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FINAL-VALUE PROBLEM FOR A WEAKLY-COUPLED SYSTEM
OF STRUCTURALLY DAMPED WAVES
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Communicated by Vicentiu D. Radulescu

ABSTRACT. We consider the final-value problem of a system of strongly-damped
wave equations. First of all, we find a solution of the system, then by an ex-
ample we show the problem is ill-posed. Next, by using a filter method, we
propose stable approximate (regularized) solutions. The existence, unique-
ness of the corresponding regularized solutions are obtained. Furthermore, we
show that the corresponding regularized solutions converge to the exact solu-
tions in L? uniformly with respect to the space coordinate under some a priori
assumptions on the solutions.

1. INTRODUCTION

Let T be a positive number and 2 C R™,n > 1, be an open bounded domain
with a smooth boundary T'. Set Dy = Q x (0,7), ¥ =T x (0,7). In this article,
we consider the question of finding a couple of functions (u,v)(z,t), (x,t) € Q x
[0,T7], satisfying the Cauchy problem for the weakly-coupled system of nonlinear
structurally damped wave equations

uge — Au + 2a(—A)uy = F(u,v), in Drp,
v — Av 4 2a(—A) v = G(u,v), in Dp, (1.1)
u=v=0, ond,

subject to the final observation

w(z, T) = ur(x), ut(z,T) = ur(x), in

v(x,T) = vp(x), ve(x,T) =vp(x), inQ,
where v > 1/2 and a > 0 is a damping constant, the functions urp, ur, vy, vp are
given in L?(Q2). The source functions F' and G will be defined later. The damped
wave equations and systems occur in a wide range of applications modelling the mo-
tion of viscoelastic materials. Some more physical applications of strongly damped
waves can be found in [I3]. The initial-value problem for damped wave equations
(or pseudo-hyperbolic equations) have been widely studied, see for example Pata et

al [12, 13], Thomee et al [14], Liu et al [I0], Guo [6], Zelik et al [7], Yang et al [I8§].
However, studies of the initial-value problem for strongly damped wave systems are
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limited. Recently, Hayashi et al [4] studied the existence of small global solutions
to the initial-value problem for system (1.1]) in R™, n > 4, assuming that

a=—-, v=1, F(u,v)=F(), G(u,v)=F(u).

D’Abbicco [16] studied the system of structurally damped waves in R™ assum-
ing that

1=g Fluo) =P, Gluv) =t
where p, g are chosen suitably.

To the best of our knowledge, the final-value (backward) problem for the system
has not been studied yet. The final-value problem for systems of partial
differential equations play an important role in engineering areas, which aims to
obtain the previous data of a physical field from a given state. The first work on
the regularization result for the strongly damped wave equation seems the one by
Lesnic et al [17].

In practice, the exact data up, ur, vy, vr can only be measured with errors, and
we thus would have as data some function uf., u%., v, 9 that belong to L?(Q), for

which
[uf — url|r2@) + 185 — Urll L2 + 05 — vrllze) + 199 — Orllz2@) <90,

where the constant & > 0 represents a bound on the measurement errors.

It is well-known that problem — is ill-posed in the sense of Hadamard
for data u.,ud, v3, 03 in any reasonable topology (see []). More details of ill-
posedness of the solution are given in Section 2.2. In general, no solution which
satisfies the system with final data and the boundary conditions exists. Even if a
solution exists, it does not depend continuously on the final data and any small
perturbation in the given data may cause large change to the solution. So we need
some regularization methods to deal with this problem.

This article is organized as follows. In Section 2, we present the mild solution
and the ill-posedness of system —. In Section 3, we establish a regularized
solution in the case of a global Lipschitz source function F,G. In Section 4, we
extend Section 3 to the situation of the locally Lipschitz sources. Furthermore, we
also obtain the convergence rate between the regularized solution and the exact
solution in L? norm.

2. SOLUTION OF THE INITIAL INVERSE PROBLEM (|1.1])-(1.2)

We begin by introducing some notation needed for our analysis throughout this
paper.
2.1. Notation. We denote by (-,-)2(q) the inner product in L*(£2).
e For w € C([0,T]; L3()), we define

lwllco,r;z2) = sup [w(t)||z2(q)-
0<t<T

e Let X, ) be Banach spaces; X x ) is also a Banach space and its norm is
defined as

[(wr, w2)llxxy = [lwi]lx + w2y,

for any (wq,ws) € X x ).
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© When Q is bounded, the system ([1.1) can also be solved by a decomposition
in a Hilbert basis of L2((2).

e For this purpose, it is very convenient to choose a basis {&, }pen+ of L?(Q2)
composed of eigenfunctions of —A (with zero Dirichlet condition), i.e.,

_Afp(x) = )‘IJ&P('%')’ in §,
&(z) =0, onT, (2.1)

which admits a family of eigenvalues 0 < Ay <Ay <Az <--- < A,--- and
Ap — 00 as p — o0, see [3, p. 335].

e Via the spectral decomposition of w € L?(Q2), for each v > %, we define the
fractional Laplacian using the spectral theorem as follows

(=AY w = N {(w,6p) 120 (). (2.2)

p=1
More details on this fractional Laplacian can be found in [§].

¢ In addition, we introduce the abstract Gevrey class of functions of index m,n >
0, see e.g., [1], defined by

o0

Gl = {w € L2(Q) - D (N> exp(2nA]) (w, &) 20 < 00}7

p=1
for 2y > 1, which is a Hilbert space equipped with the inner product
(wy, w2><c,:nm

= (D))" exp (n(~A)2)w, (=AY exp (n(~A))wn) L g

for all wi,ws € G, .., and its corresponding norm

lwllg, = > ()™ exp(2nA}) (w, &) Fa(q) < oo
p=1

2.2. Mild solution of (|1.1)-(1.2). We look for a solution of problem (1.1])-(1.2)

of the form

u(z,t) = Zup(t)fp(x)a v(z,t) = va(t>€p(x)7 (2.3)

where uy(t) = (u(x,1), & (%)) L2(0), vp(t) = (v(@, 1), §p(2)) L2(0)-
Put F,(u,v)(t) = (F(u,v),&(x))r2(0). We consider the problem of finding a
function w,(t) satisfying
2
(t) + 2a)\;%up(t) + Apup(t) = Fp(u,v)(t), te€(0,T),
d (2.4)
up(T) = <u(x7T)7§p($)>L2(Q)7 &up(T) = <ﬂ(x7T),§p(x)>L2(Q).

The quadratic characteristic polynomial of (2.4)) is
Z% +2aN)Z + X, = 0.

ar"'”

With the notation a;, = a®*A2Y — A, for any a > 0 and > 1/2, we consider three
cases
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Case 1. pe Ny ={peN:), > aﬁ}. We put ;= 1, = aX} + (—=1)7 /oy,
exp (1) o (o)

j = 1,2. Multiplying the first equation in (2.4)) by N and
integrating both sides from t to T', we obtain

pzexp (1 (T —t)) — puy exp (p2(T — 1))

up(t) = 2y (u(z, T), & (7)) L2(0)
exp (ua (T —t)) —exp (p2(T — 1))
+ ( 2)\/@ ( )(u(x,T)7§p(x))Lz(Q) (2.5)
T —t)) — —t
+/ exp (p(s — 1)) — exp (p2(s —t)) P (u, 0)(5)ds.
t 2\/ap

Case 2. peNog={peN: ) = aﬁ}. Multiplying the first equation in ([2.4)
by (s —t) exp (aﬁ (s — t))7 and integrating both sides from ¢ to T', we have

up(t) =exp (aX] (T — 1)) (1 — a ) (T — t))(u(z, T), & (%)) 120
—exp (aA)(T = ))(T — t)(u(z, T), & (@) 2 (o) (2.6)

T
- /t (s —t)exp (aX] (s — 1)) Fp(u,v)(s)ds.

Case 3. peNg={peN":), < aﬁ}. Multiplying the first equation in (2.4)

by
ewgfﬁmwm&%m

and integrating both sides from ¢ to 7', we have

exp (a)\%f;— t)) [a\] sin(y/=ap (T — t)) — cos(\/—ap(T — t))]

x (u(z, T), & (2)) 12 ()

+““@§z*”mmﬁ%@—m@ujmuwp@ =0
T exp (aX})

t vV

uy(t) =

sin(y/ap(s — t))Fp(u,v)(s)ds.

Similar considerations apply to v,(t) that satisfies

2

d
S3tn() + 2003 L0 () + Aup(t) = Gp(u,0)(8), € (0,7),

. (2.8)
w(T) = (v(@, 1), (@) r2(), g op(T) = (0(2,T), 6(2)) 12(),

where v, = (v,&p) 2(q), Gp(u,v) = (G(u,v),&p) 12(0). We also have three cases.
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Case 1. p € N;. We obtain
pi2 exp (pa (T —t)) — pa exp (pa(T —
2\/ay
ex 1 T—1)) —ex 2 T—1t .
Lo )g\/@p(u (T —1)) 30T, 6 ()
T exp (pa(s —t)) — exp (pa(s — 1))
+) 2/,

up(t) = t)) (v(x,T), & () L2(0)

Gp(u,v)(s)ds.

Case 2. p € Ny. We obtain
vp(t) = exp (aA) (T — 1)) (1 — aXJ(T — t)){v(z,T), (7)) 2(0)
— exp (a)\; (T - t)) (T —t)(v(z,T), fp(:z:)>Lz(Q)
- /t (s —t)exp (a)\;(s — 1)) Gp(u,v)(s)ds.

Case 3. p € N3. We have

P (%_ t)) (aA) sin(y/—ap (T — t))

- coS(M(T =)z, T), & () L2
+ ST G — 1), 71,60 0

vp(t) =

o
_[Tesplr) sin(y/a@p (s — 1))Gp(u, v)(s)ds
e : e '

Hence, the solution of . is

u(a,t) = upW+ D> up()é + Y up(t)s,

pENy pENy pEN3
v(z,t) = Z vp(1)Ep + Z vp()Ep + Z up(t)&p
pENy PEN2 pEN3

Let z € (0,T),w € L*(), wp = (w, &) 12(), we define

po exp(zpi1) — p1 exp(z o
u=y el

peN; \/7

+ Z exp(a)z)(1 — a\) 2)wpg,
PEN2

+ i DX ?) [aX) sin(y/—apz) — cos(\/—ap2)|wyé
pEN3 Neros p p p?)|WpSp;

— exp(zp1) — exp(zpe -
B(Z)U) = Z ( 2)\/047 ( )wpgp + Z zexp(a)\gZ)’LUpSp
peN; pENy

oo

exp(a\)z) .
Z o, sin(/—ap2)wpép.

pEN3

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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Then, we can rewrite (2.12]) as

w(zt) = A(T — tyur + BT — )iz + / " Bls - )P (u.0)(s)ds.
o (2.15)
v(z,t) = AT — t)or + B(T — t)or + / B(s —t)G(u,v)(s)ds.

We expressed the solution of problem with the final observation in an integral
formulation (2.15). In the next section, we indicate the reasons which make the
solution posed in the Hadamard sense. For clarity, we give an example to
show that the regularization method is necessary.

2.3. Ill-posedness of the i inverse problem for(L.1)-(1.2). We first observe that
if p € NgUN3 then A\, < aT2 . Tt is obvious that the terms > pen, Up(t)ép +

ZPENg u,(t)€, and ZpeN2 vp(1)€p + ZPEN?, vp(t)€, are bounded and stable in L2

norm. However, since p € N; implies that A, > a™7 then exponential functions
in the right-hand sides of (2.5) and (2.9) tend to infinity as p tends to infinity.
Therefore, the terms °  up(t)€p and 3 o, vp(t)€, are unbounded. From the

above arguments, we take Ny = N3 = ) by assuming that az)\?*l > 1. Note that
this also implies az)\fﬂ — Ap > 0 for all p € N*, and hence the root of ), are real
and distinct.

Next, we give an example which shows the the solution of problem is not
stable.

Let a = )\1/2 T+ 1, 0pu®(2,T) = 90 (2, T) =

v(z,T) =0, for any k € N*. Let us define functions

exp(—2(\* 7T+ 1)TAY)

= 23\/2T?

X (<w1(t)7'£p>L2(Q)€p + <w2(t)a£p>L2(Q)£p>a
exp(—2(\* 77 + 1)TAY)
23\/§T2

(wn (0), &) 2@ + (w2(8), &) 2 )

Let u® v(®) satisfy the system

() = k), u(z,T) =

F

WK

F(wy,w2)(t) =

]2

G (w1, we)(t) =

=
Il

A~

X

T
uM (z,t) = B(T —t) o™ + [ B(s —t)F(u™ (z,s),v®) (,5))ds,
¢ (2.16)
v®) (1) = B(T — t)w® —|—/ B(s — t)G(u® (z,s),v™ (z, 5))ds,

with a = )\}/2_7 + 1; recalling that

B(z)w = Z exp(zulggajxp(zug) (W, &p) L2(00)Eps (2.17)
p=1 P

and, for j =1, 2,
Qp = ()\}/2—7 + 1)2)‘? —Aps Hj = Hjp = ()‘i/Z_W + 1)/\; + (*1)j\/ Qp- (2.18)
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Step 1. We show that (2.16) has a unique solution (u®),v®)) e [C([0, T]; L*(2))]?.
Indeed, we consider for (r1,72) € [C([0,T]; L*(Q2))]? the function

E(ri,r)(t) = (€0, r2)(0), €, m2)(0)).

where

E(ry,ra)(t) = B(T — )W + /t B(r — t)F(ry(z,7),ro(x, 7))dr,

T
E(ry,me)(t) = B(T — t)!l'/(k) + /t B(t — t)G(ry(z,7),ro(x, 7))dT.

Then for any (r1,72), (s1,52) € [C([0,T]; L*())]?, we obtain
[E(r1,m2)(t) — E(s1,82) ()] L2 ()

< / 1B(r — O)[F(r1,72) — F(s1, 52|z dr

- /t {; [eXp((T — t)m)\/;;xl’((f = t)m)}2

) 1/2
x (F(ri,r2) — F(s1, 32)7€p>L2(Q)} dr

(2.19)

Uy _ —exp((T — t)u1)712exp(— 1/2— ,
S/t {pz_:l[exp((T t)/iz)\/@ p((T —t)p )} p( 4(/\127T4+1>T/\)

1/2
X 2<T1($,7‘) - Sl(xa’r)vfp>%2(ﬂ) + 2<T’2((£,7‘) - SQ(xaT)7£P>%2(Q)} dr.

Moreover, using the the inequality |exp(—b) — exp(—c)| < |b — ¢| for b,¢ > 0, we
obtain the estimate

[exp«T — t)p2) — exp((T — t)unrexp(—zx(xi/ 0T

Ja 974
_ exp (= (7 —t)un) —exp (= (T —t)u2) 72
= {exp ((T —t)(p1 + ﬂ2)) \/@ }
exp(—4(\ 27T+ 1)TAY)
x 27T
1/2— —2,/ap) (T —t)12exp(—4 N2 TA)
< exp (4%/ v 1)(T—t)A;) [( 2\/;)7() £)72 exp(—4( - +1)TA))
_ {(—2\/071,)(7'—1?)}2 1
>~ \/(Tp 27T4
2 1 1
=4(r —t) 57T < 2573

where we have used iy + p2 = 2aA] = 2()\}/2_'Y + DAY and pg — 1 = 2,/
According to the above observations, we deduce that for all ¢ € [0, T]

1€(r1,m2)(t) = E(s1,82) (B) |22 () <

1 /T
1), TG =86l @pdr
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1
< 718 = Sleqorz2@pz;
where R := (r1,72), S := (s1,52) € [C([0,T]; L*(22))]2. Whereupon
1
lE(ry,m2) — E(s1, 52)||L2(Q) < Z”R — S”[C’([O,T];LQ(Q))]Q. (2.20)
Similarly,
. . 1
|E(ry,m2) — E(s1, 52)||L2(Q) < Z”R — S”[C([O,T];LQ(Q))]Q. (2.21)

Combining ([2.20)) and ( - we obtain

1
IECR) — E(S)llcqo.rizz @z < 518 = Slieqorsza@e-

Hence E is a contraction. Using the Banach fixed-point theorem, we conclude that

E(R) = R has a unique solution (u®),v*®) € [C([0, T]; L*(2))]2.

Step 2. Problem (2.16) is ill-posed in the sense of Hadamard. We have
T

[ ()]l 2 () = BT = ) W] 2 () — II/ B(s = ) F(w*))(s)ds| 2 (), (2:22)
¢
where w(®) = (u(®) () € [C([0,T); L*(Q))]2.
Firstly, it is easy to see that (noting that F'(0,0) = 0 and using (2.20))

T
II/t B(s — )F(w® (s))ds]| 2 () = 1€ (™, v®))(t) — £(0,0) (1) 120 (2.23)

1
< WP llieqoryza@ye:

Hence
™ (1) 20 = BT

This leads to

1 k
vy~ 1™ Nieoyzz .

[u™ | o,ysz2(0)) = sup HB —tu'/(’“‘

2P, - EHW(k) lico, ;2202 (2-24)

L2(Q)

By an argument analogous to the previous one. We get

o™ o120 > SltlETHB -t k)’LQ(Q _ZHW(IC)”[C([O,T];L2(Q))]2- (2.25)
Combining (2.24) and - 2.25)) yields
4
1w 1012202 >3 EI;ETHB(T (2.26)

Secondly, we have

IB(T = )7 ™22 q) = [exp (T = pear) — exp (7' = )pak) ] S

2./a e
_exXp (2(T = t)par) (1 —exp (= 2(T — t)\/@))2
4>\kak

S, &XP (2(T — t),lj,gk) (1 — exp ( —-2(T - t)\/@))2

- A\ o, ’
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where we set ;1 == ()\}/2_7+1))\Z+(71)j,/04k,j = 1,2, k € N*. Since the function
O(t) = exp (2(T — t)par) (1 — exp (— 2(T — t), /ak))2 is a decreasing function with
respect to the variable ¢, noting that uoy =~ 2()\}/2_7 + 1)}, we deduce that

sup || B(T — t)wt*) %200

0<t<T
= sup BT~ 00

0<t<T

2

> sup exp (2(T — t)par) (1 — exp ( — 2(T — t)y/ag))
T oo<t<T Ao (2.27)
- eXp(QT,ugk)(l — exp ( — QT\/@))2
B 4)\kak
_ exp(T* T+ A (1 — exp (— 2T /ar))”
o 4>\k0¢k ’

Next we estimate the right-hand side of the latter inequality. Indeed, combining

(£:26) and (2:27) yields

1/2—
Hw(k)” c T L2(Q))]2 > 26Xp (QT()\I/ K + 1)>\Z) (]' — €Xp ( - 2T\/ ak)) . (228)
[C(0.TL2 Q)] = 3 Ny

As k — 400, we see that

2
khm (||u (2, T)|| 20 + [V (2, T) || L2(0) khm N 0,

klin;o||w(’“)H[c([o,T];L?(Q))P

o 265 (2T + 1)A) (1 — exp (- 2T /ax))
- kinolo 3 LV )\kak

Thus, Problem ([2.16)) is ill-posed in the sense of Hadamard in L2-norm.

(2.29)

3. REGULARIZATION AND ERROR ESTIMATE IN FOR GLOBALLY LIPSCHITZ
NONLINEARITIES

Observe that when p — oo the operators A, B are unbounded; to establish a
regularized solution, we need to find new operators which are bounded operators,
more specifically,

AN t)w = HAA(t)w, (3.1)
BA(t)w := HAB(t)w, (3.2)
Hhw =Y [1 4+ ACe™ ] w, &) 12 )6, (3.3)

where C), = 2a)]. Here A := A(J) > 0 is a parameter regularization which satisfies
lims_o+ A = 0. The function H" is called the filter function. The regularized
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problem is
U (z,t) = AMT — t)uf(z) + BMT — t)as(z)
T
+ / BMs — ) F (UM, ), VM@, 5))ds,
t
Vi (a,t) = ANT — t)yop(z) + BMNT — t)og(x)
T
+/ B (s —t)G(U (2, 8), V5 (x, 8))ds.
t
The following technical lemma plays a key role in our analysis.
Lemma 3.1. Lett € [O,T],% <y<1anda>0. Then
T t/T
Alog( )} ’
T t/T
Alog(%)}

JAN )l 222 (9),22(0)) < Ta [

>3

)

1B )l 2r2@),z2(0)) < Ta|:

where T, := max{2,T,1 + Taﬁ},
Proof. To show (3.5), letting w € L?(£2), we have

M #)wlF2q)
. ‘UQ@lth — ,LL1€“2t 2 9
Z [2@ 1+ 0,ae0m) (Wo)e

eCrt(1 — o)

2
2 T CyAeC W &)iae)

pEN2
oCt
N Z —ayp)[1 + CpAeCrT]?
pEN3

Cp . 2 2
X [7 sin( —apt)—cos(,/—apt)} (W, &) 120

M2€_M2t _ Mle—ult 2 1 5 ,
< ) {e*vaCpAeCp(Tft)] (W, &p)12(0)

=l 2, /ap,
1 2
—-Cp t P 2 2
* Z € B 70 |:e_cpt +C Aecp(T—t):| <w’€p>L2(Q)
pEN2 p
Cp o
Sl | 5 sy t) — oy

pEN; —Ort C AeCr (1) (—ap)

X <wa§P>L2(Q)'
Now, we continue estimating the terms in (3.7): First, we have
1 o—Cp(T—1)

e~ vt + CyAeCr(T=0) — [CoA + e=CoT) T [C)A + e~ CoT]t/T
1
< .
= [CpA + e~ CoTJe/T

(3.4)

(3.7)

(3.8)
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On other hand, it is easy to see that h(y) = byé 7 < T ( ) for 0 < b < Te.
Hence if A < Te, then we obtain
1 < T
CpA +e7T = Alog(%)

It follows from (3.8]) that

1 T t/T
< . 3.9
e=Crt + CpAeCr(T—t) = [Alog(%)] (3:9)
If p € Np, then A\, = atT implies C}, = 2aﬁ,
- %t] <l+4a75T. (3.10)
If p € N3, then A, < aﬁ; using sin(z) < z for any z > 0, we have
Cp <
=2 sin(y/=apt) — cos(y/=ayt) < ltasT (3.11)

—a,
If p € Ny, then A, > a1—22v; using the inequalities 1 — e * < z and ze~* < 1 for
z > 0, we obtain (noting that ps — 1 = 2,/0,)

|e_tu2 — e_tﬂl‘

—tpa _ —tp
’M2€ 5 pie |:e—tu2 +
VOp 2./,
—t — 11
< ot +,ule_t’“ |1 — e tlp2—p )‘
- 2,/ (3.12)
t —
< et | et <u22 am)
V&

< etz 4 t,ule*t‘“ < 2.

Combining (3.7), (3.9), (3.10), (3.11), (3.12)), we conclude that
T 2/T
oy

— T2||w||3 20 (3.13)
og<%>} s
To show ([3.6)), letting w € L?(Q), we have
1B ()wl72q)

—pat e pit 1 2
= ptlmitnz) € ] (w,6,)2,
%%1 { 20, 1+ CpAeT PILE)

1 2
+ 3 [ F g per] w8

pEN2

A (w72 ) <

Cpt

1 2
T Z [1_,_0 AeCor T\/ibm( _O‘pt)} <wvfp>2L2(Q)

2re—H2t _ o—mtq2

< Z { Ct+C AeCrn(T— t)} [ 2/, } <w’§p>2L2(Q)

2
—Cpty2 2
+ ; |: _Ct+C AeCr(T— t):| e 3 <w7£P>L2(Q)
p
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Qe—Cpt o )
+ Z [ —C t+C AeCr(T— t)jl (—ap) sin”(y/—opt) (W, &p) 12 (-

As e ¢ — e_d| < |e —d| for ¢,d > 0, and noting that e=»* < 1, for all t € [0, 7]
and sin z < z, for z > 0, we obtain

2
A
1B @ullfae <72 Y | _th ] W&

pEN;

2
+17 Z [ Oyt C’ AeCo(T— t} <w’€1)>%2(9)

pENy

1 2
2 2
DY {efcpwcpz\ecp(w)} (W, &) L2

pEN3
T /
<T? [7] wl|320-
S ivres BT
This completes the proof. (I

Now we are ready to state and prove the main results of this paper.

3.1. Existence and uniqueness for problem ([2.16).

Theorem 3.2. The nonlinear integral system (2.16) has a solution (UL, VA) €
[C([0,T]; L*(2)].

Proof For any wy,ws € [C([0,T]; L3(£2))]?, we define the function
L: [C([0, T]; L2())]* — [C([0, T]; L*()))* a
L(wy, w2)(t) := (X(whw)( ), Y (wy, wa)(t)),
where
X(wy, wy)(t) := AMT — t)ud(z) + BT — )i (x)
T (3.14)
+ /t BA (s — t)F(w (z, 5), wa(z, s))ds,
Y (wy, wa)(t) := ANT — t)og(x) + BN(T — t)o3(x)
T (3.15)
—|—/t B2 (s — )G(w (z, ), wa(x, s))ds.
Then for any W = (wy,ws), W = (w1, w2) € [C([0,T); L2(£2))]?, we obtain
L) () = LOV) ()l 12202 (3.16)
< KXW (®) = X(W) ()220 + YY) (E) = YW (@)]] 22(0- .
Let the functions F,G: [L?(2)]> — L?(2) satisfy the global Lipschitz condition
[FW) = FW)| 120 < Kpl|W = W22 (3.17)
IGW) = GW)llz2(0) < KelW = Wlliz2(q)2, (3.18)

where K, K¢ are constants which are independent of W, W. We shall prove the
estimate

ETL
I (W)(8) = K ()00 <

W — W||[C([0 T);L2(Q)))25 (3.19)
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KT, (T—t) 1" : :
where E} s(t) := [%] ,n>1, and K = max {Kr, Kg}, by induction.

e For n = 1, using Lemma (3.1) and the global Lipschitz condition of the function
F', we obtain

IXW) () = X(W) ()22 (0)

< / 1B (s — ) (F(W)(s) — F(W) ()| 2y s

T
< / 1B (s — 1)l (r2@)x 2o | F(W)(s) — F(W)(s)]| 12 (0 ds
t

T T s;t o
< Ta — K W s) — W s ) st
7/1: {Alog(%)} F[[W(s) ()220

T
< KTaA‘l/ W (s) = W(s)l[L2(a)2ds
t
< KT, AT = 0)[|W = Wllic(o,15;2(0))2
=Eps(t)|W - WH[C([O,T];Lz(sz,

where EA 5( ) :
e Assume that holds for n = k. Then we obtain

k k(T E} ()
IXFW)(@®) = X*W)Ollz2) < —;
e We show that (3.19) holds for n = k + 1. In fact, we have
||Xk+1(W)( t) = XML W) ()]l 2o

IW = Wlloo,m:c2@)z- (3:20)

IFEXNW)(s) — F(XFW)(s ))}d8’

L2()

= /t Ta [Aloz;(T)} %KFIIX’“(W)(S) — XE(W)(s)| £2()ds
. A
SKTGA—l/t HXk( )(s) — Xk( )(s )”L2 ds

T —1_ 1k
S KTaA—l/ [KTGA (T S)]

o W — W licqo,1); 12 (<))2ds
KT, A—1)k+1 T
%HW Wllicqo,m); L2(Q))]2/ (T — s)*ds
k+1(t)

W—W P
=t | o,y L2(9))

Therefore, (3.19) holds for n

> 1.
Secondly, we estimate ||Y(W)(t) — Y(W )(t)HLZ(Q . Using similar arguments, we
infer that if W := (wy,wy), W = (wl,wQ) € [L3(Q)]? then
(

(L
t)

Y (W) = Y (W )()||L2Q)<

where E} ;(t) := [%]n

IW = Wlicqo,mc2 @)z (3.21)
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Combining (3.16)), (3.19) and (3.21)), we obtain

I (W)(t) = L*(W)()l22 @ < %f(t)

IW = Wlloqo,m:c2 @2 (3:22)

On the other hand,

This implies

" pu— 2E3} 5(0) —
L™ (W) = L*(W)llicqo, 1222 < THW = Willicqo,m;02 )2 »
. 2E} ;(0)

There exits a positive integer ng such that L™ is a contraction. Thus, the existence
and uniqueness arguments are obtained by the Banach fixed-point theorem, i.e,
L(wy,w2) = (w1, ws) has a unique solution (wy,ws) € [C([0,T]; L*(Q)]?. Hence,
X(UL, V) = U and YU, V) = V3 O

3.2. Error estimate. Now, we shall state (and prove) some regularization results
under some conditions on the exact solution (u,v) of system (2.15)).
Theorem 3.3. Let A(S) be a regularization parameter such that
6lir£1+ A= 6lir(r)1+ /A =0. (3.23)

Form > 1,n > 2aT, we assume that system has a unique solution

S = (u,v) € [C([0,T]; L*(2)) N L=(0,T; G}, )
which satisfies

IS llico.rzz@z + SOz 0,r:67,..)2 < Q- (3.24)

Then we have the estimate

_ of T 1%
IS2(8) = S(8)]| 22 2 < (ZaQ—i—TaéA 1)e2TaK<T ) [ﬁ} AYT | (3.25)
10g K)

where S& := (UM, VA) € [O([0,T); L2(2))]? and K := max{Kr, Kg}.

Remark 3.4. In (3.25)), the error estimate is of order Alt/T[1 ng)]l_%' Ift~T,
o8l x

the first term A*/7 tends to zero quickly, and if ¢t = 0, the second term [@]1* T
A
tends to zero as 6 — 01. And if t = 0, the error (3.25) becomes

1S5 (1) = SOl iL2 @2 < C[log(%)}_1~ (3.26)

We also note that the right-hand side of (3.26)) tends to zero when § — 0.
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Proof. Let 8* := (UA, V) € [C([0, T]; L?(Q)))? satisfy the nonlinear integral equa-
tions
UMz, t) = AMT — t)up(x) + BMNT — t)ur(z)

T
+/ BMs — ) F(UM(z, s), VA (, 5))ds,
N At N (3.27)
VA(,t) = ANT — tyor(a) + BMT — t)or(z)
/ BA(s G(UM(x,5),VA(z,s))ds.
Using the triangle inequality

185 () = SOz < 185 (#) = S Oz + 18 () = SO)lliz2 ()2, (3:28)
the proof of (3.25]) can be completed in two steps.
Step 1. Estimate of [|Sf(t) — SA(t)||{z2(a)2. From and ([3:27), we have

U?ﬁ)—UA@%=AA<-—owT—uTy+B% —0)(@, - r)
{fbwwwwwﬂm—FwNmm&
Using Lemma and that F' tsatisﬁes the global Lipschitz condition, we obtain
JUA®) = UM 220
< ANT = ) — ur) | 20y + BT = ) — iir) 120
-FHJ(TBA(S—tHFYSQ(ﬁ)-PTSA($ﬂd8HL%Q)

< JAMT = )|l 220y, 2 ) 145 — url 220

+[IBMT = )| 22 @), 2o 185 — Ul L2

T
+/ 1B (s — )|l c(r2), L2 |1 F (S5 (5)) — F(S™(5)) || 2o ds
t

(3.29)
T % 5 T T T’;t J N
< Ta| oy - + T, ——— _
- [Alog(%)} lur = urllr2@) {Alog(%)] lur — ur|lL2 (o)
+ /T TKF [LT} S;t ||S§\(s) . SA(S)”[LZ(Q)PdS
t Alog(%)
T % 5
[W(%)] Ta<||uT —ur| 2@ + lluy — uT||L2(Q)>
T t/T T T s/T
K| e / | IS (s) =St ds.
F[Alog(%)} " {Alog(%)} H 5(3) (S)H[Lz(g)]z s
Similarly, one has
IV ®) = VA 220
T T;t
< _— Ta ) _ + ~5 o~
{Alog(%)} (HUT vrllra@ + 107 UT”L?(Q)) (3:30)

+ TaKG'

—

T —t/T7 T T ST
Alog(%) ANloo( L) Si(s) — " 2¢0y12ds.
Alog(%)} ~/t [Alog(%)} 155" (s) ($)llz2(q)2ds
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Combining (3.29) and (3.30)) yields

IS5 (t) — S™ (¢t )ll[w(mP

T 17 s -
= [m} Ta(HuT —ur|[r2@) + U7 — Urllr2(0)

+ v} — vrll ey + 193 — V7|2 ()

T ¢ (T T qs/T
To(Kp + Kg) | ———~ —| IS s) - S* 2(0))2ds.
+Tke + Ko gpoms ] [ [gm) 1940 - S @lapds

Consequently,

T = T q-tT
R ST o ——
Alog(%)] {Alog(%)}

r T s/T
- SA _SA R 2d 7
x/t [Alog(%)} 155 (=) ($)|liL2(ay2ds

r/:r

(3.31)

, wWe

where K := max{Kp, Kg}. Multiplying both sides of - 3.31)) by [

obtain

Alog(%)

T t/T
— S2(t) = SM®) |12z
Troery) 1590 = S Ol
T T /T
< T _rs5ior K/ L TSR (s) = S8 (8) |2 ceayeds.
= Nog(Z) M%§J ’ e
Then Gronwall’s inequality yields
T /T T
— SME) — SAW) |2y < E2TKT—H__—__T 5.
el B RICRERCIEE Aioe(T)
From this we have
T -4
SMt) = SMO) |2z < E2TXKT-0| = ) 3.32
155 (t) Oz < e [Alog(%)] (3:52)

Step 2. Estimate of [|S*(t) — S(t)||(z2(n)2- First, we note that

HAu(x,t) = HEA(T — tyur — HAB(T — t)ug — / HAB(s — t)F(S)(s)ds
(3.33)
— ANT — tyup — BN —tuT—/ BM(s — £)F(S) (s)ds.
Thanks to the triangle inequality, we conclude that
UM () = w(®)l| 22y < [UNE) = HAut)| L2 () + [[ult) = H u(®) |20 - (3:34)

I I

One has

T
|ﬂ§/Hm@*WMBQﬂmMW@M@*FwWWmmﬁ
! (3.35)

T T oot
<K Ta P SA s) — S(s ) ds.
- /t [Alog(%)} [82(5) = S()llz2)
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Now we have
[I1* = |

—~
—_

— Hu(t)||72q)

[1 — (]. + ACpeCpT)—1]2<u(x7 t)v £p>%2(ﬂ)

o

3
Il
-

1 2
NG [m} (u(,6): &)1z

M

p

=
Il
—

o—Cot

2
o ac) MOE ), &)
p

o

3
Il
-

Similarly to (3.8]), we infer that

o—Cot o—Cyt
=G T £ AC, [e=CoT + AC,|t/T[e=CoT + AC,|1—1/T
< 1
= [e‘cpT—i—ACp]l*t/T
- [ T }17t/T
~ LAlog(%) '

Using - in -, we obtain

T 2-2¢/T
[11? < Z[Alog(%)} AQCgeQCptW(xat)7§P>2L2(Q)

2-2¢/T ’Y
SAQt/T[log(i)} 24“2/\2764‘” T{u(z,t), &) 720
T 12— 2t/
_ 4.2 A28/T
Sl ey o] B LT
Consequently,
T 1-t/T
|II\§2aAt/T[17T} lu(,t)lley .,
Og(x) ‘
Combining (3.34])), (3.35) and (3.39)), we deduce that
A ' T s
UM t) — ult < KrpT, N T S =S d
U2 (t) = w(t)| 20 < KF /t [Alog(%)] S (s) (8)[lz2(e)2ds
gy
+ 2aA[Alog(%)} lu(,t)lley,, .-

Multiplying both sides of (| - by [ ( )]t/T, we obtain

[AIT(T)] T”UA(t) —u(t)|lL2(a)
2aT
1 ( )H ( )”G;’,%T

T T s/T
+ K Ta/ —_— SM(s) = 8(8)||iz2(0n2ds.
oo ) [ fregry) 1506~ SOl

17

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)
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Similarly,
T t/T
— VAR — ot
sl USORSCIT
< 2aT
< @Ilv(-,t)llc,;m (3.42)
T
T 1s/T
+ KT, — SMs) -8 ds.
T | [ig) 18"~ S@liszayeds
From (3.41)) and (3.42)), we have
T t/T
— SMt) - S(t
Treey) 150~ SOllazay
2aT T T 1s/T
< ——IS(,t)lie KT, — SMs) -8 ds.
= log(%)n ( )H[Gz,zﬂ]z"' a/t [Alog(%)} 187 (s) () z2()2ds
Applying Gronwall’s inequality, we obtain
T T 2aT
— SMt) - S(t < 2TaK(T~1) ot 2.
o] 1510 = SOllusye < e g 15¢ Ol 0

It follows that
T

1—4
Togmy)  ISCOlse (49)
A

Combining (3.32) and (3.43]), we conclude that
1S5 (t) = S0l L2 (a2

1S2) = S@llipzaye < 20A2TET-0]

T 1-% T 1—%
< 2aAe?TK(T=1) [771} TISC )y, e + TeET=D {ﬁ] " T,0.
Alog(%) 2207 Alog(T)
This completes the proof. O

4. LocALLy LIPSCHITZ SOURCE FUNCTIONS

In the rest of this paper, for solving System (|1.1)), we concentrate on the case of

locally Lipschitz functions. In many ways, the locally Lipschitz functions are more

natural. For example, h(u) = u?, u3, usinu, etc, are locally Lipschitz functions but

not globally ones. Results for the locally Lipschitz case are still very scarce. The
local Lipschitz condition (coercive-type)

[A(u1,v1) — h(uz, v2)|L2(0) < K(R)(lur — uall2(0) + lv1 — v2|lL2())s

for |luillL2(q), luzll2(), lvillL2(), luzllL2(@) < R. The conditions hold for the
following source.

Example. Let
ha(u,v) = ullul|22(q) + vl[vll720)-
By direct computations, we obtain
A1 (w1, v1) = hi1(u2,v2)L2(0)

= ||U1||U1H2L2(Q) - U2||U2||%2(Q) + UlHUlH%?(Q) - U2HU2||2L2(Q)HL2(Q)

< Ml 20y (1 = w2) + uz (Jlea 12 = w32y ) 2
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sz (on = v2) + v (lor 32y = o3 ) 2oy
<ual|Z2 o llur = wall L2y + lluzllz2 @) (luallz2 @) + luzllze @)

X |llun L2y = luallez)| + o172 lor = vall 2@

+ [lv2]l 2y (lv1ll 2y + vzl L2 @) il 22 @) = lv2llz2 )]

< (a2 + Nl 2 ol oy + ualFaey ) s = a2

+ (Ilonl2a) + oz lozlzaey + lvalaay )llon = v2lze)-

It is easy to check that h; is not global Lipschitz. Let R > 0. For each uj, us, v1,v2
such that R > max{||uilr20), l|u2ll 20 |vill2(0)s lv2ll L2 ()}, we can choose
K(R) = 3R2.

However, this is not satisfied in many cases, e.g. ha(u,v) = a(u+v) —b(u® +v3),
(a,b > 0). Hence, we have to find another regularization method to study the
problem with the locally Lipschitz source which is similar to the latter source. We
assume that the functions F,G : Dy x R2 — R, are locally Lipschitz i.e., for each
R > 0, there exists Krp(R), Kg(R) > 0 such that for all (z,t) € Dy, we have

|F(z,t;ur;v1) — F(z, 6 ug;v2)| < Kp(R)(Jur — ua| + |v1 — va),
|G (2, t;ur;v1) — Gz, tugsv2)| < Ko (R)(|lur — uz| + [wy — wal),

if u;,v; € S(R), i = 1,2, where S(R) is the closed ball in L?(€2) of center zero and
radius R, and

(4.1)

Kp(R):= sup
(z,t)eDr

{ F(fﬂ,t;ul;vl)*F(fcat;UQ;W)}
lur — uz| + |v1 — vo
: (ul,vl) 7’5 (U/27'U2)7 Ui, W; € g(R), 7 = 1,2} < 00,

Gz, t;ur;v1) — G, tug; v2) |
lur — ua| + [v1 — vg

s (ug,v1) # (u2,v2), ui,v; € S(R), i = 1,2} < 0.

Notice that Krp(R), Kg(R) are increasing. The main idea is to approximate the
locally Lipschitz functions F,G by the sequences Frs,Grs of globally Lipschitz
functions:
Frs(x,t;u;0) := F(z, t;w;0),  Grs(x,t;u;v) := Gz, t;4;0), (4.2)
where
—R?, ifw € (—o0,—R?),
w = { w, if we [-R°, R°), (4.3)
R, ifwe (R, +00).
Here, the term R is positive and depends on ¢ and satisfies lims_o R’ = +oc.
Moreover, for § sufficiently small, we have

RT = sup_ ([u(e,t)] + foa.1)]).
(z,t)€Dr
This implies immediately

Frs(z, t;u;v) := F(x, t;u;v), Grs(x,t;u;v) := G(x, t;u;v). (4.4)
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Remark 4.1. The locally Lipschitz constants Kr, Ko depend on §. It is also
interesting that R? is chosen suitable in order to obtain a convergence rate (our
purpose is to improve the rate of convergence).

Before presenting the main results, we need to some auxiliary results. We do not
claim that these auxiliary results are new, but for completeness of the presentation
we give their proofs here.

Lemma 4.2. Let Frs,Grs € L®(Dr x R?) given as in ([4.2). Then we have
| Fra (2, t;u1;01) — Fra (2, 6 u2; v2)| < Kp(R°)(Jur — ug| + [v1 —va]),  (4.5)
|Gra (@, t;u1;v1) — Gra (2, 1 uz; v2)| < Kg(R)(Jur — ug| + o1 —va),  (4.6)
for any (x,t) € Dr, uj,v; €R, i =1,2.
Proof. First, we show that for any wy,ws € R and wy, wsy satisfying (4.3)) then
|’l].71 — 1’1.72| S |w1 - w2|. (47)
The proof (4.7)) is divided into three cases.
Case 1. w; < —R°.
> If wy < *R(S then |’&71 — ’LZQ| =0.
> If—'R,CS < wo SR(S then |1’151 —’[172| :1U2+R5 < Wwo —wi = |’LU1—’UJ2 .
> If woy > R5 then |’LH151 —’[Uv2| = 27?,6 <wg —wyp = |’LU1 —w2|.
Case 2. —R?% < w; < RY.
> If’LUz < —RJ then |’L’LV)1 —’&72‘ = |’LU1 +R6| = w1 —|—R5 < wp —wg = |w1—w2 .
> If 7726 <wy < Ré then |1’171 — ’[172| = |w1 — ’U.)2|.
> If wo >R5 then |’l’171 —@2| :Ré—wl <wy —wy = |U)1 —’lU2|.
Case 3. w; > RY.
> If wy < —RY then W) — Wa| = 2R® < w1 — wy = |wy — wa.
> If*T\Jfs < wsy SR(; then |1’171 77:l72| :R‘s*wg <wp —we = |w1 7w2|.
> If wy > R5 then |1’171 —7:[72| =0< |’U.)1 —w2|.

Summarizing the above discussions, we arrive at (4.7). Now we return to the proof
of Lemma Since u, ¥ < R® and using (4.1]), we have

| Frs(z,t;ur;v1) — Fre(x,t;ug;va)| = |F(x, t;ur;01) — Fx, t; ug; v2)|
< Kp(R®) [ty — tio| + [01 — T2)
< Kp(R®)(Jur — ug| + o1 — v2)),

where we have used (4.7)) in the last estimate. We use a similar argument to ensure
the local Lipschitzian condition f the function Gxs. O

We first consider a perturbed model yielding a well-posed system whose solution
will approximate u,v. In particular, we define the approximate system

IMx,t) = AMT — t)ul(z) + BMT — t)us(x)
T
+ /t BM(r — t) Fs (IM(w, 7), JM (@, 7))dr,
J Mz, 1) = AMT — t)vd(z) + BMT — )55 (2) (4.8)

—l—/t BA(T —t)Grs (If;\(x, T), Jé‘(xﬂ'))dT.
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Our principal result, based on the analysis above, is then the following theorem.

Theorem 4.3. Let m > 1, n > 2aT and A := A(5) be as in Theorem [3.3 As-
sume that the system (2.16)) has a unique solution S := (u,v) € [C([0,T]; L*(Q2)) N
L>(0,T5GY, ,))? which satisfies

IS lico.rzz@2 + ISO L= 0,r:67,..)2 < Q- (4.9)

Assuming that we can choose a sequence R® > 0 such that lims_, g+ R® = oo and
1
K(R?) < TZ" log[log(A™1)],  for some n € (0, 5), (4.10)
where, K(R°) = max{Kr(R°), Kg(R?)}, and T, is defined in Lemma ,
Suppose that System [A.8)) has a unique solution (I}, J2) € [C([0,T]; L*(2)))?.
Then, the error estimate between the solution (I#, J&) € [C([0,T); L?(R2))]* of prob-
lem (4.8)) and the sought solution (u,v) to is given by
T

log()

1-4
123(t) = SOlizzoye < (20Q + TudA™) 1og? (A1) | AT @

where ZP = (I}, J&) € [C([0,T); L*(22))]?.

A

which tends to zero as § — 0%. And if ¢t = 0, the error (4.11]) becomes

Remark 4.4. In (4.11)), if £ > 0, the error estimate is of order At/T[IOgLT]?’H‘%—l

T q2n-1 1
Z2(0) — S0 <0[7} L 0<n< - 412
125 (0) = SO0) |2 (a2 < og(T) <5 (4.12)
We also note that the term [—1]""1, 5 € (0,3) tends to zero when § — 07.

log(%)
From above observations, we conclude that the right-hand side in estimation (4.11))
tends to zero for all ¢ € [0, 7.

Proof. First, we note that the proof of the existence and uniqueness of the solution
to problem (4.8)) is the same as in Theorem Next, we denote Z» = (IA, JN)
the solution of system (4.8]) with exact data (ur,ur) and (vr,0r). We know that

1Z3(t) = Sl iz2 > < 125 (1) = Z2 ()|l iL2@z + 12°() — SE) | L2@y2- (4.13)

By an argument analogous to that used for the proof of Theorem [3.3] we emphasize
that the proof in Step 1 and Step 2 of Theorem [3.3| remains valid. Also, replace the
globally Lipschitz conditions and by the locally Lipschitz conditions
and 7 respectively. Since limg_,q+ R® = oo, for a sufficiently small § > 0,
there is an R° > 0 such that R® > ISl 1zo (0,752 (0)))2- For this value of R’ (from
(4.3)) we have

Fre(z, t;u;v) = F(x, t;u;v),  Grs(z,t;u;v) = Ga, t;u;v). (4.14)

Using the global Lipschitz property of Frs,Grs (see Lemma , yields

T4
ZMt) — ZM¢ < 2T, K(RVT — t)) | ——— T,5. (4.15
123(0) = 22O lpa@ye < exp (2TK(R)( >){Alog(%)} (4.15)
Also, one has
T o4

ZMt) = S(t < 2aA OTLK(RONT — 1)) | ———— . (4.16
12°(0) = S®) w2z < 20h exp (2LLK(R)( >)[Alog(%)] Q. (416)
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Combining (4.15) and (4.16)), we obtain

T -7
Z3(t) - S(t < (2 To,0A~" 2TLK(RONT —t)) | ——
126) = Stz < (20Q -+ TubA™) exp (LKRT = 1) | 17|
Using (4.10) in this inequality, estimate (4.11)) follows. O

Conclusion. In this article, we showed that the inverse backward system
is ill-posed in the sense of Hadamard. To stabilize the solution, we developed a
regularization method based on the filtering method for which a stability estimate
of logarithmic type is established in the cases the source terms F, G are global and
local Lipschitz reactions.
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