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CHAPTER 1

THE FREE AND STUNTS

1.1 Introduction

Some classes of applications such as streaming real-time data, video, and audio require 

service guarantees in order to function properly Unfortunately, it is not always 

possible to provide those guarantees on an Internet scale due its inherent “best- 

effort” nature In particular, there are no built in methods to facilitate the delivery 

of different services that these applications require They are left with only the normal 

effort that the Transport protocols get from the underlying network.

Two major architectures exist to provide service guarantees over best-effort 

networks. The IntServ (Braden et al., 1994) and DiffServ (Blake et ah, 1998) service 

models both have the ability to specify what kind of service is provided to a data 

flow The major difference being that IntServ utilizes a direct specification on ser­

vice requirements through a Reservation Protocol, and DiffServ utilizes mostly traffic 

classification at the edges of networks The disadvantage is that both require changes 

to network routers in order to provide their services. These two architectures are 

discussed in section 2.2

This thesis proposes a new method entitled the “Free and Stunts” architecture. 

The goal of the architecture is to provide “Soft” throughput guarantees utilizing the
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Transmission Control Protocol (TCP), at end-pomts, without any enhanced compli­

ance from network devices. The Free/Stunt architecture takes advantage of a natural 

grouping of flows through an aggregation point that originate from the same sender 

A “Free” flow experiences enhanced service by having the ability to “target” a re­

quested throughput rate. The others of the group are called the “Stunts.” Stunt flows 

willingly reduce their bandwidth allocation to allow the Free flow to meet service re­

quirements.

The Free flow’s targeting abilities are accomplished by redirecting congestion 

signals to Stunt flows It is shown that a soft service model is possible by taking 

advantage of predictable behaviors of TCP. TCP controls the allocation of bandwidth 

to flows through the use of a Congestion Control Algorithm (Cerf and Kahn, 1974; 

Jacobson, 1988), which reacts predictably to congestion signals. The Free/Stunt 

architecture utilizes the Additive-Increase Multiplicative-Decrease (AIMD) phase of 

this algorithm to affect service guarantees.

During the AIMD phase congestion signals, such as dropped packets, require 

the flow experiencing them to slow down its rate by halving its congestion window 

on each congestion signal. When a Free flow experiences a congestion signal it may 

direct the action to a Stunt flow. With the ability to delegate congestion signals 

to other flows, the Free flow is able to meet service guarantees as requested by the 

application.

Deployment Examples:

Internet servers typically serve different forms of media to different clients. By 

employing this architecture, a server can give a particular flow (e.g. media stream)
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the freedom to match some requested Target throughput rate, while making other 

flows, such as bulky file transfers, behave as Stunts The existence of Stunt connec­

tions, from the server to other clients, is assumed. It is also assumed that they may be 

utilized by Free/Stunt. This architecture can also be used by an ISP to provide dif­

ferentiated service among its clients, by having some behave as the Free connections, 

while others play the Stunt roles.

Thesis Organization:

Chapter two describes the background information necessary to understand 

the research. Chapter three will detail related work and how it applies to the new 

architecture. In chapter four and five the Free and Stunts architecture is detailed. 

Chapter six details the experimentation method. Finally, chapter seven and eight 

show the results of experiments in both the simulation and real-world implementation 

environments

This thesis shows the progression of the architecture through its conception as 

an abstract mathematical idea, simulation, and implementation as a Linux Congestion 

Control module. Thorough testing using a simulated environment was undertaken 

before moving onto implementation, which reinforces the simulation results by show­

ing a remarkable correlation in behavior in a physical network environment. The 

research leaves no doubt to the validity of Free and Stunts architecture’s claim that 

it can provide Soft service guarantees using only end-point control over the Internet.



CHAPTER 2

BACKGROUND

2.1 TC P ’s Congestion Control Algorithm

The Transmission Control Protocol offers reliable in-order transmission of data over 

a compatible network (Cerf and Kahn, 1974; Jacobson, 1988). There are multiple 

factors to consider for the design and behavior of such a protocol. The efficient and 

fair distribution of network bandwidth is one of those factors. In order to achieve this 

goal TCP implements its Congestion Control Algorithm.

Through the use of the Congestion Control Algorithm TCP has the ability 

to throttle its throughput over a network with the goal of allocating to each flow a 

“fair” share of the available bandwidth. The term “fair” suggest a roughly equivalent 

proportion of bandwidth for each flow through the bottleneck link, also referred to as 

“TCP fairness.”

The protocol provides reliable transmission by ensuring that every packet sent 

is acknowledged (ACK) by the receiver. When a data transmission is received at 

the destination it is buffered and an acknowledgement is sent back through the net­

work to the sending entity. A “timeout” event occurs when an ACK is not received 

within a certain amount of time. When multiple duplicate ACK’s are received it is 

assumed that a packet was lost in the network. These definitions are the basis for
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the Congestion Control behaviors and will be explained in the detail description that 

follows.

All modern TCP variants support a standard set of Congestion Control ac­

tions including Additive-Increase Multiplicative-Decrease (AIMD), slow start, fast- 

recovery, and fast-retransmit (Kurose and Ross, 2008, Ch 3). TCP handles timeout 

events by putting itself in a “slow start” phase denoted by a drop in the cwnd to a 

minimum value followed by an exponential increase of the cwnd to some ssthresh 

value, or when another congestion event occurs. Timeout events occur when a data 

packet acknowledgement is not received within a certain expected variable window 

of time, as defined by the algorithm Fast-recovery and fast-retransmit are together 

intended to allow the TCP flow to retain bandwidth and also limit the amount of 

data that is sent more than once. These aspects of Congestion Control work together 

m order to both efficiently utilize available bandwidth while fairly distribute that 

resource among competing flows.

The TCP Congestion Control Algorithm maintains a set of variables that 

define the state of the flow and are also used for control Of those state variables this 

architecture utilizes the congestion window (cwnd), maximum segment size (MSS), 

slow start threshold (ssthresh), and smoothed round trip time (SRTT).

The cwnd defines a numerical limit of data that can be sent into the network. 

It is defined m terms of packets. The cwnd essentially determines at what rate the 

flow can transmit data. Its upper limit is governed by the “receive window,” which 

is a value denoting how much buffer space the receiving entity has allocated to the 

flow The Congestion Algorithm both increases and decreases the cwnd in order to
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control the flow’s throughput.

The ssthresh is a value, which defines the transcendent state between expo­

nential and linear cwnd growth. When the cwnd < ssthresh the congestion windows’ 

growth is exponential.

The SRTT is a weighted average of the measured round trip times updated 

as packet acknowledgements are received. TCP uses the SRTT to estimate timeout 

intervals, while the Free/Stunt Architecture uses it to measure instantaneous data 

transmission rates.

Knowledge of the TCP Congestion Control Algorithm is required in order to 

understand where the Free/Stunt architecture operates within the algorithm. For the 

purposes of experimentation and testing, the TCP NewReno variant of the Congestion 

Control Algorithm was utilized. Other variations on TCP exist; however, NewReno 

was selected because of its wide use and the fact that Linux kernels natively support 

this congestion algorithm. This was a major factor in the implementation as a Linux 

pluggable congestion module, discussed in section 8. As stated, the choice was one 

of practicality, and the aspects of NewReno that make it unique do not necessarily 

make it more compatible with the Free/Stunt architecture than other variants.

2.2 Quality of Service

Quality of Service is usually defined in terms of time and priority. In actuality the 

defining factor has more to do with the needs of the entity receiving the data being 

sent. Some applications such as real-time video require that data arrive at the des­

tination within some physically measurable time frame. Other applications may not
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specify a requirement of more than delivery of data as soon as possible, which the net­

work provides in the form of best-effort transmission. Still, other applications may be 

able to subsist on very little resources. Quality of Service requirements range across 

all spectra, but it usually implies increased service over other flows or adherence to 

real-time requirements.

2.2.1 Soft Quality of Service

Soft QoS models generally refer to service that may not deliver the requested quality 

at all times. Even so, the application will not totally fail if a specific level of service 

is not achieved. Soft QoS architectures are usually defined by not directly interact­

ing with hardware to provision resources. Many architectures have been designed 

that utilize both exploitation of TCP behaviors and entity coordination to provide 

enhanced service. The Free/Stunt architecture exploits the AIMD behavior of the 

TCP Congestion Control Algorithm. Congestion Manager, discussed in the literature 

section 3.1.1, is an example of a model utilizing coordination among many sending 

and receiving nodes. The common factor is that each method is at the mercy of 

network congestion and available link capacity.

These architectures cannot force the network to allocate more bandwidth or 

decrease queuing time at relays than normally possible. They can prioritize their 

own traffic enabling greater service proportionally compared to other flows in their 

domain. The effect is a noticeable increase in quality in the frame of reference, but 

from the prospective of the entire network service quality is not better than any other 

traffic sharing that network.
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That becomes the defining difference between “Hard” and “Soft” QoS models, 

as defined here. A more detailed overview of Soft QoS architectures is described in 

the section 3 Literature Survey.

2.2.2 Hard Quality of Service

Hard QoS modes generally refer to service that must deliver the requested quality 

at all times. In many cases, the applications will fail if the service is not delivered 

as required. It is possible to construct a network that provides guaranteed Quality 

of Service. That is if the network is compliant with a set of standard behavioral 

specifications with regard to data transmission. Judging by the currently available 

QoS architectures and research, it would appear that currently the only viable method 

of ensuring a specific level of QoS is to provision network resources appropriately at 

routers.

An early attempt at a unified architecture for Internet scale service guarantees 

was IntServ (Braden et al., 1994). The goal of Integrated Services (IS) is to provide 

real-time QoS for what was presumed to be the “next generation of traffic.” Next 

generation traffic in the mind of IntServ developers would be composed of telecom 

applications such as teleconferencing, remote seminars, and other such voice and 

video data. These ideas are familiar today as video teleconferencing and voice over 

IP (VoIP) technologies.

The Integrated Services model includes aspects that provide QoS for best- 

effort, real-time, and “link-sharing” traffic. Standard flows, or packet relaying, with 

no additional QoS benefits fall in the best-effort category. Real-time applications are
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those that request a service guarantee with respect to delivery within some physical 

time, as measured in discrete increments. The term link-sharing encompasses service 

based on traffic classifications These three categories of service define the IntServ 

QoS model.

IntServ allocates bandwidth to flows through a Reservation Protocol, which 

ensures that routers on the path will carry the requested bandwidth with some Quality 

of Service as defined in the reservation. Senders are required to specify exactly what 

level of service they require using these Reservations before transmitting and are 

expected to adhere to their requested requirements as well.

The problem is that IntServ requires compliance with every device on the 

route, which is a major failing in regard to Internet scale communication. Differen­

tiated Services, a later QoS model, contrast IntServ in that it does not require that 

every device on a route implement the DiffServ architecture In fact, the DiffServ 

RFC specifically states, “Sophisticated classification, marking, policing, and shaping 

operations need only be implemented at network boundaries or hosts” (Blake et al., 

1998). DiffServ does not use anything analogous to a Reservation Protocol. The 

architectural instead relies on traffic classification to determine bandwidth allocation 

and priority, while still providing Soft reliable service guarantees.

2.3 Discussion

In general TCP and its Congestion Avoidance Algorithm, specifically Additive-Increase 

Multiplicative-Decrease (AIMD), are celebrated as a means of effectively sharing the 

network communication resource. Probably, the reasons for the accolades are its sim­
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plicity and computational cost. It is decidedly an elegant solution to the complex 

problem of sharing the network’s bandwidth.

Taking into consideration only the TCP Congestion Avoidance Algorithm it 

becomes apparent that effective transmission of messages over an inter-network of 

computers is a matter of serendipity A TCP flow’s ability to achieve a target sending 

data rate is determined by many factors such as the bottleneck link capacity, the 

number of flows sharing that same link (i.e network congestion), the receiver’s ability 

to buffer incoming packet data, and the sender’s ability to supply data to be sent. 

All of these components vary with regard to the computers communicating and the 

dynamic nature of the network.

The Transmission Control Protocol alone has no built-in method of ensuring 

specific levels of Quality of Service. The implementation of Hard QoS often requires 

enhancements to network infrastructure such as routers. It becomes improbable to 

affect this type of service on the scale of the Internet. Communication on an Inter­

net scale involves routing messages between Autonomous Systems (AS), which are 

individually owned and operated networks. These AS are owned by different entities 

and have their own QoS, security, and profit concerns effectively ensuring that coop­

eration on this scale is improbable at the very least. That is one of the reasons that 

soft QoS architectures such as the Free and Stunts are appealing. They utilize the 

infrastructure that is already in place to affect their service models.



CHAPTER 3

RELATED WORK

3.1 Literature Survey

There are many proposed architectures and methods that aim to provide some level 

of QoS using TCP. Specifically, many of these methods adhere to the End-to-End 

principle (Saltzer et al., 1984), which states that whenever possible communication 

protocols should be defined as close as possible to the end points. In many instances 

this varies from the communicating nodes to the edge of the network hosting those 

nodes.

The following architectures were studied prior to the start of this research. 

They fall in the same domain of Soft Quality of Service as the Free and Stunts 

architecture. They are described in the following sections. At the end of this chapter 

is a discussion of how these concepts relate to this research.

3.1.1 Congestion Manager

The Congestion Manager (CM), described in “An Integrated Congestion Manage­

ment Architecture for Internet Hosts” (Balakrishnan et al., 1999), is an end-system 

framework designed to allow applications to adjust to network congestion. The CM 

allows applications to utilize it as a source of congestion information on the network.

11
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Applications that utilize the CM’s API can both retrieve the parameters it monitors 

as well as send information to the CM such as scheduled data transmissions.

It is important to note that the Congestion Manager does not buffer data. 

The design allows it to manage bandwidth allocation across the scope of all senders, 

but the developers purposefully decided to let the senders adjust their data rates as 

appropriate This is a consequence of the end-point design decision. The sending 

nodes are in control of when and how much data to send within the limits imposed 

by the overarching framework.

The end goal of the system is to allow more efficiently utilization of the avail­

able network communication resources. It provides a more tangible, by use of its API, 

Quality of Service while still allowing the actual data rate managed at the end-points.

3.1.2 Administrative Policies

In “Managing Soft QoS Requirements in Distributed Systems” (Molenkamp et al., 

2000), a soft Quality of Service architecture is developed focusing on requirements for 

multimedia applications. This architecture seeks to have a very broad oversight and 

influence in the system

The framework is based on administrative policies governed by parameters 

such as network congestion, CPU, and memory usage. A “QoS Host Manager” uses 

the rules defined by policy to take corrective action at the application level. It allevi­

ates behavior that adversely affects service to an entity m the system by instructing 

“Component Managers.” Those managers interact with “Instrumented Processes” to

affect the corrective actions.
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Above all entities in their framework is a “QoS Domain Manager.” This unit 

is essentially a conductor of sorts that can issue suggestions across system boundaries 

such as physical computers. Its actions are based on policy rules that guide its 

behavior towards other entities regarding their resource utilization. For example, this 

equates to requesting that a sending node slow applications processing in order to 

allow another node more bandwidth over the network.

3.1.3 Coordination Protocol

In “An Open Architecture for Transport-level Protocol Coordination in Distributed 

Multimedia Applications” (Ott and Mayer-Patel, 2007), the authors propose a Co­

ordination Protocol (CP) aimed at enhancing “cluster-to-cluster” (C-to-C) commu­

nication between autonomous systems. The term cluster-to-cluster is a unique class 

of distributed multimedia applications. It is defined by groups of nodes that com­

municate over a network with a separate group of nodes. These two groups share a 

common routing path and aggregation point for the combined flows.

At the heart of their framework is the “Coordination Protocol.” The goals 

of the CP are to inform C-to-C endpoints of the available bandwidth, setup an in­

frastructure for state information exchange, and allow coordination at the endpoints 

rather than the aggregation point.

To accomplish this task the CP inserts information into a new header that 

is positioned between the IP and Transport headers. Because CP information is 

gathered largely at the aggregation points, the use of this header provides an effective 

means of communicating with end points.
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3.1.4 Elastic Tunnels

The Elastic Tunnel framework, described in “Providing Soft Bandwidth Guarantees 

Using Elastic TCP-based Tunnels55 (Guirguis et ah, 2004), is a novel approach to 

acquiring a fixed target of bandwidth between autonomous systems. It provides this 

effect by exploiting a property of the TCP congestion control behavior that is intended 

to provide for equal dispersion of network bandwidth.

It acquires a target bandwidth by opening and closing a group of connections. 

This method works as all flows through a bottleneck will attempt to acquire a “fair55 

share of the bandwidth resource no matter where the flows originate. This essen­

tially means that the addition of flows between specific endpoints will increase their 

aggregate bandwidth through a route.

With the ability to add and subtract flows this method can effectively acquire 

and release bandwidth. It is described as “soft55 because its growth is proportional to 

the number of flows across the link bottleneck. It is limited by the overall utilization 

of the network bottleneck.

3.2 Discussion

On reviewing related work, one finds that many of the approaches to Soft Quality 

of Service architectures rely on flow aggregation and cooperation to accomplish their 

goals. Those that are developed as overarching frameworks still rely on cooperation 

amongst senders and receivers to share resources effectively In the absence of any 

ability to force allocation of resources, as found in Hard QoS implementations, this



15

seems to be the only viable option.

The Free/Stunt architecture shares many commonalities with the architectures 

described in this chapter. Like the Congestion Manager, cooperation at the end 

points is utilized to provide service. Much like Elastic Tunnels and the Coordination 

Protocol, it makes use of the concept of aggregated flows. Finally, like Administrative 

Policies, the Free/Stunt architecture has the ability to throttle a sender’s throughput 

in favor of another.

However, the Free/Stunt architecture has a far smaller footprint. It also does 

not require sending applications be coded specifically to work with it, a characteristic 

of both the Congestion Manager and Administrative Policies architectures. Taken 

together, these aspects of the Free/Stunt architecture give it the ability to meet Soft 

QoS requirements while having a relatively simple computational model and acting

only at the sending end-point.



CHAPTER 4

THE FREE/STUNT ARCHITECTURE

4.1 The Free/Stunt Service Model

This architecture is composed of a group of TCP flows aggregated together and treated 

as a single entity. A “Free” flow is defined as the component of the group that is 

given a target throughput request. The “Stunt” flows make up the remainder of the 

group that are not assigned target throughput request. These are the two entities 

that compose the Free/Stunt architecture.

The term “delegation” is used to refer to the assignment of a congestion signal 

from one flow to another flow. In order to carry out the delegation of congestion 

events, “distribution” of the congestion signals occurs. The Free/Stunt architecture 

uses both of these actions to meet Quality of Service requirements.

The motivation comes from the realization that a delegation of loss from the 

Free TCP flow to the aggregated Stunt flows will both allow the Free flow to achieve 

a desired sending throughput as well as not violate TCP fairness, defined in section 

2.1. Meeting a designated throughput is achieved by carefully controlling when the 

Free flow reacts to a packet loss signal versus when it delegates that signal.

TCP fairness is defined globally across the group of Free and Stunt flows, as 

they are abstractly considered a single entity. As a rule, the group of Free plus Stunts

16
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should not together be more aggressive than an equivalent number of ordinary TCP 

flows when increasing their throughput.

4.2 Architecture Overview

The service model in section 4.1 describes what the architecture does to affect the 

service requirements. The feedback control loop in figure 4.1 depicts the architecture. 

It shows where each of the components described in this chapter fits into the Free 

and Stunts as a whole.

Fig. 4.1 : Architecture feedback control loop.

Figure 4.1 represents the basic construct underlying the Free and the Stunts 

architecture. First, a Target request is subtracted from a monitored throughput 

measurement to produce an “error.” This error is the amount that the throughput is 

off from the requested Target. From there the error is fed into a “Controller,” which 

produces a loss probability that, in turn, is fed into the TCP Congestion Control 

Algorithm. At that point the probability is used to determine if a congestion signal
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(e g packet loss) is delegated to the Stunt flows or accepted at the Free flow. This 

process is repeated for each detected congestion signal.

4.3 Delegation of Congestion Signals

TCP sending side flows experience two types of congestion events These events 

are duplicate acknowledgements and timeouts. Timeouts are not distributed to the 

Stunt flows for several reasons having to do mostly with complexity and rareness 

of that particular event. Contrary to the rareness of the timeout event, duplicate 

acknowledgements are far more common. TCP congestion control is discussed m the 

background section 2.1.

When the Free flow detects congestion due to a duplicate acknowledgement it 

is required by TCP Congestion Control to reduce its throughput rate. It does this 

by halving its congestion window. In order to delegate this loss the Free flow can 

impose an equal or greater amount of congestion window reductions across the group 

of Stunt flows. After having the Stunt flows reduce their rates, the Free flow can 

continue sending without having to react to that particular congestion event. This 

is how the Free/Stunt architecture functions and the means by which it provides a 

service model softly ensuring a specific throughput.

Delegation of loss during the AIMD phase of TCP Congestion Control Al­

gorithm is not too complex The loss from a Free flow to the Stunt flows can be 

accomplished easily due to the fact that the TCP flow undergoes a relatively lin­

ear growth during the congestion avoidance phase. Simply, a connection with linear 

grown that is sending at a data rate x can distribute its loss to several Stunt flows
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sending at lower data rates yt The resultant effect is that the Stunt flow’s combined 

loss is greater-than or equal to the necessary throughput drop at the Free flow

That works because the Stunt flows combined together to send the same 

amount of data in the short term and experience the same or more loss compara­

tively. The “extra loss” is due to inefficiencies in the distributing method, discussed 

in section 7.7 On average there is always a bit of extra loss that is distributed to the 

Stunt connections. The loss distribution method is discussed in the sections on the 

Round-Robin Distribution Algorithm (4.3.2) and Controllers (4.4).

Two goals exist when implementing a method of congestion signals delegate. 

The first is that the method must retain the natural TCP fairness of the standard 

Congestion Control algorithm. This implies that the aggregated Free and Stunts 

flows should not gain more bandwidth than they would have had without delegation 

of congestion signals. The second aspect is implied in the first. The method is 

implemented m such a way as to not affect the overall network congestion in an 

abnormal manner.

4.3.1 Stunt-to-Free Delegation

The upward progression of the Free flow’s data rate is determined by the Round-Trip 

Time and the linear increase in the congestion window during AIMD. The Free flow 

can delegate loss until the requested throughput rate is achieved. Once the target 

data rate is achieved sustaining that rate without staying over or under is a matter 

of loss probability, which is totally governed by network congestion or possibly any 

Active Queue Management scheme at the bottleneck.
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Recall that the Free/Stunt service model is driven on TCP congestion events. 

Actions are taken only when a packet loss is detected. In order to maintain the 

requested target rate the Free flow reacts to packet loss in the usual manner while 

above the Adjusted Target rate discussed in section 4.4.2. This action allows it to 

oscillate about the Target rate with an average rate of the requested target.

In times of heavy congestion the Free flow will have a higher probability of 

loss while above the target. In turn, in times of relatively low congestion the Free 

flow will have a lower probability of loss. In order to add additional loss probability 

while above the target the Stunt flows can attempt to delegate their loss to the Free 

flow when it has surpassed its requested target rate.

The Free flow is better able to fix a target by accepting “reverse” delegation 

of packet loss events. Experimentation has shown that with this method enabled the 

Free flow is better able to meet the requested Target. The predictability lends itself 

to the use of the 1.33 target used for matching, which is defined in section 4.4 2. Of 

course, all the rules of delegation apply to the Reverse Delegation as well.

4.3.2 Round-Robin Distribution Algorithm

In order to distribute the loss from the Free flow to the Stunts a Round-Robin algo­

rithm was chosen for experimentation. The choice was based on one key assumption: 

the data rates of each Stunt should be about the same throughout the life of the 

connections. A Round-Robin approach seemed to be the most straight forward and 

efficient way to distribute the loss across the group.

Figure 4.2 depicts a single distribution of loss from the Free flow to the com-
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Fig. 4.2 : An overview of the congestion signal distribution method.

bined Stunt flows. The windows are divided into loss portions and retained portions. 

The algorithm has to first ensure that there is enough combined congestion window 

across the group of Stunts to enable a distribution of loss. After determining that 

there is a suitable amount of window, it begins distributing AMID losses to the Stunt 

connections by cutting their congestion windows to half their instantaneous values, 

depicted as “required reduction” in figure 4.2. This effectively reduces the Stunts 

sending rate by half.

Of course, due to the lack of optimization, there exists a bit of extra window 

on the last Stunt that experiences a distribution event, shown on figure 4.2 as “lost 

to network.” This is bandwidth essentially given up to the network for use by all the 

flows. The loss is diminished over time as the Free and Stunt flows with the cross- 

traffic distribute their shares of the bottleneck capacity fairly. However, constant 

delegation signals results in an average extra loss to the Free and Stunts as a whole,
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see section 7.7 for details.

4.3.3 The Free and Stunts do not utilize Slow Start

Slow start, discussed in the background section 2.1, delegation is slightly more com­

plex than delegation in the AIMD phase of Congestion Control, which was one of the 

reasons that it was not implemented. Determining exactly how much the combined 

throughput of the Stunts should be slowed can be done through the normal delegation 

method. However, the problem with slow start delegation is in determining how fast 

the Stunt flows should be allowed to regain throughput. This determination requires 

guessing about future dynamics of the network congestion and-it was thought-too 

much overhead in general. Note, that this discussion is in regard to the actual slow 

start phase and not the complete timeout event.

Above all else, the reasoning for the decision to only utilize the AIMD phase for 

loss delegation has to do with the differences inherent in the two types of packet loss. 

Firstly, flows are intended to exist within the AIMD state while they attempt to send 

data through the network. This implies that this phase is longer than other phase of 

Congestion Control. Secondly, slow start is actually a type of disaster recovery option. 

The assumption is that network congestion is so acute that the flow must lower its data 

rate to a minimum value, and from that point start probing for available bandwidth. 

The Free/Stunt service model makes the same assumption and unconditionally allows 

flows to enter and leave the slow start phase when necessary.
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4.4 Controllers

Two controller types were tested. Both have their strengths and weaknesses. Either 

can function as efficiently, with regard to meeting the target, as the other given the 

right conditions. In order to understand the controllers better this section will begin 

by describing the method used to calculate the throughput rate of TCP. The two 

controllers are described in the following sections 4.4.3 for the On/Off controller and

4.4.4 for the PI controller.

4.4.1 Measuring TCP Data Rate

It is known from (Mathis et al., 1997) that the average flow rate can be described 

by using equation 4.1 where MSS is the Maximum Segment Size, RTT is the round 

trip time, C is a constant collected during the derivation of the formula, and p is the 

probability of packet loss for the flow being examined.

Throughput =  ^  x ^  (4.1)

Equation 4.1 shows that the loss probability has a great affect on the data 

rate of a TCP connection. Loss probability is one of the factors that define how well 

the architecture can meet service requirements. A higher probability of loss means 

that the opportunity to shape the Free flow using delegation of congestion signals 

occurs more often. Notice, as well, that a loss probability would also result in a lower 

throughput for normal flows like the Stunts.
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Equation 4.1 is valid for the macroscopic measurements where the rate is 

essentially flat The equation does calculate the data rate with accuracy, but it does 

not provide precise enough values within the time-domain necessary to implement 

the Free/Stunt architecture.

Instantaneous Rate
cwnd x MSS 

RTT
(4.2)

Equation 4.2 is contrasted with equation 4.1 in that it is both less computa­

tionally expensive and a measurement of instantaneous rate. It is the instantaneous 

rate that is used for the purposes of testing and implementation

4.4.2 Target Rate Adjustments

The controllers use the instantaneous calculated data rate at the source to determine 

when to accept or delegate packet loss. If the loss is accepted at the free-flow then 

the data rate drops roughly by half. As mentioned before, this repeated behavior 

results is a actual data rate that is about the average of the data rate values before 

and after a loss, which we can calculate (Kurose and Ross, 2008, Ch 3).

Average Data Rate
w + f

2
(4.3)

Equation 4 3 resolves to 0.75 x W  where W  is the data rate before a loss. All
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things being the same, this would seem to be a valid average throughput measurement 

with the exception that the data rate drops as a result of packet loss would be slightly 

larger at a higher rate. It is necessary to find the adjustment on the target since this 

average throughput will be used to match the target requirements.

1.33 W  +w =  ------------------------------------------- --—

2

Luckily, the solution can be found in the original equation 4.3. One only needs 

to determine the constant factor that will result in an average data rate that is equal 

to the desired target. As can be seen from equation 4.4, that factor is

Therefore, the simulation target is set to 1.33 x T. This assumption works in 

the simulated world, but may not be the best target adjustment with the Linux imple­

mentation. There is a need for an adjustment, but on a real network the imperfections 

mean that the value needed is most likely not the one list here.

4.4.3 O n/O ff Controller

The On/Off controller functions as a switch that indicates when a loss should be taken 

as apposed to when a loss should be distributed. When the calculated data rate at the 

source node is greater than the target rate the probability of a loss distribution is 1 

(100%). Conversely, when the data rate is less-than the target rate the probability of a 

loss distribution is 0. This equates to always delegating loss when below the Adjusted 

Target rate and always accepting the loss when above the Adjusted Target rate. Refer
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to section 4.2 for the architectural overview describing where the controllers function.

<7.
0 x% < Tt

1 x%> T x
(4.5)

The general controller can be described in equation 4.5 where x% is the calcu­

lated throughput, Tj is requested target, and gt is the probability that a congestion 

signal will be delegated.

4.4.4 Proportional-Integral Controller

The Proportional Integral controller can be thought of as the next best thing to 

the On/Off switch. This controller uses the calculated data rate error from the 

target (proportion) along with a summation of the previous errors (integration). Its 

parameters are the Target T%, calculated data rate sxz, and the K  constant. Refer to 

section 4.2 for the architectural overview describing where the controllers function.

9i =  9t-i +  K  x (s^  -  1.3371) (4.6)

A few of the components of equation 4.6 need explaining. The calculated 

throughput sxt is the instantaneous throughput measurement from equation 4.2 and 

smoothed by equation 7.1, updated at each acknowledgement received. The K  con­

stant is a value that is used to control the aggressiveness of the integration. The
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controller relates the error from the target (in bytes) to the probability of loss. The 

error oscillates around the target. Therefore, the K  constant will be a very small 

value.

For the purposes of loss delegation the PI controller {g%) is defined between 

[—1,1]. While the actual position in that range is noted as negative or positive, 

whether the value is positive or negative denotes different behaviors. When the PI 

controller is in [—1,0) its absolute value represents the probability of a loss delegation. 

Alternatively, while the PI controller is in [0,1] the flow is allowed to behave normally. 

The value is always interpreted as a probability.

The PI control is only updated during loss events to limit its exposure to 

irrelevant input. The reasoning behind this decision is evident when considering that 

the Free/Stunt service model can only take action when a packet loss event occurs.



CHAPTER 5

MATHEMATICAL DERIVATION

5.1 The Nonlinear Fluid Model

The original concept testing for the Free/Stunt architecture is based on a mathemati­

cal model of the Transmission Control Protocol’s AIMD congestion control behavior. 

The model is presented here in much the original form as presented in “Liberating 

TCP: The Free and the Stunts” (Valdez and Guirguis, 2008).

5.1.1 Model Derivations

The nonlinear fluid model, similar to those proposed in (Hollot et al., 2001; Kelly, 

2001; Low et al., 2002; Shenker, 1990), Is utilized to capture the performance of m 

TCP flows traversing a bottleneck of capacity C, where m is equal to (1 +  s +  n) as 

depicted in Figure 6.1.

The round trip time rt(t) at time t for connection % is equal to the round-trip 

propagation delay Dt between the sender and the receiver for connection i, plus the 

queuing delay at the bottleneck router. Thus rz(t) can be expressed by:

rt(t) =  A  +  ^  (5.1)

28
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where b(t) is the backlog buffer size at time t at the bottleneck router. The propaga­

tion delay is denoted from sender i to the bottleneck by DSib, which is a fraction a, 

of the total propagation delay.

DSib = a%Dx (5.2)

The backlog buffer b(t) evolves according to the equation:

m
b(t) =  Y l x^t ~ D^ b ) -C  (5.3)

l—l

which is equal to the input rate xt(.) from the m connections minus the output link 

rate. Notice that the input rates are delayed by the propagation delay from the 

senders to the bottleneck DSl

It is assumed that RED (Floyd and Jacobson, 1993) is employed at the bot­

tleneck link Thus, the congestion loss probability pc(t) is given by:

Pc(t)

0 — Bmin

(j(v(t^ <>) Bmzn <C Bmax

1 ^ Bmax\

(5.4)

where a and  ̂ are the RED parameters given by „ Pma%—  and Bmm, respectively,£>max~ &mvn
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and v{t) is the average queue size, which evolves according to the equation:

=  —pC(v(t) — 6(i)), 0 < ¡3 < 1 (5*5)

Notice that in the above relationship, C is multiplied by ¡3 since RED updates the 

average queue length at every packet arrival, whereas our model is a fluid model 

(Hollot et ah, 2001; Low et ah, 2002).

The loss delegation between the Free and the Stunts causes them to pick up 

different congestion signals than those set by RED. In particular, the Free connection, 

upon delegating g(t) of its congestion signals, would pick up:

q(t) =  pc(t) -  g(t) (5.6)

Each Stunt connection would pick up:

q(t) =  pc(i) +  ^  (5.7)

The normal cross-traffic are not affected and will simply pick up

q(t) =  pc(t) (5.8)

The throughput of TCP, x%{t) is given by

V

xt(t)
wt(t)
ri(t)

(5.9)
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where w%{t) is the size of the TCP congestion window for sender i .

According to the TCP Additive-Increase Multiplicative-Decrease (AIMD) rule, 

the dynamics of TCP throughput for each of the m connections can be described by 

the following differential equations:

x%{t)

l

Xi{t -  rz(t))
( 1  -  q{t -  DbSl(t)))

xl(t)xi(t 
' 2

1,2, ,.,m (5.10)

where q(.) is the congestion signals observed by each connection based on its type. 

The first term represents the additive increase rule, whereas the second term repre­

sents the multiplicative decrease rule. Both sides are multiplied by the rate of the 

acknowledgments coming back due to the last window of packets xt(t — rt(t)). In the 

above equations, the time delay from the bottleneck to sender *, passing through the 

receiver i, is given by

DbsM  =  rt( t )~ D s%b (5.11)

The model above makes the following assumptions: (1) It ignores the effect of 

slow-start and timeout mechanisms of TCP, since our main focus is on the AIMD. (2) 

The delegation of some losses can be distributed in a linear fashion among the Stunts 

(as indicated in Equation 5.7). In general, this does not hold except for small value 

of losses, since the throughput is inversely proportional to the square-root of the loss 

probability. Despite these assumptions, however, the model above still captures the
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main dynamics as illustrate below.

5.1.2 Numerical Results

The model above is instantiated with specific parameters and solved iteratively. It is 

assumed that there is 1 Free connection, 4 Stunts and 15 cross-traffic, for a total of 

20 connections. The bottleneck has a capacity 2000 packets/sec. The RTT for each 

connection is chosen at random around 100 msec.

Fig. 5.1 : Numerical Results.

Figure 5.1 illustrates the performance of the Free connection in matching a 

target trace that starts with constant throughput at 200 packets/sec and then follows 

a sin wave. The figure also shows the average throughput across the stunts as well as 

the average throughput across the cross-traffic connections. One can observe how the 

Stunt connections make room for the Free connection to match the target throughput.
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Notice also, how little the normal cross-traffic is affected, except for the initial startup 

time (the first 3 seconds) where the whole system is still in a transient behavior. One 

can also see the impact of reverse delegation around time 6000. Since the target 

throughput drops below the fair-share (100 packets/sec), the Stunts can delegate 

congestion signals to the Free connection and thus they are able to increase their 

throughput a bit above their fair-share.



CHAPTER 6

EXPERIMENT DESIGN AND METHODOLOGY

6.1 Discrete Event Simulation with ns-2

The Network Simulator or ns-2 (E. Amir, 2007) is an open source discrete event sim­

ulator popularly used for academic research. It was necessary to change the network 

simulator’s underlying code in order to utilize it for the purposes of this research. The 

ns-2 simulator is designed to adhere to standard behavior. In that way it implements 

a wide range of protocols and can simulate differing types of data transmission over 

any number of defined networks as created using the TCL scripting language.

As mentioned in section 4.3, the Free/Stunt architecture works on Congestion 

Control events such as packet loss. That requires interflow cooperation; this is a 

function that is not a behavior in any standard TCP implementation.

The ns simulator comes with a TCP class, which carries out the necessary 

functions of sending, receiving, and Congestion Control among others. The majority 

of changes to implement the necessary functionality are seated in the TCP class. 

Rather than edit this class, it was decided that an additional class should be created 

based of off the original TCP NewReno implementation provided with ns.

All of the ns-2 TCP implementations inherit from the TCP Tahoe variant 

class, which contains the majority of the congestion control functionality. The TCP

34
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Tahoe and NewReno classes were cloned and then added to the build process to be 

incorporated into the simulator.

They were tested afterward by running a group of control simulation exper­

iments using the standard TCP NewReno. The cloned classes were then simulated 

under the same topology and then the output of the experiments was examined for 

differences. Because the simulations utilized the same seed and the classes were iden­

tical the simulation output was identical as well. This ensured that the cloning of the 

classes was successful.

After ensuring that the class was functioning correctly the Free/Stunt archi­

tecture was implemented. The same simulations were run over the same topology 

with the Pree/Stunt delegation turned off. The simulation output was exactly the 

same as in the previous two experiments. This ensured that there were no side-effects 

present for the Free/Stunt architectural additions to the class.

6.2 Data Collection and Use

The ns simulations were created using the TCL scripting language. The script allows 

for the creation of the network topology, the addition of data flows, and the parame­

terization that define the behavior. It is also necessary to specify what data to collect 

during the simulation and where it should be saved. See Appendix A for the scripts 

used for the collection and processing of simulation data.

Data collection in a discrete simulation involves writing system state informa­

tion to a file at moments during simulation. State variables were measured with a 

sample rate defined for the specific simulation. Information such as the throughput
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rates, queue sizes, and a running report of congestion events were collected. Table

6.1 provides a summary of the metrics collected.

In addition, graphical output was produced to better examine the qualitative 

behavior of the simulated flows Most of the data plots in this paper were created 

automatically as part of the finalization steps of each simulation run These can be 

found were the experiment results are given and analyzed, chapter 7.

Table 6.1: Collected metrics summarization table.

Monitored Measurement Delta Definition or Use
Sender rate usually measured every 0.1 sec Sender instantaneous calcu­

lated throughput measure­
ment

Sink rate measured every 1.0 sec Receiver throughput measure­
ment

Sink error Calculated from simulation 
output for 1.0 sec intervals

Measurement of the distance 
from the Target, these are the 
variances when computing the 
weighted metric (section 6.3).

Sender error measured using aggregated 
sender rate in 1.0 second in­
tervals

Measurement of the distance 
from the Target, these are the 
variances when computing the 
weighted metric (section 6.3).

RED average weighted average of past val­
ues

parameters adjusted in an at­
tempt to keep a level value

RED size usually measured every 0.1 sec Used to compare the conges­
tion levels to the behavior of 
the Free flow

per-Stunt rate measured every 1.0 sec not used for singular purpose
Stunt average updated every 1.0 sec using 

per-Stunt values
Used for comparison to Free 
throughput and as a aggregate 
value in calculations.
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6.3 The Performance Metrics

Metrics exist that can be used to measure the health and performance of a flow. 

Amongst others, these include the data rate, jitter, and timeouts per some time 

delta. These types of measurements are important, but what is important for the 

Free/Stunt architecture is how often and to what degree the Free flow is meeting the 

requested target.

The effectiveness of matching the requested target throughput to the actual 

data rate is measured with a weighted variant of the standard “sum-of-squared errors” 

method. The “sum-of-squared errors” does not work precisely enough due to the 

oscillation of the Free flow’s data rate around the target. There is no differentiation 

between the cases where the achieved throughput is above the target versus the case 

where the achieved throughput is below the target.

In order to get some bearing on this matter the positive variance V+ is defined

as:

(6.1)

where C+ is the number of sample points that the achieved throughput is above

target. Conversely, the negative variance V is defined to be:

V~ (6 2)

where C is the number of sample points that the achieved throughput is below
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target.

To capture the overall performance a weighted variance is used It is defined 

by:

v  =  (6.3)

where 5 is a ratio that is given by:

max{V+,V~) 
m m (y+1 V~~)

The 5 is always greater than or equal to 1. Ideally, if a perfect oscillation of the Free 

flow occurs then 5 would be 1. A larger value of 5 indicates a bias in the matching, 

either above or below the target, and this would increase the weighted variance in 

turn. Examining both the V+ and V~ metrics would indicate in which direction the 

bias existed.

The simulation runs are generally within the range of a few minutes. This 

range gives plenty of time to collect data and make variations to the requested target. 

Also, because of the small simulation time the metrics are computed over the entire 

simulation run. In an actual implementation these metrics would require a windowing 

or averaging with respect to time in order to be useful.
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6.4 Experim entation T opology

Figure 6.1 depicts the general topology of the simulated network. It is composed 

of a single bottleneck link that is traversed by the Free, Stunts, and cross-traffic 

connections. It is assumes all connections have an infinite supply of data to transmit. 

However, to study the impact of differing dynamics that arise in practice, some of 

the cross-traffic connections are turned on and off at random time intervals during 

simulation. The number of Stunt flows is varied to demonstrate and examine the 

behavior of the architecture under changing congestion levels.

Fig. 6.1: Topology used for experimentation.

The bottleneck link replay is configured with RED (Floyd and Jacobson, 

1993). The queue size at the bottleneck link is chosen to be as advocated in

(Appenzeller et ah, 2004), where C is the bottleneck link capacity and m is the total 

number of connections traversing the bottleneck. The RED parameter Bmin is set 

to 0.25 the size of the queue. This results in a rule-of-thumb distance between Bmin 

and Bmax being three times Bmin. Other parameters were chosen to encourage the 

stability of the average queue size. The appendix A has examples of the simulation 

scripts used for construction and simulation of the network.

It is important to note that on fully utilized simulation networks, those com­
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posed of only long lived TCP flows, the justification for dividing by the square root 

of m breaks down due to synchronization of flows (Appenzeller et al., 2004; Zhang 

et al., 1991), where synchronization is defined as flow loss happening in concert. How­

ever, when randomized cross-traffic flows are added, the premise is regained for the 

reduction m the buffer size due to the inability of flows to synchronize packet loss 

events.



CHAPTER 7

RESULTS AND ANALYSIS

7.1 PI Controller Parameters

efficiency Controller Parameters

Fig. 7.1: Testing for PI Controller Parameters

In order to determine general parameters for the Proportional Integral Controller, dis­

cussed in section 4.4.4, experiments were run while varying the throughput smoothing 

Weight and the P i’s K  value. The Weight is used in a simple weighted average of the 

instantaneous calculated data rate, which is measured at each packet ACK (equation 

7.1). This smoothed-throughput estimation is used with the PI Controller’s “error” 

computation. The K  value is the parameter of the PI Controller used to control how 

aggressive the integration will be. A higher K  would result in a greater proportion

41
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of the error being integrated into the probability g% (see section 4.4.4).

sx% =  (Weight) x sx% +  (1 — Weight) x xl (7.1)

The efficiency metrics in section 6.3 were used to gauge the relative effective­

ness across simulation runs. The metric’s values are used relative to each other with 

the goal of finding a minimum. Figure 7.1 combines the output with three degrees of 

specificity. From the data the general parameters of K  and Weight were chosen to 

be 0.001 and 0.333 respectively.

7.2 Ideal matching examined

The Free/Stunt architecture exploits aspects of congestion control and network dy­

namics to meet target requirements. Firstly, bandwidth must exist to support both 

the set of Free and Stunt flows along with the cross-traffic through the bottleneck 

link. That is there should be enough bandwidth to achieve the desired Free flow 

throughput, given the limitations due to increasing Stunts. Secondly, the flows must 

be limited by the Additive-Increase Multiplicative-Decrease (AIMD) Congestion Con­

trol behavior. Both timeout and TCP receive-window throttling will not allow the 

architecture to delegate congestion signals.

In order to get a general feel for the tools and method a haphazard-play with 

the parameters was done to observe the results. As apposed to the systematic ef­

fort taken with the formal experimentation, these tests took aspects like congestion,
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Fig. 7.2: Tight matching to the requested target.

topology construction, and cross-traffic dynamics to extremes in order to better grasp 

the possible ranges of the Free/Stunt architecture.

Figure 7.2 is a sample of a simulation in which the bottleneck link with a 

RED queuing discipline is configured to have a small queue size, while still allow 

the Random Early Detection mechanism to provide congestion signals. The networks 

were typically configured with a 50Mb Free/Stunt link, 80Mb bottleneck, and multiple 

varying numbers of 10Mb cross traffic links. For the experiment in figure 7.2 the 

RED queue parameters were a Bmin of 74, Bmax of 894, and a queue size 1100 (in 

packets). The fact that bandwidth contention is not an issue (timeouts) and that 

RED is providing plenty of opportunities to delegate loss (AIMD) results is a fairly 

good matching of the target.

7.3 Qualitative Analysis of Target Throughput

In order to assess the target matching behavior of the Free/Stunt architecture a 

standard sets of trace files were utilized. The trace files map target requests to time
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Fig. 7.3: Representative simulation runs.

during the simulation run. They were constructed to test specific aspects of the free 

flow’s behavior. In particular, the ability of the flow to keep acquired bandwidth, 

acceptance of target rate variability, and high throughput rates were considered.

Figure 7.3 shows representative results using four different trace files. All 

results were obtained using a PI controller with 10 Stunt connections on networks 

with varying dynamics. In each simulation run the target trace, Free flow throughput, 

and Stunt average throughput are plotted.

The goal of these experiments is to gauge the versatility of the Free/Stunt 

architecture. The next few sections will examine them with more qualitative detail.
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7.3.1 Target Trace with Large Variations

Figure 7.4 is obtained using a topology with 40 Mbps bottleneck link capacity. In 

order to provide some variability 8 of the cross-traffic connections through the bot­

tleneck were randomized for an on/off behavior at intervals that varied in the range 

of 0 to 10 second. The exception was with 2 cross-traffic flows, which were instructed 

to send data continuously.

Fig. 7.4: Target trace as sum of trigonometric functions.

We see a great amount of oscillation around the target in the initial 200 sec­

onds. This is to be expected due to the drop in data rate taken when the Free flow 

accepts a loss. This is the AIMD behavior of the congestion control algorithm. Recall 

that the Free flow accepts losses with some probability determined by the controller 

(see 4.4.4), and that loss is roughly a drop to about half its previous data rate. Also 

recall, the actual target for the purposes of control is 1.33 x T. The adjusted target 

allows the flow to average a rate that meets the requested target.

Moving onto the second interval past the 200 second mark we see that there 

seems to be an inability of the Free flow to fully target the next two local maxima
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values in the requested target trace function. The reason for this is due to network 

congestion, and possibly to a lack of reserve bandwidth at the Stunt flows. The 

architecture is designed to degrade gracefully rather than force acquisition of more 

bandwidth than is fair across the group of Free and Stunt flows.

Network congestion itself isn’t the only reason that the Free flow cannot meet 

that target at that point in time. The other factor is that these drops are the result of a 

series of packet timeouts, noted by observing the instantaneous calculated throughput 

drop to a very low value at that time. Recall that timeout events are unconditionally 

accepted at the Free flow resulting in a slow start behavior (section 2.1). In effect, 

this is a feature of the architecture but not the service model.

7.3.2 Target Trace as Predictable Wave Forms

Fig. 7.5: Target traces of repeating waveform functions.

Figure 7.5 (top) is obtained using a topology with an 80 Mbps bottleneck link capacity. 

The number of cross-traffic links was kept constant at 15 connections. With figure

7.5 (bottom) the topology was created using an 80 Mbps bottleneck link capacity.
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The number of cross-traffic links was kept constant at 20 connections.

Both target traces represent repeating waveform functions. This is of note 

because we are able to observe that the targeting is repeatable. For the most part it 

is also repeatable with what appears to be the same level accuracy.

We see that there is another observable consequence to the loss delegation 

mechanism of the Free/Stunt architecture. Notice, the average throughput of the 

stunts trends downward when the Free flow is above it and upward when it is below 

it. This is the direct result of loss delegation.

The most noticeable aspect of these plots is that the Free flow targeting is 

rather accurate no matter the value in relation to the stunts. We see that it displays 

a behavior described in section 4.3.1 as Stunt-to-Free Delegation. The Free flow would 

naturally have an average, fair share, throughput equal to that of the Stunts. In order 

to force the Free flow below this average the architecture allows Stunts to delegate 

packet loss to the Free flow while it is above the target.

7.3.3 Target Trace as a Stepping Function

Figure 7.6 is obtained using a topology with 80 Mbps bottleneck link capacity. The 

number of cross-traffic links was set at 20, randomize for on/off data transmission in 

the range of 0 to 30 seconds. Another four cross-traffic connections were configured 

to send data continuously.

This simulation shows that the Free/Stunt model quickly acquires the re­

quested target within some error. To that end, it displays all of the behaviors as 

described in the other qualitative analyses. This is the case despite the network
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Fig. 7.6: Target trace as a stepping function.

dynamics being drastically different from the other simulations presented in the pre­

ceding sections.

The waveforms show a greater amount of variation due to the need to delegate 

a greater amount of loss. This is a direct result the large amount of randomize cross­

traffic. These randomize flows do not work in unison. The effect is that there are 

periods of time when the network becomes congested very quickly due to the random 

amount of time they are “on.” The RED queuing discipline provides increased packet 

drop probability at these times. The fact that the Free/Stunt architecture is able to 

still affect targeting of the requested throughput rate is a noteworthy achievement.

7.4 Impact of the Number of Stunt Connections

The impact of the number of Stunt connections on the performance of the Free flow 

is of great importance. Clearly, if it is possible to reduce the number of stunts needed 

for a specific level of service it would be best to do so. For that reason a study was 

done of the impact the number of stunts has on the service model. In order to do
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this the number of stunts is varied while holding all other parameters constant. The 

weighted variance (as given in equation 6.3) versus the number of Stunts is plotted, 

and an analysis is given.

(A) (B)

1
§

1.6 

1.4 

1.2 

1

0.8 

0.6 

0.4 

0.2 

0
0 100 200 300 400 500

Time

(C)

J_____________ I_____________ L

Fig. 7. 7: The impact of increasing numbers of Stunt flows on perfor­
mance, from A to C the number of stunts is 2, 10, and 20 respectively.

Figure 7.7 plots the free connection with the trace for 2, 10 and 20 Stunts. 

These plots were generated on a topology of an 80 Mbps bottleneck link with 20 

cross-traffic connections. Notice, a very small number of Stunts (2) is unable to 

supply enough reserve bandwidth to meet the target rate. As the number of flows 

increases there is a noticeable improvement.

Figure 7.8 shows the results of several simulation runs where the number of 

Stunts is steadily increased. One can observe that there is an optimal number of
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Fig. 7.8: Impact of the number of Stunts on the weighted variance for 
non-random cross traffic and randomized cross-traffic.

Stunts (about 5 or 6) that minimizes the weighted variance. As the number is in­

creased there is an evident diminishing return.

The number of Stunts affects the overall efficiency of the method because they 

are more than a reservoir of bandwidth for the Free flow. In particular, they add 

to the level of congestion at the bottleneck proportionally to the number of flows 

passing through. If there number is very low, the Free flow cannot delegate losses 

since the fairness principles of TCP are strictly enforce on the aggregate of the Free 

and Stunt flows. If there numbers are very large, the network experiences a greater 

level of congested with an increase in the instances of timeout events.

7.5 Impact of Cross-traffic Dynamics

Several experiments were run to observe the behavior of the free flow when cross- 

traffic was randomized. Randomized traffic sends data for short periods of time, which 

turns on and off repeatedly. While experimenting with the randomized cross traffic 

the number of stunts was held constant while the dynamics of the cross-traffic was 

changed. The simulation was configured with 10 stunt connections for the network
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Fig. 7.9: Variance metrics: weighted, positive, and negative. 

topology that was being simulated.

It is clear that, during this experiment, with the addition of the randomized 

cross-traffic comes a price paid with regard to staying on target. With respect to 

the increased randomization, it was observed that the free flow began to shifted 

upward rather than deformed. The two additional line plots in figure 7.9 represent 

the variance below and above the target, given in equations 6.2 and 6.1.

We see the positive and negative variances diverge away from their origin at 

about the same rate. The behavior across the simulation runs indicates a flow that is 

trending above the requested target. That observation was confirmed with an analysis 

of the graphical output of each simulation showing that was indeed the case. This 

accounts for the dramatic increase in the weighted efficiency metric as well.

Figure 7.10 shows a noticeable trending above the target when the randomized 

cross-traffic reaches 20 flows. Why exactly this occurs is due to a decrease in the 

utilization at the bottleneck. Randomizing cross-traffic flows with an on/off behavior

effectively reduces the overall utilization of the bottleneck link in this instance.
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Fig. 7.10: Free-Stunts with random cross-traffic.

It should be noted that this particular problem can be alleviated with two 

distinct options. Firstly, the number of stunts can be increased with the effect of 

adding congestion at the bottleneck, or they could be decreased resulting in a lower 

achievable Free throughput. Secondly, the Free flow’s AIMD losses could be increased 

to more than half the congestion window in order to better match the target. The 

first options is discussed in section 7.4, and the second options is left to future work.

7.6 Free and Stunts Achievable Range

A series of experiments were conducted to examine the relationship between the 

number of stunts and the Free flow’s achievable throughput. Figure 7.11 is a plot of the 

data rate versus the number of stunts per simulation run. The network topology was 

configured to, again, have an 80Mbps bottleneck. The Free/Stunt link was 50Mbps, 

and the 15 cross-traffic flow links were 10Mbps each.

It was observed that the Free flow maxed out its link capacity due to an 

Elastic Tunneling effect (Guirguis et al., 2004). We see that as the number of stunts
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Fig. 7.11: The Free flow’s throughput as stunts are added.

approaches 25 there is a leveling off at about the capacity of the Free/Stunt link.

Generally, the Free flow is limited by the amount of loss it can delegate to the 

Stunt flows. This limit is imposed by the size of the congestion windows. A simple
n

rule is that the cwndpree < =  cwn ŝtuntsn f°r loss delegation to occur. There
Stunts= 1

must be enough congestion “window” amongst the Stunt flows to absorb the loss 

Delegation from the Free flow.

Once the Stunt flows cannot accept delegation due to the lack of congestion 

“window,” there is a brief time when all loss events will be accepted at the Free flow. 

That time is based on the average growth rate of the Stunts’ congestion window. 

Increasing the number of stunts has the effect of replenishing the Stunts’ combined 

window space faster.

Gf +  E — (Gfair — Gs) x C s +  Gfair (7.2)

The Stunts have a lower limit that is defined by having a combined congestion 

window that is less than that of the Free flow. Network dynamic as well as the number
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of stunts affects the lower limit. The relation between the Stunts’ lower limit and the 

maximum achievable throughput for the free flow is linear and predictable, to some 

degree, given by equation 7.2. Where Gfair is the TCP fair throughput rate, Cs is 

the stunt count, Gs is the average stunt throughput, E is the total “leakage” (section 

7.7), and Gf is the average Free throughput.

7.7 Extra Loss Delegation as an Efficiency Tool

The extra term E is added to achievable Free flow throughput in equation 7.2 due 

to leakage from delegating too much loss. This is the result of the Round-Robin 

distribution algorithm described in section 4.3.2. This aspect is a matter of efficiency 

that can be resolved simply by forcing a smaller amount delegated loss onto the 

final Stunt in the distribution chain. This measure effectively gives the architecture 

the ability to control exactly how much of this extra loss it wishes to “leak” to the 

network.

Fig. 7.12: Total extra loss as Stunts increase.

The data in the appendix B described here in figures 7.12 and 7.13 was ob­
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tained using the same topology as used in section 7.6. The numbers are high because 

the simulations were not designed to minimize the extra loss from distribution. The 

result is that these numbers are the maximum amount of extra loss that can be 

given up to the network being simulated. The appendix has the raw data for these 

experiments, and similar trending was observed in other test runs.

The amount of “leakage” is measured as a comparison to how much bandwidth 

the Free and Stunt flows would obtain without delegation of loss. Figure 7.12 shows 

the total bandwidth leaked to the network as the number of stunts is increased. The 

trending appears to be leveling off.

Fig. 7.13: Extra loss per-Stunt as stunts increase.

Figure 7.13 shows the per-Stunt extra loss as the number of stunts is increased. 

Again, the trend seems to be leveling off. It also shows a dramatic drop in the per- 

Stunt extra loss. The behavior seen here was predicted while designing the Round- 

Robin distribution method.

This would seem to be a rather crippling side-effect of the distribution method. 

However, as mentioned in the beginning of this section, this aspect can be negated
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by reducing the amount of loss distributed to the stunts. The architecture has the 

ability to control the amount of delegation to specific amounts on a per-Stunt basis. 

Impromptu testing has shown that it is possible to regain the “extra loss” described 

here. If one is not careful, it is also possible to make the distribution method behave 

unfairly by retaining too much bandwidth.



CHAPTER 8

FREE/STUNT IMPLEMENTATION IN LINUX

8.1 Experim ent Setup

The Free/Stunt architecture is implemented as a pluggable module for the 2.6.20 

Linux kernel. It is designed to behave as much like the simulation TCP Free/Stunt 

class as possible in the Linux environment. One notable exception is the controller, 

which is implemented as an on/off switch due to constraints of kernel programming. 

The Linux kernel does not natively support floating point operations, meaning that 

floating point math must be accomplished using fix-point arithmetic. In order to 

speed development the use of the On/Off Controller was chosen.

There are several differences between the simulated world and the physical test 

environment. Figure 8.1 shows the layout of the physical network test environment. 

The network bottleneck link C is a path composed of a 100Mbit switch A and a

Client (X) 
(cross-traffic)

Fig. 8.1 : Linux implementation network setup.
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10Mbps hub B , which means that the bottleneck exist at the hub B. Recall, the 

simulated networks consisted of routers with a RED queuing discipline.

The server S was a Linux PC with the Free/Stunt architecture implemented 

as a pluggable Congestion Control module and a server application. The client R 

was a Windows XP PC running client software. All the experiments in this chapter 

were composed of 1 Free flow and 6 Stunt flows. The actual flow data was made 

up of alphanumeric character sequences and was continuous between the free and the 

stunts. However, cross traffic was randomly generated manually. These flows accessed 

websites and other downloadable content during the experiments.

The Free flow’s Adjusted Target for these experiments is 1.33T. Experimen­

tation has shown that this adjustment is not optimal for the Linux implementation. 

Currently, there is no method in place to determine the optimal value. These experi­

ments were composed with that target simply to conform to the standards set in the 

simulations.

8.2 Target Matching Across Experiments

The plots in figure 8.2 show the Free flow, Target, Adjusted-Target used by the 

module, and the average stunt flows. The Target is the requested service requirement. 

The Adjusted-Target is the value set in the module for matching throughput while 

executing the architectural method of delegating congestion signals. The hope is 

to use the Adjusted-Target to average to the requested Target. The average of the 

combined Stunts is plotted in order to show their combined behavior as the Free flow 

meets its requested service requirements.
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Fig. 8.2: Average free flow shaping and target matching to a smooth trace 
request.

In order to be of use the Free/Stunt architecture must be able to provide the 

requested level of quality on a relatively consistent basis. The Soft service model 

accepts that there are times when the requested service cannot be met, but it is best 

to attempt to meet service requirements whenever possible.

These experiments focus on the ability of the Free/Stunt architecture to con­

sistently meet service requirements across multiple experiments. Each plot in figure

8.2 represents four experiments using the same Target trace. The Free flows were av­

eraged together to exhibit a picture of where the targeting meets across experiments.

On average we see that the Free flow does shape to the requested service 

requirement. The shaping is rather impressive. More importantly, this experiment 

confirms that the Free and Stunt architecture has the ability to meet requirements 

with a consistent level of service, given the relatively consistent network dynamics. 

That is to say that one can expect the architecture to not behave erratically under

slightly differing conditions.



60

8.3 M ore Efficient D istribution M ethods

When performing reverse-delegation, described in section 4.3.1, the Free flow is in­

structed to perform a normal reduction of its congestion window. Stunt-to-Free del­

egation entails that the Free flow accept a loss in the usual manner, which is a drop 

of about | x cwnd. The required reduction at the Free flow should only be half of 

the Stunt flow’s congestion window value, but for simplicity the delegated signal was

sent without making that distinction.
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Fig. 8.3: Multiple experiments showing the effects of changing the reverse 
distribution method.

A change was made as a first step in making the targeting behavior more 

efficient. For this experiment the “reverse” delegation method was changed to only
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delegate the exact amount of loss necessary. It was assumed that this change would 

result in a closer targeting to the Adjusted Target rather than the Requested Target, 

which was the case.

Figure 8.3 (top two) is an average of four experiments using the more efficient 

reverse distribution method. Note, the stepping trace function was used as a matter of 

preference in these experiments. We see a higher trending than the same experiment 

run without the more efficient method (bottom two).
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Fig. 8.4: Modified reverse distribution results in higher error and closer 
trending to Adjusted Target.

Figure 8.4 depicts the trending of the modified reverse delegation method 

versus the usual method, on the throughput error from the Requested Target. The 

plotted lines are the average error over all the experiments. They were constructed 

using the data from the cosine-wave experiments shown in figure 8.3. The plot time 

scale is truncated at 75 seconds because of the flow’s random origination throughput 

at the beginning of the experiment.

The plots confirm the visual observation in figure 8.3 that the modified version 

trends higher on average. These experiments showed that the Free flow varied between

----- 1----------
Avg-Err Modified 

Avg-Err UnModified

J_____________ I_____________ I_____________ L
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the two target plots, with a trending more toward the Adjusted Target value when 

using the targeting efficiency methods described in this section.

The material results are give and take. There is a tradeoff in target match­

ing efficiency between the modified method and the standard method. The original 

method has better target matching behavior due to more predictable throughput 

throttling on congestion events, while the modified version conserves bandwidth that 

would normally be lost to the network on delegation.

8.4 Application  Level R esource Contention

One of the more significant issues with an actual network environment is that the 

clients and servers have Application level limitations on resource utilization. Each 

process has, among others, limits on the amount of memory and CPU utilization it 

will be allocated. Sometimes disturbances to those resource allocations can cause 

service problems. This issue affects the service level that the Free and Stunts can 

provide. To that end, these problems are not technically in the domain of the Free 

and Stunts architecture’s service model, but there may be some way of limiting the 

impact on service. That specific method is left to future research endeavors. The 

purpose of this experiment was simply to observe this effect and note that it occurs.

Figure 8.5 shows the Free flow, Target, Adjusted-Target used by the module, 

and the average stunt flows. At around 340 seconds the client computer initiated 

a download of several videos from the site http://www.youtube.com/. The videos 

downloaded for approximately 50 seconds. This event added both network and pro­

cess resource contention and correlated with the drop in data rate at that time.

http://www.youtube.com/
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Fig. 8.5 : The effect of application resource contention on throughput as 
measured by the client software.

Again, this more than likely was the application processing slowing while the 

browser loaded, executed, downloaded the page, and then started the videos. The 

Free/Stunt architecture works at the TCP level and does not have the ability to affect

the Application. The application slowed its reading of data from the buffer for a short 

while due to lack of resources (e.g. CPU).



CHAPTER 9

CONCLUSIONS

9.1 The Results

In this paper a Soft Quality of Service architecture and service model were described. 

The Free/Stunt architecture is composed of a grouping of aggregated flows. In turn, 

that group of flows is composed of one or more Free flows and several Stunt flows. 

Using interflow resource sharing, described as Loss Delegation, the Free and Stunt 

flows are able to alter their sending throughput with a greater ability to meet a specific 

requested Target rate.

An analytical model was devised that was backed by a series of simulation ex­

periments utilizing the ns2 discrete event simulator. Simulation results showed that 

the method was sound. Furthermore, metrics were defined to measure the target 

matching behavior. The effects of varying degrees of congestion, cross-traffic dy­

namics, and the necessary number of Stunt flows were examined from an efficiency 

standpoint. It was discovered that an optimal number of stunts existed for any given 

bottleneck configuration, and that target matching required attempting to average to 

the requested target rather than meet it continuously.

Building on the simulation results, a Linux Congestion Control Module was 

developed. The module showed the same ability to match a requested throughput
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rate as both the analytical model and the simulation results. However, the addition 

of Application level resource contention showed that other factors exist in a physical 

environment that affects service levels. These issues lay outside the domain of the 

Free and Stunts service model, but they may not be totally irresolvable with some 

alterations to targeting behavior.

9.2 Future Research

Future work will focus on better matching methods, which possibly do not only affect 

changes in congestion events. Also, control methods for setting the Adjusted Target 

during execution will need to be devised to compensate for the dynamic nature of 

the Application layer. Naturally, the majority of foreseeable research avenues lay in 

application of the method and increased targeting efficiency.

9.3 General Conclusion

This paper has presented a rather thorough examination of the Free/Stunt archi­

tecture. Among the results is the presentation of the concept of Loss Delegation, 

which is believed to be a unique method of interflow resource sharing. The Free/S­

tunt service model clearly shows the ability to provide a generally reliable service 

level between end-points without the need of network assistance. It is clear that the 

Free/Stunt architecture is usable in its current form but can be made more efficient 

for implementation in a real network environment, which is the goal of future research

efforts.



APPENDIX A

PROCESSING SCRIPTS

Tel Simulation Script Template
#
#  - s  i m t  e m p  l at  e 3 t e l
#  — Th i s  f i l e  i s  a t e m p l a t e  f i l e  u s e d  f o r  r u n n i n g  b at ch
#  s i m u l a t i o n s  I t  i s  i n t e n d e d  f o r  u s e  wi t h  t he  s h e l l
#  s c r i p t  ! b a t c h s i m 2  ’
#
#  A u t h o r  Jas o n  V a l d e z
#  D a t e  0 3 / 1 8 / 0 8
#  C o p y r i g h t  2 0 0 8 ,  Jas o n  V a l d e z
#
s e t  n s  [n e w  S i m u l a t o r ]  

g l o b a l  d e f a u l t R N G
S d e f a u l t R N G  s e e d  <  [ r a n d o m s e e d ]  >

/ / s i m u l a t i o n  c o n s t a n t s
s e t  t c p f r e e t r a c e . f i l e  ” / t r a c e s / v a r . t c p e t  t r ”
s e t  r e d q t r a c e . f i l e  ” /  t r a c e s  /  v a r . r e d q u e u e  t r ”
s e t  t c p e t s i n k m o n . f i l e  ” /  t r a c e s  /  m o n . a t s i n k  t x t ”
s e t  s i m t r a c e f i l e . f i l e  <  [ s i m  t  r  a c  e f  i  1 e ] >
s e t  s t u n t d i r  ” / s t u n t - t r a c e s ”
s e t  r u n s i m f o r  < [ r  u n s i m f o r ]  >
s e t  s t u n t c o u n t  < [ s t u n t c o u n t  ] >
s e t  n o r m a l c o u n t  <  [ n o r m a l c o u n t ]  >
s e t  t c p e t p a c k e t s i z e  <  [ t  c p  e t  p a c  k  e t  s i z  e ] >
s e t  s r . d a t a r a t e  < [ s r d a t a r a t e ] >
s e t  s r . p i c o n t r o l l e r  < [ s r p l c o n t r o 1 1 e r  ] >
s e t  s r . p i c o n s t k  <  [ s r p i c o n s t k ] >
s e t  s r . r a t e u n d e r  < [ s r r a t e u n d e r ]  >
s e t  s r . r a t  eo  v e r u n d e r  < [ s r r a t e o v e r u n d e r ]  >

s e t  r e d q . b m i n  < [ r e d q b m i n ] >  
s e t  r e d q . b m a x  <  [ r e d q b m a x ]  >  
s e t  r e d q . s i z e  < [ r e d q s i z e ] >

# u s e d  to m o n i t o r  b y t e s  at s i n k  f o r  f r e e  c o n n e c t i o n
s e t  l a s t _ b y t e s  0
s e t  l a s t - v a l u e  0
s e t  r e c o r d s i n k . r e f r e s h  1  0
s e t  t c p e t s i n k m o n .  [ o p e n  ’’ S t c p e t s i n k m o n . f i l e ” w]

# t h i s  i s  t he  t r a c e  f i l e
s e t  s i m t r a c e f i l e .  [ o p e n  ” S s i m t r a c e f i l e . f i l e ” r ]

# t h i s  s a m p l e s  t he  r eq  q
s e t  r e d q t r a c e .  [ o p e n  ” $  r  e d q t  r  a c  e _ f  i  1 e ” w]

# s i n k  a v e r a g e
s e t  s t u n t S i n k . a v g  [ o p e n  ” $ s t u n t d i r / s i n k _ s t u n t _ a v g  t r ” w]

# s e t u p  d e f a u l t s  f o r  RED que ue
# Q u e u e / R E D  s e t  s e t b i t _ f a l s e ,  #  us e  ECN b i t
Q u e u e / R E D  s e t  b y t e s -  f a l s e
Q u e u e / R E D  s e t  q u e u e . i n . b y t e s _  f a l s e
Q u e u e / R E D  s e t  t h r e s h -  S r e d q . b m i n
Q u e u e / R E D  s e t  m a x t h r e s h .  S r e d q . b m a x
Q u e u e / R E D  s e t  q _ w e i g h t _  0 0 0 0 0 0 2
# Q u e u e / R E D  s e t  w a i t -  t r u e
# Q u e u e / RE D  s e t  h n t e r m _ 10
# Q u e u e / R E D  s e t  m a r k - p -  0 1
# Q u e u e / R E D  s e t  u s e ~ m a r k - p -  t r u e

s e t  n o d e _ ( s l )  [ $ n s  n o d e ]  
s e t  n o d e . ( r l )  [ $ n s  n o d e ]  
s e t  n o d e _ ( r 2 )  [ $ n s  n o d e ]
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s e t  n o d e _ ( s 2 )  [ $ n s  n o d e ]

$ n s  d u p l e x  —l i n k  $ n o d e _ ( s l )  
$ n s  d u p l e x  —l i n k  $ n o d e _ ( r l )  
S n s  q u e u e  —l i m i t  $ n o d e _ ( r l )  
$ n s  q u e u e  —l i m i t  $ n o d e _ ( r 2 )  
$ n s  d u p l e x  —l i n k  $ n o d e _ ( s 2 )

$ n o d e _ ( r 1 )  
$ n o d e _ ( r 2 ) 
$ n o d e . ( r 2 ) 
S n o d e . ( r 1 )  
$ n o d e _ ( r 2  )

5 0 M b  4 m s D r o p T a i l
80 M b 2 0 m s  R E D
$ r e d q _ s i z e
$ r e d q _ s i z e
5 0 M b  4 m s D r o p T a i l

$ n s  d u p l e x  —l i n k  —o p  $ n o d e _ ( s l )  $ n o d e _ ( r l )  o r i e n t  r i g h t - d o w n
S n s  d u p l e x  —l i n k  —o p  $ n o d e _ ( r l )  $ n o d e _ ( r 2 )  o r i e n t  r i g h t
S n s  d u p l e x  —l i n k  —o p  $ n o d e _ ( r l )  S n o d e _ ( r 2 )  q u e u e P o s  0
$ n s  d u p l e x  —l i n k  —o p  S n o d e _ ( r 2 )  $ n o d e _ ( r l )  q u e u e P o s  0
$ n s  d u p l e x  —l i n k  —o p  $ n o d e _ ( s 2 )  $ n o d e _ ( r 2 )  o r i e n t  l e f t  —d o w n

s e t  n o r m a l R G N  [ ne w  R a n d o m V a r i a b l e / U n i f o r m  ]
S n o r m a l R G N  s e t  m i n .  0 0 
S n o r m a l R G N  s e t  m a x .  3 0  0 
p r o c  r a n d s t a r t  { s t a r t t i m e  p a r o b j  }  {  

g l o b a l  n s  n o r m a l R G N
s e t  s t  [ e x p r  S s t a r t t i m e  +  [ S n o r m a l R G N  v a l u e ]  ] 
s e t  e t  [ e x p r  S s t  +  [ S n o r m a l R G N  v a l u e ]  ]
S n s  a t  S s t  ” S p a r o b j - s t a r t ”
S n s  a t  S e t  ” S p a r o b j - s t o p ”
S n s  a t  S e t  ” r a n d s t a r t - S e t - S p a r o b j ”

}
s e t  l m o n  [n e w  A g e n t / T C P S i n k ] , #  t c p  f r e e  c o n n e c t i o n  s i n k
s e t  t c p l  [ n e w  A g e n t / T C P E T / N e w r e n o  ] f r e e  c o n n e c t i o n
S n s  a t t a c h  —a g e n t  $ n o d e _ ( s l )  S t c p l
S n s  a t t a c h  —a g e n t  S n o d e _ ( s 2 )  S i m o n
S n s  c o n n e c t  S t c p l  S i m o n
S i m o n  s e t  w i n d o w -  1 5 0 0 0 0 0 0
S t c p l  s e t  w i n d o w .  1 5 0 0 0 0 0 0
S t c p l  s e t  p a c k e t S i z e .  S t c p e t p a c k e t s i z e
S t c p l  s e t  f i d _  1

s e t  t l  [ n e w  A p p l i c a t i o n / F T P ]  
S t l  s e t  t y p e -  F T P

S t l  a t t a c h  —a g e n t  S t c p l

# ma r k  t c p l  as t he  f r e e  c o n n e c t i o n
# a n d  s e t u p  t h e  s i n k  m o n i t o r  ( t h i s  i s  n o t  u s e d  by t he  t cp  c l a s s )
S t c p l  i s f r e e  t r u e
#  e n a b l e  t he  P I  C o n t r o l l e r  
S t c p l  e n a b l e p i  t r u e
S t c p l  p i . d a t a r a t e . p e r i o d  3 0
S t c p l  p i . d a t a r a t e . a l p h a  < [  p l c o n t r o l l e r a l p h a ]  >
# $ t c p l  s t u n t d i s t t o f r e e  t r u e  , n e e d s  to  be done  a f t e r  s t u n t s  are  s e t u p  
# $ t c p l  m o n —s mk  Simon
S t c p l  s e t S a m p l e R a t e  d a t a r a t e  S s r . d a t a r a t e
S t c p l  s e t S a m p l e R a t e  p i c o n t r o l l e r  $  s r  _ p  i  c  o n  t  r  o 11  e r
S t c p l  p i c o n t r o l l e r . c o n s t . k  S s r . p i c o n s t k
S t c p l  s e t S a m p l e R a t e  r a t e u n d e r  $ s r _ r a t e u n d e r
S t c p l  s e t S a m p l e R a t e  r a t e o v e r  u n d e r  S s r . r a t e o v e r u n d e r
#  s t u n t  c o n n e c t i o n s
f o r  { s e t  i  1 }  { S i  < =  S s t u n t c o u n t }  { i n c r  i  1 }  {  

s e t  s t u n t S i  [ n e w  A g e n t / T C P E T / N e w r e n o  ] 
s e t  s t u n t S m k S i  [n e w  A g e n t / T C P S m k ]

# s e t  s t u n t S i  [ S n s  c r e a t e  — c o n n e c t i o n  T C P E T / N e w r e n o  $ n o d e _ ( s l )  T C P S i n k  S n o d e _ ( s 2 )  S i ]  
S n s  a t t a c h —a g e n t  S n o d e . ( s l )  [ s e t  s t u n t S i ]
S n s  a t t a c h  —a g e n t  S n o d e _ ( s 2 )  [ s e t  s t u n t S m k S i ]
S n s  c o n n e c t  [ s e t  s t u n t S i ]  [ s e t  s t u n t S m k S i ]
[ s e t  s t u n t S i ]  s e t  w i n d o w -  1 5 0 0 0 0 0 0
[ s e t  s t u n t S i ]  s e t  p a c k e t S i z e .  S t c p e t p a c k e t s i z e
[ s e t  s t u n t S i ]  i s f r e e  f a l s e
[ s e t  s t u n t S i ]  s e t  f i d _  S i
S t c p l  a d d  —s t u n t  [ s e t  s t u n t S i ]

s e t  s t u n t S i n k t r . S i  [ o p e n  ” S s t u n t d i r / t r . s t u n t - s i n k . S i  t r ” w] 
s e t  l a s t  b y  t  e s _ s t  u n t  S l n k $  i 0 0

[ s e t  s t u n t S i ]  s e t S a m p l e R a t e  d a t a r a t e  0 1

s e t  t s t u n t . S i  [ o p e n  ” S s t u n t d i r / t r _ s t u n t _ $ l  t r ” w]
# [ s e t  s t u n t S i ]  t r a c e  c w n d _
# [ s e t  s t u n t S i ]  t r a c e  d r o p t i m e d e l t a .
# [ s e t  s t u n t S i ]  t r a c e  r a t e u n d e r .
# [ s e t  s t u n t S i ]  t r a c e  r t t _
[ s e t  s t u n t S i ]  t r a c e  d a t a r a t e .
# [ s e t  s t u n t S i ]  t r a c e  r a t e o v e r u n d e r .
[ s e t  s t u n t S i ]  a t t a c h  [ s e t  t s t u n t . S i ]

s e t  f t p l S i  [ [ s e t  s t u n t S i ]  a t t a c h  — s o u r c e  F T P ]

S n s  a t  0 0 ” [ s e t - f t p  1 $ i ] - s t a r t ”
}
#  t h i s  w i l l  e i t h e r  t u r n  on o r  o f f  s t u n t  l o s s  d i s t r i b u t i o n
#  to t h e  f r e e  c o n n e c t i o n
#  NOTE  — n e e d  to t u r n  on and o f f  a f t e r  s t u n t s  hav e  be e n  c r e a t e d  and l i n k e d  
S t c p l  s t u n t d i s t t o f r e e  f a l s e
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# t h % s  can be u s e d  to b r e a k  t he
# l m k  b e t w e e n  t he  f r e e  and s t u n t  c o n n e c t i o n s
# a f t e r  t h e y  have  be e n  c o n f i g u r e d  
# $ t c p l  i s f r e e  f a l s e

# r e g u l a r  c o n n e c t i o n s  , o p t i o n a l  random on o f f
f o r  { s e t  1 [ e x p r  S s t u n t c o u n t  +  1 ] }  { S i  <  [ e x p r  S s t u n t c o u n t  +  1  +  S n o r m a l c o u n t  ] }  { i n c r  i  1 }  {

p u t s  ’’ S E T U P ------------------ N o r m a l - C o n n e c t i o n - S i - c r e a t e d ”
s e t  s s o u r c e S i  [ $ n s  n o d e ]  
s e t  s s m k S i  [ $ n s  n o d e ]
$ n s  d u p l e x  —l i n k  [ s e t  s s o u r c e S i ]  $ n o d e _ ( r l )  1 0 M b  4 m s  D r o p T a i l
$ n s  d u p l e x  —l i n k  [ s e t  s s i n k $ i  ] S n o d e _ ( r 2 )  1 0 M b  4 m s  D r o p T a i l
s e t  t c p . S i  [ $ n s  c r e a t e  — c o n n e c t i o n  T C P / N e w r e n o  [ s e t  s s o u r c e S i ]  T C P S i n k  [ s e t  s s i n k S i ]  $ i ]
[ s e t  t c p _ $ i ]  s e t  w i n d o w .  1 5 0 0 0 0 0 0
[ s e t  t c p _ $ i ]  s e t  p a c k e t S i z e .  5 1 2
s e t  f t p _ $ i  [ [ s e t  t c p . S i ] a t t a c h — s o u r c e  F T P ]

i f  { $ i  >  [ e x p r  ( S s t u n t c o u n t  +  1  +  S n o r m a l c o u n t ) — < [ n o r m a l r a n d o m ]  > ]  }  {
r a n d s t a r t  0 0 [ s e t  f t p _ $ i ]

}  e l s e  {
S n s  a t  0 0 ” [ s e t - f t p _ $ i ] - s t a r t ”

}}
# d e f m e  t e l  v ar  f o r  que u e
s e t  r e d q  [ [ S n s  l i n k  S n o d e . ( r l )  S n o d e _ ( r 2 ) ]  q u e u e ]

s e t  t c p f r e e t r a c e .  [ o p e n  ” S t c p f r e e t r a c e . f i l e ” w]
# $ t c p l  t r a c e  cwn d-
S t c p l  t r a c e  d r o p t i m e d e l t a .
# $ t c p l  t r a c e  r a t e u n d e r _
# $ t c p l  t r a c e  r t t _
S t c p l  t r a c e  d a t a r a t e .
# $ t c p l  t r a c e  p i c o n t r o  l l e r _
# $ t c p l  t r a c e  r a t e o v  e r u n d e r _
S t c p l  a t t a c h  S t c p f r e e t r a c e .

S n s  a t  0 0 ” $ t l - s t a r t ”
S n s  a t  0 0 " r e a d t r a c e ”
S n s  a t  0 0 ” r e c o r d s i n k ”
S n s  a t  0 0 ” r e c o r d r e d q ”
S n s  a t  0 0 ” r e c o r d s t u n t s m k ”
S n s  a t  S r u n s i m f o r  ’’ f i n i s h ”

p r o c  f i n i s h  { }  {  
g l o b a l  n s

S n s  f l u s h  —t r a c e

c l o s e - f i l e s  

e x i t  0
}
p r o c  c l o s e - f i l e s  { }  {

g l o b a l  n s  t c p f r e e t r a c e -  t c p e t s i n k m o n .  s i  m  t  r  a  c e f  1 1 e _ r e d q t r a c e .
S n s  f l u s h  —t r a c e

i f  {  [ i n f o  e x i s t s  t c p f r e e t r a c e - ]  }  {  
c l o s e  S t c p f r e e t r a c e .

}
i f  {  [ i n f o  e x i s t s  t c p e t s i n k m o n - ]  }  {  

c l o s e  S t c p e t s i n k m o n .
}
i f  {  [ i n f o  e x i s t s  s i m  t r  a  c e f  i  1 e _ ] }  {

c l o s e  S s i m t r a c e f i l e .
}
i f  {  [ i n f o  e x i s t s  r e d q t r a c e - ]  }  {  

c l o s e  S r e d q t r a c e -
}
c l o s e S t u n t T r a c e s

}
p r o c  r e c o r d s t u n t s m k  { }  {

g l o b a l  n s  s t u n t c o u n t  s t u n t S i n k . a v g

f o r  { s e t  i  1 }  { S i  < =  S s t u n t c o u n t }  { m c r  i  1 }  {  
g l o b a l  s t u n t S m k S i  
g l o b a l  l a s t b y t e s _ s t u n t S i n k $ i  
g l o b a l  s t u n t S i n k t r . S i

}
s e t  s i n k s u m  0 0

f o r  { s e t  i  1 }  { S i  < =  S s t u n t c o u n t }  { i n c r  i  1 }  {  
s e t  b y t e s  [ [ s e t  s t u n t S m k S i ]  s e t  b y t e s _ ]  
s e t  l a s t _ b y t e s  [ s e t  1 a s t b y t e s _ s t u n t S i n k $ i ] 
s e t  d i f f  [ e x p r  S b y t e s  — S l a s t - b y t e s  ]



p u t s  [ s e t  s t u n t S i n k t r . S i ] ” [ I n s - n o w ] „ S d i f f
s e t  1 a s t  b y  t  e s _ s t  u n t  S l n k $ i  S b y t e s  
s e t  s i n k s u m  [ e x p r  I s i n k s u m  +  $ d i f f ]

}
p u t s  S s t u n t S i n k . a v g  ” [ S n s - n o w ]  ^ ^ [ e x p r - $ s i n k s u m - / - $ s t u n t c o u n t - ] -  
s e t  s i n k s u m  —1  0
S n s  a t  [ e x p r  [ $ n s  no w]  +  1 ]  ” r e c o r d s t u n t s i n k ”

p r o c  r e c o r d r e d q  { }  {
g l o b a l  n s  r e d q t r a c e .  r e d q
p u t s  S r e d q t r a c e .  ” [ S n s - n o w ] „ „ [ $ r e d q „ s e t « c u r q . ] — [ S r e d q - s e t - a v e .  
$ n s  a t  [ e x p r  [ I n s  n ow ] +  0 1 0 ]  55 r e c o r d r e d q ”

p r o c  r e c o r d s i n k  { }  {
g l o b a l  l m o n  n s  t c p e t s i n k m o n .  l a s t - b y t e s  t c p l  r e c o r d s i n k . r e f r e s h
s e t  bw [ S i m o n  s e t  b y t e s - ]
s e t  d i f f  [ e x p r  ( S b w  — $ l a s t _ b y t e s )]
s e t  l a s t - b y t e s  Sb w
p u t s  S t c p e t s i n k m o n .  ” [ S n s  - n o w ]  _ $ d l f  f  ”
I n s  a t  [ e x p r  [ S n s  no w]  +  S r e c o r d s i n k . r e f r e s h ]  ’’ r e c o r d s i n k ”

p r o c  r e a d t r a c e  { }  {
g l o b a l  n s  s ì  m t  r  a c  e f  1 1 e _ t c p l  
i f  { [ g e t s  S s i m t r a c e f i l e -  l i n e ]  ’ =  —1 }  {  

s e t  i t e m s  [ s p l i t  S i i n e ]  
s e t  t i m e  [ l i n d e x  S i t e m s  0] 
s e t  v a l u e  [ l i n d e x  S i t e m s  1]
S t c p l  f r e e w m d o w  l v a l u e
S n s  a t  [ e x p r  S t i m e ]  ’’ r e a d t r a c e ”

}  e l s e  {
c l o s e  S s i m t r a c e f i l e .

}}
p r o c  c l o s e S t u n t T r a c e s  { }  {

g l o b a l  s t u n t c o u n t  s t u n t S i n k . a v g

i f  {  [ i n f o  e x i s t s  s t u n t S i n k . a v g  ] }  {
c l o s e  [ s e t  s t u n t S i n k . a v g ]

}
f o r  { s e t  i 0 }  { S i  <  S s t u n t c o u n t }  { i n c r  l 1 }  {  

g l o b a l  t s t u n t . S i
i f  {  [ i n f o  e x i s t s  t s t u n t . S i ]  }  {  

c l o s e  [ s e t  t s t u n t . S i ]
}
g l o b a l  s t u n t S i n k t r . S i
i f  {  [ i n f o  e x i s t s  s t u n t S i n k t r . S i ]  }  {  

c l o s e  [ s e t  s t u n t S i n k t r . S i ]
}}}

#  s t a r t  s i m u l a t i o n  
S n s  r u n



/ b i n / b a s h
#  a u t h o r  J a s o n  V a l d e z
#  v e r s i o n  2 0
#  t h i s  v e r s i o n  o f  t he  b a t s i m  s c r i p t  u s e s  a command i n p u t  to c r e a t e  t h e  t r a c e  f i l e s  f r o m  t he  e x e c u t a b l e  g e n e r a t o r
#  t h e  e x e c u t a b l e  f i l e s  are  lo c a t e d  m  t he  t r a c e s  d i r e c t o r y  u n d e r  s o u r c e

f u n c t i o n  p n n t R e p o r t  {  
p  r  l  n t  f  ” »  S R E P O R T

}
f u n c t i o n  g r a p h - v i e w s  {
#  c r e a t e  s c r i p t s  to v i e w  g r aph s  

P R E V D I R = $  ( p w d )
c d  ” S B A T C H D I R / S W O R K I N G D I R /  g r a p h s ”

# m t  e r p  o l at  e d and t r a c e  graph at s i n k
p r i n t f  ” s e t  ^ t e r m i n a l - p n g - n o c r o p - e n h a n c e d  -  s i z  e - 6 4 0  , 4 8 0  _ \ n ” »  ” /  d r a t e . s i n k . t r a c e  g p l t ”
p r i n t f  ’’ p l o t —\ ” /  t r a c e s  / m o n . a t s m k  t x t \ ” - u s i  n g  -  1  2 - 1 1 1 1 e - \ ” S i n k  b y  t e s /  s e c \ ” - w i t h  -  l i  n e s  , »  ” /  d r a t e . s i n k . t r a c e  g p l t ”
p r i n t f  ” \ ” /  t  r a c e s / $ T R F I L E N A M E \ ” - u s i n g  -  1  2 -  1 1 1 1 e - \ ” T r a c e  b y  t e s  /  s e c \ ” - w i t h  -  1 1 n  e s - \ n ” »  ” /  d r a t e . s i n k . t r a c e  g p l t ”

# c  a l c u l a t e  d d a t a r a t e  and t r a c e  at s e n d i n g  f r e e  n ode
p r i n t f  ” s e t - t e r m  i n a l  - p n g - n o c r o p - e n h a n c e d - s  i z e - 6 4 0  , 4 8 0 - \ n ” »  ” /  d r a t e . c a l c . t r a c e  g p l t ”
p r i n t f  ” p l o t - \ ” /  t r a c e s  /  d a t a r a t e . t r a c e  t x t \ ” -  u s i n g  -  1  2  -  t i  1 1 e - \ ” C a l c  b y t e s  /  s e c \ ” - w i t h - l i n e s  , - ” »  ” /  d r a t e . c a l c . t r a c e  g p l t
p r i n t f  ” \ ” /  t  r  a c  e s / $ T R F I L E N A M E \ ” -  u s i n g  -  1  2 -  1 1 1 1 e - \ ” T r  a c e  b y  t  es  /  s e c \ ” - w i t h  -  1 i  n  e s - \ n ” »  ” / d r a t e . c a l c . t r a c e  g p l t ”

# s m k  l i n e  g r a p h ,  t r a c e  and,  c a l c u l a t e d  d a t a r a t e  at a v g e r a g e  o f  s t u n t
p r i n t f  ” s e t - t e r  m i n a l  - p n g - n o c r o p - e n h a n c e d - s  i z  e - 6 4 0  , 4 8 0 - \ n ” »  ” /  d r a t e . s i n k . s t n t . t r a c e  g p l t ”
p r i n t f  ’’ p l o t — \ ” /  s t  u n t  _t  r  a c  e s  /  s l n k . s  t u n t _ a v g  t r \ ” - u s i n g - l  2  -  1 1 1 1 e - \ ” S t u n t  A v g \ ” - w i t h - l i n e s  , —” »  ” /  d r a t e . s i n k . s t n t . t r a c e  
p r i n t f  ” \ ” /  t r a c e s  /  m o n . a t s m k  t x t \ ” - u s i n g  -  1  2 -  t i 1 1 e — \ ” S i n k  b y t e s / s e c \ ” - w i t h - l i n e s  , »  ” /  d r a t e . s i n k . s t n t . t r a c e  g p l t ”
p r i n t f  ” \ ” /  t r a c e s / $ T R F I L E N A M E \ ” - u s i n g - 1  2 -  1 1 1 1 e - \ ” T r a c e  b y  t  es  /  s e  c \ ” -  w i t h  -  1 1 n e s \ n ” »  ” / d r a t e . s i n k . s t n t . t r a c e  g p l t ”

Bash Batch Simulation Script

# r e dq
p r i n t f  ” s e t - t e r  m i n a l - p n g - n o c r o p - e n h a n c e d  -  s i z e - 6 4 0  , 4 8 0 - \ n ” »  ” /  r e d q . t r a c e  g p l t ”
p r i n t f  ’’ p l o t —\ ” /  t r a c e s / v a r . r e d q u e u e  t r \ ” - u s m g - l  2 - t i t l e  - \ ”R E D  Q \ ” - w i t h - l i n e s  »  ” /  r e d q . t r a c e  g p l t ”
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APPENDIX B

SELECT EXPERIMENT DATA

Loss to Network: Raw Data

Table B .l shows the total and per-Stunt throughput lost to the network due to the 
Round-Robin distribution algorithm without correction for “extra loss.” The extra 
loss is defined as reductions in throughput that are not necessary with regard to 
compensating for the Free flows required reduction on a delegation event. The dele­
gation results in a lowering of the combined Free and Stunt throughput because loss 
is delegated to a greater degree than necessary.

Table B .l: Total and Per-Stunt extra loss as the number of stunts is 
increased

Stunts Total KB Per-Stunt KB Stunts Total KB Per-Stunt KB
i 85.22632576 85.22632576 14 205.8129735 14.70092668
2 174.7433712 87.37168561 15 325.6590909 21.71060606
3 129.4076705 43.13589015 16 342.1576705 21.3848544
4 281.6193182 70.40482955 17 312.5800189 18.38705994
5 312.9230587 62.58461174 18 246.8252841 13.71251578
6 201.7291667 33.62152778 19 366.3011364 19.27900718
7 166.7391098 23.81987284 20 455.6657197 22.78328598
8 289.1879735 36.14849669 21 265.3385417 12.63516865
9 183.9346591 20.43718434 22 300.6171875 13.66441761
10 346.5300663 34.65300663 23 342.6912879 14.89962121
11 352.2473958 32.02249053 24 257.8297822 10.74290759
12 388.1740057 32.34783381 25 205.415483 8.216619318
13 320.0125473 24.6163498

Throughput Comparisons: Raw Data

Table B.3 shows 25 experiments in which the delegation is turned off. Table B.2 
shows 25 experiments in which delegation is turned on. In each group of experiments 
the number of stunts is increased from 1 to 25. The network topologies are exactly 
the same.
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Table B.2: Experiments with delegation as the number of stunts is in­
creased

Stunts Free Avg Stunts Total Stunt F/S Total
i 633389.7374 505370.3434 505370.3434 1138760.081
2 688628.7677 365382.5859 730765.1717 1419393.939
3 722936.404 342340.7677 1027022.303 1749958.707
4 782178.8283 286666.8283 1146667.313 1928846.141
5 790497.8586 310581.2525 1552906.263 2343404.121
6 812639.1919 316059.4343 1896356.606 2708995.798
7 813904.8889 303582.8802 2125080.162 2938985.051
8 789683.798 295946.2828 2367570.263 3157254.061
9 772845.0101 310646.303 2795816.727 3568661.737
10 806823.6768 287434.6101 2874346.101 3681169.778
11 816218.8283 280976.5142 3090741.657 3906960.485
12 824259.0707 267309.1919 3207710.303 4031969.374
13 768891.798 270742.4646 3519652.04 4288543.838
14 779864.8889 272270.2222 3811783.111 4591648
15 763778.8283 255177.5515 3827663.273 4591442.101
16 785357.0101 244197.3283 3907157.253 4692514.263
17 781392.6465 236568.3185 4021661.414 4803054.061
18 775292.7677 229238.3838 4126290.909 4901583.677
19 775616.1616 226643.2111 4306221.01 5081837.172
20 773720.404 209702.6949 4194053.899 4967774.303
21 699691.0707 217025.3506 4557532.364 5257223.434
22 717176.6465 209173.4288 4601815.434 5318992.081
23 759965.0101 198802.3434 4572453.899 5332418.909
24 651260.0404 201114.4949 4826747.879 5478007.919
25 753023.1919 189054.4937 4726362.343 5479385.535
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Table B.3: Experiments without distribution as the number of stunts is 
increased

Stunts Free Avg Stunts Total Fair
1 659205.4949 566826.3434 1226031.838 613015.9192
2 563938.101 517196.5253 1598331.152 532777.0505
3 471101.7374 470456.8081 1882472.162 470618.0404
4 433967.1919 445814.2828 2217224.323 443444.8646
5 436504.1616 445466.6343 2663837.333 443972.8889
6 413448.404 417019.6768 2915566.465 416509.4949
7 388034.101 388813.114 3109725.899 388715.7374
8 410794.3434 380323.5253 3453382.545 383709.1717
9 377049.8586 375551.2189 3757010.828 375701.0828
10 332031.1919 370398.5374 4036016.566 366910.5969
11 347860.7677 356345.55 4267661.818 355638.4848
12 331021.9798 341536.4646 4429459.556 340727.6581
13 338214.7071 329078.6138 4616236.687 329731.1919
14 297573.0101 321773.3911 4802400.485 320160.0323
15 340935.6768 305598.7556 4924917.01 307807.3131
16 299769.8586 296444.6162 5042883.717 296640.2187
17 268417.3737 285571.6839 5123136 284618.6667
18 244502.9495 272768.3232 5154332.768 271280.672
19 278292.0404 272559.8682 5456929.535 272846.4768
20 248261.0101 259305.7495 5434376 258779.8095
21 267090.3434 250563.798 5528930.101 251315.0046
22 264062.7071 243761.8806 5626824.081 244644.5253
23 231154.5859 237051.3131 5683334.788 236805.6162
24 221224.1616 230033.3939 5742025.616 229681.0246
25 224039.9192 218627.6428 5689730.99 218835.8073
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