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SIMILARITIES OF DISCRETE AND CONTINUOUS
STURM-LIOUVILLE PROBLEMS

KAZEM GHANBARI

ABSTRACT. In this paper we present a study on the analogous properties of
discrete and continuous Sturm-Liouville problems arising in matrix analysis
and differential equations, respectively. Green’s functions in both cases have
analogous expressions in terms of the spectral data. Most of the results asso-
ciated to inverse problems in both cases are identical. In particular, in both
cases Weyl’s m-function determines the Sturm-Liouville operators uniquely.
Moreover, the well known Rayleigh-Ritz Theorem in linear algebra can be
proved by using the concept of Green’s function in discrete case.

1. INTRODUCTION

First we present a brief description of the discrete Green’s functions, which are
discussed in more detail in [3]. It is well known that a Sturm-Liouville problem is
an initial value problem of the form

(1.1)

where, p(x),q(z), p(x) are given, p(x) > 0, and L is a second order differential
operator of the form

Ly(x) = = (p(x)y'(x))" + q()y.

It is well known that for every Sturm-Liouville problem of the form (L.1)) there is a
corresponding Green’s function G(z,s,\). If X is not an eigenvalue then it
is well known (see [2], chapter 7) that G(z,y, A) can be constructed as follows. Let
o(z) and ¥(x) be solutions of the Sturm-Liouville equation satisfying the first and
second condition of , respectively. Then

[ev](2) = p(x){e(x)y'(x) — ¢/ (x)¥(2)} = constant. (1.2)
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This constant is zero if A is an eigenvalue of (1.1)) and nonzero otherwise. In the
latter case we can choose the constant to be —1, and then
p(x)Y(s), 0<z<s
p(s)¥(z), s<z <t

The functions ¢, are functions of xz, A\. If A = 0 is not an eigenvalue of (1.1); i.e.
h, H are not both zero, then

G(x,8,\) = { (1.3)

wo(x)Yo(s), 0<x<s
wo(s)to(z), s<ax <L

where g, 19 denote ¢, 1, respectively, for A = 0. Now let a < b be two fixed points
in the interval (0,¢). We define the normalized Green’s function as follows:

G(a,b, A b

G(CL, ba 0) ®o (CL)Q/}O(I))
Now if we consider a discrete form of the Sturm-Liouville problem, we may define a
similar terminology. Using the concept of discrete derivative; i.e., y' = yn11—yn, the
discrete form of the Sturm-Liouville equation is a system of three-term recurrence
relations that can be written in a compact form

Az = ABx (1.6)

G(z,s,\) = { (1.4)

where A is the tridiagonal matrix

ay C1 0
C1 ag Co 0
0 ¢ as c 0
A — 2 3 3
Cn—1
Cn—1 An,

and B = diag(by, ba, ..., b,). For more details see Atkinson [1]. The corresponding
Green’s function for discrete case is defined by

G(i,j,\) = (\) = el (A= AB)e;. (1.7)
The corresponding normalized Green’s function is defined by
G(i, j, \)
G(i,4,0)"
Now denote the leading principal submatrix of order k of the matrix A by A and
denote the trailing principal submatrix of order k of the matrix A by AkR. By
(A, B) we denote the set of generalized eigenvalues corresponding to the general-
ized eigenvalue problem (1.6)). A special case of Green’s functions in both discrete
and continuous cases are m-functions. In the discrete case m-functions correspond-
ing to (1.6]) are defined as m;(A) = G(4,4,A). In [B] we proved that for a given basic
m-function G(1,1,\) and a diagonal matrix B we can construct a unique tridiag-
onal positive definite matrix A such that m;(\), 1 < i < n, are the corresponding
m-functions for the pair (A, B), (inverse problem). There are some interesting spec-

tral similarities in discrete and continuous Sturm Liouville problems in the following
theorems that have been proved in [3].

D,i(N) = (1.8)
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Theorem 1.1. Suppose B is a positive definite diagonal matriz and A is a tridiag-
onal matriz. Let o(A, B) = {\.}? and let {x®)} be the corresponding eigenvectors.
Then

Gl gy = 2 (1.9)

(k)

where x;" is the ith entry of x(®).

Remark 1.2. This result is the similar result to the expansion of the Green’s
function in terms of eigenfunctions, i.e.,

— Xk (t)xx(T)
G(t, 1, \) .
o M= A
k=1
Theorem 1.3. Under the assumptions of Theorem@, let
o(Ai—1,Bi1) = {)\ﬁz (Af y j) = {Ai Zfl‘
Then
oty (1= AN T (1= A/AR)
B;;(\) = . 1.10)
i T (- M) (
Theorem 1.4.
(k) (k) L R
z; g )\kH (1—)\k/)\ ) (1—)\k/>\ ) (1.11)

G(i,5,0) [l (1= A/ Am)

Therefore, the Green’s function has been constructed using a pair of spectra.
There is a similar construction procedure to recover the Green’s function in contin-
uous Sturm-Liouville as follows; consider a pair of Sturm-Liouville problems with
boundary conditions at left {\Z}5°,

Ly(z) = Ap(x)y(x), 0<a <L
p(0)y'(0) — hy(0) =0 (1.12)
)

and right {\2}9°,

PO (0) + Hy(t) =0 (113)
y(b) =0, be(0,¢).
Let {\,}5° be the eigenvalues of the original Sturm-Liouville problem
Ly(x) = Ap(x)y(z), 0<z </
p(0)y'(0) — hy(0) =0 (1.14)
p(0)y'(6) + Hy(¢) = 0.
Then we have the following analogous theorems [3].
Theorem 1.5.

oy (1= A T, (1= AT
[ (1= A An) '

5,0 = (119
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Theorem 1.6. Let {u,(x)}$° be the corresponding eigenfunctions to the original
Sturm-Liouville problem, then

ur(@)ur(0) A Ty (1= Ae/A) Ty (1= A /A
G(a’bv 0) Hm;ék( Ak/Am) '

2. WEYL M-FUNCTIONS

(1.16)

Another similar property of discrete and continuous Sturm-Liouville problems
is the uniqueness of the solution of inverse problem in both cases by given weyl
m-function. Weyl m-function for discrete case is defined by G(1,1,\). If we
have two given spectra o(A, B) = {\;}', and o(Ap, N}, B2,n)) = {p:}V 71, where
Af2,n1, Bj2,n) are submatrices obtained from A and B, respectively, by deleting the
first row and first column of A and B with interlacing property

0<)\1<,u,1</\2</ML2<...<IU,N,1<)\N7

then it is well known that we can construct the first entries of eigenvectors corre-
sponding to {\;}&V by Lanczos algorithm. In this case if B is a nonsingular diagonal
matrix we can construct the m-function of the pair (A, B) as follows.

Theorem 2.1. The Weyl function m(X) has the following representations in the
discrete case
" [217)2
= § 2.1
A — A (2.1)

k=1 "k

N— N
H H (A=A~ (2.2)

@‘H

where

@‘,_.

N— N
H =) [Ty =) (2.3)
j=1 J#k
Proof. The first part is an immediate consequence of Theorem For the second
part consider the equation
(A= AB)y=¢ (2.4)
If A # )\, then
y1 = el (A—AB) te; = m(\). (2.5)
By applying Cramer’s rule to we find
det(A; — AB1)  Py_1())
det(A—AB)  Py(\)

Since {u;}V "1 and {\;}2 are zeros of Py_1(\) and Py ()), respectively, we obtain

Y1 =

det N 1 N
A) = (A —A)~
mA) =1 = det(B le ]1;[1
o . (2.6)
=aj]_[1 1;[ (A — A~

Multiplication of the two representations of m(A) by A\x — A and taking the limit as
A — A\, completes the proof. O
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Theorem 2.2. For a given m-function there is a unique positive definite Jacobi
matriz with the prescribed m-function, [5].

In the continuous case, let ¢(x, A) and ¥(z, A) be two solutions of Sturm-Liouville
equation (1) with the boundary conditions ¢(0,A) = 1, p(0)¢'(0,A) = h and
v, N) = 1, p(O)y'(£,\) = —H, respectively. Suppose A(A) be the Wronskian
of ¢, 1, that is

AQ) = @@, MY’ (2, A) = ¢ (z, Nd(, A).
It is well known [4] that A(X) is an analytic function in A whose zeros are the
eigenvalues of Sturm-Liouville problem (1). In this case the Weyl m-function is
defined by
_p(0,A)

In the continuous case the following results are well known, for details see [4].

Theorem 2.3. The m-function has the representation
> 1
m(A) = _—, 2.7
M=% o=y (27)

where O%k = Resy=x,m(\).

Theorem 2.4. The function m(\) uniquely determines the Sturm-Liouville oper-
ator.

3. EIGENVALUES OF HERMITIAN MATRICES

For a general matrix A € M, there is no way to characterize the eigenvalues
of A except that they are the roots of the characteristic polynomial of A. For
Hermitian matrices, however, the eigenvalues can be characterized as the solutions
of a sequence of optimization problems. In this regard we have the well known
Theorem of Rayleigh-Ritz, see [6] for more details. Now we want to prove a similar
theorem by using the concept of the Green’s function. That is to characterize the
eigenvalues and corresponding orthonormal basis of eigenvectors for a Hermitian
matrix. It is well known that every Hermitian matrix can be reduced to a tridiagonal
matrix with the same eigenvalues. Some of the well-known methods in this regards
are Householder, Givens and Lanczos transformations, [6]. For this reason we adopt
the following method for a general Hermitian matrix instead of a Jacobi matix. Let
A and B be two given Hermitian matrices. As we defined the Green’s function by
(1.7); ie.,

G(i,j,\) = (A= AB)7'(4,j) = e] (A — AB) " e;.
Now consider the nonhomogeneous system
Ax=ABx+ f, feC". (3.1)
If A ¢ o(A, B), then the unique solution of this system is
r=(A-AB)"'f;

that is,

n

zi =3 G(i,jNfj, i=1...,n. (3.2)

Jj=1



6 K. GHANBARI EJDE-2007/172

For simplicity we assume A\ = 0 is not an eigenvalue and let G(3,j) = G(4, j,0).
Note that the same algorithm can be applied for any A ¢ o(A4, B). Thus we can
define a linear operator G on C™ as follows:

Gfi =) Gi.q)f; i=1....n. (3.3)
Jj=1

Clearly in this case indeed G = A~!. Therefore G is selfadjoint; i.e.,
(f.Gg) =(Gf,g), VfgeCm (3.4)

First we prove the following results then we use them to characterize the eigen-
values.

Lemma 3.1. The norm of G satisfies
|Gl = maz|(Gu, w)|, weC” |lul =1, (3.5)
where (u,u) = u*u is the standard inner product on C™.

Proof. By (3.4) (Gu,u) is real. If ||u|| = 1, then it follows from the properties of
inner product that
[(Gu, w)| < [[Gull[lull < |G|,

and hence n = max|(Gu,u)| < ||G||. In order to prove the inverse inequality, we
have
(G(u+v),u+v) = (Gu,u) + (Gv,v) + 2R(Gu,v) < nllu + v]?
and similarly,
(G(u —v),u —v) = (Gu,u) + (Guv,v) — 2R(Gu, v) > — n|ju —v]|?

Subtracting these equations we obtain

AR(Gu,v) < 2([lul® + [|v]*). (3.6)
Note that Gu # 0 for u # 0 since G is invertible. Put v = Gu/||Gul in (3.6) to

obtain ||Gul|| < n which completes the proof. O
Theorem 3.2. Either |G| or —||G|| is an eigenvalue of G.

Proof. Using Lemma suppose |G| = max(Gu,u) for ||u|| = 1, v € C™.
Since u — (Gu,u) is continuous on the compact sphere |Ju|| = 1, thus it at-
tains its maximum on the sphere, i.e., there exists an xg with [|zo|| = 1 such that
max(Gu, u) = (Gzg,xo), for ||u|| = 1. Hence there is a sequence {uy,} in C™ such
that ||uny,|| = 1 and (Gupy,, um) — ||G||, as m — oco. Therefore, using Ascoli theo-
rem there is a subsequence of {Gu,, }, call it {Gu,,} also, which is convergent to a
vector vg in C™; that is,

Gy, — vol] — 0, (m — o). (3.7)

Let po = ||G||. Now we prove that vy is eigenvector of G corresponding to eigenvalue
of pig. Clearly ||Gup, | — [lvo|| and we have

Gt — potm||* = Gum|® + pglluml® = 210(Gtim, wm) (3.8)

and the right side tends to ||vg||? — p3. It follows that |lvg||?> > 3 > 0, hence vy is
not zero. From (3.8)) it follows that since ||Gu,,||? < ud,

0 < [|Gupm — poum|? < 2/~L(2) = 200(Guy, um)
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which tends to zero as m — oo. Thus

|Gt — protiml] = 0 (3.9)
On the other hand by using the Triangle inequality we have
0 < [|Guo — povol| < [Guo — G(Gum) || + |G(Gum) — poGum || + || HoGum — povoll

Combining (3.7)), (3.9), and the inequality ||Gu|| < ||G||||ul|, the last inequality
shows that |Gy — povo|| = 0, which proves that Guyg = povo. If the other case of
Lemma [3.1] holds; i.e., —||G|| = min(Gu, u), the proof is similar. O

Conclusion. In both discrete and continuous Sturm-Liouville problems Green’s
functions and Weyl m-functions have similar expressions in terms of spectral data.
In both cases Weyl m-function uniquely determines the Sturm-Liouville operators.
Rayleigh-Ritz Theorem may be proved by using the concept of Green’s function in
discrete case to characterize the eigenvalues and eigenvectors of a given Hermitian

matrix as follows. Let g = ||G|| and let vg be the corresponding eigenvector. Define
Xo = vo/||vo]|. The eigenvector xo is said to be normalized. Let
G1(i,5) = G(i,3) = poxo(1)Xo(5), (3.10)
and similar to G the operator G; is defined by
n
Glui :ZGl(i,j)u]‘, 1= 1,...,n. (3.11)
j=1
Then G has the same properties as G, in particular y; = ||G4]| is an eigenvalue

of G; and there is a corresponding eigenfunction ¢1. Let x1 = v1/|lv1]]. We can
easily verify that (Gyu, xo) = 0 for all w € C™. This follows that x; is orthogonal
to xo. Therefore,

Gx1=Gix1 = pxa- (3.12)
Moreover, we have
1ol = [(Gxa, x1)| = [ lllxall® = [l (3.13)
Letting
G2(i7j) = Gl(%]) - Mlxl(i)il(j% (314)

and proceeding as above, the existence of x2 and ps is established with |us| < |u1],
and ys orthogonal to x1 and xg. In this way establish an orthonormal basis of
eigenvectors and all eigenvalues of A~!, hence the eigenvalues of A.
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