime}=3(t+1)^{2} \lambda^{\prime} \equiv 0 \quad(\bmod m)
\end{aligned}
$$

Hence, the lattice point $\left(t^{\prime}, t^{\prime}\right)$ also represents 0 , i.e., $\xi\left(t^{\prime}, t^{\prime}\right)=0$. It is easy to see that $1 \leq t^{\prime}<t+1$, which implies that $\left(t^{\prime}, t^{\prime}\right) \in \mathscr{G}(A, m)$. This is a contradiction
because there are at least two distinct lattice points, $(0,0)$ and $\left(t^{\prime}, t^{\prime}\right)$, both representing 0 . Therefore, we must have $\operatorname{gcd}(\lambda, t+1)=1$. This implies that the equation

$$
\lambda x \equiv a \quad(\bmod (t+1))
$$

has a solution $x_{0}: t+2 \leq x_{0} \leq 2 t+1$. Then

$$
\lambda x_{0}=a+(t+1) \sigma \quad \text { for some integer } \quad \sigma .
$$

Therefore, we have

$$
\begin{aligned}
x_{0} b & =x_{0}(a+b)-x_{0} a \\
& =x_{0} \cdot 3(t+1) \lambda-x_{0} a \\
& =3(t+1)(a+(t+1) \sigma)-x_{0} a \\
& \equiv\left(3(t+1)-x_{0}\right) a \quad(\bmod m) .
\end{aligned}
$$

This means

$$
\begin{aligned}
\xi\left(0, x_{0}\right) & =0 \cdot a+x_{0} \cdot b \\
& \equiv\left(3(t+1)-x_{0}\right) \cdot a+0 \cdot b \\
& =\xi\left(3(t+1)-x_{0}, 0\right) \quad(\bmod m) .
\end{aligned}
$$

However,

$$
t+1<x_{0} \leq 2 t+1 \quad \text { and } \quad t+1 \leq 3(t+1)-x_{0} \leq 2 t+1
$$

imply that

$$
\left(0, x_{0}\right) \in \mathscr{G}(A, m) \quad \text { and } \quad\left(3(t+1)-x_{0}, 0\right) \in \mathscr{G}(A, m)
$$

Hence, we have two distinct lattice points $\left(0, x_{0}\right)$ and $\left(3(t+1)-x_{0}, 0\right)$ in $\mathscr{G}(A, m)$ representing the same value in \mathbb{Z}_{m}, which is a contradiction. This proves that, when
$d=3 t+1$, the optimal L -shaped block with maximum number of lattice points cannot be a geometric representation by any generating set $A=\{a, b\}$. Therefore, the next best possible dimension for $\mathscr{G}(A, m)$ with maximum number of lattice points is

$$
u=t+1, \quad q=t+2, \quad \text { and } \quad p=v=t
$$

which gives

$$
m=(t+1)(t+2)+t(t+1)+t(t+2)=3 t^{2}+6 t+2=m_{0}
$$

CASE 3. Suppose that $d=3 t+2$ for some nonnegative integer t. It is easy to see that the best possible dimension for $\mathscr{G}(A, m)$ is

$$
u=v=p=t+1 \quad \text { and } \quad q=t+2
$$

Then

$$
m=(t+1)(t+2)+(t+1)^{2}+(t+1)(t+2)=3 t^{2}+8 t+5=m_{0}
$$

Combining CASES 1, 2, and 3, we have that

$$
m(d, 2) \leq m_{0}=\left\lfloor\frac{d(d+4)}{3}\right\rfloor+1 \quad \text { for all } \quad d \geq 2
$$

This completes the proof of Theorem 12.

Therefore, from the previous we have the following theorem.

Theorem 20 (Hsu and Jia (1994)). Let $d \geq 2$ be an integer. Then

$$
\begin{equation*}
m(d, 2)=\left\lfloor\frac{d(d+4)}{3}\right\rfloor+1 \tag{5.3}
\end{equation*}
$$

5.6 Ordering k-dimensional Lattice Points and Minimal A-Representations

In this section, the geometric representation of \mathbb{Z}_{m} is extended by a generating A with k integers. This representation will be used in developing upper bound for $m(d, k)$ for arbitrary positive integers d and k. The A-representation of \mathbb{Z}_{m} is k-dimensional if the generating set A contains k integers.

In order to describe the k-dimensional A-representation of \mathbb{Z}_{m}, the total ordering \prec for the lattice points in the first quadrant of \mathbb{R}^{2} defined earlier needs to be extended to one for the lattice points \mathbb{N}^{k} where \mathbb{N} is the set of all nonnegative integers.

Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{N}^{k}$. The L^{1}-norm of \mathbf{x}, denoted as $\|\mathbf{x}\|_{L^{1}}$, is defined by $\|\mathbf{x}\|_{L^{1}}=x_{1}+x_{2}+\cdots+x_{k}$.

The binary relation \preccurlyeq for \mathbb{N}^{2} is defined on page 45 . Let k be a positive integer ≥ 3. Assume that a binary relation \preccurlyeq on \mathbb{N}^{k-1} is already defined. Now define a binary relation ${ }^{1} \preccurlyeq$ on \mathbb{N}^{k} recursively as follows. Let \mathbb{N}^{k} denote the set of all k-tuples of nonnegative integers. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{N}^{k}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{N}^{k}$ be any two lattice points. We say that $\mathrm{x} \preccurlyeq \mathrm{y}$ if
(2) $\|\mathbf{x}\|_{L^{1}}<\|\mathbf{y}\|_{L^{1}}$; or
(22) $\|\mathbf{x}\|_{L^{1}}=\|\mathbf{y}\|_{L^{1}}$ and $x_{k}<y_{k}$; or
(ıuv) $\|\mathbf{x}\|_{L^{1}}=\|\mathbf{y}\|_{L^{1}}$ and $x_{k}=y_{k}$ and $\left(x_{1}, \ldots, x_{k-1}\right) \preccurlyeq\left(y_{1}, \ldots, y_{k-1}\right)$ as elements in \mathbb{N}^{k-1} 。

If $x \preccurlyeq y$ and $x \neq y$, we write $x \prec y$. In the 3-dimensional case, Figure 5.9 shows the ordering of lattice points in \mathbb{N}^{3} arranged according to the ordering \preccurlyeq.

[^1] $(0,1,1),(0,0,2),(3,0,0),(2,1,0),(1,2,0),(0,3,0),(2,0,1),(1,1,1)$, $(0,2,1),(1,0,2),(0,1,2),(0,0,3),(4,0,0),(3,1,0),(2,2,0),(1,3,0)$, $(0,4,0),(3,0,1),(2,1,1),(1,2,1),(0,3,1),(2,0,2),(1,1,2),(0,2,2)$,

Figure 5.9: Ordering of lattice points in \mathbb{N}^{3}

Figure 5.10: Ordering lattice points in \mathbb{N}^{3}.

Let $A=\left\{a_{1}<a_{2}<\cdots<a_{k}\right\}$ be a d-basis for \mathbb{Z}_{m}. We use a to denote the k-tuple with elements in A as the components, namely

$$
\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right) .
$$

Define $\xi_{\mathrm{a}}: \mathbb{N}^{k} \rightarrow \mathbb{Z}_{m}$ by

$$
\xi_{\mathbf{a}}(\mathbf{x})=\mathbf{a} \cdot \mathbf{x}=\sum_{i=1}^{k} a_{i} x_{i} \quad(\bmod m) \quad \text { for all } \mathbf{x} \in \mathbb{N}^{k}
$$

Let $s \in \mathbb{Z}_{m}$. Then

$$
s \equiv \mathbf{a} \cdot \mathbf{x}=\sum_{\imath=1}^{k} a_{\imath} x_{\imath} \quad(\bmod m)
$$

is called a minimal representation of s by A (or a minimal A-representation of s) if

$$
s \equiv \mathbf{a} \cdot \mathbf{y} \quad(\bmod m) \quad \text { implies } \quad \mathbf{x} \preccurlyeq \mathbf{y} .
$$

Example 9. Let $A=\{1,11,78\}$, then A is a 10 -basis for \mathbb{Z}_{138}. lt is easy to verify that

$$
43 \equiv 3 \cdot 1+2 \cdot 11+2 \cdot 78 \quad(\bmod 138)
$$

is a minimal representation of 43 .

Let A be a d-basis for \mathbb{Z}_{m}. Since \prec is a total ordering, we see that every element in \mathbb{Z}_{m} has a unique minimal representation by A.

$5.7 k$-dimensional Geometric Representation

Definition 19. Let k be a positive integer and let $A=\left\{a_{1}<a_{2}<\cdots<a_{k}\right\}$ be a generating set of \mathbb{Z}_{m}. The A-representation of \mathbb{Z}_{m}, denoted by $\mathscr{G}(A, m)$, is the set of all the lattice points $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{N}^{k}$ such that $\xi(\mathbf{x})=\sum_{\imath=1}^{k} a_{\imath} x_{2}$ is the minimal representation in \mathbb{Z}_{m}.

For any given d-basis $A=\left\{a_{1}, \ldots, a_{k}\right\}$, the construction of the A-representation of \mathbb{Z}_{m} is similar to that in the 2-dimensional case. We proceed to fill each lattice point $\mathrm{x}=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{N}^{k}$ with an element $s \in \mathbb{Z}_{m}$ where

$$
s \equiv \sum_{\imath=1}^{k} a_{\imath} x_{\imath} \quad(\bmod m)
$$

Start with the origin $(0, \ldots, 0)$, and then follow the ordering \prec for the elements in \mathbb{N}^{k}. At each point x if the value s has not appeared so far, fill x with s; otherwise the lattice
point x is left blank. The process ends when all values of $s \in \mathbb{Z}_{m}$ have been exhausted. It follows from definition that the set of lattice points that have elements filled is the A-representation $\mathscr{G}(A, m)$ of \mathbb{Z}_{m}. Figure 5.11 shows the A-representation of \mathbb{Z}_{138} with $A=\{1,11,78\}$.

Figure 5.11: $\mathscr{G}(A, 138)$, the A-representation of \mathbb{Z}_{138} with $A=\{1,11,78\}$.

Let m and k be two positive integers with $m>k$. Let \mathbf{e}_{i} denote the lattice point $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{N}^{k}$ such that $x_{i}=1$ and $x_{j}=0$ for all $j \neq i$. Let $A=$ $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a k-element subset of \mathbb{Z}_{m}. Let $\mathscr{G}(A, m)$ denote the A-representation of \mathbb{Z}_{m}.

The following are a few examples.

Figure 5.12: $\mathscr{G}(A, 57)$, the A-representation of \mathbb{Z}_{57} with $A=\{1,13,33\}$.

Figure 5.13: $\mathscr{G}(A, 340)$, the A-representation of \mathbb{Z}_{340} with $A=\{1,90,191\}$.

Chapter 6

REMARKS AND OPEN PROBLEMS

Undirected Extremal Cayley Graphs. We only briefly mentioned the definitions for $M(d, k)$ and $\bar{M}(\lambda, k)$, the two extremal functions related to undirected Cayley graphs. They have been studied by various authors. In particular, Chen and Jia (1993) and Lee, Sheu and Jia (2008) proved that

$$
\begin{aligned}
& M(d, 2)=2 d^{2}+2 d+1 \\
& \bar{M}(\lambda, 2)=\frac{9}{2} \lambda^{2}+O(\lambda)
\end{aligned}
$$

It is still an open problem to compute these functions for $k \geq 3$.

An Extremal Problem on Multi-dimensional Tori: Minimum Diameter. Given positive integers k and m, let $d=d_{m}(k)$ be the least positive integer such that there exists a generating set $A=\left\{a_{1}, a_{2}, \ldots, a_{k+1}\right\} \subseteq \mathbb{Z}_{m}^{k}$ so that

$$
\operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}^{k}, A\right)\right) \leq d
$$

If A is a d-basis for \mathbb{Z}_{m}^{k}, then

$$
\binom{k+1+d}{k+1}=\binom{k+2+d-1}{d} \geq m^{k}
$$

This implies that, for any given fixed positive integer k,

$$
d \geq \sqrt[k+1]{(k+1)!}(1+o(1)) m^{\frac{k}{k+1}} \quad \text { as } \quad m \rightarrow \infty
$$

One open question is to determine the correct leading coefficient. Note that, when $k=1$, the problem has been studied extensively.

Another Extremal Problem on Multi-dimensional Tori: Maximum Size. Another aspect of the above problem is to determine the largest possible m with given d and k. Namely, for any given positive integers d and k, let $m=m_{k}(d)$ be the largest possible integer m such that there exists a generating set $A=\left\{a_{1}, a_{2}, \ldots a_{k+1}\right\}$ so that

$$
\operatorname{diam}\left(\operatorname{Cay}\left(\mathbb{Z}_{m}^{k}, A\right)\right) \leq d
$$

It is easy to verify that

$$
m=m_{k}(d) \leq \frac{1+o(1)}{\sqrt[k]{(k+1)!}} d^{1+\frac{1}{k}}
$$

It can be proved that

$$
m_{k}(d) \geq \frac{1}{(k+1)^{1+\frac{1}{k}}}(1+o(1)) d^{1+\frac{1}{k}}
$$

It is an open problem to determine $m_{k}(d)$. Note that

$$
m_{1}(d)=m(d, 2)=\left\lfloor\frac{d(d+4)}{3}\right\rfloor+1 .
$$

The Undirected and The Average Cases. The undirected and average versions of $d_{k}(m)$ and $m_{k}(d)$ have never been studied for $k \geq 2$. It is open to determine their values. In the case $k=1$, these extremal functions have been studied, and approximate formulae or estimates have been proved. See the book Combinatorial Networks (under preparation) by Hsu and Jia for more information.

The Geometric Representation of Finite Cyclic Groups. The geometric representation of \mathbb{Z}_{m} by a generating set can be used in establishing upper bounds for $m(d, k)$, $M(d, k), \bar{m}(\lambda, k)$, and $\bar{M}(\lambda, k)$. It is a wide open problem to determine these extremal functions for $k \geq 3$.

BIBLIOGRAPHY

Bermond, J. C., Comellas, F. and Hsu, D. F.: Distributed loop computer networks: a survey. Journal of Parallel and Distributive Computation, 24 1995, 2-11

Chen, Sheng and Jia, Xingde: Undirected loop networks. Networks, 23 1993, Nr. 4, 257-260, ISSN 0028-3045

Du, Ding-Zhu and Hsu, D. Frank, editors: Combinatorial Network Theory. Volume 1, Applied Optimization. Dordrecht: Kluwer Academic Publishers, 1996, viii+212, ISBN 0-7923-3777-8

Hsu, D. Frank and Jia, Xingde: Extremal problems in the construction of distributed loop networks. SIAM Journal of Discrete Mathematics, 7 1994, Nr. 1, 57-71, ISSN 0895-4801

Jia, Xingde: Extremal bases for finite cyclic groups. Journal of Number Theory, 41 1992, Nr. 1, 116-127, ISSN 0022-314X

Jia, Xingde and Su , Weidong: Triple loop networks with minimal transmission delay. International Journal of Foundations of Computer Science, 8 1997, 305-328

Lee, J., Sheu, E. and Jia, X.: Extremal Cayley graphs of finite cyclic groups. Journal of Interconnection Networks, 9 2008, 73-82

Mask, Abby Gail, Schneider, Joni J. and Jia, Xingde: Extremal Cayley graphs of finite abelian groups. Journal of Interconnection Networks, 12 2011, Nr. 1\&2, 125-135

West, Douglas B.: Introduction to graph theory. Upper Saddle River, NJ: Prentice Hall Inc., 1996, xvi+512, ISBN 0-13-227828-6

Wong, C. K. and Coppersmith, Don: A combinatorial problem related to multimodule memory organizations. Journal of the Association for Computing Machinery, 21 1974, 392-402, ISSN 0004-5411

VITA

Joni Schneider was born June 3, 1985 to Jane Schneider of Flatonia, Texas. She graduated as valedictorian of Flatonia High School in May 2003. She then attended Texas State University-San Marcos. There she received a Bachelor of Science in Applied Mathematics and Minor in Biology in December 2008. Joni enrolled in the Texas State University-San Marcos Graduate Program to pursue a Masters of Science in Pure Mathematics in January 2009.

Permanent address: 1018 North Knezek Road, Flatonia, Texas 78941

This thesis was typed by Joni J. Schneider.

[^0]: ${ }^{1}$ For convenience we sometımes use n-tuples of 0 's and 1 's instead of bit strings to label the vertices.

[^1]: ${ }^{1}$ Strictly speaking, different notations for the orderings \preccurlyeq on \mathbb{N}^{k} with different k 's are needed.

