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ASYMPTOTIC STABILITY AND BLOW-UP OF SOLUTIONS
FOR AN EDGE-DEGENERATE WAVE EQUATION WITH
SINGULAR POTENTIALS AND SEVERAL NONLINEAR

SOURCE TERMS OF DIFFERENT SIGN

FEIDA JIANG, YUE LUAN, GANG LI

Communicated by Zhaosheng Feng

ABSTRACT. We study the initial boundary value problem of an edge-degenerate
wave equation. The operator Ag with edge degeneracy on the boundary OF
was investigated in the literature. We give the invariant sets and the vacuum
isolating behavior of solutions by introducing a family of potential wells. We
prove that the solution is global in time and exponentially decays when the
initial energy satisfies E(0) < d and I(ug) > 0. Moreover, we obtain the result
of blow-up with initial energy E(0) < d and I(up) < 0, and give a lower bound
for the blow-up time 7.

1. INTRODUCTION

We consider the following initial-boundary value problem of an edge-degenerate
wave equation with singular potentials and several nonlinear source terms of differ-
ent sign:

Opu — Agu + Oyu + Vu

l s
= Zak\uV”“_lu - ij|u|qf_1u in int(E) x (0,7,
k=1 j=1

u(0) = up, Gwu(0) =w; in int(E),
u=0 ondE x (0,7T).

n+1
where ug € H;:OQ (E), u; € Lo(E)
N=14+n+h>3,a;,>0forl1 <k

-

,CQ(QT), Qr = E x [O,T], T e (0,00) and
I, b

n
< >0 for 1 <j <s, pp and g; satisfy

it N >3,

N +
1<¢s <@ < <qu=g<p<p<p-1<--<p <y

and V is a positive potential function which can be unbounded on the edge manifold
E. Here, X is a closed compact C'°°-smooth submanifold of dimension n embedded
in the unit sphere of R"*! and Y is a bounded subset in R” containing the origin.
Write E = [0,1) x X x Y, which can be regarded as the local model near the
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boundary of stretched edge-manifolds. Denote Eq for the interior of E, and the
boundary of E by OE = 0 x X x Y. The edge-Laplacian operator is defined as

Ap = Vi = (w0,)? + 02, +... 402 + (wdy,)> + ...+ (wdy, ),

where Vg = (w0y, 0z, 5 - -+, Oz, , w0y, , . . . ,w0y, ) denotes the gradient operator with
edge degeneracy on the boundary JE. Moreover, the degenerate elliptic operator
Ag is regarded as a spacial case of type degenerate differential operators on a
stretched edge manifold.

In the case of edge degenerate, Chen and Liu [3] considered the following initial-
boundary value problem for semi-linear parabolic equations with singular potential
term:

Ou — Agu — Vu = |[ulP"tu  in int(E) x (0,T),
u(0) =up in int(E),
u=0 ondE x (0,7),

and derived a threshold of the existence of global solutions with exponential decay
and the blow-up in finite time, with low initial energy case and critical initial
energy case. Chen et al. [0] first established the corresponding Sobolev inequality
and Poincaré inequality on the cone Sobolev spaces, and then proved the existence
of non-trivial weak solution for the following Dirichlet boundary value problem for
a class of non-linear elliptic equation on manifolds with conical singularities:

2
—Apu = ululP™!, forl<p< nt 5 in int(B),
n—
u=0 ondBx (0,T).
Here B = [0,1) x X and X is an (n — 1)-dimensional closed compact manifold.

The local model B is regarded as the local model near the conical points, and
OB = {0} x X. Moreover, the operator Ag in the above equation is defined by
(2105,)% + 02, 4 -+ + 02, which is an elliptic operator with conical degeneration
on the boundary z; = 0, and corresponding gradient operator is denoted by Vg =
(101, Opys - - -, Ox,, ). Alimohammady et al. I[I] applied the family of potential wells
to the following initial boundary value problem of semilinear hyperbolic equations
on the cone Sobolev spaces:

ug — Apu+ V(z)u +yur = f(x,u) in int(B) x (0,7),
u(x,0) = up(x), ue(z,0) =ui(z) in int(B),
u(t,z) =0 on B x (0,T),
They not only gave some results of existence and nonexistence of global solutions,
but also obtained the vacuum isolating of solutions and showed blow-up in finite
time of solutions on a manifold with conical singularities. For different problems

which take into account degenerate spaces, we refer to [2] [4] [5] [T4].
For a more general problem, Jiang [I0] considered equation

b —Ap+V(2)p+ ¢ = glg]P~" in RN x (0,7) (1.2)
with initial data
¢(0,.’17) = ¢0($)7 (bt(owr) = (bl (.CL‘) in RN;

where 1 < p < &5 for N > 2 (p > 1, N = 1,2). He established new stable and
unstable sets for the initial data, and proved that the solution blows up in finite time
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when the evolution enters into the unstable set and the solution is global existence
when the evolution enters into the stable set. For the case of linear damping and
potential terms, Levine [13] showed that the solution of with negative initial
energy blows up for the abstract version. Zhou [20] proved that the solution of
with the intial data (¢g, 1) satisfies fRN ¢oP1 > 0 and V(x) = 0 blows up
in finite time even for vanishing initial energy. Jiang and Zhang [I1] considered
the Cauchy problem of a nonlinear wave equation with damping and source terms.
When the term works as the damping in the case m = 1, the equation is equivalent
to the problem with the case V(x) = 0. Galakhov in [7] discussed the semi-
linear wave equation with a potential, which is different from because of the
damping term. For more papers related to the semi-linear hyperbolic problem, you
can refer to [8, 12, [I8] and the references therein. Liu and Xu [10] studied the
following initial boundary value problem of wave equations and reaction-diffusion
equations with several nonlinear source terms of different sign:

l s
ugy — Au = f(u) = Zak\uV”‘_lu - ij|u|qf_1u in Q x [0,7T],
k=1 j=1

with initial boundary conditions

u(z,0) = up(x), w(x,0)=ui(z), x€€Q,
u(z,t) =0, x€09dQ, t>0.

The authors introduced a family of potential wells and corresponding outside sets
and who also proved the invariance of some sets under the flow of the equation and
vacuum isolating of solutions. Then, they got the threshold result of existence and
nonexistence of global solution.

Motivated by the above results, in this paper, we intend to study the initial
boundary value problem for an edge-degenerate wave equation. We consider the
existence of global solution by Faedo-Galerkin approximation method [19] and dis-
cuss the blow-up of solutions by means of a a convexity argument [I5]. The main
difficulty in carrying out this paper is considering the problem with singular po-
tentials in an edge type Sobolev space. We introduce stable and unstable sets and
construct some functionals. By giving a family of potential wells, we obtain vac-
uum isolating of solutions. Then we derive a threshold of the existence of global
solutions with exponential decay if the initial data are in the stable set, otherwise,
we obtain the blow-up result.

The remaining part of our paper is organized as follows. In Section [2 we give
some notation and basic facts which are needed for our work. In Section [3] we
introduce a family of potential wells, and give the invariance of some sets under
the flow of problem and the vacuum isolating behavior of the problem. The
existence of global solutions and exponential decay result are given in Section[d] In
Section |5 we discuss the blow-up in finite time of solution and seek a lower bound
for the blow-up time T*.

2. EDGE TYPE SOBOLEV SPACES

In this section, we introduce some definitions and propositions which will be used
in this paper. Now, we recall the Edge type weighted p-Sobolev space [3].
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Definition 2.1. For (w,z,y) € RY with N =n+h+1, assume (w, z,y) € D'(RY),
we say that u(w,z,y) € L,(RY, do) if

N 1/p
fulle, = ( [ ™ lutwirao) < o
R+

where do = “dg, ... dx, L. . Ln
w w w

weight 7 € R is denoted by £](RY, do), which consists of functions u(w,z,y)
such that

Moreover, the weighted £, spaces with

1/p
ullzy = (/RN wNw™ Tu(w, z, y)|P do) < +o00.

+

Definition 2.2. For m € N, v € R and N = n + h + 1, the spaces H;”’V(Rﬂ\_’) is
defined by

HI(RY) = {u € D'(RY)|ws 7 (wd,) 0% (wd,)? : u € Lp(RY, da)},

for k € N, multi-index a € N, 8 € N? with k + |a] + || < m. Therefore,
H7m7(RY) is a Banach space with the following norm:

1/p
gy = > ([ M@0 0w, Putw z )l da)
P s RN
kit|al+[8]<m +
Moreover, the subspace H,'y’ (RY) of Hy7(RY) denotes the closure of Cg°(RY) in
Hy (RY).
n+1 nt+1

Ifue L£,” (E)and v € Ep}? (E), where p,p’ € (1,00) and % + 1% =1, then we
have the following edge type Holder inequality:

1/ ’ 1/ /
/wh|uv|da§ (/wh\u|pd0) p(/wh|v|p da) "
E E E

When p = 2, we get the corresponding edge type Schwarz inequality

/Ewh|uv|d0§ (/Ewh|u|2do)l/z(/]Ewh|v|2do)l/2.

For convenience we denote

h . h p
(u,v)e = | w'uwvdo, ||lu| nn = Big( | w"ul? da) .
E L£,? (B) E

P

For t € (0,T), we introduce the energy functional

1 1
B = [0l do+ 5 [ el o+ [ VIR do

2 E
S b
hy, [P+l j Ry 1gi+1
wlu do + /w ul¥ T do.
/E ] > [t

!
-y
o Pet j=1
h 2 1 h 2
W' VEugl“do + = | w"Vl§ugl|* do
E 2 Je

Then
1

1
E(0) zf/wh|u1\2da+
E 2

2
l

Gk h +1 ~ b h i+1
- W ug|PFT do + 7/(,«) luo|¥ ™ do.
; pet+1 /E ; G +1Jg
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An elementary calculation shows

t
E(t) = E(0) - / lou(rIP aa  dr.
0 L£,? (E)

ntl
Next we define the following functionals on the edge Sobolev space H;:O 2 (E):

l
1 1 ar
Ju:f/whvuszJr*/thquJf /whupk+1da
(=g J, o IVeul ot 5 [hViupao =30 28 [t
S b
+ J /wh|u|q_7+1 dO',
;%"'1 E
l
I(u) :/wh|vEu|2dJ+/th|u‘2dU—Zak/wh|u|13k+1 do
. £ k=1 E
R o
j=1 “E
l
Ls(u) :§/Wh|VEU\2dU+5/th|u|2 dg_zak/wh‘u|pk+1 do
5 E k=1 E

S
+ E bj/wh|u\qﬂ'+1 do.
=1 7E
ntl

Here, J(u), I(u) and I5(u) are well-defined and belong to C* (H;’O 2 (E),R). Then,
we introduce the potential well

n41
W ={ueHyy?® (B):I(u)>0,J(u)<d}U{0},
and the outside set of the corresponding potential well is defined as
1, ntl
V= {u €EHyo? (BE): I(u) <0,J(u) < d}.

Now, we define

1,244 h 2
N = {u € Hy'o® (E))\{0}: I(u) =0, /w |VEu|®do # 0},
E
d=inf{J(u),u € N'}.
And for § > 0, we define

N = {ue 1y (B))\ {0) : Is(w) = 0, /Ewh|VEu|2dU #0},
ds = inf{J(u),u € Ns}.

To facilitate our calculations, we state the following propositions.

1+1

ntl
Proposition 2.3 ([3]). For 1 < | < 2* = 2N, the embedding Hy,* (E) —
ntl nt1
Hll,b "(E)=L," (E) is compact.
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Proposition 2.4 (Edge type Poincaré inequality [3]). Let E C [0,1) x X x Y
be a bounded subset in RY with N = 14+ n+ h. If u(w,z,y) € H:?(’)'Y(Rf) for
1 <p<+oo, vye Ry, then

lw(w, 2, Yl 3@ < dellVeu(w, 2, 9)l 23 @)

where dg is the diameter of E.

1 n+1
s

Proposition 2.5 (Edge type Hardy’s inequality [3]). For all u € Hy > (E),
/th\uP do < C|[Vaul]? our
E Ly? (B)

1

ntl
For u € H;,’o 2 (E), we define

VPl apn
ey, @)
IVEU[ wpr 20 '
L,2% (E)
Next, we give some preparatory work, so that there are some lemmas which will be
used in this paper.

C* :inf{

ntl
Lemma 2.6 (Sobolev-Poincaré [3]). Assume that u € H;:O 2 (E) and that
[Veul| w1 #0. Ifl<p<2*—1=2%22 and N=n+h+1>3, then there
£,% (B)

2
2

exist a constant C, such that

P+l

[ul| nea <O VEU| npr
p+1 [:22 (E)

By Proposition [2:3] we can obtain the following constants:

Hu”z:”itll(ﬁ)
’ n+1
C, = {P—Hl b2 ]E}
k=S g i u € et (),
L£,2 (B)
||UH n41

q;+1
el ® nit
C; :sup{ U ue My (E)}.

[VEu|| nis
[,22 (E

3. INVARIANT SETS AND VACUUM ISOLATING

In this section, we shall introduce a family of Nehari functionals in edge type
Sobolev spaces and the family of potential wells sets. Now, we give the correspond-
ing lemmas, which will help us to demonstrate the invariant sets and the vacuum
isolating behavior of solutions for the problem.

3.1. Properties of potential wells. In this subsection, we introduce a family of
potential wells and give a series of their properties which are used to prove of our
main results.

ntl
Lemma 3.1. Assume that u € H;’OQ (E) and that ||VEul| T # 0, we have
’ £,2 (E

(1) limyx—o J(Au) =0, and limy_, 40 J(Au) = —o0;
(2) In the interval 0 < X\ < oo, there is a unique \* = X*(u) > 0, such that
L J(Au) = 0;
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(3) J(Au) is increasing on 0 < X\ < X*, decreasing on A > \* and takes the
mazimum at X\ = \*;
(4) I(Ahu) >0 for 0 < XA < A*, I(Au) <0 for \* < X < oo and I(A\*u) = 0.

Proof. (1) From the definition of J(u), we know that

2

A 22 ! 2\pet+1
J(Au) :—/wh\VEuF do + —/whv|u|2dg — Z ARAT / Wh|ulPe+ do
E 2 Je E

2 = et
S h AT
+ / /wh u|% do,
which gives limy_,¢ J(Au) = 0, and limy_, ;o J(Au) = —o0.

(2) An easy calculation shows that

d
—J (M) :)\/wh|VEu|2da+)\/th|u|2d0
dA E E

. s (3.1)
— APk Zak/wh\u|p’“+1 do + \% ij/wh\uw“ do =0,
k=1 E j=1 YE
which is equivalent to
l s
Zak)\p’“fl/whm\pkﬂ da—ij)\qul/wh|u|q-7+l do
k=1 E j=1 E
:/wh|VEu|2da—|—/th|u|2da.
E E
Then we let
l s
g(\) :Zakw—l/wﬂuw“da—ijvf—l/w’b|u\%+1da
k=1 E j=1 E
J s
:)\pfl(Zak/\p’“fp/whWW’“H dU—ij)\qup/wh|u|q-7+1 da)
k=1 E j=1 E
= AP hg* ().
Note that g*(\) is increasing on 0 < A < oo, and that limy_,g+ ¢g*(\) = —o0,

limy_ 40 g*(A) = 4+00. Hence there exists a unique Ag > 0 such that g*(Ag) = 0,

therefore g(Ag) =0, g(A) <0 for 0 < A < Ag, g(A) > 0 for A\g < A < oo and g() is

increasing on A\g < A < oo. Hence for any ||Vgu|| T > 0, there exists a unique
£,% (E

A* > )g such that

l s
E ak)\prl/whwpk“ do — E bj)\qfl/wh|u|qj+1 do
k=1 E E

=1

2

:/wh|VEu|2dJ+/th|u|2do.
E E

(3) Note that

iJ(Au) = )\(/ W Vgul? do + / WV |ul? do — g(N)).
dA E E
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From the proof of (2), it follows that if 0 < A < A\g then g(A) <0, if \g < A < A*
then
0<g(N) < /wh\VEuF do + / WV ul? do,
E E

if A* < A < oo then g(\) > [pw"|Vgu|?do + [, w"V|u[*do. Hence, we have

A J(u) > 0for 0 <A <A, £ J(u) <0 for \* < A < co. From this, the conclusion
of (3) follows.

(4) The conclusion follows from the proof of (3) and

!
I(\u) :)\2/wh|VEu|2 da+)\2/th|u|2dU — APl Zak/wh|u|p’“+1 do
E E k=1 “E

S
+ AG T Z b; / wWhu|%*t do
j=1 7E

d

O

Lemma 3.2. Let 0 > 0, if 0 < [;w"|Vgu[*do + [w"VI]u|?do < +2(6), then
Is(u) > 0. In particular, if 0 < [pw"|Vgul*do + [[w"V]u|?do < 72(1), then
I(u) > 0, where ¥() is the unique real root of equation ¢(v) =4, and

l
p(7) = apCrtiapet,
k=1

Proof. From 0 < [ w"|Vgu|? do+ [ w"V|u|? do < v*(6), we have [, w"|u|% ! do >
0, 1 <j<sandby

l s
Zak/wh|u|p’“+1 dc;’—z:bj/wh|u|q-7+1 do
k=1 E j=1 E

1
< Zak/wh\u|pk+1 do
k=1 “E

l
<Y apCrett /wh\vEu|Pk+1 do
k=1 E

= go(/ wh|VEu\d0)/wh|VEu\2d0 < 5/wh|VEu|2dJ,
E E E
we get Is(u) > 0. O

Lemma 3.3. Let § > 0, if Is(u) <0, then [ w"|Vgul? do+ [; w"V]u|? do > +%(6).
In particular, if Is(u) > 0, then [;w"|Vgu|?do + [;w"V]u|? do > ~+*(1).

Proof. From I5(u) < 0, we have

5/wh\V]Eu|2 do+5/th|u\2do
E E

l s
<Zak/wh\u|p’°+1 da—ij/wh\tuH do
k=1 E j=1 “E
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!
< ak/wh\u|p’“+1 do < <p(/ Wh|Vgu| do)|Veu| »a
kz::l E E L£,? (E)
which implies [; w"|Vgul?do + [ w"V|u[* do > ~2(5). O

Lemma 3.4. let § > 0, if Is(u) = 0, then [;w"|Vgu|?do + [ w"V|u[*do > +2(5)

or
/wh|V]Eu|2 do + / W'V ul? do = 0.
In particular, if I(u) = (;E, then ’
/wh|VEu\2da—|—/th|u|2da > 42%(1)
. E E

/wh|VEu|2 do + / W'V |ul? do = 0.
E E

Proof. If [, w"|Vgul>do + [;w"V|ul>do = 0, then I5(u) = 0. If Is(u) = 0 and
Jg " Veu? do + [ w"V|u[*do =0, then Is5(u) # 0, then by

5(/ wh|VEu|2da+/th\u|2 do)

E E
l s
Z / Wl ulPrtt da—ij/wh|u|qj+1 do
k=1 j=1 VYE

l
< Zak/ h‘u|17k+1 do < 4,0(/ h|VEu| dJ)HV]EuHLnT-H(E),
k=1 2

we get [;w"|Vgul?do + [; w"V]ul? do > ~2(6). O

Theorem 3.5. The function of §, d(d) possesses the following properties:

(1) d(6) > a(6)7%(8) for 0 < § < PHUEET) yhere o(5) = L(1+C*?) — 5.

(2) lims_0d(0) > 0 and there exists a unique §y > w such that
d(dp) =0 and d(6) >0 for 0 <0 < dp.

(3) d(9) is increasing on 0 < 6 < 1, decreasing on 1 < & < §y and takes the
mazimum d = d(1) at § = 1.

Proof. (1) If Is(u) = 0 and [; w"|Vgul*do + [;w"V]u|?do # 0, then by Lemma
. we have [, w"|Vgul>do + [ w"V|u*do > +?(6) and

J(u) zi/Ewh|VEu|2 da+§/Eth|u|2da

l
ag h pr+1 / h q;+1
— u do + w|¥ T do
z_jlpkﬂ/ o Z +1 [

>—(14C*?) / W Vgu|? do
E

l s
1 ( / h +1 Ry, 1qj+1
- E ap | W"|ulPFTdo — E bj | w'lul? da)
pH1IN—= g = e

l\J\H
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_ 1 *2 4 h 2
_(5(1+c )_p7+1)/ |VEu| da+

—a(6) /IE VU do > a(6)y2(5).

16( )

If Is(u) = 0 and [, w"|Vgu[*do + [,w"V]u|?*do = 0, by the definition of d(¥),
which is a contradiction.
(2) First Ip(u) = 0 implies

l s
b
h +1 — J h i+1
W ulPFT do = /w |u|%™" do
kil 21l

k=1

pr+1

2

!
_ [ M ulPEt g / byt g
,;plﬁ'l/m ul U—I—Z +1 [ul o
1( +C*2)/wh|VEu2do—lzl:ak/whmpkH do
2 E prle= " Jr
+1Zb / W ul 9T do)
q

1
=51+ Cc*?) / W Vgul? do +
E

1 1
J(u) :f/wh|V]Eu\2do+f/th|u|2 do
E 2 Je

P—q
(p+1)(g+1) £

MN

ag / W uPrt do
T JE

1 N pP—q h i+1
=—(1+C 2)/wh|VEu\2do+7 b-/w lu|%*! do.
2 E p+D(g+1) = ? JE

Next, we prove that d(0) > 0. Let

_ 1 h 2 1 h 2 pP—q l By, 1petl
Ji(u) = §/Ew |VEu| d0+§/]Ew Vul dU+MM,§ak/]Ew [ul do,
and d (0) = inf,en;, J1(u). The fact that J(u) > Ji(u) for u € Ny implies d(0) >
d1(0). In what follows, we prove d;(0) > 0. Let

1 1
Ly (Vgu,u) = J(u) = §|V]E’LL|2 + §V|u|2 CESCES)] + 0 Zak\uV’kH

Then Jy (u) = fE WMLy (Vgu,u) do. Since Ly (Vgu,u) is convex in |Vyu| and satisfies
L1 (Vgu,u) > o|Vgu| —

for a = %(1—&—0 *2) and any 3 > 0, from the theory of functional minimization, it fol-
lows that there exists a u € Ny such that d;(0) = inf,en, J1(u) = J1(p) > 0, hence

n+1
we have d(0) > 0. Next, for any u € H;:O " (E), Jpw"|VEul? do+ [ w"V|u[*do # 0
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and § > 0, we define A = A(0) such that

5(/wh|vEAu|2da+/th\AuFda)
E E

l s (32)
= z:a;.c/wh|/\u|]"’“+1 do — ij/whp\u\q]“ do.
k=1 E j=1 E
Then Is(Au) = 0 and
(5(/wh|VEu|2d0+/th|u|2dU)
E
(3.3)

1
= Zak)\p’rl/ WhuPrtl do — Zb P /wh|u|qf+1 do.
k=1 E

Jj=1
From the proof of (2) in Lemma it follows that for any ¢ > 0, there exists a
unique A = A(4) such that and hold. Again by the proof of Lemma [3.1]
we have lims_.oo A(§) = +00. Hence, by (1) of Lemma [3.1] we get lims_.o J(du) =
limy_ oo J(Au) = —oo. From this and (1) of this theorem, it follows that there

exists a unique §p > w such that d(dp) = 0 and d(d) > 0 for 0 < § < Jp.
(3) We prove that d(8’) < d(6”) for any 0 < ¢ < 6" <lorl <¢” <é <b

n1
and any u € H2 (E), Is#(u) = 0 and \|V]Eu||£nT+1( : # 0 there exists a v €
E
2

H;OT(E) Is/(v) = 0 and ||Vgv|| 5 # 0, a constant £(6’,8"”) > 0 such that
£,? (E

J(v) < J(u ) —¢g(¢',¢"). In fact, for above u, we also define A(d) by (3.2)), then
Is(A(0)u) =0, A(6”) =1 and (3.3) holds. Assume that ¢(\) = J(Au), we obtain

l
a 1 h 2 hy/l, |2 / hi, |PE+1
d}\gp()\) —)\</Ew |VEu| da—|—/Ew V0u|* do kz::lak Ew [ul do

- ) hyyl9itt g
+j§b]/Ew ]9 0‘)

:%((1—5)</Ewh|VEu|2da+/IEth|u|2 da) +LS()\U))

(1 h 2 hys), |2
=(1 5))\</Ew |VEul|® do + /Ew Vu| da).
Taking v = A\(6")u, we have Iy (v) = 0 and HV]EUHE”T“(E) #0. If0 < < 0" <1,
then ’
J(u) = J(v) = (1) = p(A(&) > (1= 8")7*(8")AE") (L = A(8)) = £(0",8").
If 1 <6’ < § < dp, then
J(u) = J(v) = (1) = p(A(&)) > (8" = DY*(§")AO)(A(&) — 1) = £(0",8").
O

Lemma 3.6. Let 0 < § < Mycw), assume that J(u) < d(0) and Is(u) > 0.
Then

0<[Veul?nss < —.
£,7 (®)
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In particular, if J(u) < d and Is(u) > 0, one has

2(p+1)

0 < ||Vru 2n < —0——Xd.
IVeull = o < oD+ o)

The above lemma follows from

a()||Veul? npn  +
L,? (E)

2

o 1I§(u) < J(u) < d(9).

Now we define a family of potential wells as follows

Wy = {ueHyy? (B): Iy(u) > 0,J(u) < d(d)} U{0}, 0<d<dy;
Wy = {ueHyo? (B): Iy(u) > 0,J(u) < d(6)}, 0<6<d,
and

Vs = {ue My (B): Is(u) < 0,J(u) < d(9)}, 0<0 < do;

1,41
Bs = {u € Hyy* (E) :/

W VEAu|? do +/th|/\u\2da <)}, 0<d<do;
E E

Bs =Bs;U0Bs = {ue H;?(E) : /wh|VEAu\2d0—|—/th|/\u|2da <+(8)},
E E

0< 6 < dp;

ntl
Bs={ue H;:OQ (E): /wh\VE)\uPdU + / WV do > %(8)}, 0< 8 <.
E E
3.2. Characteristics of solutions. In this subsection, we state the invariance of

some sets under the flow of (1.1)) and the vacuum isolating behavior of problem
(L.1).

Definition 3.7 (Maximal existence time). Let u(¢) be a weak solution of problem
(1.1). We define the maximal existence time Tyax of u(t) as follows:
(1) If u(t) exists for 0 <t < 00, then Tipax = +00.

(2) If there exists a to € (0,00) such that u(t) exists for 0 < ¢ < tg, but doesn’t
exist at t = tg, then Ty = to.

Now, we discuss the invariance of some sets corresponding to problem (|1.1)).

ntl ntl
Theorem 3.8. Let ug € Hé:oz (E), u1 € L,2 (E), and 0 < e < d, 61 < 62 are
two roots of equation d(§) = e. Then:

(1) All weak solutions of problem (L1.1) with 0 < J(up) < e belong to Ws for

§1 < 0 < b2, 0 <t < Thax, provided I(ug) >0 or | Vruo|| nT-H( : =0.
L,? (E
(2) All weak solutions of problem (1.1) with 0 < J(ug) < e ZQ)elong to Vs for
01 < 0 < b2, 0 <t < Thax, provided I(ug) <0,

where Tinax is the mazimal existence time of u(t).

Proof. (1) Let u(t) be any weak solution of problem (1.1)) with J(ug) < e, I(ug) >0
or |Vgu| n+1 = 0. Thax is the existence time of u(t). If ||Vrugl »+1 =0,
L,? (E) L% (E

then uo(z) € Ws. If I(ug) > 0, by the definition of d(8), it follows I5(uo) > 0 and
J(up) < d(8). Then uy(x) € W for 61 < 6 < d2. Next, we should prove u(t) € W;
for 91 < 6 < b3 and 0 < ¢ < Tyax. Arguing by contradiction, by the continuity of
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I(u) we suppose that there must exist a dy € (d1,02) and tg € (0, Tnax) such that
u(ty) € OWs,, and Is, (u(to)) = 0, \|V]Eu||LnT+1(]E) # 0 or J(u(tg)) = d(dp). From
2

t t
/ fur? s dr + / IVeul? e dr+ J(u(t) < J(u) < d(3),  (3.4)
0 Ly? (E) 0 L,2% (E)

d1 < 0 < 02, 0 <t < Tpax. we can see that J(u(ty)) # d(do). If Is, (u(te)) = 0,
|Veul|? ..1  # 0, then by the definition of d(§), we have J(u(tg)) > d(dy), which
L,? (E)

contradii:ts (13.4).
(2) Let u(t) be a weak solution of problem (l.1)) with 0 < J(ug) < e < d,

I(ug) < 0. From J(ug) <e, I(ug) <0 and

1
5”1“”1%(]}2) + J(UO) = E(O) = d((51> = d(éz) < d(é), 0 << 52,

it follows I5(up) < 0 and J(ug) < d(§). Then ug(x) € V5 for 1 < § < Jz. We
prove u(t) € Vs for 61 < § < 02 and 0 < t < Tpax. Arguing by contradiction,
by time continuity of I(u) we suppose that there must exist a dg € (d1,02) and
to € (0,Tmax) such that u(ty) € 9Vs,, and I, (u(to)) = 0 or J(u(to)) = d(do).
By we can see that J(u(to)) # d(do). Assume Is (u(tp)) = 0 and to is
the first time such that I, (u(t)) = 0, then Is,(u(t)) < 0 for 0 < ¢t < t9. By
Lemma we have [pw"|Vgu|?do + [pw"V]ul*do > +2(0p) for 0 < t < to.
Hence [;w"|Vgul*do + [;w"V]u|?do > 72(d), then HU(tO)”HLnT-%—l(E) # 0. From

2,0

u(to) € Ns, and J(u(to)) # d(dg), we have J(u(tp)) > d(dy), which contradicts to
6. 0

To discuss the invariance of the solutions with negative level energy, we introduce
the following results.

Proposition 3.9. All nontrivial solutions of problem (1.1) with J(ug) = 0 belong
to

c 11L+1
BS, = {ueH,,* (E) /Ewh|VEu|2 do + /]Eth|u|2da >},

where yo is the unique real root of equation
l 1
> aCptynt = (3.5)
k=1

Proof. Let u(t) be any solution of problem (1.1)) with J(up) = 0, Timax is the
maximal existence time of u(¢). From the energy equality

1
§||3tu||2 + J(u) = E(0) =0,

we get J(u) <0 for 0 <t < Thax- Hence from
l

S
Zak/wh|u|p’“+1 do — z:bj/o.)h|u|""-7+1 do
k=1 E j=1 “E

1 1
<> ak / W ulP T do <> arCP | VeulPhL, 0 <t < Tinax,
k=1 JE k=1 £y? (E)
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it follows that either [;w"|Vgul*do + [pw"V|u[*doc = 0 or [,w"|Vgul|?do +

Jew"Viu?do > ~3. If [fw"|Veul?do + [fw"VI]u[*do = 0, |Vgul 2 g =0
E

for 0 < t < Tpax. Otherwise, there exists a tg € (0,Tmax) such that 0 <

Jgw"Veu?do + [ w"V]u|? do < 43. By a similar argument we can prove that if

Jew" | Veul?do + [pw"V|u?do > 42, then [ w"|Vgul?do + [pw"V]u[*do > ~3

for 0 < t < Tinax- O

n4l
Theorem 3.10. Let uy € H§:02 (E). Assume that J(ug) < 0 or J(up) = 0 and
Jgw" | Veu?do + [; w"V|u|?do # 0. Then all solutions of problem (L.1)) belong to
Vs for0<d < w.
Proof. Let u(t) be any solution of problem (|1.1)) with J(ug) < 0 or J(up) = 0 and

Jew"Veul?do + [;w"V|u?do # 0, Tiax is the maximal existence time of u(t).
The energy inequality gives

a(@)IVeul? npn  +
Ly? (B)

1
p+1
(p+1)(1+C*2)

5 .
From (3.6]) it follows that if J(ug) < 0, then Is(u) < 0 and J(u) < 0 < d(d) for

0<d< M; if J(up) = 0 and [|Vguol| n+1( # 0, then by Proposition
.we have [|Vgul| n+1( : > o for 0 <t < Thax. Agam by (3.6) we get I5(u) <0
E

Is(u) < J(u) < J(uo),
(3.6)
0<d<

and J(u) <0< d(0) for0 <6 < M Hence for above two cases we always
haveu(t)e%for0<5<w0<t<Tmax O

Corollary 3.11. Let ug € HQOT(IE) Assume that J(ug) < 0 or J(ug) = 0
and [ w"|Vgul? do + [ w"V]u|?do # 0. Then all weak solutions of problem (L.1)
belong to B¢

<p+1><1+0*2)

Proof. Let u(t) be any weak solution of problem (1.1}) with J(ug) < 0 or J(ug) =0
and [, w"|Vgu|? do WV u?do # 0, Thax is the maximal existence time of

+
u(t). Then Theorem gives

1)(1 *2

2
From this and Lemmawe get [; W VEul?do + [; w"V|u[?do < 4*(5) for 0 <
6 < Myc”% 0 <t < Tmax- Then, letting § — (’H_l)(zﬂ, we obtain
Jg W Veul? do + [ w"V]u|? do > WQ(M) for 0 <t < Thax- O

Next, we discuss the vacuum isolating to problem (1.1]) with J(ug) < d.

a0§t<Tmax-

Theorem 3.12. Let e € (0,d). Suppose 1,02 are the two solutions of d(d) = e.
Then for all weak solutions of problem (L.1) with J(ug) < e, there is a vacuum
region

Ue = {ueMy,® (B)|s(u )fo,HvEunL%ﬁjo,m<5<52},

such that there is no any weak solution of problem (1.1)) in Us,.
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Proof. Assume that u(t) is any weak solution of problem with J(ug) <
€, Tmax is the maximal existence time of w(t). We only need to prove that if
Jew" | Veul?do + [pw"V|u[?do # 0 and J(ug) < e, then for all § € (61,02),
u(t) ¢ Ns, ie. Is(u(t)) # 0, for all ¢t € [0, Thyax)-

At first, it is clear that Is(ug) # 0. Since if Is(ug) = 0, then J(ug) > d(d) >
d(61) = d(d2), which contradicts with J(ug) < e.

Suppose there exists t; > 0 such that u(t;) € U.. Namely, there must exist a
0o € (81,02) such that u(ty) € Njs,. From the definition of d(d), we get J(ug) >
J(u(t1)) > d(8) > J(up), which leads to a contradiction. O

4. GLOBAL SOLUTION AND EXPONENTIAL DECAY

In this section, we prove the existence of global solutions by using the Galerkin
approximation technique and the potential well theory. Meanwhile, we give an
exponential decay result of the solution.

Theorem 4.1. Let ug € H;:? (E). Assume that E(0) < d and I(u) > 0. Then
problem admits a global weak solution u € L*(0,T; H;:? (E)) with Owu €
L0, T: Lo (B) N La® (Qr), where Qr = E x [0,T).

Proof. (1) Low initial energy case (E(0) < d and I(u) > 0): Let {¢;} be a sequence

nt1
of orthogonal basis of Hé:o 2 (E), we introduce the following approximate solutions

of problem (1.1)):

m
um(t,w,x,y)Zijm(t)ng(W,x,y) m:1327"'7
Jj=1

which satisfies

/wh&gtum - do + / W'V, - Ve do + / WOy, - pr do
E E E

+ [ W"Vu,, - o do
/[E m * Pk (41)
l s
= Zak / Wt | Pty - 1 do — ij / WMt |9 Uy, - 1, do
k=1 E j=1 E
for k=1,2,...,m. As m — +o0,
= . 1¥
um(07w71'7y) = chn(O)cpj(w,m,y) - uo(w,x,y) m H2,(2) ) (42)
j=1
m . ~
umt(O,w,x,y) = Zdjn(())goj(w,x,y) - ul(wa :v,y) m 'C22 . (43)
j=1

Multiplying (4.1) by f/,,(t) and summing for i, we have

) / S Ortti  fio (i do + / WVt - fin(8)VEr do
i=1/E i=17E

+Z/]Ewh8tum-f{m(t)sﬁk dUJFZ/Ethum'f{m(t)@k do
=1 =1



16 F. JIANG, Y. LUAN, G. LI EJDE-2018/18

m
=S [ Ml fin Ondo
: E

i=1 k=1

DI / Mt [Pt - Fl (D)1 o

i=1 j=1 E

Hence
1d 1d
5%/];0 Oty + Opty, da—|—§% W'V, - Ve, do
l

- ml|? do — i mpk+1d

+55; | WV uml* do ;pk+1dt L« |t o (4.4)

S b d
+ I _— / W, |9 do + / WOty - Oyt do = 0.

Integrating (4.4)) with respect ¢ from 0 to ¢, we get

1 1 1
f/wh|8tum\2da+2/ WM Vg, |* do + 2/ WV |y, |2 do
E

2
/ WMt |t do

l
Ak h pr+l
- WUy, do +
> [ z -
/Hatu || i1 )dT
1
:*/ h|“1|2d0+ /wh|V1EUo|2dU+*/th|u0|2da
2 Jr 2 2 Jr

—ZpkH/ w"[ug \”’““dcﬂ—z +1/ w"[uo|%tt do = E(0).
q;

The next result is given to show the invariant sets of the solutions for problem (1.1).
By (4.2) and , we have E(u,,(0)) — E(ug). Then for sufficiently large m, we
have

t
/ Hé)tum(T)H2 i1 AT+ E(uy) = E(ug) < d.
27 (E)

From E(0) < d, and we find E,,(0) < d for sufficiently large m. Hence

we have

t 1
/ 1Ot (P2 s dr + () + f/wh\atumﬁda <d 0<t<oo (45)
0 £,% () 2 Je

For 0 <t < 0o, we have u,, (t) € W with m sufficiently large. In fact, if it is false,
then there exists to > 0 such that u,,(to) € OW which implies that I(u,,(tp)) =0
or E(um(to)) = d. Since E(un(t)) < E(up) < d, we know that I(um(t9)) = 0.
From the definition of d, we have that J(un(to)) > d, which is contradiction. Thus
for sufficiently large m, u,,(t) € W and I(u,,) > 0. Then we obtain

l

1 1
J(um) = §/Ewh|V]Eum|2dU+§/Eth|um|2 da—z h /]Ewh‘|um\p’“+1 do

k:lpk+1
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—|—ZS: bi /wh|um\q1+1 do
Sutlle
1 h 2 1 h 2
> — | W'VEup|“do + = | w"V0|uy|*do
2 Je 2 Je
+1 Zak/ WP do — Zb / W uf do)
p
= (1 - L)(/whwﬁu |2d0+/th|u |2do) - Ll(u )

p—1 2
> 5oL+ C7 )HVEumH :
2(p+1) e

From (4.5) we have that for 0 < ¢ < oo and sufficiently large m,

2 (p+1)

1 t
<L / Mttt 2 dor + T () + / 10 s dr < d.
2 Je 0 L% (E)

1 —1 .
,/wh|umt|2da+2pi(1+c 2)||VEumHin+1 / | Bpu(r H =y dT
E 2

That means

2(p+1
(Vtn|? s < 22HD

1+C*?) .
£,? (B) p—1 ( )

From Lemma [2.6] we have

1
||um|| pit < C¥||Veum|? < C? f+ )( + )t

1
1
ltmll s < C2Vaun? < 222T N 14 o2y
£2 2 p—l
2 1 2
[Vl do < P Vaunl? oy < C* 2er Dy o]
E £,? (E) p—1

t
/Hatum(T)H v dr<d,
0 L£,? (E)

2

/wh|6tum|2 do < 2d.
E

Hence, there exist « and a subsequence {u,,} such that as m — oo, u, — u in

ntl
L>(0, oo;'H;’O > (E)) wead star and a.e. in [0, 00) X int(E), [wm[P* ™ uy, — [uPF~lu
(nt+1l)q
in L°(0,00; £, (E)) weak star and a.e. in [0,00) X int(E), |up|¥ 'ty —
! (n+1l)q
[ul% " u in L°°(0,00; £,741" (E)) wead star and a.e. in [0,00) x int(E), V]u,|* —

n41
Vlu|? in LOO(O,OO;H;:02 (E)) wead star and a.e. in [0,00) X int(E), dyum — su
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ntl
in L2(0,00; £, (E)) wead star. In (4.1 we fixed k, then letting m — oo, we have

/ w0 - Y do + / W'Vru - Viprdo + /
E E E

l s
:Zak/wh|um|pku~¢kda—2bj/wh|um|qﬂ'u-cpkda.
k=1 “E j=1 JE

WO - Y do + / WV pr do
E

(4.6)
Integrating (4.6)) with respect ¢ from 0 to ¢, we get

t

¢ ¢
(Oru, k)2 + / (VEu, Vi@ )2 dT + / (Vu, pr)2dr + / (Oyu, o1 )2 dT
0 0 0

l t S t
- Zak/ ([ul*u, r)2 dT — Z b; / (Jul¥u, )2 dT + (w1, ¢r)2,
k=1 0 j=1 0

+1

Moreover, and give u(0) = wug in H;’JT (E). By density, one has
that u is a global weak solution of problem and u(t) € W where u €
L0, 00 Hyo* () with dpu € L®(0,T5L57 (E)) N Ly? (Qr), where Qp =
E x [0,T].
(2) Critical initial energy case(E(0) = d and I(u) > 0): First E(0) = d implies
that ||V]Eu0||£%([ﬁ) # 0. Pick a sequence \,, such that 0 < A\, <1, m=1,2,...
2

and A, — 1 as m — o0o. Let ugm(z) = Apuo(x), we consider the initial conditions
u(z,0) = uom(x) in int(E) (4.7

and the corresponding problem (|1.1)) with (4.7). From I(ug) > 0 and Lemma
we have \* = A*(ug) > 1. Thus, we get I(uom) = I(Apuo) > 0 and J(ugm =
J(Amuo) < J(ug) = d. From the low initial case, it follows that for each m,

ntl
problem (|1.1)) with (4.7)) admits a global weak solution u,, € L‘X’(O,T;H;:O 2 (E))

n41 ni1
with Opur, € L°(0,T;L,2 (E))NLy? (Qr), where Qr = Ex[0,T] and u,, (t) € W
for 0 <t < oo satisfying

/whattum -vdo + / W'V, - Vevdo + / WOy, - vdo + / W'Vt - vdo
E E E E
l s
ntl
= Zak/wh|um|pku ~vdo — ij/wh|um|qfu ~vdo, Yve ’H;:Oz (B),
k=1 “E j=1 YE
for t > 0, and

t 1
/ Ot ()| wer i+ () + f/wh|8tum\2do < B(ugn) <d, (4.8)
0 L,2% (E) 2 Jr

for 0 <t < co. From (4.8) and

1 1 1
J(um) > (5 — m) (/IEwh|V]Eum|2da+ /]Eth\umFdU) — pﬁl(um)
p—1

> (14 C*)||[Veum|? nes
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we get
p—1 2 2 ! 2
TR R N ey +/ 1) ws dr<d, 0<t<oc.
2(p+1) ® Jo £,% (®
The remainder of the proof is similar to the low initial case, then the proof is
complete. O

ntl
Theorem 4.2. Let uy € H;:02 (E), up € W and I(u) > 0, then there exist two

positive constants C and ¢ independent of t such that 0 < E(t) < Ce=¢t for all
t>0.

To prove Theorem we need the following lemma:

Lemma 4.3. Assume that 1 < p < % and N =n+h+12>3, u is the solution

of problem (L.1)) with
ntl ntl ntl
up € Hyy® (B), w1 €Ly7 (E)NLy® (Qr), Qr=Ex[0,T.
If

B0) < 20 (Z ) T e, (49)

then u € W on [0,T].

Proof. Assume that there exists some time 7% > 0 such that u(t) € W, where
0 <t<T*and u(T*) € OW, we can obtain I(u(T*)) = 0 and u(T™*) # 0. At the
time I(w(T*)) = 0 and u(T™*) # 0, notice that

Jw) > (- L)(/mwuﬁda+/Ewhwu|2da) )

2 p+1 p+1
b— 1 *2 2
>71—|—C VU nga

Then, by the energy identity fo ||0ru( 7-)”[’77,;»1( dr+J(u)+3 [ wM|Bul? do < E(0),

we have ’
2(p+1

[Vl < 224D
2 ®  p—1

It follows from the Sobolev-poincaré’s inequality, (4.9) and (4.10)), that

l s
Zak/wh\uV’kH da—ij/wh|u|qj+1 do
k=1 E j=1 E

l
< Zak/whmw“ do
k=1 “E
l
SzakC;f’“HHV IIP’ﬂll
(E)

2

<Z RO pH)( + ) E(0)

(1+C*2) " () < 2%_1”(1 O IE(0). (4.10)

2

(4.11)

)

L,* (E)
which 1mphes that I(uw(T*)) > 0 for ¢ = T*. This completes the proof. O
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Proof of Theorem[[.3. From
1 1 1
E(t) :f/wh|8tu|2 da+7/wh|VEu\2da+7/th\u|2 do
2 JE 2 Je 2 Je

l
by, |Pr+1 hi, |qj+1
u do + / w|¥ T do
g e 1/ |ul E g+ |ul

1 h 2 1 1 h 2 h 2
> - - \V4 ‘/
2/]Ew |6tu| d0'+(2 1)(/Ew | ]Eul do + ]Ew |U| dO’)

1
1),
we have 0 < E(t) for all ¢ > 0.
The proof of other inequality relies on the construction of a Lyapunov functional.
And the Lyapunov functional is performed by a suitable modification of energy. For
this purpose, let 8 > 0, which will be chosen later, we define

L(t)=E(t)+6 / whudyu do. (4.12)
E

It is straightforward to see that L(t) and E(t) are equivalent in the sense. So there
exist two positive constants 31 and (32 depending on 6 such that for ¢ > 0, we have

BLE(t) < L{t) < B2E(1). (4.13)

By taking the time derivative of the function L(t) defined in (4.12]), using equation
(1.1) and performing several integration by parts, we get

dL(t) d h 2 h
D _ g +9/ 10,0 da+9/ ludpeu| do

= —)l0eull® wpr +O10¢ull? asa
Ly* (B) £,% (E)

4.14
+9(—/wh\V]Eu|2 do —/wh|u8tu\ do —/th|u\2d0) (4.14)
E E E
l s
0(2 ag / wWhuPrtt do — Z b / wWhu|%+ do).
k=1 E j=1 “JE
Using Young inequality and Sobolev equality, for any r > 0, we obtain

1
/wh|u8tu|d0§ —/wh|8tu|2d0+r/wh|u|2d0
E dr Jg E

1
sf/w@Ww+wwwwzﬂ,
47" E £22 (IE)

(4.15)

where C' is the Sobolev constant. By Lemma [£.3] we have
l s
Z ak / WPt do — Z b; / Whu|%*t do
P E o e

< Cpk+1Hv u”p nt1

> -
— ||M<\.
—

IN

2(p_|_ 1) B P12—1
p1+1 *2 1 2
arC} (7;0—1 (1+C2) 7 B(0)) Vel g

2

ol
Il
—
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Inserting (4.15]) into (4.14)), we arrive at

dL(1)
dt

9 2 p—|—1) 2\ _ plT_l
< _ . p1+1 * 1
<O+ 1)|\atu\\£:;( ez e ( ——(1+0") E(O))

— 0+ 00 — 002) IVeul? s
L,? (E)

pi=1
By Lemma we know Zﬁc:l arC ! (%(1 + 0*2)_1E(0)) ° < 1. Then
we choose r < 1 such that

9Za cp1“( )(1+c*2) (0))T—G+002r—902<0.

From this inequality we may find ¢ > 0, which depends only on r such that

dL(t 0
(>§w+~——1M@M|4, 06 Ve[
dt (E) 7 (E)

2

Consequently using the definition of the energy E(t), for any suitable positive con-
stant M, we obtain

dL(t 0 oM M
O <« vom + (042 -1+ D) ol s 40— 6)IVeul s
dt 4r 2 £,2% (E) 2 £,2 (E)
(4.16)
Then, choosing M < 2¢, and 6 small enough such that
0 oM
0+ ——-14—
+ 1 + 5 <0,
inequality (4.16]) becomes
dL(t
% < —-MOE(t) forall t>0. (4.17)
On the other hand, by (4 , setting ¢ = mequahty - becomes
dL(t)

— < —CL(t) forallt>0.

Integrating this differential inequality between 0 and ¢ gives the following estimate
for the function L(t)

L(t) < Ce <t for allt > 0.
Consequently, by using (4.13)) once again, we conclude that
E(t) < Ce St for all t > 0.

The proof is complete. O
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5. FINITE TIME BLOW-UP OF SOLUTION

In this section, we discuss the blow-up in finite time and seek a lower bound for
the blow-up time 7™ for the solution of (|1.1)).

Theorem 5.1. Assume that u is a local solution of problem , and ug €
H;? (E). If I(u) < 0 and E(0) < d, and [;w"uguydo > 0 when 0 < E(0) < d,
where d < %(]E w"|\Vgul? do + [pw"V]u|?do) then the solution u blows up in
a finite time.

The following three lemmas will be used to prove Theorem

Lemma 5.2. Let u be the unique local solution of problem (L.1) and assume that
u satisfy E(0) < d, one has I(u) <0 and

p—1 / h 2 / h 2
d<——— \Y4 do + Viul*d
St 1)( ]Ew |VEu|® do Ew |ul 0’)

l s
p—1 ( / h), |pe+1 / by, 1gi+1
< ap | w"lu do — b [ W ul¥ da),

for allt € [0, Trraz)-
Proof. Since I(u) < 0 for all 0 <t < T*, it follows that

l s
/wh\V]EuF da—i—/th|u\2dU<Zak/wh\u|p’“+1 do—ij/wh\tuH do.
E E - JE = e

(5.1)
For all 0 <t < T*, using the definition of d, we get
p—1 h 2 h 2
d<7</w VEu dchr/w Viu da). 5.2
sy (L@ 1Teutds 4 [ Vi (52)
Then (5.1) and (5.2]) imply

l s
2 1
E ak/wh\u|p’“+1 do — E bj/wh\u|qj+1 do > Md > 0.
k=1 “E j=1 “’F p—1

By the continuity of ¢ — 34| ax Jp @ Pt do =375 by [ w"|u|9 T do we get
u(T*) # 0. From the definition of J(u), we obtain

l s
p— 1 h * 41 h * 41 *
d< —-— ak/w w(TH) Pt do— b»/w w(THY " do) = J(u(T")),
2@+n(§£ [ Plu(r)) ;EJE (@)% do ) = T (u(T))
which contradicts to J(u(T*) < E(T*) < d. Then, we obtain

p—1 / h 2 / h 2
d<—— W'\ Veu|*do + | "V |ul*do

l s
p—1 |, (petl k|, 1q;+1
< ak/w |ulP*™ do — bv/w |u|% T do).
2(p+1) ; E ; *Je
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Lemma 5.3. Assume M (t) > 0 is a twice differentiable function, then the inequal-
ity

ME)M" () — (1+a)M'(t)* >0
holds fort > 0 and o > 0. If M(0) > 0 and M'(0) > 0, then there exists a time

T* < OM(,%) such that lim;_,p«— M(t) = oo.

Proof of Theorem [5.1. We consider M : [0,T] — Ry defined by

M(t) = ||u(t H n+1 /||u ||2 n1 dT—"(T_t)”uO”i"T“(E)+H(t+TO)2,

2

where T and To are positive constants. Furthermore,

M) =2 [ wdude + [u® ps = ol ags 260+ T)
E Ly2 (B) L% (B)
) (5.3)
=2 / uOpudx + 2/ (u(7), Opu(T))2 dT + 26(t + Tp),
E 0

and consequently,

M"(t) = 2(0pu,u) + 2/|0ul|? nir  + 2(05u,u) + 2K
L% (B)
1
:2[_ Vel nes —/th\u|2da+Zak/wh|u\m+1 da}
L,? (E) E =1 E
72[ b-/whuqﬁrldaf opu)® s ,,{]
Z;JE\| 10l g

2
For almost every ¢ € [0,T], we get

p+3
1

— MM"(t) + (p+3) [n(t) - (M(t) —(T- t)”“O”i“T“(E))

2
t
< (1l o+ [0 as dr ot )],
L,? (E) 0 L,? (E)

2

M(t)M"(t) - M'(t)?

where n: [0,T] — R+ is the function defined by
)= (s /nu o A7+ T?)

x@@wzﬁ +/nwmwzﬁ dr + )
L£,% (E) 0 £,% (B)

2

¢
_ (/whuatudoJr/ (u, Opu)2 dT+I€(t+To)) > 0.
E 0

As a consequence, we have differential equality

MM (1)~ P22 a2 = oye(o) (54)
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For almost every ¢t € [0,T], £ : [0,T] — R4 is the map defined by

t
€)=+ (10l e+ [ 10 ups et 1) (0+3)
L,? (E) 0 L,?* (E)

2

l
:2[— IVEU||? nis —/th|u\2d0+Zak/wh|u|p’“+l do’]
L£,? (&) JE —1 JE
—2[ b»/whuqﬂ'lda— Owul)? —fi}
Sty [l ol oy

t
(ol a4 [0y drx)
L£,? (E) 0 £,% (B)

2= 2p+ DEO + (= DITsul o+ 01 / V]l do
E E

t
—(p+3) / 10| as dr— (p+ 1)
0 L,2 (E)

—2(p+1DEQ) + (p - 1)HVEUI

n+1 +(p—1)/th|u|2 do
(E) E
t
1) / |02 wes dr — (p+ 1.
0 £,% (E)

Case 1. If E(0) < 0, then

§(t) =—2(p+DEQO) + (p - 1)HVEU|

eas) +(p— 1)/th|u|2da
(E) E

t
(1) / 0P as  dr— (p+ 1)
0 L,? (E)

> —2(p+ 1)E(0) + (p — 1)(1 + C*%)||Vgu?

n+1
2
[’2

p—1) / 0P ngs = (o4 D

Choosing « satisfying k < —2F(0), we have

i
§6) = (p— (1 +C)IVeul® o +(p—1)/ |10su(T)||? nys  dr > 0. (5.5)
L£,2 (E) 0 L£,? (E)

Case 2. If 0 < E(0) < d, then by Lemma we have

€)= =20+ 1BO) + (0~ Vsl o +(p—1)/th|u|2da
(E) E

po1 / ()| m( dr— (p+ s
=2(p+ 1)(d— E(0 p—1) / ||Oru(T 7,+1 dr— (p+ Dk
(E)

p—1) / 0] )dT—(p—l—l)/ﬁ.
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Choosing x = 0, we have (p — 1) fg 10su(T)||? nsn  dT > 0. Then we obtain
L,? (E)

2

() = 0. (5.6)
Therefore, from (5.4) (5.5) and (5.6)), we obtain
MM (1) — #M’(t)Q > 0.

By Lemma and (5.3), for every t € [0,T], if E(0) < 0, we then choose Tj
sufficiently large such that M'(0) = 2 [, w"uouy do + 20T, > 0; if 0 < E(0) < d,
the condition [, w"ugui do > 0 also ensure that M’(0) > 0. As pT” > 1, letting
p—1

4

a = we get lim;_,p«— M(t) = oo by the convexity argument, which implies

that lim,_ 7. || Vgul|? .41 00. O
2

2

Theorem 5.4. Assume that

+1 n+1

S0 N23, weHy,® (B), wel,’ (E), B0)<0,

1<p< N
PN
Then the solution blows up at time T*.

Proof. We define the auxiliary function
D(t) := /wh(uf + |Vgul* + Vu?) do.
E
Differentiating ®(¢) and making use of the divergence theorem, we obtain

d'(t) =2 / WM (upuy + |Viu||Veue| + Vuuy) do
E

=2 / whuy (g + |Agul + V) do
E

l s
:2(Zak/wh|u|pkutda—2bj/wh|u|q1utda—/wh|ut|2da).
- JE = e E

The two terms on the right-hand side of (5.7) can be estimated as follows
1

s l
Soan [Maprdo =30t [Wtulvdo <Y an [ WMupdo
k=1 “E j=1 “E k=1 “E
l

<Y apCE||Veu|™,s
k=1 52 2 (E)

< C’(/wh|V]Eu|2 do)pl.
E

Then, we have
l s
Q(Zak/wh|u\p’“utd0—ij/wh\u|qjutd0)
k=1 E j=1 E
1
SQZak/wh|u|p’°utda
k=1 E
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h, 2 : hy, |2 1/2
< 2( w'ui do E ap | w"|ulPr do)
E w1  JE

1/2 1/2
< 2@</whuf dg) (/wh|V]Eu\2da)p
E E
p1
< \@{/whufda—i— (/wh|VEu\2dU) } <VO(® + dP1),
E E
which leads to the differential inequality
' (t) < ad + pOP1,

where o = 3 = /C. This differential inequality may be reduced to a linear differ-
ential inequality for v(t) := ®17P1. Integrating this inequality, we obtain

(D(1)' 7P > {(@(0)! 77 + e~ Pr=DVOE g, (5.8)
It follows from (5.8)), that ®(¢) remains bounded for ¢t € [0,T") with

1
T = —Llog{1+ (®(0))1 ).
(p1 — VO
It gives that T* is a lower bound for the blow-up time. (Il
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